
Exam Advanced Topics in Markov Chains
May 24th, 2018

Hints: You can use all results proved in the lecture notes (without proving them your-
selves). You can also use claims from exercises in the lecture notes (without solving
these exercises). Finally, you can also use a claim you are supposed to prove in one
excercise below to solve another excercise (even if you did not prove the claim). Partial
solutions also yield points.

Exercise 1 (Trapping probabilities) Let (Xk)k≥0 be i.i.d. Bernoulli random vari-
ables with P[Xk = 0] = P[Xk = 1] = 1

2
(k ≥ 0). Set

τ101 := inf
{
k ≥ 0 : (Xk, Xk+1, Xk+2) = (1, 0, 1)

}
,

and define τ010 similarly. Calculate, for each (x0, x1, x2) ∈ {0, 1}3, the conditional prob-
abilities

P
[
τ101 < τ010

∣∣ (X0, X1, X2) = (x0, x1, x2)
]
.

Hint: The picture in Exercise 1.17 in the lecture notes may be helpful.

Exercise 2 (Quasi-stationary law) Let (Xk)k≥0, τ101, and τ010 be as in the previous
exercise and define

τ := τ101 ∧ τ010.

(a) Show that there exist constants c ∈ (0, 1) and r ∈ (0,∞) such that P[τ > k] ∼ rck,
i.e.,

c−kP[τ > k] −→
k→∞

r.

(b) Calculate, for each (x0, x1, x2) ∈ {0, 1}3, the limit

lim
k→∞

P
[
(Xk, Xk+1, Xk+2) = (x0, x1, x2)

∣∣ τ > k
]
.

(c) Calculate, for each (x0, x1, x2) ∈ {0, 1}3, the limit

lim
k→∞

P
[
(Xk, Xk+1, Xk+2) = (x0, x1, x2)

∣∣ τ > 2k
]
.

(Note that here we condition on τ > 2k instead of > k).
Hint: The most important thing is to show which equations you need to solve to calculate
these quantities. Explicit solutions are less important, although it is possible to obtain
them.

Please turn over.
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Exercise 3 (A two-type branching process) Let (Xk(1), Xk(2))k≥0 be a two-type
branching process with offspring distribution

Pδ1
[
(X1(1), X1(2)) = (3, 0)

]
= 1

2
, Pδ1

[
(X1(1), X1(2)) = (0, 1)

]
= 1

2

Pδ2
[
(X1(1), X1(2)) = (0, 3)

]
= 1

2
, Pδ2

[
(X1(1), X1(2)) = (0, 0)

]
= 1

2
,

i.e., particles of type 1 either give birth to three particles of type 1 or to one particle
of type 2, with equal probabilities, while particles of type 2 either give birth to three
particles of type 2 or have no offspring at all, again with equal probabilities.

(a) Is (Xk(1))k≥0 an autonomous Markov chain?

(b) Same question as under (a) but for (Xk(2))k≥0.

(c) Let A and B denote the events

A :=
{
Xk(1) 6= 0 ∀k ≥ 1

}
,

B :=
{
∃n ≥ 0 s.t. Xk(2) 6= 0 ∀k ≥ n

}
.

Prove that Px(B |A) = 1 for all x such that x(1) ≥ 1.
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Solutions

Ex 1
The process (Xk+1, Xk+2, Xk+3)k≥0 is a Markov
chain with transitions as indicated in the picture
in Exercise 1.17 in the lecture notes, where each
arrow has probability 1/2. If we stop the process
as soon as it enters one of the states 101 and 010,
then we get a Markov chain as in the picture on
the right. Let P denote the transition kernel of
this stopped Markov chain, and let

h(x) := P
[
τ101 < τ010

∣∣ (X0, X1, X2) = x
]
.

By Lemma 1.2 in the lecture notes, this is a har-
monic function, i.e., Ph = h. By Lemma 0.16 in
the lecture notes, the stopped Markov chain a.s.
ends up in one of the traps 101 and 010, and there-
fore by Lemma 1.3 in the lecture notes, h is in fact
the unique solution of

Ph = h with h(101) = 1, h(010) = 0.

It is not hard to see that h is the function indicated
in the second picture on the right.
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Ex 2
Let S = {000, 001, 010, 011, 100, 101, 110, 111} be the state space of the Markov chain
from the previous exercise and let S ′ := S\{101, 010}. Let P be the transition kernel
of the Markov chain and let Q := P |S′ denote its restriction to S ′. We see from the
picture that it is possible to get from any state in S ′ to any other state in S ′ without
leaving S ′, so S ′ is irreducible. The Perron-Frobenius theorem (Theorem 2.15 in the
lecture notes) now tells us that there exists a function h : S ′ → (0,∞), unique up
to scalar multiples, and a unique constant c > 0 such that Qh = ch. Applying the
Perron-Frobenius theorem to the adjoint Q†, we see that there also exists a function
η : S ′ → (0,∞), unique up to scalar multiples, and a unique constant c′ > 0 such that
ηQ = c′η. Here in fact c = ρ(Q) = ρ(Q†) = c′ (see Theorem 2.7 and Proposition 2.12 in
the lecture notes). Since S ′ is finite, we can normalize h and η such that∑

x∈S′

η(x) = 1 and
∑
x∈S′

η(x)h(x) = 1.

Also, the finiteness of S ′ implies that infx∈S′ h(x) > 0, so Theorem 2.16 from the lecture
notes is applicable.
(a) Corollary 2.17 from the lecture notes tells us that

c−kP
[
τ > k

∣∣ (X0, X1, X2) = x
]
−→
k→∞

h(x)

for each x ∈ S ′. Since

P[τ > k] =
∑
x∈S

P
[
τ > k

∣∣ (X0, X1, X2) = x
]
P
[
(X0, X1, X2) = x

]
,

and P[(X0, X1, X2) = x] = 1/8 for each x ∈ S ′, we conclude that

c−kP[τ > k] −→
k→∞

1
8

∑
x∈S′

h(x).

(b) We can apply Corollary 2.18 from the lecture notes to conclude that

lim
k→∞

P
[
(Xk, Xk+1, Xk+2) = x

∣∣ τ > k, (X0, X1, X2) = y
]

= η(x)

for each x, y ∈ S ′. Since

P
[
(Xk, Xk+1, Xk+2) = x

∣∣ τ > k
]

=
∑
y∈S′

P
[
(Xk, Xk+1, Xk+2) = x

∣∣ τ > k, (X0, X1, X2) = y
]
P
[
(X0, X1, X2) = y

∣∣ τ > k
]
,

using the finiteness of S ′, we conclude that

P
[
(Xk, Xk+1, Xk+2) = x

∣∣ τ > k, (X0, X1, X2) = y
]
−→
k→∞

η(x)
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for each x ∈ S ′.
(c) We can apply Exercise 2.19 from the lecture notes to conclude that

lim
k→∞

P
[
(Xk, Xk+1, Xk+2) = x

∣∣ τ > 2k, (X0, X1, X2) = y
]

= η(x)h(x)

for each x, y ∈ S ′. By the same argument as in part (a), it follows that also

lim
k→∞

P
[
(Xk, Xk+1, Xk+2) = x

∣∣ τ > 2k
]

= η(x)h(x)

for each x ∈ S ′.
The constant c and functions h and η can actually explicitly be calculated. We start by
observing that the problem is symmetric if we replace all 0’s by 1’s and vice versa, so
h(000) = h(111), h(001) = h(110) etc. Using this, the equation Qh = ch gives

Qh(100) = 1
2
h(000) + 1

2
h(001) = ch(100),

Qh(000) = 1
2
h(000) + 1

2
h(001) = ch(000),

Qh(001) = 1
2
h(011) = 1

2
h(100) = ch(001).

We know in advance that the Perron-Frobenius eigenvalue satisfies c > 0 so the first two
equations tell us that h(100) = h(000). It follows that h (up to the normalization, that
we will choose later) is given by h(100)

h(000)
h(001)

 =

 1
1
2c

 .

To calculate c, we use the equation Qh(100) = ch(100) which gives

1
2

+ 1
2
c = c2 ⇔ c = 1

4
(1±

√
5).

Since the Perron-Frobenius eigenvalue satisfies c > 0, we conclude that c = (1 +
√

5)/4.
One can check that the spectrum of Q is {1

4
(1 −

√
5), 0, 1

4
(1 +

√
5)}, so c is the largest

eigenvalue, in line with Gelfand’s formula (Lemma A.1 from the lecture notes). The
equation ηQ = cη gives the equations

ηQ(100) = 1
2
η(110) = 1

2
η(001) = cη(100),

ηQ(000) = 1
2
η(100) + 1

2
η(000) = cη(000),

ηQ(001) = 1
2
η(100) + 1

2
η(000) = cη(001),

which up to normalization can be solved as η(100)
η(000)
η(001)

 =

 1
2c
2c

 .

It is now straightforward (but a bit tedious) to calculate the right normalizations of h
and η as in Theorem 2.16 from the lecture notes.
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Ex 3
(a) The process (Xk(1))k≥0 is a branching process where each particle with equal prob-
abilities either gives birth to three particles or has no offspring at all. In particular, the
transition probabilities of (Xk(1))k≥0 do not depend on the current state of (Xk(2))k≥0,
so (Xk(1))k≥0 is an autonomous Markov chain.

(b) If X0(1) = 1, then in the first time step the process (Xk(2))k≥0 jumps from 0 to 1
with probability 1/2, but if X0(1) = 0, then this probability is zero. This shows that
the transition probabilities of (Xk(2))k≥0 depend on the current state of (Xk(1))k≥0, and
hence (Xk(2))k≥0 is not an autonomous Markov chain. (Nevertheless, in the special case
that we start with no particles of type 1, the process (Xk(2))k≥0, on its own, is a Markov
chain and even a branching process.)

(c) We claim that if we start with a single particle of type 2, then

p := Pδ2
[
Xk(2) 6= 0 ∀k ≥ 0] > 0.

Indeed, if initially there are no particles of type 1, then (Xk(2))k≥0 is a branching process
where each particle with equal probabilities either gives birth to three particles or has
no offspring at all. Since the average number of particles produced by a single particle
in each step is 3/2, which is larger than one, such a branching process is supercritical, so
by Proposition 4.17 such a process survives with positive probability. By the branching
property (Lemma 4.2 in the lecture notes), the same is true if we add more particles at
time zero, so we see that more generally

Px
[
Xk(2) 6= 0 ∀k ≥ 0] ≥ p > 0 ∀x s.t. x(2) ≥ 1.

Since particles of type 1 produce with probability 1
2

a particle of type 2, it also follows
that

ρ(x) := Px
[
Xk(2) 6= 0 ∀k ≥ 1] ≥ 1

2
p > 0 ∀x s.t. x(1) ≥ 1.

In particular, the event A implies that ρ(Xk) does not tend to zero, so the claim follows
from the principle “what can happen must eventually happen” (Proposition 0.14 in the
lecture notes).
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