Random graphs and networks

Jan M. Swart

February 26, 2019

The Erdős-Rényi random graph

$\operatorname{Def}[n]:=\{1, \ldots, n\}$.
Def K_{n} complete graph: vertex set $[n]$, edge set $\{\{s, t\}: s, t \in[n], s \neq t\}$.
Notation $s t=t s=\{s, t\}$.
Def $\mathrm{ER}_{n}(p)$ Erdős-Rényi random graph with vertex set [n], random edge set: edges i.i.d. present with edge probability p.
Def $s \leftrightarrow t$ if s, t connected in $\overline{\operatorname{ER}}_{n}(p)$.

$$
\mathcal{C}(v):=\{x \in[n]: v \leftrightarrow x\} \quad \text { connected component containing } v .
$$

Def $\mathcal{C}_{\text {max }}$ largest connected component
Set $\lambda:=p n$. Let $n \rightarrow \infty$ for fixed λ.
Theorems $4.4 \& 4.5$ say that for $\lambda<1$

$$
\mathbb{P}\left[\left(\kappa_{\lambda}-\varepsilon\right) \log (n) \leq\left|\mathcal{C}_{\max }\right| \leq\left(\kappa_{\lambda}+\varepsilon\right) \log (n)\right] \underset{n \rightarrow \infty}{\longrightarrow} 1 \quad \forall \varepsilon>0,
$$

with $\kappa_{\lambda}:=(\lambda-1-\log (\lambda))^{-1}$.
Theorem 4.8 says that for $\lambda>1$

$$
\mathbb{P}\left[\zeta_{\lambda} n-n^{\nu} \leq\left|\mathcal{C}_{\max }\right| \leq \zeta_{\lambda} n+n^{\nu}\right] \underset{n \rightarrow \infty}{\longrightarrow} 1 \quad \forall \nu \in\left(\frac{1}{2}, 1\right),
$$

for some $0<\zeta_{\lambda}<1$.

Generalized Random Graphs

Edges independent but not identically distributed.
Vertex i has weight $w_{i}>0$.
Graph $\operatorname{GRG}_{n} \overline{(w) .}$ Edge $i j$ present with probab. $p_{i j}:=\frac{w_{i} w_{j}}{w_{i} w_{j}+\sum_{k} w_{k}}$.
Def W_{n} weight of unif chosen random vertex.
Assume $\exists W$ s.t.

- $\mathbb{P}\left[W_{n} \in \cdot\right] \underset{n \rightarrow \infty}{\Longrightarrow} \mathbb{P}[W \in \cdot]$,
- $\mathbb{E}\left[W_{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[W]$,
- $\mathbb{E}\left[W_{n}^{2}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[W^{2}\right]$.

Typical choice

$$
\mathbb{P}[W>x] \sim \operatorname{cst} \cdot x^{1-\tau}
$$

Degree D_{n} of unif chosen random vertex has mixed Poisson distribution. (Compared to $\operatorname{Pois}(\lambda)$ for Erdős-Rényi.)

The Configuration Model

In $\mathrm{CM}_{n}(d)$, the degrees d_{1}, \ldots, d_{n} are given.
Assume $\sum_{i \in[n]} \overline{d_{i} \text { even. }}$

- $\forall i$, draw d_{i} half-edges out of i.
- Enumerate the half edges.
- Pair the first half edge to a unif chosen free partner.
- Continue till no half-edges left.

Result: multigraph: may contain multiple edges and loops.
In the Erased Configuration Model, all loops are erased, all multiple edges reduced to a single edge.
Assume $\exists D$ s.t.

- $\mathbb{P}\left[D_{n} \in \cdot\right] \underset{n \rightarrow \infty}{\Longrightarrow} \mathbb{P}[D \in \cdot]$,
- $\mathbb{E}\left[D_{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[D]$,
- $\mathbb{E}\left[D_{n}^{2}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[D^{2}\right]$.

Typical choice

$$
\mathbb{P}[D=k] \sim \operatorname{cst} \cdot k^{-\tau}
$$

Recall $\tau=2.2,=2.1$ observed in real networks.
If we choose $\tau \in(1,2)$, then after erasing multiple edges and loops $\tau=2$ (Theorem 7.24).
If we choose $\tau>2$, then only few multiple edges and loops.

Preferential Attachment Models

Grow a multigraph with n vertices as follows.
Fix $\delta \geq-1$.
Let $D_{i}(t):=$ degree of $i=1,2, \ldots$ at time $t=0,1,2, \ldots$.
$D_{1}(0):=1$ (half-edge) and $D_{i}(0):=0 \forall i \geq 2$.
Inductively for $t=0,1, \ldots$:

- Connect the half edge at $t+1$ to random $i \in[t+1]$ chosen with probab. proportional to $D_{i}(t)+\delta$ (weight of vertex).
- Add a half-edge to $t+2$.

Sum of degrees $\sum_{i=1}^{\infty} D_{i}(t)=2 t+1$.
Sum of weights $\sum_{i=1}^{\infty}\left(D_{i}(t)+\delta\right)=2 t+1+\delta(t+1)$.
Probability to attach to $i \in[t+1]$

$$
\frac{D_{i}(t)+\delta}{2 t+1+\delta(t+1)}
$$

More generally, fix $m=1,2, \ldots$ and $\delta \geq-m$.
For $t=0,1, \ldots$
For $k=0,1, \ldots, m-1$

- Connect the half edge at $t+1$ to random $i \in[t+1]$ chosen with probab. proportional to $D_{i}(t m+k)+\delta / m$ (weight of vertex).
- If $k<m-1$, add another half-edge to $t+1$.
- If $k=m-1$, add a half-edge to $t+2$.
end
end
Observation: model with $\delta \geq-m$ and $m \geq 2$ can be obtained from model with $\delta^{\prime}:=\delta / m$ and $m^{\prime}:=1$ by merging vertices in groups of m.
Claim Choose I unif from $[t+1]$. Then

$$
\mathbb{P}\left[D_{I} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \mathbb{P}[D \in \cdot]
$$

for a r.v. D s.t.

$$
\mathbb{P}[D=k] \sim \operatorname{cst} \cdot k^{-\tau}
$$

with $\tau=3+\delta / m$.

Levels of randomness

Let $G_{n}(w)$ be a deterministic graph with vertex set $[n]$ and vertex weights $\left(w_{i}\right)_{i \in[n]}$.
Then the empirical weight distribution and empirical distribution function

$$
\mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{w_{i}} \quad F_{n}(x):=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{w_{i} \leq x\right\}}
$$

are deterministic objects.
Let $I(n)$ be uniformly distributed in $[n]$. Then

$$
F_{n}(x)=\mathbb{P}\left[W_{I(n)} \leq x\right] .
$$

Our assumption that $\mathbb{P}\left[W_{I(n)} \in \cdot\right] \underset{n \rightarrow \infty}{\Longrightarrow} \mathbb{P}[W \in \cdot]$ for some W is equivalent to

$$
F_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} F(x) \text { in all continuity points of } F,
$$

with $F(x):=\mathbb{P}[W \leq x]$.
Let $\left(w_{i}\right)_{i \in[n]}$ be i.i.d. with law μ.
These define a random weighted graph with

$$
F_{n}(x) \underset{n \rightarrow \infty}{\mathrm{p}} F(x) \quad \text { in all continuity points of } F,
$$

where $\xrightarrow{\mathrm{p}}$ denotes convergence in probability.
Let $I(n)$ be uniformly distributed in $[n] \underline{\text { independent of }}\left(w_{i}\right)_{i \in[n]}$. Then
$\mathbb{P}\left[\left|\mathbb{P}\left[W_{I_{n}} \leq x \mid\left(w_{i}\right)_{i \in[n]}\right]-F(x)\right| \geq \varepsilon\right] \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad$ in all continuity points of F.
Note two levels of randomness.
Conditional on $\left(w_{i}\right)_{i \in[n]}$, construct $\operatorname{GRG}_{n}(w)$ with: edge $i j$ present with probab. $p_{i j}:=\frac{w_{i} w_{j}}{w_{i} w_{j}+\sum_{k} w_{k}}$.
Now three levels of randomness: $\left(w_{i}\right)_{i \in[n]}$, the edges, and I_{n}. Similarly, construct configuration model with random degrees

1. Choose $\left(d_{i}\right)_{i \in[n]}$ i.i.d. with law $\mathbb{P}[D \in \cdot]$.
2. Conditional on $\left(d_{i}\right)_{i \in[n]}$, randomly pair up half-edges.
3. Independently of $\left(d_{i}\right)_{i \in[n]}$ AND the edges, choose uniform random vertex $I_{n} \in[n]$.

Local limits

Let G_{n} be deterministic graphs with vertex set $[n]$.
Let I_{n} uniformly distributed on $[n]$.
Look at:

- I_{n}
- all neighbors of I_{n}.
- all neighbors of neighbors of I_{n}.
- etc.

Example The configuration model with $d_{i}=3$ for all i (and n even).

- I_{n} has 3 neighbors.
- each neighbor of I_{n} has 3 neighbors.
- etc.

Moreover, for large n,

- $\mathbb{P}\left[I_{n}\right.$ part of a triangle $] \underset{n \rightarrow \infty}{\longrightarrow} 0$.
- $\mathbb{P}\left[I_{n}\right.$ part of a cycle of length 4$] \underset{n \rightarrow \infty}{\longrightarrow} 0$.
- $\mathbb{P}\left[I_{n}\right.$ part of a cycle of length $\left.k\right] \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \forall k$.

The $\mathrm{CM}_{n}(d)$ locally looks like a 3 -regular tree.
Example In the Erdős-Rényi random graph $\operatorname{ER}_{n}(\lambda / n)$,

- I_{n} has $\operatorname{Pois}(\lambda)$ neighbors.
- each neighbor of I_{n} has $\operatorname{Pois}(\lambda)$ further neighbors.
$\mathrm{ER}_{n}(\lambda / n)$ locally looks like a branching process with $\operatorname{Pois}(\lambda)$ offspring distribution.

