Random graphs and networks

Jan M. Swart

February 26, 2019

The Erdős-Rényi random graph

Def $[n] := \{1, \ldots, n\}$. Def K_n complete graph: vertex set [n], edge set $\{\{s,t\} : s,t \in [n], s \neq t\}$. Notation $st = ts = \{s,t\}$. Def $\operatorname{ER}_n(p)$ Erdős-Rényi random graph with vertex set [n], random edge set: edges i.i.d. present with edge probability p. Def $s \leftrightarrow t$ if s, t connected in $\operatorname{ER}_n(p)$.

 $\mathcal{C}(v) := \{ x \in [n] : v \leftrightarrow x \} \text{ connected component containing } v.$

Def C_{\max} largest connected component Set $\lambda := pn$. Let $n \to \infty$ for fixed λ . Theorems 4.4 & 4.5 say that for $\lambda < 1$

$$\mathbb{P}\big[(\kappa_{\lambda} - \varepsilon)\log(n) \le |\mathcal{C}_{\max}| \le (\kappa_{\lambda} + \varepsilon)\log(n)\big] \xrightarrow[n \to \infty]{} 1 \qquad \forall \varepsilon > 0,$$

with $\kappa_{\lambda} := (\lambda - 1 - \log(\lambda))^{-1}$. Theorem 4.8 says that for $\lambda > 1$

$$\mathbb{P}[\zeta_{\lambda}n - n^{\nu} \le |\mathcal{C}_{\max}| \le \zeta_{\lambda}n + n^{\nu}] \xrightarrow[n \to \infty]{} 1 \qquad \forall \nu \in (\frac{1}{2}, 1),$$

for some $0 < \zeta_{\lambda} < 1$.

Generalized Random Graphs

Edges independent but not identically distributed. Vertex *i* has weight $w_i > 0$. Graph $\operatorname{GRG}_n(w)$. Edge *ij* present with probab. $p_{ij} := \frac{w_i w_j}{w_i w_j + \sum_k w_k}$. Def W_n weight of unif chosen random vertex. Assume $\exists W$ s.t.

- $\mathbb{P}[W_n \in \cdot] \Longrightarrow_{n \to \infty} \mathbb{P}[W \in \cdot],$
- $\mathbb{E}[W_n] \xrightarrow[n \to \infty]{} \mathbb{E}[W],$
- $\mathbb{E}[W_n^2] \xrightarrow[n \to \infty]{} \mathbb{E}[W^2].$

Typical choice

$$\mathbb{P}[W > x] \sim \operatorname{cst} \cdot x^{1-\tau}$$

Degree D_n of unif chosen random vertex has <u>mixed Poisson distribution</u>. (Compared to Pois(λ) for Erdős-Rényi.)

The Configuration Model

In $CM_n(d)$, the degrees d_1, \ldots, d_n are given. Assume $\sum_{i \in [n]} \overline{d_i}$ even.

- $\forall i$, draw d_i half-edges out of i.
- Enumerate the half edges.
- Pair the first half edge to a unif chosen free partner.
- Continue till no half-edges left.

Result: <u>multigraph</u>: may contain <u>multiple edges</u> and <u>loops</u>.

In the Erased Configuration Model, all loops are erased, all multiple edges reduced to a single edge.

Assume $\exists D \text{ s.t.}$

- $\mathbb{P}[D_n \in \cdot] \Longrightarrow_{n \to \infty} \mathbb{P}[D \in \cdot],$
- $\mathbb{E}[D_n] \xrightarrow[n \to \infty]{} \mathbb{E}[D],$
- $\mathbb{E}[D_n^2] \xrightarrow[n \to \infty]{} \mathbb{E}[D^2].$

Typical choice

$$\mathbb{P}[D=k] \sim \operatorname{cst} \cdot k^{-\tau}.$$

Recall $\tau = 2.2, = 2.1$ observed in real networks.

If we choose $\tau \in (1,2)$, then after erasing multiple edges and loops $\tau = 2$ (Theorem 7.24).

If we choose $\tau > 2$, then only few multiple edges and loops.

Preferential Attachment Models

Grow a multigraph with n vertices as follows. Fix $\delta \ge -1$. Let $D_i(t) :=$ degree of i = 1, 2, ... at time t = 0, 1, 2, ... $D_1(0) := 1$ (half-edge) and $D_i(0) := 0 \ \forall i \ge 2$. Inductively for t = 0, 1, ...:

- Connect the half edge at t+1 to random $i \in [t+1]$ chosen with probab. proportional to $D_i(t) + \delta$ (weight of vertex).
- Add a half-edge to t + 2.

Sum of degrees $\sum_{i=1}^{\infty} D_i(t) = 2t + 1.$ Sum of weights $\sum_{i=1}^{\infty} (D_i(t) + \delta) = 2t + 1 + \delta(t+1).$ Probability to attach to $i \in [t+1]$

$$\frac{D_i(t) + \delta}{2t + 1 + \delta(t+1)}.$$

More generally, fix m = 1, 2, ... and $\delta \ge -m$. For t = 0, 1, ...

For $k = 0, 1, \dots, m - 1$

- Connect the half edge at t+1 to random $i \in [t+1]$ chosen with probab. proportional to $D_i(tm+k) + \delta/m$ (weight of vertex).
- If k < m 1, add another half-edge to t + 1.
- If k = m 1, add a half-edge to t + 2.

end end

Observation: model with $\delta \ge -m$ and $m \ge 2$ can be obtained from model with $\delta' := \delta/m$ and m' := 1 by merging vertices in groups of m. Claim Choose I unif from [t + 1]. Then

$$\mathbb{P}\big[D_I \in \,\cdot\,\big] \underset{t \to \infty}{\Longrightarrow} \mathbb{P}\big[D \in \,\cdot\,\big]$$

for a r.v. D s.t.

$$\mathbb{P}[D=k] \sim \operatorname{cst} \cdot k^{-\tau}$$

with $\tau = 3 + \delta/m$.

Levels of randomness

Let $G_n(w)$ be a <u>deterministic</u> graph with vertex set [n] and vertex weights $(w_i)_{i \in [n]}$.

Then the empirical weight distribution and empirical distribution function

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{w_i} \quad F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{w_i \le x\}}$$

are deterministic objects.

Let I(n) be uniformly distributed in [n]. Then

$$F_n(x) = \mathbb{P}[W_{I(n)} \le x]$$

Our assumption that $\mathbb{P}[W_{I(n)} \in \cdot] \underset{n \to \infty}{\Longrightarrow} \mathbb{P}[W \in \cdot]$ for some W is equivalent to

 $F_n(x) \xrightarrow[n \to \infty]{} F(x)$ in all continuity points of F,

with $F(x) := \mathbb{P}[W \le x]$.

Let $(w_i)_{i \in [n]}$ be i.i.d. with law μ .

These define a $\underline{\mathrm{random}}$ weighted graph with

$$F_n(x) \xrightarrow[n \to \infty]{p} F(x)$$
 in all continuity points of F ,

where $\xrightarrow{\mathbf{p}}$ denotes convergence in probability. Let I(n) be uniformly distributed in [n] independent of $(w_i)_{i \in [n]}$. Then

 $\mathbb{P}\big[\big|\mathbb{P}[W_{I_n} \le x \,|\, (w_i)_{i \in [n]}] - F(x)\big| \ge \varepsilon\big] \underset{n \to \infty}{\longrightarrow} 0 \quad \text{in all continuity points of } F.$

Note two levels of randomness.

<u>Conditional</u> on $(w_i)_{i \in [n]}$, construct $\operatorname{GRG}_n(w)$ with: edge ij present with probab. $p_{ij} := \frac{w_i w_j}{w_i w_j + \sum_k w_k}$. Now <u>three levels of randomness</u>: $(w_i)_{i \in [n]}$, the edges, and I_n . Similarly, construct configuration model with random degrees

- 1. Choose $(d_i)_{i \in [n]}$ i.i.d. with law $\mathbb{P}[D \in \cdot]$.
- 2. Conditional on $(d_i)_{i \in [n]}$, randomly pair up half-edges.
- 3. Independently of $(d_i)_{i \in [n]}$ AND the edges, choose uniform random vertex $I_n \in [n]$.

Local limits

Let G_n be deterministic graphs with vertex set [n]. Let I_n uniformly distributed on [n]. Look at:

- I_n
- all neighbors of I_n .
- all neighbors of neighbors of I_n .
- etc.

Example The configuration model with $d_i = 3$ for all i (and n even).

- I_n has 3 neighbors.
- each neighbor of I_n has 3 neighbors.
- etc.

Moreover, for large n,

- $\mathbb{P}[I_n \text{ part of a triangle}] \xrightarrow[n \to \infty]{} 0.$
- $\mathbb{P}[I_n \text{ part of a cycle of length } 4] \xrightarrow[n \to \infty]{} 0.$
- $\mathbb{P}[I_n \text{ part of a cycle of length } k] \xrightarrow[n \to \infty]{} 0 \quad \forall k.$

The $CM_n(d)$ locally looks like a 3-regular tree.

Example In the Erdős-Rényi random graph $\text{ER}_n(\lambda/n)$,

- I_n has $\text{Pois}(\lambda)$ neighbors.
- each neighbor of I_n has $Pois(\lambda)$ <u>further</u> neighbors.

 $\operatorname{ER}_n(\lambda/n)$ locally looks like a branching process with $\operatorname{Pois}(\overline{\lambda})$ offspring distribution.