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The Configuration Model

Def [n] :={1,...,n}.

In deterministic CM,,(d), for each n, fix degrees d, ...

Choose U unif. in [n], def D,, := dy.
Assume 3D s.t.
e P[D, € -] = PDe -],

n—o0

e E[D,] — E[D],

n—o0

e E[D?] — E[D?.

n—o0

In CM,,(d) with i.i.d. degrees, choose dy,...,d, ii.d. d; <D,

If U indep. of (d;), then D,, := dy < dj.
Def CM,,(d) random graph:

o If Zie[n] d; not even, add one to d,,.
e Vi, draw d; half-edges out of i.

e Enumerate the half edges.

e Pair the first half edge to a unif chosen free partner.

e Continue till no half-edges left.

Result: multigraph: may contain multiple edges and loops.

Def 0y, := Y"1 di

i€[n]

Let H := set of half-edges. H = {h; : i € [¢,]} enumeration of half-edges.

(i) Each matching of H has probab. én%lén%i% o1

(ii) Uniform matching.

1

= Wn—D)"



(iii) Law of CM,(d) independent of enumeration of H.

(iv) CM,(d) not uniform in set of multigraphs with prescribed degrees.
Example: CM3(3,3).

(v) CM,(d) conditioned on being simple is uniform in set of graphs on
[n] with prescribed degrees. Proof Number the half-edges. Then for
each simple graph with prescribed d;’s there are [[;"; d;! corresponding
matchings.

Loops and multiple edges

Proposition 7.13 Assume E[D2] — E[D?] < oo.
Let v := E[1D(D — 1)]/E[D].

Sy := #self-loops M, := #multiple edges.

Then (S, M,) = (S, M), where S, M independent Poisson with mean v

n—oo
resp. V2.

Proof idea

Number vertices 1 <1 < n.

Number half-edges at given vertex 1 < s < d;.

Ty :={(st,i) : 1 <i<mn, 1 <s<t<d;} pairs of half-edges that can form
a loop.

|Z1| = mp = Eie[n] %di(di —1).

I ; indicator loop (st, i) present.

E[Ist,i] = (En — 1)_1 with 4, := Zze[n] %dl

“Almost independence” = # loops =~ Poisson with mean

ma e 3%i(di —1) 0T e pdi(di — 1)
1o

= == — V.
1 _ 1
2ieln] 2% Y e 2di oo
Iy = {(Sltl,SQtQ,i,j) 1<i<i<n, 1<s1<s0<d;, 1<ty #tn < d]}
possibilities to form a double edge.
To| & 2 2my(my, — 1) = m2.

I, 1) sots,i,; indicator multiple edge (s1t1, sata, 4, j) present.

]E[Isltl,sztz,i,j] = (g . 1)(€ _ 3) .

“Almost independence” = # multiple edges ~ Poisson with mean =~

mgL 2
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Precise proof
Sp = Z L, M, = Z I, number of loops and multiple edges.
mely meIs
(X)rp=X(X-1)--- (X —r+1) factorial moment.

E[(Sh)r] = Z Z Z Pllp, =+ = I, =1]

mi1€Z1 mo€Zi\{m1} my €L \{m1,....mr_1}
*

= > Pl ==L, = 1].

ml,...,mreIl
Theorem 2.6 E[(X},),] = A" (r > 1) implies X, = Pois(A).
n—oo
Similarly, E[(X,,)s(Yy)r] — A2u” implies (X,,,Y,) = (Pois(A), (Pois(p)).
n—oo

Need to control, for my 1,...,m1 s € Zy and ma1,...,mos € I3
P[Imm == Im1,s = Im2,1 == Imz,r = 1]
1

(b, — 1)y, —3) - (b, — 1 — 25 — 4r)’

or = 0 if events incompatible, i.e., want same half-edge to connect to two
different half-edges. Diligent counting completes the proof. O

The Erased Configuration Model

Def DS := degree of U, € [n] after erasing loops and multiple edges.
Theorem 7.10 Assume E[D,,] — E[D] < co. Then Dy = D.
n—oo

n—oo

Proof Need to show no loops and multiple edges at U, as n — oo.

Lo

E[# loops at U, | D,, = k] = 225,111) —2 0.

, _ Lp(k-1)

lim sup P[3 loop at U,] < limsup { 2 —P[Dy, < k] +P[Dy, > k]}

n—00 n—00

<P[D>k — 0.
k—o0

If d; = k, then

1
(b = 1)(fn = 3)

E[# multiple edges at i] =

jelm i}
lim sup P[3 multiple edge at U,|
n—o0 1
< limsup {%k(k: _1) (72 3 df) P[D,, < k] + P[D,, > k}}.
oo " ieln)



P,, = probab. two unif. chosen half—edgAes are in same vertex.
Let pu(k) = P[D, = k] and let P[D, = k] := pu(k) = gpqkpa(k)
size-biased law. Then

Pn = an % < %P[Dn < m] +P[D,, > m]}

n

and
lim sup P[3 multiple edge at Uy,] < 1k(k — 1)P[D > m] + P[D > kJ.
n—oo
First m — oo, then k — oo gives < 0. O

Conditioning i.i.d. (d;) on d; < a, with a, — oo has no influence on the
limit law of D,,.
Theorem 7.22 Assume P[D,, < a,] =1 with a,, = o(n). Then DY = D.

n—o0

Proof W.l.o.g. d; > 1 for all i. Then ¢,, > n and hence

P, <{ IP’D < ay] +PDy, > an)} — 0.

n—oo

O
Consequence We can construct erased configuration models with arbitrary
degree distribution.

Heavy tails
Theorem 7.24 Assume (d;);g[y) i-1.d. with
P[D > k] = k' L(k),

where 7 € (1,2) and L slowly varying, i.e., L(ck)/L(k) — 1 for all ¢ > 0.
Then
P[DF = k] — P[D" =k] with P[D” < k| < ck™?

n—o0

for some ¢ < 0.
Note This says ~ the limit law has 7 > 2.

Conjecture D has 7 = 2.

Proof Order the degrees as d(l) > d(2) > d(3) >
Theorem 2.33 says that there exists a u, of the form u, = nl/(T_l)ln with
I, slowly varying, s.t.
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where {{; > & > - -} is Poisson point set on [0, 00) with intensity measure

p([z, 00)) = 277 and 7 := ij.
Let @ be the random proba]bz.llaw defined Q; :=&;/n.
Conditional on @, let I, Io, ... be i.i.d. with law ) and let
K(m, k) :=P[#Am =k] with Ay :{i:31 <I<mst. I =i}

Thm 7.23 says that

n—o0

PDY =k — PID" =k := Y pmK(m,k).

m=0

“Proof” All half edges at a typical vertex connect to vertices of high degree.

Now K(m, k) = limy,_oo P[DS = k| D,, = m].

Missing lemma #A,, ~ cm™ ! with high probability.

Consequence D ~ D71 when both are large, so

P[D® > k] ~ P[D" ! > k] = P[D > k(7]
_ (kl/(rfl))lfTL(kl/(‘rfl» _ kflL/(k)

with L, L' slowly varying.

Proof of Lemma? Divide the interval [0,7] in pieces of length &1,¢;,.. ..
Choose m points uniformly on [0,n]. Then #A,, is the number of inter-
vals that contains at least one point. For large m, the m points look like a
Poisson points set with intensity m/n, so

E[#An] ~ E[i (1- e~ (m&i/m)) ~ /Ooo (1— e 7% u(dz).

7=1
Forgetting about multiplicative constants,
l/m 0 1/m
~ / xu(dx)—}—/ pu(dx) ~ / z-z dz+(1/m) T e mT 2 mT L
0 1/m 0

If we believe the law of #A,, to be concentrated near its mean, then this
“proves” the lemma. O



