Random graphs and networks

Jan M. Swart

April 17, 2019

The Configuration Model

Def $[n] := \{1, \dots, n\}.$

In <u>deterministic</u> $CM_n(d)$, for each n, fix <u>degrees</u> d_1, \ldots, d_n . $(d_1^{(n)}, \ldots, d_n^{(n)})$. Choose U unif. in [n], def $D_n := d_U$.

Assume $\exists D \text{ s.t.}$

- $\mathbb{P}[D_n \in \cdot] \Longrightarrow_{n \to \infty} \mathbb{P}[D \in \cdot],$
- $\mathbb{E}[D_n] \xrightarrow[n \to \infty]{} \mathbb{E}[D],$
- $\mathbb{E}[D_n^2] \xrightarrow[n \to \infty]{} \mathbb{E}[D^2].$

In $CM_n(d)$ with i.i.d. degrees, choose d_1, \ldots, d_n i.i.d. $d_i \stackrel{d}{=} D$.

If U indep. of (d_i) , then $D_n := d_U \stackrel{d}{=} d_1$.

Def $CM_n(d)$ random graph:

- If $\sum_{i \in [n]} d_i$ not even, add one to d_n .
- $\forall i$, draw d_i half-edges out of i.
- Enumerate the half edges.
- Pair the first half edge to a unif chosen free partner.
- Continue till no half-edges left.

Result: <u>multigraph</u>: may contain <u>multiple edges</u> and loops.

Def $\ell_n := \overline{\sum_{i \in [n]} d_i}$.

Let H := set of half-edges. $H = \{h_i : i \in [\ell_n]\}$ enumeration of half-edges.

- (i) Each <u>matching</u> of H has probab. $\frac{1}{\ell_n-1}\frac{1}{\ell_n-3}\cdots 1 = \frac{1}{(\ell_n-1)!!}$.
- (ii) Uniform matching.

- (iii) Law of $CM_n(d)$ independent of enumeration of H.
- (iv) $CM_n(d)$ not uniform in set of multigraphs with prescribed degrees. Example: $CM_2(3,3)$.
- (v) $CM_n(d)$ conditioned on being simple is uniform in set of graphs on [n] with prescribed degrees. Proof Number the half-edges. Then for each simple graph with prescribed d_i 's there are $\prod_{i=1}^n d_i!$ corresponding matchings.

Loops and multiple edges

Proposition 7.13 Assume $\mathbb{E}[D_n^2] \to \mathbb{E}[D^2] < \infty$. Let $\nu := \mathbb{E}[\frac{1}{2}D(D-1)]/E[D].$

 $S_n := \#\text{self-loops} \quad M_n := \#\text{multiple edges}.$

Then $(S_n, M_n) \Longrightarrow_{n \to \infty} (S, M)$, where S, M independent Poisson with mean ν resp. ν^2 .

Proof idea

Number vertices $1 \le i \le n$.

Number half-edges at given vertex $1 \le s \le d_i$.

 $\mathcal{I}_1 := \{(st, i) : 1 \leq i \leq n, \ 1 \leq s < t \leq d_i\}$ pairs of half-edges that can form

$$\begin{split} &|\mathcal{I}_1| = m_n := \sum_{i \in [n]} \frac{1}{2} d_i (d_i - 1). \\ &I_{st,i} \text{ indicator loop } (st,i) \text{ present.} \\ &\mathbb{E}[I_{st,i}] = (\ell_n - 1)^{-1} \text{ with } \ell_n := \sum_{i \in [n]} \frac{1}{2} d_i. \\ &\text{``Almost independence''} \Rightarrow \# \text{ loops} \approx \text{Poisson with mean} \end{split}$$

$$\approx \frac{m_n}{\ell_n} = \frac{\sum_{i \in [n]} \frac{1}{2} d_i (d_i - 1)}{\sum_{i \in [n]} \frac{1}{2} d_i} = \frac{n^{-1} \sum_{i \in [n]} \frac{1}{2} d_i (d_i - 1)}{n^{-1} \sum_{i \in [n]} \frac{1}{2} d_i} \xrightarrow[n \to \infty]{} \nu.$$

 $\mathcal{I}_2 := \{ (s_1 t_1, s_2 t_2, i, j) : 1 \le i < j \le n, \ 1 \le s_1 < s_2 \le d_i, 1 \le t_1 \ne t_n \le d_j \}$ possibilities to form a double edge.

 $|\mathcal{I}_2| \approx 2 \cdot \frac{1}{2} m_n (m_n - 1) \approx m_n^2.$

 $I_{s_1t_1,s_2t_2,i,j}$ indicator multiple edge (s_1t_1,s_2t_2,i,j) present.

 $\mathbb{E}[I_{s_1t_1,s_2t_2,i,j}] = \frac{1}{(\ell_n - 1)(\ell_n - 3)}.$ "Almost independence" \Rightarrow # multiple edges \approx Poisson with mean $\approx \frac{m_n^2}{\ell_n^2} \underset{n \to \infty}{\longrightarrow} \nu^2.$

Precise proof

$$S_n := \sum_{m \in \mathcal{I}_1} I_m \quad M_n := \sum_{m \in \mathcal{I}_2} I_m$$
 number of loops and multiple edges.

$$(X)_r := X(X-1)\cdots(X-r+1)$$
 factorial moment

$$\mathbb{E}[(S_n)_r] = \sum_{m_1 \in \mathcal{I}_1} \sum_{m_2 \in \mathcal{I}_1 \setminus \{m_1\}} \cdots \sum_{m_r \in \mathcal{I}_1 \setminus \{m_1, \dots, m_{r-1}\}} \mathbb{P}[I_{m_1} = \dots = I_{m_r} = 1]$$

$$=: \sum_{m_1, \dots, m_r \in \mathcal{I}_1} \mathbb{P}[I_{m_1} = \dots = I_{m_r} = 1].$$

Theorem 2.6 $\mathbb{E}[(X_n)_r] \to \lambda^r \ (r \ge 1)$ implies $X_n \Longrightarrow_{n \to \infty} \operatorname{Pois}(\lambda)$.

Similarly, $\mathbb{E}[(X_n)_s(Y_n)_r] \to \lambda^2 \mu^r$ implies $(X_n, Y_n) \underset{n \to \infty}{\overset{n \to \infty}{\Longrightarrow}} (\operatorname{Pois}(\lambda), (\operatorname{Pois}(\mu)).$

Need to control, for $m_{1,1}, \ldots, m_{1,s} \in \mathcal{I}_1$ and $m_{2,1}, \ldots, m_{2,s} \in \mathcal{I}_1$

$$\mathbb{P}[I_{m_{1,1}} = \dots = I_{m_{1,s}} = I_{m_{2,1}} = \dots = I_{m_{2,r}} = 1]$$

$$= \frac{1}{(\ell_n - 1)(\ell_n - 3) \cdots (\ell_n - 1 - 2s - 4r)},$$

or = 0 if events incompatible, i.e., want same half-edge to connect to two different half-edges. Diligent counting completes the proof.

The Erased Configuration Model

Def $D_n^{\text{er}} := \text{degree of } U_n \in [n] \text{ after erasing loops and multiple edges.}$

Theorem 7.10 Assume
$$\mathbb{E}[D_n] \xrightarrow[n \to \infty]{} \mathbb{E}[D] < \infty$$
. Then $D_n^{\text{er}} \Longrightarrow_{n \to \infty} D$.

Proof Need to show no loops and multiple edges at
$$U_n$$
 as $n \to \infty$. $\mathbb{E}[\# \text{ loops at } U_n \mid D_n = k] = \frac{\frac{1}{2}k(k-1)}{\ell_{n-1}} \underset{n \to \infty}{\longrightarrow} 0.$

$$\limsup_{n \to \infty} \mathbb{P}[\exists \text{ loop at } U_n] \leq \limsup_{n \to \infty} \left\{ \frac{\frac{1}{2}k(k-1)}{\ell_{n-1}} \mathbb{P}[D_n \leq k] + \mathbb{P}[D_n > k] \right\} \\ \leq \mathbb{P}[D > k] \underset{k \to \infty}{\longrightarrow} 0.$$

If $d_i = k$, then

$$\mathbb{E}[\# \text{ multiple edges at } i] = \frac{1}{(\ell_n - 1)(\ell_n - 3)} \frac{1}{2} k(k - 1) \sum_{j \in [n] \setminus \{i\}} d_j(d_j - 1).$$

 $\limsup \mathbb{P}[\exists \text{ multiple edge at } U_n]$

$$\leq \limsup_{n \to \infty} \left\{ \frac{1}{2} k(k-1) \underbrace{\left(\frac{1}{\ell_n^2} \sum_{i \in [n]} d_i^2\right)}_{=: P_n} \mathbb{P}[D_n \leq k] + \mathbb{P}[D_n > k] \right\}.$$

 $P_n=$ probab. two unif. chosen half-edges are in same vertex. Let $p_n(k):=\mathbb{P}[D_n=k]$ and let $\mathbb{P}[\hat{D}_n=k]:=\hat{p}_n(k):=\frac{1}{\mathbb{E}[D_n]}kp_n(k)$ size-biased law. Then

$$P_n = \sum_{k} \hat{p}_n(m) \frac{m}{\ell_n} \le \left\{ \frac{m}{\ell_n} \mathbb{P}[\hat{D}_n \le m] + \mathbb{P}[\hat{D}_n > m] \right\}$$

and

 $\limsup_{n\to\infty} \mathbb{P}[\exists \text{ multiple edge at } U_n] \leq \frac{1}{2}k(k-1)\mathbb{P}[\hat{D} > m] + \mathbb{P}[D > k].$

First $m \to \infty$, then $k \to \infty$ gives ≤ 0 .

Conditioning i.i.d. (d_i) on $d_i \leq a_n$ with $a_n \to \infty$ has no influence on the limit law of D_n .

Theorem 7.22 Assume $\mathbb{P}[D_n \leq a_n] = 1$ with $a_n = o(n)$. Then $D_n^{\text{er}} \Longrightarrow_{n \to \infty} D$.

<u>Proof</u> W.l.o.g. $d_i \geq 1$ for all i. Then $\ell_n \geq n$ and hence

$$P_n \le \left\{ \frac{a_n}{\ell_n} \mathbb{P}[\hat{D}_n \le a_n] + \mathbb{P}[\hat{D}_n > a_n] \right\} \underset{n \to \infty}{\longrightarrow} 0.$$

Consequence We can construct erased configuration models with arbitrary degree distribution.

Heavy tails

Theorem 7.24 Assume $(d_i)_{i \in [n]}$ i.i.d. with

$$\mathbb{P}[D \ge k] = k^{1-\tau} L(k),$$

where $\tau \in (1,2)$ and L slowly varying, i.e., $L(ck)/L(k) \to 1$ for all c > 0. Then

$$\mathbb{P}[D_n^{\mathrm{er}} = k] \underset{n \to \infty}{\longrightarrow} \mathbb{P}[D^{\mathrm{er}} = k] \quad \text{with} \quad \mathbb{P}[D^{\mathrm{er}} \le k] \le ck^{-1}$$

for some $c < \infty$.

Note This says \approx the limit law has $\tau \geq 2$.

Conjecture D^{er} has $\tau = 2$.

<u>Proof</u> Order the degrees as $d_{(1)} \ge d_{(2)} \ge d_{(3)} \ge \cdots$.

Theorem 2.33 says that there exists a u_n of the form $u_n = n^{1/(\tau-1)}l_n$ with l_n slowly varying, s.t.

$$\frac{1}{u_n} (\ell_n, d_{(1)}, d_{(2)}, d_{(3)}, \dots) \underset{n \to \infty}{\Longrightarrow} (\eta, \xi_1, \xi_2, \xi_3, \dots),$$

where $\{\xi_1 > \xi_2 > \cdots\}$ is Poisson point set on $[0, \infty)$ with intensity measure $\mu([x,\infty)) = x^{1-\tau}$ and $\eta := \sum_{i=1}^{\infty} \xi_i$.

Let Q be the <u>random</u> probab. law defined $Q_j := \xi_j/\eta$.

Conditional on Q, let I_1, I_2, \ldots be i.i.d. with law Q and let

$$K(m,k) := \mathbb{P}[\#\Delta_m = k]$$
 with $\Delta_m : \{i : \exists 1 \le l \le m \text{ s.t. } I_l = i\}$

Thm 7.23 says that

$$\mathbb{P}[D_n^{\mathrm{er}} = k] \xrightarrow[n \to \infty]{} \mathbb{P}[D^{\mathrm{er}} = k] := \sum_{m=0}^{\infty} p_m K(m, k).$$

"Proof" All half edges at a typical vertex connect to vertices of high degree. Now $K(m,k) = \lim_{n\to\infty} \mathbb{P}[D_n^{\text{er}} = k \mid D_n = m]$.

Missing lemma $\#\Delta_m \sim cm^{\tau-1}$ with high probability.

Consequence $D^{\text{er}} \approx D^{\tau-1}$ when both are large, so

$$\mathbb{P}[D^{\text{er}} \ge k] \approx \mathbb{P}[D^{\tau - 1} \ge k] = \mathbb{P}[D \ge k^{1/(\tau - 1)}]$$
$$= (k^{1/(\tau - 1)})^{1 - \tau} L(k^{1/(\tau - 1)}) = k^{-1} L'(k)$$

with L, L' slowly varying.

<u>Proof of Lemma?</u> Divide the interval $[0, \eta]$ in pieces of length ξ_1, ξ_j, \ldots . Choose m points uniformly on $[0, \eta]$. Then $\#\Delta_m$ is the number of intervals that contains at least one point. For large m, the m points look like a Poisson points set with intensity m/η , so

$$\mathbb{E}[\#\Delta_m] \approx \mathbb{E}\Big[\sum_{j=1}^{\infty} \left(1 - e^{-(m\xi_j/\eta)}\right)\Big] \approx \int_0^{\infty} \left(1 - e^{-\frac{m}{\eta}x}\right) \mu(\mathrm{d}x).$$

Forgetting about multiplicative constants,

$$\approx \int_0^{1/m} x \mu(\mathrm{d}x) + \int_{1/m}^\infty \mu(\mathrm{d}x) \approx \int_0^{1/m} x \cdot x^{-\tau} \mathrm{d}x + (1/m)^{1-\tau} \approx m^{\tau-2} + m^{\tau-1}.$$

If we believe the law of $\#\Delta_m$ to be concentrated near its mean, then this "proves" the lemma.