
Exam Large Deviation Theory
January 30, 2017

Exercise 1 Let I : R → (−∞,∞] and J : R → (−∞,∞] be good rate functions such
that

sup
x∈R

[
λx− I(x)

]
= sup

x∈R

[
λx− J(x)

]
(λ ∈ R).

(a) Assume that I is convex. Prove that I ≤ J .

(b) Assume that I is strictly convex in the sense that for any x < y with I(x), I(y) <∞
and 0 < p < 1, one has I(px+ (1− p)y) < pI(x) + (1− p)I(y). Prove that I = J .

Hint: You can use the following facts. For a, λ ∈ R, let la,λ denote the affine function
la,λ(x) := a+ λx (x ∈ R). Then for any function I : R→ (−∞,∞]

I(x) := sup{la,λ(x) : a, λ ∈ R, la,λ ≤ I} (x ∈ R)

is the convex hull of I. In particular, if I is convex and lower semi-continuous, then
I = I. Also, if I is a lower semi-continuous function that is not convex, then I is not
strictly convex.

In the following exercise you can use the result of Exercise 1, as well as the following
proposition, the proof of which is entirely analogous to the proof of Proposition 1.29 of
the lecture notes. Below, if I is a normalized good rate function on a Polish space E,
and D ⊂ Cb(E), then we say that D determines I if for any other normalized good rate
function J ,

‖f‖∞,I = ‖f‖∞,J ∀f ∈ D implies I = J.

Proposition Let E be a Polish space, let µn be probability measures on E,
let sn be positive constants converging to infinity, and let I be a normalized
good rate function on E. Assume that D ⊂ Cb(E) determines I and that

(i) The sequence (µn)n≥1 is exponentially tight with speed sn.

(ii) limn→∞ ‖f‖sn,µn = ‖f‖∞,I for all f ∈ D.

Then the measures µn satisfy the large deviation principle with speed sn and
rate function I.

Exercise 2 Let K ⊂ R be a compact interval and let (Xi)i≥1 be a sequence of random
variables taking values in K. Assume that the limit

Γ(λ) := lim
n→∞

1

n
logE

[
eλ
∑n

i=1Xi
]
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exists for each λ ∈ R, and that Γ : R → (−∞,∞] is an element of the class Conv∞
defined in Section 2.1 of the Lecture Notes. Prove that the measures

P
[ 1

n

n∑
i=1

Xi ∈ ·
]

satisfy the Large Deviations Principle with speed n and good rate function I given by

I(x) := sup
λ∈R

[
λx− Γ(λ)

]
(x ∈ R).

Warning: We do not assume that the random variables (Xi)i≥1 are independent.

Exercise 3 Let (Xi)i≥1 denote an i.i.d. sequence of random variables taking values in
the set {A, T, C,G} with common law µ defined by

µ(A) = 0.3, µ(T ) = 0.3, µ(C) = 0.2, and µ(G) = 0.2.

Let

Rn :=
1

n

n∑
i=1

1{Xi=Xi+1}

denote the frequency, among the first n+ 1 letters in the sequence, with which a letter
is followed by the same letter. Indicate a method to calculate the limit

lim
n→∞

1

n
logP[Rn ≥ 0.5].
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Solutions

Ex 1 The assumption implies that

la,λ ≤ I ⇔ sup
x∈R

[
a+ λx− I(x)

]
≤ 0 ⇔ sup

x∈R

[
λx− I(x)

]
≤ −a ⇔ la,λ ≤ J,

which shows that I = J . If I is convex, then this implies that I = J , so part (a) follows
from the fact that J ≤ J . If I is strictly convex, then I = J implies that J is convex
and hence I = J = J , solving part (b).

Ex 2 For each λ ∈ R, let lλ denote the linear function lλ(x) := λx (x ∈ K). Then, for
any rate function J , one has

log ‖elλ‖∞,J = log sup
x∈K

e−J(x)|eλx| = sup
x∈K

[
λx− J(x)

]
.

In view of this, Exercise 1 shows that if I : K → R is a strictly convex good rate
function, then the functions D := {elλ : λ ∈ R} determine I. (Note that elλ ∈ Cb(K) by
the assumption that K is compact.) Let

I(x) := sup
λ∈R

[
λx− Γ(λ)

]
(x ∈ R)

denote the Legendre transform of Γ. Since Γ ∈ Conv∞, Proposition 2.3 in the Lecture
Notes tells us that I ∈ Conv∞ and that Γ is the Legendre transform of I, i.e.,

Γ(λ) = sup
x∈K

[
λx− I(x)

]
(λ ∈ R).

Let µn denote the law of 1
n

∑n
i=1Xi. Then our assumptions say that

log ‖elλ‖n,µn = log
1

n
log

∫
|elλ|ndµn = E

[
eλ
∑n

i=1Xi
]
−→
n→∞

Γ(λ) = sup
x∈K

[
λx− I(x)

]
,

and hence ‖elλ‖n,µn → ‖elλ‖∞,I for all λ ∈ R. In particular, applying this to λ = 0,
we see that I is normalized. Since K is compact, the measures µn are automatically
exponentially tight, so applying the proposition, we obtain that the µn satisfy the Large
Deviations Principle with speed n and good rate function I.

Ex 3 Let S := {A, T, C,G} and let M
(2)
n be the pair empirical measures of the sequence

(Xi)i≥1, i.e.,

M (2)
n (x, y) :=

1

n

n∑
i=1

1{(Xi,Xi+1)=(x,y)} (x, y ∈ S).

LetM1(S
2) denote the space of probability distributions on S2, define O ⊂M1(S

2) by

O :=
{
ν ∈M1(S

2) :
∑
x∈S

ν(x, x) > 0.5
}
,
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and let O denote the closure of O. (Since M1(S
2) is a finite dimensional space, there

is only one reasonable topology on it.) Let ν1, ν2 denote the first and second marginal
of a probability distribution ν ∈ M1(S

2) and set V := {ν ∈ M1(S
2) : ν1 = ν2}. Then

Theorem 3.2 or Theorem 3.16 (a) of the Lecture Notes tells us that

lim sup
n→∞

1

n
logP[Rn ∈ O] =− inf

ν∈V∩O
H(ν|ν1 ⊗ µ),

lim inf
n→∞

1

n
logP[Rn ∈ O] =− inf

ν∈V∩O
H(ν|ν1 ⊗ µ),

where H denotes the relative entropy function and ν1⊗ µ denotes the product measure
of ν1 and µ. By the continuity of the function V 3 ν 7→ H(ν|ν1⊗µ) (which follows from
the fact that µ > 0) and the fact that O is the closure of its interior, it follows that the
liminf and limsup are equal (see Remark 1 below Proposition 1.7 in the Lecture Notes),
so

lim
n→∞

1

n
logP[Rn ≥ 0.5] = − inf

ν∈V∩O
H(ν|ν1 ⊗ µ).

To evaluate the minumum, we need to minimize ν 7→ H(ν|ν1⊗µ) over V subject to the
constraint ∑

x∈S

ν(x, x) ≥ 0.5.

We use the method of Lagrange multipliers and try to maximize

λ
∑
x∈S

ν(x, x)−H(ν|ν1 ⊗ µ)

for all possible values of λ ∈ R, and then choose λ so that
∑

x∈S ν(x, x) = 0.5. Define
φ : S2 → R by φ(x, y) := 1{x=y}. Then we want to find

rλ := sup
ν∈V

[
λνφ−H(ν|ν1 ⊗ µ)

]
By Lemma 3.25 of the Lecture Notes, rλ is the Perron-Frobenius eigenvalue of the matrix(
A(x, y)

)
x,y∈S defined by

A(x, y) = µ(y)eλφ(x,y) (x, y ∈ S).

Moreover, if h denotes the associated (right) Perron-Frobenius eigenvector, then the
supremum is attained in ν = π ⊗ Ah, where Ah is the probability kernel defined in
(3.17) and π is its invariant law. Based on the symmetry of the problem, we must have
h(A) = h(T ) and h(C) = h(G). Since

Ah(A) = 0.3eλh(A) + 0.3h(T ) + 0.2h(C) + 0.2h(G),

Ah(C) = 0.3h(A) + 0.3h(T ) + 0.2eλh(C) + 0.2h(G),
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our eigenvector equation simplifies to(
0.3(1 + eλ) 0.4

0.6 0.2(1 + eλ)

)(
h(A)
h(C)

)
= r

(
h(A)
h(C)

)
.

To find the eigenvalues, we must solve

det

(
0.3(1 + eλ)− r 0.4

0.6 0.2(1 + eλ)− r

)
= 0,

or equivalently (
3(1 + eλ)− r

)(
2(1 + eλ)− r

)
− 4 ∗ 6 = 0.

Now the formulas become somewhat unpleasant, but in principle we have a formula for
the largest root to this quadratic equation. Using this, we can solve h and Ah. Then
we still have to find the invariant law π of Ah and choose λ such that

∑
x ν(x, x) =∑

x(π⊗Ah)(x, x) equals 0.5. In principle, this can be done, but not within the timeframe
of an exam.
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