Exam Quantum Probability
June 2nd, 2020

Hints: You can use all results proved in the lecture notes (without proving them your-
selves), as well as claims one is supposed to prove in exercises from the lecture notes.
You can also use a claim you are supposed to prove in one excercise below to solve
another excercise (even if you did not prove the claim). Partial solutions also yield
points.

Exercise 1 (A normal operator) Let H be an inner product space (complex, finite
dimensional). Let A € £(H) be a normal operator such that A?+1 = 0, where 1 denotes
the identity operator.

(a) Show that A is unitary.
(b) Show that there exists a unitary operator B such that B* = A.

The Pauli matrices are defined on page 39 of the lecture notes. Using the physicist’s

notation
1 0
0= (1) wt ()

Sdl0)=11),  S|0) =11), 5,10y =0),
S1)=10),  Sy[1) ==]0),  S[1)=—[1).
For each 6 = (6,,6,,0,) € R* with ||0]] = 1, we set

we have

Sy := 0,5y + 0,5, + 6,5,

It follows from the proof of Lemma 4.2.2 in the lecture notes that Sy is a hermitian
operator with spectrum o(Sp) = {—1,+1}. Conversely, each operator (on our two-
dimenional space) with these properties is of the form S = Sy for some 6 € R3 with
16]] = 1.

In Exercises 2 and 3, we will be interested in the state vectors
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¢ = —=(]01) — [10)) and < := —(|01) + |10)).

S
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Exercise 2 (Entangled pure states)
(a) Prove that

(9]Sh @ Spr|@) = —0x0; — 0,0, — 60,0,
(b) Prove that

(10| Sy © Spr|0) = 0.0, + 0,0, — 0,0,.

(c) Let P be a projection operator that projects on a one-dimensional subspace. Prove
that

(d) Give an example of a projection operator P that projects on a one-dimensional
subspace such that
py(P ® P) # 0.

Exercise 3 (Entangled mixed states) Let ¢ and ¢ be as in Exercise 1. In this
exercise we are interested in the mixed state

Py = PPy + (1 = p)py.
(a) Prove that
Pa/2) = 3P01) F 3PN0)-
(b) Is the state p(1/2) entangled?
(c) Prove that p(,) is entangled when p is sufficiently close to zero or one. Hint: Bell’s
inequality says that
|p(Sor ® Sp2) + p(Sps @ Sgz) + p(Ser ® Spa) — p(Sps ® Spa)| < 2.

If 8! = 62 = 0, then you can use parts (a) and (b) of the previous exercise to get an
expression for p(Sp @ Sg2). Now you need to choose 8',...,6% in a clever way, similar
to what we did in the lecture notes.



Solutions

Ex 1
(a) Since A is normal, there exists an orthonormal basis {e(1),...,e(n)} such that

A=Y Me(R)e(k)].

Now A% + 1 = 0 is equivalent to

n

Y%+ Dle(k))(e(k) =0,

k=1
which is in turn equivalent to A\, = 4 for all k = 1,...,n. Since )\,;1 = )\; for each k,
it follows that A~! = A* which shows that A is unitary.
(b) Let us set ay := 7/2 if Ay, =4 and ay := —7/2 if \y = —i. Then )\, = €™ for all k.

Now if we set

Bi= 3" e 2e(k))e(h),
k=1

then B is unitary since (e’**/2)~! = (e'*/2)* and B? = A since (¢*#/2)? = el = ).

Ex 2
(a) We start by writing

(01 @ Spley = > Y 0.0,(¢|S. @ Syle).
ve{x,y,z} we{x,y,z}
We observe that

5. ® S,/9) :%< 1) — Joo))

S, ® S,|¢) :%( {11y + 4]00)),

which are orthogonal to ¢. For the same reason, S, ® Sy and S, ® S, give a zero
contribution. Since moreover

S ® 8,|6) = —= (— i[10) — ij01)) = ~iv

Sy ® Sy’@ = E(ZW) + i|01>) = i@Da

are orthogonal to ¢, only the diagonal terms contribute. Using moreover that

H«|| —_
[\

S, ® Sil) =%(|1o> o) = —¢
Sy ® 5,19) =%(z’ (=)]10) — (—i) - i]01)) = —o
s, ®szr¢>=%(— 01) 4+ 10)) = —4,



we obtain that

(0155 @ Sy|d) = —0,6.. — 0,6, — 6,6..

(b) The contribution of the off-diagonal terms is zero for the same reason as under (a).
For the diagonal terms, we obtain

S, © Suli) = %(|10>+|01>):¢
Sy ® Sylu) = %(z ()10 + (~i) - 1[01)) =
S, ® S,l0) = \}5( 01 + [10)) = —v,

which yields
(¥]Se @ Spr|[0) = 040, + 0,0, — 0,0,

(c) By Lemma 4.2.2 in the lecture notes, every projection operator P that projects on
a one-dimensional subspace is of the form P = Py := %1 + %S@ for some § € R? with
10]] = 1. We can write

89:2P9—1:P9—(1—P9):PQ—P_Q,
where { Py, P_g} is a partition of the identity. Now part (a) tells us that

—1 = (¢|Ss ® Sold) = py(Se © Sp)
=1-1py(Py® Fy) +1-(=1) py(Py ® P_p)
+ (1) - 1 pg(P-o @ Pp) + (—1) - (=1) py(P-g @ P-g),

which implies that the probabilities ps(Py®Py) and py(P_g®@P_g) are zero. Alternatively,
we can calculate

po(Po @ Py) = 2{ps(S6 @ So) + pp(Se @ 1) + ps(1 @ Sp) + ps(1 @ 1)}.

Here ps(Sp ® Sp) = —1 by part (a) and p,(1 ® 1) = 1. To calculate the other terms, we
write

ps(So®1) = (B|Ss @ 1|g) = Y 0.(0|S]0).

ve{x,y,z}

Here

Seo = 25 (|11) — [00)),
Sy = L(¢|11> +i]00)),
S.0 = 5(101) + [10)),

are all orthogonal to ¢, so ps(Sp ® 1) = 0. In the same way, we see that ps(1® Sy) =
It follows that
ps(Py®@ Py) = H{-1+0+0+1} =0.



(d) If 6, < 1, then part (b) tells us that

—1 < (¥[8 ® Splvb) = py(Ss ® Sp)
= pyp(Po @ Pp) — py(Py @ P-g) — py(P_g @ Py) + py(P-g ® P_y),
which implies that at least one of the probabilities p,(Py ® Py) and py,(P-g ® P_g) must
be nonzero. More explicitly, we can calculate
PPy @ Pp) =3{py(S9 @ Sp) + py(Se ® 1) + py(1® Sp) + pp(1 @ 1)}
=1{6;+62—0]+0+0+1},

which is in fact nonzero always except when (6, 6y,6,) = (0,0,1).

Ex 3
(a) Let F be the subspace of H ® H spanned by the orthonormal vectors ¢ and .
Then, for any A € L(H ® H),

pas2(A) = 306(A) + 5p6(A) = 3 ((8lAl9) + (V]A[)) = 5tr(PrA)
= 5({01]AJ01) + (10]A[10)) = 3ppo1) + 50010

since {|01),]10)} is also an orthonormal basis for F.

(b) The state p/2) is not entangled since py1y = poy ® ppy and ppoy = ppy @ ploy are
product states.

(c) We choose 6! =02 = 62 = 0} = 0 and

(93(7 ey) = (COS(O)v sin(O)), (9)2(’ 93) ( S(’V)v Sin(/y))>
(937 93) - (005(27)’ Sin(%))» (Qi? eﬁ) = ( S(_7)> Sin(—’y)),

which by parts (a) and (b) of Exercise 2 yields

Po(Sor @ Sp2) + pp(Sps @ Sp2) + pg(Ser @ Sga) — pe(Sps @ Spa) = —3 cos(y) — cos(37),
,0¢(Sg1 &® 592) + ,0¢(Sgs &® 592) + ,0¢(Sg1 ® 594) — ,01/,(393 &® 594) = 3COS(’}/) + COS(SW).

The calculations on pages 102 and 103 in the lecture notes show that the optimal choice
is v = /4, for which 3 cos(7) + cos(37) = 2v/2. It follows that

(p)(591 & 592) -+ ,O(p)(Sgs &® 592) -+ p(p)(Sg1 & 594) — p(p)<593 & 594) = (1 — 2p)2\/§,

so as long as |p — %| > 1/(2v/2), this expression is in absolute value larger than 2 and
we conclude that p,) is entangled.



