
Exam Quantum Probability
June 2nd, 2020

Hints: You can use all results proved in the lecture notes (without proving them your-
selves), as well as claims one is supposed to prove in exercises from the lecture notes.
You can also use a claim you are supposed to prove in one excercise below to solve
another excercise (even if you did not prove the claim). Partial solutions also yield
points.

Exercise 1 (A normal operator) Let H be an inner product space (complex, finite
dimensional). Let A ∈ L(H) be a normal operator such that A2+1 = 0, where 1 denotes
the identity operator.

(a) Show that A is unitary.

(b) Show that there exists a unitary operator B such that B2 = A.

The Pauli matrices are defined on page 39 of the lecture notes. Using the physicist’s
notation

|0〉 :=

(
1
0

)
and |1〉 :=

(
0
1

)
,

we have
Sx|0〉= |1〉, Sy|0〉= i|1〉, Sz|0〉= |0〉,
Sx|1〉= |0〉, Sy|1〉=−i|0〉, Sz|1〉=−|1〉.

For each θ = (θx, θy, θz) ∈ R3 with ‖θ‖ = 1, we set

Sθ := θxSx + θySy + θzSz.

It follows from the proof of Lemma 4.2.2 in the lecture notes that Sθ is a hermitian
operator with spectrum σ(Sθ) = {−1,+1}. Conversely, each operator (on our two-
dimenional space) with these properties is of the form S = Sθ for some θ ∈ R3 with
‖θ‖ = 1.
In Exercises 2 and 3, we will be interested in the state vectors

φ :=
1√
2

(
|01〉 − |10〉

)
and ψ :=

1√
2

(
|01〉+ |10〉

)
.

Please turn over.
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Exercise 2 (Entangled pure states)
(a) Prove that

〈φ|Sθ ⊗ Sθ′ |φ〉 = −θxθ′x − θyθ′y − θzθ′z.

(b) Prove that
〈ψ|Sθ ⊗ Sθ′|ψ〉 = θxθ

′
x + θyθ

′
y − θzθ′z.

(c) Let P be a projection operator that projects on a one-dimensional subspace. Prove
that

ρφ(P ⊗ P ) = 0.

(d) Give an example of a projection operator P that projects on a one-dimensional
subspace such that

ρψ(P ⊗ P ) 6= 0.

Exercise 3 (Entangled mixed states) Let φ and ψ be as in Exercise 1. In this
exercise we are interested in the mixed state

ρ(p) := pρφ + (1− p)ρψ.

(a) Prove that
ρ(1/2) = 1

2
ρ[01〉 + 1

2
ρ[10〉.

(b) Is the state ρ(1/2) entangled?

(c) Prove that ρ(p) is entangled when p is sufficiently close to zero or one. Hint: Bell’s
inequality says that∣∣ρ(Sθ1 ⊗ Sθ2) + ρ(Sθ3 ⊗ Sθ2) + ρ(Sθ1 ⊗ Sθ4)− ρ(Sθ3 ⊗ Sθ4)

∣∣ ≤ 2.

If θ1z = θ2z = 0, then you can use parts (a) and (b) of the previous exercise to get an
expression for ρ(Sθ1 ⊗ Sθ2). Now you need to choose θ1, . . . , θ4 in a clever way, similar
to what we did in the lecture notes.
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Solutions

Ex 1
(a) Since A is normal, there exists an orthonormal basis {e(1), . . . , e(n)} such that

A =
n∑
k=1

λk|e(k)〉〈e(k)|.

Now A2 + 1 = 0 is equivalent to

n∑
k=1

(λ2k + 1)|e(k)〉〈e(k)| = 0,

which is in turn equivalent to λk = ±i for all k = 1, . . . , n. Since λ−1k = λ∗k for each k,
it follows that A−1 = A∗ which shows that A is unitary.

(b) Let us set αk := π/2 if λk = i and αk := −π/2 if λk = −i. Then λk = eiαk for all k.
Now if we set

B :=
n∑
k=1

eiαk/2|e(k)〉〈e(k)|,

then B is unitary since (eiαk/2)−1 = (eiαk/2)∗ and B2 = A since (eiαk/2)2 = eiαk = λk.

Ex 2
(a) We start by writing

〈φ|Sθ ⊗ Sθ′ |φ〉 =
∑

v∈{x,y,z}

∑
w∈{x,y,z}

θvθ
′
w〈φ|Sv ⊗ Sw|φ〉.

We observe that

Sx ⊗ Sz|φ〉=
1√
2

(
− |11〉 − |00〉

)
Sy ⊗ Sz|φ〉=

1√
2

(
− i|11〉+ i|00〉

)
,

which are orthogonal to φ. For the same reason, Sz ⊗ Sx and Sz ⊗ Sy give a zero
contribution. Since moreover

Sx ⊗ Sy|φ〉=
1√
2

(
− i|10〉 − i|01〉

)
= −iψ

Sy ⊗ Sy|φ〉=
1√
2

(
i|10〉+ i|01〉

)
= iψ,

are orthogonal to φ, only the diagonal terms contribute. Using moreover that

Sx ⊗ Sx|φ〉=
1√
2

(
|10〉 − |01〉

)
= −φ

Sy ⊗ Sy|φ〉=
1√
2

(
i · (−i)|10〉 − (−i) · i|01〉

)
= −φ

Sz ⊗ Sz|φ〉=
1√
2

(
− |01〉+ |10〉

)
= −φ,
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we obtain that
〈φ|Sθ ⊗ Sθ′ |φ〉 = −θxθ′x − θyθ′y − θzθ′z.

(b) The contribution of the off-diagonal terms is zero for the same reason as under (a).
For the diagonal terms, we obtain

Sx ⊗ Sx|ψ〉=
1√
2

(
|10〉+ |01〉

)
= ψ

Sy ⊗ Sy|ψ〉=
1√
2

(
i · (−i)|10〉+ (−i) · i|01〉

)
= ψ

Sz ⊗ Sz|ψ〉=
1√
2

(
− |01〉+ |10〉

)
= −ψ,

which yields
〈ψ|Sθ ⊗ Sθ′|ψ〉 = θxθ

′
x + θyθ

′
y − θzθ′z.

(c) By Lemma 4.2.2 in the lecture notes, every projection operator P that projects on
a one-dimensional subspace is of the form P = Pθ := 1

2
1 + 1

2
Sθ for some θ ∈ R3 with

‖θ‖ = 1. We can write

Sθ = 2Pθ − 1 = Pθ − (1− Pθ) = Pθ − P−θ,

where {Pθ, P−θ} is a partition of the identity. Now part (a) tells us that

−1 = 〈φ|Sθ ⊗ Sθ|φ〉 = ρφ(Sθ ⊗ Sθ)
= 1 · 1 ρφ(Pθ ⊗ Pθ) + 1 · (−1) ρφ(Pθ ⊗ P−θ)

+ (−1) · 1 ρφ(P−θ ⊗ Pθ) + (−1) · (−1) ρφ(P−θ ⊗ P−θ),

which implies that the probabilities ρφ(Pθ⊗Pθ) and ρφ(P−θ⊗P−θ) are zero. Alternatively,
we can calculate

ρφ(Pθ ⊗ Pθ) = 1
4

{
ρφ(Sθ ⊗ Sθ) + ρφ(Sθ ⊗ 1) + ρφ(1⊗ Sθ) + ρφ(1⊗ 1)

}
.

Here ρφ(Sθ ⊗ Sθ) = −1 by part (a) and ρφ(1⊗ 1) = 1. To calculate the other terms, we
write

ρφ(Sθ ⊗ 1) = 〈φ|Sθ ⊗ 1|φ〉 =
∑

v∈{x,y,z}

θv〈φ|Sv|φ〉.

Here
Sxφ = 1√

2

(
|11〉 − |00〉

)
,

Syφ = 1√
2

(
i|11〉+ i|00〉

)
,

Szφ = 1√
2

(
|01〉+ |10〉

)
,

are all orthogonal to φ, so ρφ(Sθ ⊗ 1) = 0. In the same way, we see that ρφ(1⊗ Sθ) = 0.
It follows that

ρφ(Pθ ⊗ Pθ) = 1
4
{−1 + 0 + 0 + 1} = 0.
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(d) If θz < 1, then part (b) tells us that

−1 < 〈ψ|Sθ ⊗ Sθ|ψ〉 = ρψ(Sθ ⊗ Sθ)
= ρψ(Pθ ⊗ Pθ)− ρψ(Pθ ⊗ P−θ)− ρψ(P−θ ⊗ Pθ) + ρψ(P−θ ⊗ P−θ),

which implies that at least one of the probabilities ρψ(Pθ⊗Pθ) and ρψ(P−θ⊗P−θ) must
be nonzero. More explicitly, we can calculate

ρψ(Pθ ⊗ Pθ) = 1
4

{
ρψ(Sθ ⊗ Sθ) + ρψ(Sθ ⊗ 1) + ρψ(1⊗ Sθ) + ρψ(1⊗ 1)

}
= 1

4

{
θ2x + θ2y − θ2z + 0 + 0 + 1

}
,

which is in fact nonzero always except when (θx, θy, θz) = (0, 0, 1).

Ex 3
(a) Let F be the subspace of H ⊗ H spanned by the orthonormal vectors φ and ψ.
Then, for any A ∈ L(H⊗H),

ρ(1/2)(A) = 1
2
ρφ(A) + 1

2
ρψ(A) = 1

2

(
〈φ|A|φ〉+ 〈ψ|A|ψ〉

)
= 1

2
tr(PFA)

= 1
2

(
〈01|A|01〉+ 〈10|A|10〉

)
= 1

2
ρ[01〉 + 1

2
ρ[10〉,

since {|01〉, |10〉} is also an orthonormal basis for F .

(b) The state ρ(1/2) is not entangled since ρ[01〉 = ρ[0〉 ⊗ ρ[1〉 and ρ[10〉 = ρ[1〉 ⊗ ρ[0〉 are
product states.

(c) We choose θ1z = θ2z = θ3z = θ4z = 0 and

(θ1x, θ
1
y) =

(
cos(0), sin(0)

)
, (θ2x, θ

2
y) =

(
cos(γ), sin(γ)

)
,

(θ3x, θ
3
y) =

(
cos(2γ), sin(2γ)

)
, (θ4x, θ

4
y) =

(
cos(−γ), sin(−γ)

)
,

which by parts (a) and (b) of Exercise 2 yields

ρφ(Sθ1 ⊗ Sθ2) + ρφ(Sθ3 ⊗ Sθ2) + ρφ(Sθ1 ⊗ Sθ4)− ρφ(Sθ3 ⊗ Sθ4) =−3 cos(γ)− cos(3γ),

ρψ(Sθ1 ⊗ Sθ2) + ρψ(Sθ3 ⊗ Sθ2) + ρψ(Sθ1 ⊗ Sθ4)− ρψ(Sθ3 ⊗ Sθ4) = 3 cos(γ) + cos(3γ).

The calculations on pages 102 and 103 in the lecture notes show that the optimal choice
is γ = π/4, for which 3 cos(γ) + cos(3γ) = 2

√
2. It follows that

ρ(p)(Sθ1 ⊗ Sθ2) + ρ(p)(Sθ3 ⊗ Sθ2) + ρ(p)(Sθ1 ⊗ Sθ4)− ρ(p)(Sθ3 ⊗ Sθ4) = (1− 2p)2
√

2,

so as long as |p − 1
2
| > 1/(2

√
2), this expression is in absolute value larger than 2 and

we conclude that ρ(p) is entangled.

5


