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1 Matrices and their spectra

1.1 Linear operators and their matrices

Let V be a finite-dimensional linear space over K = R or C. If {e(1), . . . , e(n)} is a basis for
V and ϕ ∈ V , then there exist unique ϕ1, . . . , ϕn ∈ K such that

ϕ =
n∑

i=1

ϕie(i).

Let V,W be finite-dimensional linear spaces over K equipped with bases {e(1), . . . , e(n)} and
{f(1), . . . , f(m)}. Let L(V,W ) be the space of linear operators A : V → W . Then for each
A ∈ L(V,W ) there exist unique Aij ∈ K with 1 ≤ i ≤ m and 1 ≤ j ≤ n such that

(Aϕ)i =
n∑

j=1

Aijϕj (1 ≤ i ≤ m).

We call (Aij)1≤i≤m, 1≤j≤n the matrix of A and we call Aij the (i, j)-th entry of the matrix.
One has

(AB)ik =
∑
j

AijBjk.

The trace of an operator A ∈ L(V ) := L(V, V )

tr(A) :=
∑
i

Aii

does not depend on the choice of the basis and satisfies tr(AB) = tr(BA). Let A ∈ L(V ). By
definition, 0 ̸= ϕ ∈ V is an eigenvector with eigenvalue λ ∈ K if Aϕ = λϕ. We call

σ(A) :=
{
λ : λ is an eigenvalue of A

}
the spectrum of A. One has

σ(A) :=
{
λ : (λ−A) is not invertible

}
.

Lemma 1 (Nonempty spectrum) Assume that A ∈ L(V ) and K = C. Then σ(A) ̸= ∅.

Proof (sketch) One has σ(A) :=
{
λ : det(λ − A) = 0}. The equation det(λ − A) = 0 is a

polynomial in λ of degree dim(V ) which is guaranteed to have at least one complex root.
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1.2 Inner product spaces

Let V be a finite-dimensional linear space over K = R or C. An inner product on V is a map
that assigns to two vectors ϕ, ψ ∈ V a number ⟨ϕ, ψ⟩ ∈ K such that

(i) ψ 7→ ⟨ϕ, ψ⟩ is linear,

(ii) ⟨ϕ, ψ⟩ = ⟨ψ, ϕ⟩,

(iii) ⟨ϕ, ϕ⟩ ≥ 0,

(iv) ⟨ϕ, ϕ⟩ = 0 ⇒ ϕ = 0.

Here c denotes the complex conjugate of a number c ∈ K = R or C. In the complex case,
ϕ 7→ ⟨ϕ, ψ⟩ is not linear but colinear in the sense that

⟨c1ϕ(1) + c2ϕ(2), ψ⟩ = c1⟨ϕ(1), ψ⟩+ c2⟨ϕ(2), ψ⟩.

The norm associated with the inner product is |ϕ| :=
√
⟨ϕ, ϕ⟩. A basis {e(1), . . . , e(n)} is

orthogonal if ⟨e(i), e(j)⟩ = 0 for i ̸= j and orthonormal if in addition ⟨e(i), e(i)⟩ = 1 for each
i. For each ϕ ∈ V we define ⟨ϕ| ∈ L(V,K) and |ϕ⟩ ∈ L(K, V ) by

⟨ϕ|ψ := ⟨ϕ, ψ⟩ and |ϕ⟩c := cϕ.

The space V ′ := L(V,K) is called the dual linear space of V . On the other hand, L(K, V ) can
naturally be identified with V itself. Also, ⟨ϕ| |ψ⟩ ∈ L(K,K) ∼= K can be identified with the
number ⟨ϕ, ψ⟩. For A ∈ L(V ) one has

A|ψ⟩ = |Aψ⟩.

The coordinates of a vector and operator with respect to an orthonormal basis are given by

ϕi = ⟨e(i), ϕ⟩ and Aij = ⟨e(i), Ae(j)⟩ = ⟨e(i)|A|e(j)⟩.

Note that |ϕ⟩⟨ψ| ∈ L(V, V ) = L(V ). One has

A =
∑
i,j

Aij |e(i)⟩⟨e(j)|,

and the operators |e(i)⟩⟨e(j)| form a basis for L(V ). In particular

1 =
∑
i

|e(i)⟩⟨e(i)|

is the identity operator.
Each A ∈ L(V ) has a unique adjoint A∗ ∈ L(V ) such that

⟨ϕ,Aψ⟩ = ⟨A∗ϕ, ψ⟩ (ϕ, ψ ∈ V ).

the map A 7→ A∗ is colinear with

(A∗)∗ = A and (AB)∗ = B∗A∗.

In coordinates
A∗

ij = Aji.

An operator A is normal if it commutes with its adjoint:

AA∗ = A∗A.

We say that A is hermitian if A∗ = A.
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Theorem 2 (Diagonalisation of normal operators) Assume that K = C. Then A ∈ L(V )
is normal if and only if there exists an orthonormal basis {e(1), . . . , e(n)} and complex numbers
λ1, . . . , λn such that

A =
∑
i

λi|e(i)⟩⟨e(i)|. (1)

Moreover, A is hermitian if and only if λ1, . . . , λn ∈ R.

Proof It is straightforward to check an operator of the form (1) is normal, and hermitian if
and only if λ1, . . . , λn ∈ R. It remains to show each normal operator can be written in the
form (1). Assume A is normal. Then for each ϕ ∈ V ,

⟨A∗ϕ,A∗ϕ⟩ = ⟨ϕ,AA∗ϕ⟩ = ⟨ϕ,A∗Aϕ⟩ = ⟨Aϕ,Aϕ⟩,

which shows that
|A∗ϕ| = |Aϕ|.

Since K = C, the operator A has at least one eigenvector ϕ with some eigenvalue λ. Then

Aϕ = λϕ ⇒ |(A− λ)ϕ| = 0 ⇒ |(A− λ)∗ϕ| = 0 ⇒ A∗ϕ = λ∗ϕ.

Let {ϕ}⊥ := {ψ ∈ V : ⟨ϕ, ψ⟩ = 0}. Then

ψ ∈ {ϕ}⊥ ⇒ ⟨ϕ,Aψ⟩ = ⟨A∗ϕ, ψ⟩ = λ⟨ϕ, ψ⟩ = 0 ⇒ Aψ ∈ {ϕ}⊥.

Now A restricted to {ϕ}⊥, is again a normal operator so repeating the argument we can find
an orthonormal basis of eigenvectors.

Although our proof of Theorem 2 used the complex numbers in an essential way, for
symmetric real matrices one can prove something similar.

Theorem 3 (Diagonalisation of symmetric matrices) Let V be a real vector space and let
A ∈ L(V ) satisfy A∗ = A. Then there exists an orthonormal basis {e(1), . . . , e(n)} consisting
of eigenvectors of A.

Proof This will follow from the same arguments as in the proof of Theorem 2 provided we
show that each symmetric real matrix has at least one eigenvector. By compactness, the
function ϕ 7→ ⟨ϕ,Aϕ⟩ assumes its maximum over the ball surface {ϕ ∈ V : |ϕ| = 1} in some
point ψ. This means that in the point ψ the derivatives of the function ϕ 7→ ⟨ϕ,Aϕ⟩ in
directions tangential to the ball are all zero. By the method of Lagrange multipliers, there
exists a λ ∈ R such that derivatives of the function ϕ 7→ ⟨ϕ,Aϕ⟩ − λ⟨ϕ, ϕ⟩ in the point ψ are
zero in all directions. Thus, for our ψ, we can find λ ∈ R so that

∂
∂ε

[
⟨ψ + εϕ,A(ψ + εϕ)⟩ − λ⟨ψ + εϕ, ψ + εϕ⟩

]∣∣∣
ε=0

= 0 (ϕ ∈ V ).

This gives
⟨ψ,Aϕ⟩+ ⟨ϕ,Aψ⟩ − λ⟨ψ, ϕ⟩ − λ⟨ϕ, ψ⟩ = 0 (ϕ ∈ V ).

Using the fact that A∗ = A and dividing out a factor 2, we get

⟨ϕ,Aψ⟩ − λ⟨ϕ, ψ⟩ = 0 (ϕ ∈ V ).

But this says that ⟨ϕ,Aψ − λψ⟩ = 0 for all ϕ ∈ V , which means that Aψ = λψ, i.e., we have
found an eigenvector.
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1.3 The operator norm

Let V be a finite-dimensional linear space over K = R or C. The operator norm of an operator
A ∈ L(V ) is defined as

∥A∥op := sup
|ϕ|≤1

|Aϕ|.

By linearity, ∥A∥op is the least constant for which that the inequality

|Aϕ| ≤ ∥A∥op · |ϕ|

holds for all ϕ ∈ V . From this, it is easy to see that

∥AB∥op ≤ ∥A∥op · ∥B∥op.

Lemma 4 (Operator norm and spectrum) If A is normal and K = C, then

∥A∥op = sup
{
|λ| : λ ∈ σ(A)

}
. (2)

Proof Let C := sup
{
|λ| : λ ∈ σ(A)

}
. If ϕ is an eigenvector with eigenvalue λ, then

|Aϕ| = |λ| · |ϕ|,

so |λ| ≤ ∥A∥op for each λ ∈ σ(A), which implies ∥A∥op ≥ C. To prove the other inequality,
we use that by Theorem 2 there exists an orthonormal basis {e(1), . . . , e(n)} of eigenvectors.
Denoting the corresponding eigenvalues by λ1, . . . , λn, we can write for arbitrary ϕ ∈ V ,

|Aϕ|2 =
∣∣∣ n∑
i=1

λiϕie(i)
∣∣∣2 = ∑

ij

λiϕiλjϕj⟨e(i), e(j)⟩ =
∑
i

|λi|2 · |ϕi|2 ≤ C2
∑
i

|ϕi|2 = C2|ϕ|2.

It follows that |Aϕ| ≤ C|ϕ| for all ϕ and hence ∥A∥op ≤ C.

Question Is the assumption in Lemma 4 that A is normal needed? Note that the definition
of σ(A) does not depend on the choice of the inner product on V , so if (2) would hold for all
A ∈ L(V ), then this would mean that the definition of the operator norm does not depend on
the choice of the inner product on V . This seems strange. Can someone find a counterexample
to show that (2) may fail if A is not normal?

2 Random matrices

2.1 Matrix ensembles

The central question we will be interested in is the following:

Question Let M be a random matrix of size n × n. What can we say about its
spectrum as n→ ∞?

To make this question more precise, we must say what we mean with a “random matrix”, i.e.,
we must describe its law, and we must also be more specific about what we want to know
about its spectrum. In random matrix theory, a sequence of probability laws on the spaces of
n× n real or complex matrices is called a matrix ensemble. There are several natural choices.
In what follows, for each integer n ≥ 1, we consider a random matrix M = (ξij)1≤i,j≤n.

� I.i.d. matrix ensembles These are ensembles where the entries are i.i.d. according to
some common law. Examples are:

– Bernoulli ensemble ξij uniformly distributed on {−1, 1},
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– Real Gaussian ensemble ξij standard normally distributed on R,
– Complex Gaussian ensemble ξij standard normally distributed on C ∼= R2.

� Symmetric Wigner matrix ensembles These are ensembles where (ξij)i≥j are inde-
pendent real random variables and ξij := ξji for i > j. Examples are:

– Symmetric Bernoulli ensemble (ξij)i≤j uniformly distributed on {−1, 1},
– Gaussian orthogonal ensemble (GOE) (ξij)i≤j standard normally distributed on R,

and (ξii)1≤i≤n normally distributed with mean zero and variance 2.

� Hermitian Wigner matrix ensembles These are ensembles where (ξij)i<j are inde-
pendent complex random variables, (ξii)1≤i≤n are independent real random variables,
and ξij := ξji for i > j. The symmetric Wigner matrix ensembles are special cases of
this. An important additional example is:

– Gaussian unitary ensemble (GUE) (ξij)i≤j standard normally distributed on C ∼=
R2, and (ξii)1≤i≤n standard normally distributed on R.

Note that in all these examples, we can start with an infinite matrix

M = (ξij)i,j∈N+ ,

and then define Mn := (ξij)1≤i,j≤n. This provides a natural coupling between matrixes of
different size.

Question If V is an inner product space and {e(1), . . . , e(n)} is an orthonormal basis, then
each of the “ensembles” above naturally defines a probability law on L(V ), when we identify
a linear operator with its matrix. For which of the probability distributions above (if any) is
this law independent of the choice of the orthonormal basis? I suspect this may be true for
GOE and GUE (and is probably known) but I haven’t found this yet. Note that in general
(for example for the Bernoulli ensembles), if we change the basis, then for the new matrix it
will not even be true that the (upper diagional) matrix entries are independent.

2.2 Limit behaviour of the spectrum

One of the highlights of the course is the proof of Theorem 2.4.2 in the book, which reads:

Wigner semicircle law Let M = (ξij)i,j∈N+ be an infinite hermitian Wigner
matrix. For each n ≥ 1, let Mn := (ξij)1≤i,j≤n and let λ1(Mn) ≤ · · · ≤ λn(Mn)
denote its eigenvalues. Let

µn :=
1

n

n∑
j=1

δλj(Mn)/
√
n (n ≥ 1).

Then almost surely µn ⇒ µ, where ⇒ denotes weak convergence of probability
measures on R and µ is the semicircle law

µ(dx) :=
1

2π

√
0 ∨ (4− |x|2) dx.

Note that we are able to formulate this as almost sure convergence only due to the coupling
described above. Of course, almost sure convergence to a deterministic limit also implies
convergence in probability.

The theorem holds for the symmetric Bernoulli ensemble and the GOE and GUE ensem-
bles, as well as many other hermitian Wigner matrix ensembles. Thus, similar to the central
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limit theorem, the Wigner semicircle law is highly universal. For i.i.d. matrix ensembles the
limit law is different, however: in this case the limit law is the uniform distribution on the
ball {z ∈ C : |z| ≤ 2}. This limit law is technically more difficult to prove, so we will not see
its proof in this course.

The Wigner semicircle law implies that for large n, with high probability, most of the
eigenvalues of Mn lie between −2

√
n and 2

√
n. Since there are n eigenvalues, their average

spacing is 4/
√
n. There are other questions about the spectrum one could be interested in,

such as:

� Let xn ∈ R satisfy xn/
√
n→ x ∈ (−2, 2). Consider the point process{

λ ∈ R : xn + λ/
√
n ∈ σ(Mn)

}
.

Does this point process have a limit (in law)?

� Same question as above, but for a suitable sequence xn such that xn/
√
n → 2, perhaps

with a different scaling of space to compensate for the lower density of points near the
end of the spectrum.

� What can we say about ∥Mn∥op, i.e., the largest eigenvalue in absolute value?. Is it true
that ∥Mn∥op/

√
n→ 2?

These questions have been studied in detail and a lot is known. We will only look at the
last question. We will prove that indeed ∥Mn∥op is with high probability close to 2

√
n. The

methods used to prove this turn out to be very useful also later when we prove the Wigner
semicircle law.

2.3 Why would we care?

The book we use is written by Terence Tao, who is a pure mathematician who has worked
in a variety of fields such as number theory. For him, there is one clear reason for studying
random matrices:

It is a rich field with beautiful mathematics and many interesting problems.

There are also more practical reasons why one could be interested in random matrices. Some
of the first people to study them were in fact physicists who were interested in the absorption
spectrum of large atoms. One of the first great achievements of quantum mechanics was the
description of the spectrum of the hydrogen atom, which has just one electron. The spectrum
of helium, which has two electrons, is already much more complicated. As one moves up in
the periodic system of elements things quickly get really messy. Mathematically, the possible
energy values of an electron orbiting an atom are given by the spectrum of a hermitian matrix.
This matrix becomes so complicated that at some point a physicist wondered what would
happen if one assumes it is completely random -and actually got reasonable results.

Apart from the reasons mentioned above, one may also ask if within mathematics, random
matrix theory is more or less isolated, or on the other hand connected to lots of other problems
(for which one may then again have practical reasons to study them). The answer seems to
lie a bit in the middle. On the one hand, interesting connections have been found to other
subjects such as the totally asymetric exclusion process (TASEP) or free probability. On the
other hand, it is fair to say that within probability theory, the theory of random matrices is a
bit of an outlier. On conferences, one sometimes meets the true specialists in random matrix
theory, that seem to live a bit in a world of their own, with limited interaction with the rest of
probability. This is mostly concerned with very subtle questions of the field, however, which
require difficult and long proofs using specialised methods. As for the basic topics covered by
Tao’s book, it is probably a good thing for every probabilist to know a bit about them.
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2.4 How do we start

We will focus on hermitian Wigner ensembles. Our first aim will be to prove that ∥Mn∥op
is with high probability close to 2

√
n. As mentioned before, the techniques we use for that

will also be useful when proving the Wigner semicircle law. Thus, perhaps surprisingly, the
strategy is to first prove some sort of (weak) law of large numbers, as a first step towards
something that is a bit like the CLT. Actually, there is much more similarity than might be
expected at first sight between the classical limit theorems of probability theory (LLN, CLT)
and their random matrix “counterparts” (LLN for ∥Mn∥op, Wigner semicircle law).

Let X1, . . . , Xn be i.i.d. real random variables with finite mean µ. Then the weak law of
large numbers says that 1

n

∑n
i=1Xi is with high probability close to µ. One can generalise the

problem and ask what we can say about Fn(X1, . . . , Xn), where Fn : Rn → R is a sequence
of “nice” functions. For such functions, one often observes that for large n, the distribution
of Fn(X1, . . . , Xn) is closely concentrated around one deterministic value. If the Fn are not
linear, then it may be difficult to say what that value is precisely. But it turns out that there
are nice methods that give sufficient conditions for the law of Fn(X1, . . . , Xn) to be closely
concentrated around one deterministic value, even if we can’s say precisely what value that is.
This is the problem of concentration of measure. There exists a large literature on this and it
obviously has many applications in probability theory outside of random matrix theory. Our
first aim will be Talagrand’s concentration inequality (Theorem 2.1.13 in the book).
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