## Random graphs and networks

Jan M. Swart

April 17, 2019

## The Configuration Model

Def $[n]:=\{1, \ldots, n\}$.
In deterministic $\mathrm{CM}_{n}(d)$, for each $n$, fix degrees $d_{1}, \ldots, d_{n} .\left(d_{1}^{(n)}, \ldots, d_{n}^{(n)}\right)$.
Choose $U$ unif. in [n], def $D_{n}:=d_{U}$.
Assume $\exists D$ s.t.

- $\mathbb{P}\left[D_{n} \in \cdot\right] \underset{n \rightarrow \infty}{\Longrightarrow} \mathbb{P}[D \in \cdot]$,
- $\mathbb{E}\left[D_{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[D]$,
- $\mathbb{E}\left[D_{n}^{2}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[D^{2}\right]$.

In $\mathrm{CM}_{n}(d)$ with i.i.d. degrees, choose $d_{1}, \ldots, d_{n}$ i.i.d. $d_{i} \stackrel{d}{=} D$.
If $U$ indep. of $\left(d_{i}\right)$, then $D_{n}:=d_{U} \stackrel{d}{=} d_{1}$.
Def $\mathrm{CM}_{n}(d)$ random graph:

- If $\sum_{i \in[n]} d_{i}$ not even, add one to $d_{n}$.
- $\forall i$, draw $d_{i}$ half-edges out of $i$.
- Enumerate the half edges.
- Pair the first half edge to a unif chosen free partner.
- Continue till no half-edges left.

Result: multigraph: may contain multiple edges and loops.
Def $\ell_{n}:=\sum_{i \in[n]} d_{i}$.
Let $H:=$ set of half-edges. $H=\left\{h_{i}: i \in\left[\ell_{n}\right]\right\}$ enumeration of half-edges.
(i) Each matching of $H$ has probab. $\frac{1}{\ell_{n}-1} \frac{1}{\ell_{n}-3} \cdots 1=\frac{1}{\left(\ell_{n}-1\right)!!}$.
(ii) Uniform matching.
(iii) Law of $\mathrm{CM}_{n}(d)$ independent of enumeration of $H$.
(iv) $\mathrm{CM}_{n}(d)$ not uniform in set of multigraphs with prescribed degrees. Example: $\mathrm{CM}_{2}(3,3)$.
(v) $\mathrm{CM}_{n}(d)$ conditioned on being simple is uniform in set of graphs on [ $n$ ] with prescribed degrees. Proof Number the half-edges. Then for each simple graph with prescribed $d_{i}$ 's there are $\prod_{i=1}^{n} d_{i}$ ! corresponding matchings.

## Loops and multiple edges

Proposition 7.13 Assume $\mathbb{E}\left[D_{n}^{2}\right] \rightarrow \mathbb{E}\left[D^{2}\right]<\infty$.
Let $\nu:=\mathbb{E}\left[\frac{1}{2} D(D-1)\right] / E[D]$.

$$
S_{n}:=\# \text { self-loops } \quad M_{n}:=\text { \#multiple edges. }
$$

Then $\left(S_{n}, M_{n}\right) \underset{n \rightarrow \infty}{\Longrightarrow}(S, M)$, where $S, M$ independent Poisson with mean $\nu$ resp. $\nu^{2}$.

## Proof idea

Number vertices $1 \leq i \leq n$.
Number half-edges at given vertex $1 \leq s \leq d_{i}$.
$\mathcal{I}_{1}:=\left\{(s t, i): 1 \leq i \leq n, 1 \leq s<t \leq d_{i}\right\}$ pairs of half-edges that can form a loop.
$\left|\mathcal{I}_{1}\right|=m_{n}:=\sum_{i \in[n]} \frac{1}{2} d_{i}\left(d_{i}-1\right)$.
$I_{s t, i}$ indicator loop ( $s t, i$ ) present.
$\mathbb{E}\left[I_{s t, i}\right]=\left(\ell_{n}-1\right)^{-1}$ with $\ell_{n}:=\sum_{i \in[n]} \frac{1}{2} d_{i}$.
"Almost independence" $\Rightarrow$ \# loops $\approx$ Poisson with mean

$$
\approx \frac{m_{n}}{\ell_{n}}=\frac{\sum_{i \in[n]} \frac{1}{2} d_{i}\left(d_{i}-1\right)}{\sum_{i \in[n] \frac{1}{2}} \frac{1}{2} d_{i}}=\frac{n^{-1} \sum_{i \in[n]} \frac{1}{2} d_{i}\left(d_{i}-1\right)}{n^{-1} \sum_{i \in[n]} \frac{1}{2} d_{i}} \underset{n \rightarrow \infty}{\longrightarrow} \nu .
$$

$\mathcal{I}_{2}:=\left\{\left(s_{1} t_{1}, s_{2} t_{2}, i, j\right): 1 \leq i<j \leq n, 1 \leq s_{1}<s_{2} \leq d_{i}, 1 \leq t_{1} \neq t_{n} \leq d_{j}\right\}$ possibilities to form a double edge.
$\left|\mathcal{I}_{2}\right| \approx 2 \cdot \frac{1}{2} m_{n}\left(m_{n}-1\right) \approx m_{n}^{2}$.
$I_{s_{1} t_{1}, s_{2} t_{2}, i, j}$ indicator multiple edge ( $s_{1} t_{1}, s_{2} t_{2}, i, j$ ) present.
$\mathbb{E}\left[I_{s_{1} t_{1}, s_{2} t_{2}, i, j}\right]=\frac{1}{\left(\ell_{n}-1\right)\left(\ell_{n}-3\right)}$.
"Almost independence" $\Rightarrow$ \# multiple edges $\approx$ Poisson with mean $\approx$ $\frac{m_{n}^{2}}{\ell_{n}^{2}} \underset{n \rightarrow \infty}{\longrightarrow} \nu^{2}$.

Precise proof

$$
\begin{aligned}
& S_{n}:=\sum_{m \in \mathcal{I}_{1}} I_{m} \quad M_{n}:=\sum_{m \in \mathcal{I}_{2}} I_{m} \quad \text { number of loops and multiple edges. } \\
& \quad(X)_{r}:=X(X-1) \cdots(X-r+1) \quad \text { factorial moment. } \\
& \mathbb{E}\left[\left(S_{n}\right)_{r}\right]=\sum_{m_{1} \in \mathcal{I}_{1}} \sum_{m_{2} \in \mathcal{I}_{1} \backslash\left\{m_{1}\right\}} \cdots \sum_{m_{r} \in \mathcal{I}_{1} \backslash\left\{m_{1}, \ldots, m_{r-1}\right\}} \mathbb{P}\left[I_{m_{1}}=\cdots=I_{m_{r}}=1\right] \\
& = \\
& \quad \sum_{m_{1}, \ldots, m_{r} \in \mathcal{I}_{1}}^{*} \mathbb{P}\left[I_{m_{1}}=\cdots=I_{m_{r}}=1\right] .
\end{aligned}
$$

Theorem 2.6 $\mathbb{E}\left[\left(X_{n}\right)_{r}\right] \rightarrow \lambda^{r}(r \geq 1)$ implies $X_{n} \underset{n \rightarrow \infty}{\Longrightarrow} \operatorname{Pois}(\lambda)$.
Similarly, $\mathbb{E}\left[\left(X_{n}\right)_{s}\left(Y_{n}\right)_{r}\right] \rightarrow \lambda^{2} \mu^{r}$ implies $\left(X_{n}, Y_{n}\right) \underset{n \rightarrow \infty}{\Longrightarrow}(\operatorname{Pois}(\lambda),(\operatorname{Pois}(\mu))$.
Need to control, for $m_{1,1}, \ldots, m_{1, s} \in \mathcal{I}_{1}$ and $m_{2,1}, \ldots, m_{2, s} \in \mathcal{I}_{1}$

$$
\begin{gathered}
\mathbb{P}\left[I_{m_{1,1}}=\cdots=I_{m_{1, s}}=I_{m_{2,1}}=\cdots=I_{m_{2, r}}=1\right] \\
\quad=\frac{1}{\left(\ell_{n}-1\right)\left(\ell_{n}-3\right) \cdots\left(\ell_{n}-1-2 s-4 r\right)}
\end{gathered}
$$

or $=0$ if events incompatible, i.e., want same half-edge to connect to two different half-edges. Diligent counting completes the proof.

## The Erased Configuration Model

Def $D_{n}^{\mathrm{er}}:=$ degree of $U_{n} \in[n]$ after erasing loops and multiple edges.
Theorem 7.10 Assume $\mathbb{E}\left[D_{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[D]<\infty$. Then $D_{n}^{\mathrm{er}} \underset{n \rightarrow \infty}{\Longrightarrow} D$.
Proof Need to show no loops and multiple edges at $U_{n}$ as $n \rightarrow \infty$.
$\mathbb{E}\left[\#\right.$ loops at $\left.U_{n} \mid D_{n}=k\right]=\frac{\frac{1}{2} k(k-1)}{\ell_{n}-1} \underset{n \rightarrow \infty}{\longrightarrow} 0$.

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \mathbb{P}\left[\exists \text { loop at } U_{n}\right] \leq \limsup _{n \rightarrow \infty}\left\{\frac{\frac{1}{2} k(k-1)}{\ell_{n}-1} \mathbb{P}\left[D_{n} \leq k\right]+\mathbb{P}\left[D_{n}>k\right]\right\} \\
& \quad \leq \mathbb{P}[D>k] \underset{k \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

If $d_{i}=k$, then
$\mathbb{E}[\#$ multiple edges at $i]=\frac{1}{\left(\ell_{n}-1\right)\left(\ell_{n}-3\right)} \frac{1}{2} k(k-1) \sum_{j \in[n] \backslash\{i\}} d_{j}\left(d_{j}-1\right)$.
$\limsup _{n \rightarrow \infty} \mathbb{P}\left[\exists\right.$ multiple edge at $\left.U_{n}\right]$

$$
\leq \limsup _{n \rightarrow \infty}^{n \rightarrow \infty}\{\frac{1}{2} k(k-1) \underbrace{\left(\frac{1}{\ell_{n}^{2}} \sum_{i \in[n]} d_{i}^{2}\right)}_{=: P_{n}} \mathbb{P}\left[D_{n} \leq k\right]+\mathbb{P}\left[D_{n}>k\right]\} .
$$

$P_{n}=$ probab. two unif. chosen half-edges are in same vertex.
Let $p_{n}(k):=\mathbb{P}\left[D_{n}=k\right]$ and let $\mathbb{P}\left[\hat{D}_{n}=k\right]:=\hat{p}_{n}(k):=\frac{1}{\mathbb{E}\left[D_{n}\right]} k p_{n}(k)$ size-biased law. Then

$$
P_{n}=\sum_{k} \hat{p}_{n}(m) \frac{m}{\ell_{n}} \leq\left\{\frac{m}{\ell_{n}} \mathbb{P}\left[\hat{D}_{n} \leq m\right]+\mathbb{P}\left[\hat{D}_{n}>m\right]\right\}
$$

and
$\limsup _{n \rightarrow \infty} \mathbb{P}\left[\exists\right.$ multiple edge at $\left.U_{n}\right] \leq \frac{1}{2} k(k-1) \mathbb{P}[\hat{D}>m]+\mathbb{P}[D>k]$.
First $m \rightarrow \infty$, then $k \rightarrow \infty$ gives $\leq 0$.
Conditioning i.i.d. $\left(d_{i}\right)$ on $d_{i} \leq a_{n}$ with $a_{n} \rightarrow \infty$ has no influence on the limit law of $D_{n}$.
Theorem 7.22 Assume $\mathbb{P}\left[D_{n} \leq a_{n}\right]=1$ with $a_{n}=o(n)$. Then $D_{n}^{\mathrm{er}} \underset{n \rightarrow \infty}{\Longrightarrow} D$.
Proof W.l.o.g. $d_{i} \geq 1$ for all $i$. Then $\ell_{n} \geq n$ and hence

$$
P_{n} \leq\left\{\frac{a_{n}}{\ell_{n}} \mathbb{P}\left[\hat{D}_{n} \leq a_{n}\right]+\mathbb{P}\left[\hat{D}_{n}>a_{n}\right]\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Consequence We can construct erased configuration models with arbitrary degree distribution.

## Heavy tails

Theorem 7.24 Assume $\left(d_{i}\right)_{i \in[n]}$ i.i.d. with

$$
\mathbb{P}[D \geq k]=k^{1-\tau} L(k)
$$

where $\tau \in(1,2)$ and $L$ slowly varying, i.e., $L(c k) / L(k) \rightarrow 1$ for all $c>0$. Then

$$
\mathbb{P}\left[D_{n}^{\mathrm{er}}=k\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left[D^{\mathrm{er}}=k\right] \quad \text { with } \quad \mathbb{P}\left[D^{\mathrm{er}} \leq k\right] \leq c k^{-1}
$$

for some $c<\infty$.
Note This says $\approx$ the limit law has $\tau \geq 2$.
Conjecture $D^{\text {er }}$ has $\tau=2$.
Proof Order the degrees as $d_{(1)} \geq d_{(2)} \geq d_{(3)} \geq \cdots$.
Theorem 2.33 says that there exists a $u_{n}$ of the form $u_{n}=n^{1 /(\tau-1)} l_{n}$ with $l_{n}$ slowly varying, s.t.

$$
\frac{1}{u_{n}}\left(\ell_{n}, d_{(1)}, d_{(2)}, d_{(3)}, \ldots\right) \underset{n \rightarrow \infty}{\Longrightarrow}\left(\eta, \xi_{1}, \xi_{2}, \xi_{3}, \ldots\right),
$$

where $\left\{\xi_{1}>\xi_{2}>\cdots\right\}$ is Poisson point set on $[0, \infty)$ with intensity measure $\mu([x, \infty))=x^{1-\tau}$ and $\eta:=\sum_{j=1}^{\infty} \xi_{j}$.
Let $Q$ be the random probab. law defined $Q_{j}:=\xi_{j} / \eta$.
Conditional on $Q$, let $I_{1}, I_{2}, \ldots$ be i.i.d. with law $Q$ and let

$$
K(m, k):=\mathbb{P}\left[\# \Delta_{m}=k\right] \quad \text { with } \quad \Delta_{m}:\left\{i: \exists 1 \leq l \leq m \text { s.t. } I_{l}=i\right\}
$$

Thm 7.23 says that

$$
\mathbb{P}\left[D_{n}^{\mathrm{er}}=k\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left[D^{\mathrm{er}}=k\right]:=\sum_{m=0}^{\infty} p_{m} K(m, k)
$$

"Proof" All half edges at a typical vertex connect to vertices of high degree. Now $K(m, k)=\lim _{n \rightarrow \infty} \mathbb{P}\left[D_{n}^{\mathrm{er}}=k \mid D_{n}=m\right]$.
Missing lemma $\# \Delta_{m} \sim \mathrm{~cm}^{\tau-1}$ with high probability.
Consequence $D^{\text {er }} \approx D^{\tau-1}$ when both are large, so

$$
\begin{aligned}
& \mathbb{P}\left[D^{\mathrm{er}} \geq k\right] \approx \mathbb{P}\left[D^{\tau-1} \geq k\right]=\mathbb{P}\left[D \geq k^{1 /(\tau-1)}\right] \\
& \quad=\left(k^{1 /(\tau-1)}\right)^{1-\tau} L\left(k^{1 /(\tau-1)}\right)=k^{-1} L^{\prime}(k)
\end{aligned}
$$

with $L, L^{\prime}$ slowly varying.
Proof of Lemma? Divide the interval $[0, \eta]$ in pieces of length $\xi_{1}, \xi_{j}, \ldots$. Choose $m$ points uniformly on $[0, \eta]$. Then $\# \Delta_{m}$ is the number of intervals that contains at least one point. For large $m$, the $m$ points look like a Poisson points set with intensity $m / \eta$, so

$$
\mathbb{E}\left[\# \Delta_{m}\right] \approx \mathbb{E}\left[\sum_{j=1}^{\infty}\left(1-e^{-\left(m \xi_{j} / \eta\right)}\right)\right] \approx \int_{0}^{\infty}\left(1-e^{-\frac{m}{\eta} x}\right) \mu(\mathrm{d} x)
$$

Forgetting about multiplicative constants,
$\approx \int_{0}^{1 / m} x \mu(\mathrm{~d} x)+\int_{1 / m}^{\infty} \mu(\mathrm{d} x) \approx \int_{0}^{1 / m} x \cdot x^{-\tau} \mathrm{d} x+(1 / m)^{1-\tau} \approx m^{\tau-2}+m^{\tau-1}$.
If we believe the law of $\# \Delta_{m}$ to be concentrated near its mean, then this "proves" the lemma.

