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Chapter 1

The real numbers

1.1 Informal definition of the real numbers

Informally, a real number is any number that can be written in decimal
notation, including negative numbers. So, for example,

0, 7, 100.5, 1/3 = 0.33333 . . . , −1.125, and π = 3.14159265 . . .

are real numbers. A bit more formally, a real number consists of three ingre-
dients:

• a sign which can be + or -,

• a finite number of digits before the decimal dot,

• an infinite number of digits after the decimal dot.

Here, a digit is any of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. A few special rules
apply:

• +0 = −0,

• we usually do not write the sign +,

• if from a certain point on, all digits after the decimal dot are 0, then
we do not write these digits,

• we do not allow real numbers that have the property that from a certain
point on, all digits after the decimal dot are 9.

5



6 CHAPTER 1. THE REAL NUMBERS

Concerning this last point, if we would allow such numbers, then the only
logical interpretation of a number like

0.1249999999999 . . .

would be that it is equal to 0.125. In order to have a unique way of writing
down such a number, we do not allow the notation with the repeating 9’s.

We can imagine the real numbers as points on an infinitely long straight
line:

-5 0 1
3

2 π

We use the symbols < to indicate that one real number is strictly smaller
than another. For example, 3 < π < 4, or more precisely 3.14 < π < 3.15.
The symbol > has the opposite meaning: 3.15 > π > 3.14. The symbol =
means that two real numbers are equal and ≤ (respectively, ≥) means that
< or = (respectively, > or =). The symbol 6= indicates that two numbers
are not equal. We will use the symbol := to indicate that something is equal
by definition. For example, we may write x := 2π to define a new number x
in terms of the numbers 2 and π that we already know.

The numbers 0, 1, 2, . . . are called the natural numbers. The numbers
. . . ,−2,−1, 0, 1, 2, . . . are called the integers. We say that a number a is
positive if a > 0 and we say that a is nonnegative if a ≥ 0.

1.2 The field operations

The two basic operations with real numbers that everybody learns how to
do in school is to add them and to multiply them. We denote addition with
a + and multiplication with a ·. We use brackets to indicate what operation
should be carried out first. So, for example 2 + (3 · 4) means that we should
first multiply 3 with 4 and then add the result to 2, while (2 + 3) · 4 means
that we should first add 2 with 3 and then multiply the result with 4. As a
result

2 + (3 · 4) = 14 and (2 + 3) · 4 = 20.

Mathematicians often use roman or Greek letters to denote real numbers.
(As we will later see, they also use letters to denote all kind of other things.)
Sometimes, such as in the case of π, these letters signify one particular real
number. More often, they signify arbitrary numbers, about which a priori
nothing is known. This allows us to write down all kind of general rules. For
example:
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(i) a+ b = b+ a,

(ii) a+ (b+ c) = (a+ b) + c,

(iii) a+ 0 = a,

(iv) a · b = b · a,

(v) a · (b · c) = (a · b) · c,

(vi) a · 1 = a,

(vii) a · (b+ c) = (a · b) + (a · c),

These rules mean that whatever real numbers we write instead of the letters
a, b, c, the (in)equality will always be true.1 A few special rules apply:

• When we denote numbers by letters, we usually do not write the ·. So
ab is the same as a ·b. Of course, when we write down explicit numbers,
we need to write the · since 1 · 3 6= 13.

• When we write down a sum of three or more numbers, we do not use
brackets, since the order does not matter because of rule (ii).

• When we write down a product of three or more numbers, we do not
use brackets, since the order does not matter because of rule (v).

• We often do not write brackets at all. In this case, products should
be evaluated first. So, for example, rule (viii) can be written more
concisely as a(b+ c) = ab+ ac.

Recall that each real number has a sign, which can be + or −. We let −a
denote the number that has the opposite sign as a, i.e., if a has the sign +,
then −a has the sign −, and if a has the sign −, then −a has the sign + with
−0 = 0. Then, in addition to the rules above, we have the following general
rules:

(viii) For each real number a, there exists a unique real number −a such that
a+ (−a) = 0.

(ix) For each real number a 6= 0, there exists a unique real number 1/a such
that a(1/a) = 1.

1Of course, it is understood that if a letter occurs more than once in a formula, it should
always be replaced by the same number. Different letters may be different numbers, but
they need not be. For example, a + b = b + a is also true if a = b.
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Again, some special rules apply:

• Instead of a + (−b) we write a − b. Subtracting a number is the same
as adding minus that number.

• Instead of a(1/b) we write a/b. Dividing by a number is the same as
multiplying with the inverse of that number.

Note that 1/0 is not defined and more generally, division by zero is not
defined.

From the properties (i)–(ix), other properties can be deduced, for exam-
ple:

• a · 0 = 0,

• −a = (−1) · a,

• ab = 0 if and only if a = 0 or b = 0,

• a

b
· c
d

=
ac

bd
.

One may wonder if all properties of the real numbers can be deduced from
the properties (i)–(ix). This is not the case. We will later see that there
exist other “numbers” (for example, the rational numbers or the complex
numbers) that also satisfy (i)–(ix). In general, any collection of “numbers”
that satisfies (i)–(ix) is called a field.

If a is a real number and n a positive natural number, then we call

an := a · · · · · a︸ ︷︷ ︸
n times

the n-th power of a. If we do not write brackets, then taking powers takes
precedence over multiplication,. i.e., abn = a ·(bn). For each nonnegative real
number a and positive natural number n, there exists a unique nonnegative
real number, denoted by n

√
a, such that

( n
√
a)n = a.

The number n
√
a is called the n-th root of a. In particular, we simply call√

a := 2
√
a the root of a. It is easy to see that

an · am = an+m. (1.1)

Mathematicians usually define a0 := 1, which has the consequence that our
previous formula holds even when m or n are zero. With the additional
convention that

a−n :=
1

an
,

formula (1.1) is even true for when a 6= 0 and n,m are general integers.
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1.3 Prime numbers and rational numbers

If m and n are positive natural numbers, then there exist unique natural
numbers k > 0 and r ≥ 0 such that m = kn + r. We call r the remainder
of m after division by n. If r = 0, then we say that n is a divisor of m. A
prime number is a positive natural number n that has precisely two divisors,
namely the numbers 1 and n itself. Note that according to this definition, 1
is not a prime number. The first few prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

It is a mathematical theorem that there are infinitely many prime numbers.
Let us formally state and prove this.

Theorem 1.1 (Infinitely many prime numbers) There are infinitely
many prime numbers.

Proof Imagine that there are only finitely many prime numbers, let us call
them p1 . . . , pn. Then none of the numbers p1 . . . , pn is a divisor of m :=
p1 · · · pn − 1. By our assumption that p1 . . . , pn are the only prime numbers,
m is not a prime number, so there exists a natural number 1 < n < m that
divides m. Since none of the numbers p1 . . . , pn is a divisor of m, they cannot
be divisors of n either. But then by the same argument as before, n cannot
be a prime number either, so we can find a natural number 1 < k < m
that divides n. In this way, we find an infinite sequence of positive natural
numbers m,n, k, . . . such that m > n > k > · · · . This is clearly impossible,
so our original assumption, that there are only finitely many prime numbers,
must be wrong.

If a positive natural number is not a prime number, then we can write
it as the product of two smaller positive natural numbers. Continuing this
process until we cannot go on, we see that each positive natural number can
be written as the product of prime numbers. The following theorem says
that this way of writing a positive natural number is unique, i.e., whenever
we decompose a positive natural number into prime factors, we find the same
prime factors.

Theorem 1.2 (Decomposition into prime factors) Each natural num-
ber m ≥ 2 can in a unique way be written as m = pn1

1 · · · p
nk
k where p1 <

· · · < pk are prime numbers and n1, . . . , nk are positive natural numbers.

Recall that according to our earlier definition, 1 is not a prime number.
Indeed, if we would consider 1 to be a prime number, the uniqueness claim
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from Theorem 1.2 would not be true, since, for example, 2 · 3, 1 · 2 · 3, and
12 · 2 · 3 are three different ways of writing 6 as a product of prime numbers
and 1.

A somewhat different way of writing a positive natural number m as a
product of prime factors is to write:

m = 2m2 · 3m3 · 5m5 · 7m7 · 11m11 · · · , (1.2)

where for any prime number p, we let mp is the maximal number such that
pmp is a divisor of m, with mp := 0 if p is not a divisor of m. In (1.2) we use
the convention that a0 := 1, so that some of the factors in (1.2) are 1. In
fact, there is some maximal prime number p that divides m, and all powers
mq for prime numbers q > p are zero. In view of this, even though (1.2)
looks like an infinite product, only finitely many factors are different from 1,
so in effect it is only a finite product. Note that (1.2) is well-defined even for
m = 1, in which case 0 = m2 = m3 = m5 = · · · .

A number a that can be written as a = m/n where m and n 6= 0 are
integers, is called a rational number. The way of writing a rational number
a as m/n is not unique, since nk

mk
= n

m
for each integer k 6= 0. For a positive

rational number a = m/n, we can choose m and n both positive. We can find
the simplest way of writing a by decomposing n and m into prime factors and
then crossing out the prime factors that they have in common. For example:

600

140
=

23 · 3 · 52

22 · 5 · 7
=

(22 · 5) · (2 · 3 · 5)

(22 · 5) · 7
=

30

7
.

It is well-known that a real number is rational if and only if its digits behind
the decimal point start repeating from a certain point onwards. We can write
down such a number by underlining the digits that repeat. For example:

1

3
= 0.3 = 0.333333333 . . . ,

1

7
= 0.142857 = 0.14285714285714 . . . ,

1373

3330
= 0.4123 = 0.4123123123123 . . .

A real number that is not rational is called irrational. It is well-known that√
2 and π are irrational. The proof that π is irrational is a bit complicated

but the proof that
√

2 is, is actually quite easy.

Theorem 1.3 (Irrational roots) The root
√
n of a positive natural number

is either also a positive natural number, or it is irrational.
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Proof Let n be a positive natural number. Assume that
√
n = k/m for

some positive natural numbers k,m. Then we can decompose k and m into
prime factors as in formula (1.2):

k = 2k2 · 3k3 · 5k5 · · · and m = 2m2 · 3m3 · 5m5 · · ·

It follows that

n =
k2

m2
=

22k2 · 32k3 · 52k5 · · ·
22m2 · 32m3 · 52m5 · · ·

.

Since n is a natural number, m2 must be a divisor of k2, which is possible
only if 2kp ≥ 2mp for each prime number p. But then kp ≥ mp for each p,
which means that m is a divisor of k. But if m is a divisor of k, then

√
n is

a natural number.

1.4 Euclidean space

An ordered sequence of real numbers (a1, . . . , an) is a vector of length n.
Vectors of length n can be used to describe a point in n-dimensional space.
In particular, vectors of length two describe points in an infinite plane and
vectors of length three describe points in the three-dimensional world around
us. Vectors of length four can be used to describe events, where the first three
numbers describe the position, and the fourth number is the time when the
even happens. When we use a vector (a1, . . . , an) of length n to describe a
point in n-dimensional space, the individual numbers a1, . . . , an are called
the coordinates of the vector.

Mathematicians like to have a short way of writing down a vector, and
for that reason (when it is clear from the context what the dimension n
is) they often abbreviate (a1, . . . , an) as ~a. Often, they even simply write
a instead of ~a but for the moment being we will keep the arrow on top to
remind ourselves that this is a vector and not a number. Instead of thinking
of vectors as points in space, we can also think of them as arrows that have
a length and a direction. For example, in two-dimensional space:

(1, 2)

1

2
(3,−1)

3

1
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We denote the length of a vector by

‖~a‖ :=
√
a21 + · · ·+ a2n.

If the dimension n is two, then Pythagoras’ theorem tells us that this is indeed
the lenght of the arrow in the usual sense of the word. This is in fact also
true in three dimensions, a fact that we do not prove here. In dimension one,
vectors are just real numbers. In this case, we use the notation

|a| :=
√
a2

and we call |a| the absolute value of a. Note that this is the same as the
length of a, viewed as a vector of length one.

We can add vectors (of the same length) according to the definition:

~a+~b :=
(
a1 + b1, . . . , an + bn),

i.e., the coordinates of ~a+~b are obtained by adding the corresponding coor-
dinate of ~a and ~b. In a picture, this amounts to the displacement we get by
placing the vectors behind each other:

~a

~b

~a+~b

We can also multiply vectors by real numbers according to the definition:

a~b =
(
ab1, . . . , abn),

i.e., the coordinates of a~b are obtained by multiplying each coordinate of ~b
by a. If a > 0, then in a picture, this means that we multiply the length of
~b by a while keeping the direction as it was. If a < 0, then this means that
we multiply the length of ~b by |a| and reverse the direction.

It is well-known that the surface of a rectangle with sides a and b is equal
to the product ab. Similarly, the volume of a cuboid with sides a, b, and c is
equal to the product abc.



Chapter 2

Sets and functions

2.1 Naive set theory

A set is a collection of objects, that are called the elements of the set. Ex-
amples of sets are:

R := the set of real numbers,
Q := the set of rational numbers,
Z := the set of integers,
N := the set of natural numbers,

N+ := the set of positive natural numbers,
∅ := the empty set, which has no elements.

The notation a ∈ A (repectively, 6∈) means that a is (repectively, is not) an
element of the set A. So instead of writing “a is a real number” we can write
more shortly “a ∈ R”. A set cannot contain an element more than once. In
other words an object is either an element of a set, or not an element of a
set, but there is no such concept as “being twice an element” of a set.

Two sets A and B are equal if each element of A is also an element of B
and vice versa. As a result, all empty sets are equal, or to put it differently,
there is only one empty set. For reasons that will become clear later in this
chapter, a set can never be an element of itself. We say that A is a subset of
B if each element of A is also an element of B. We denote this as A ⊂ B.
Thus A = B is the same as A ⊂ B and A ⊃ B. If B is a set, and some of
the elements of B have a property, and others not, then we use the notation

A :=
{
a ∈ R : a has the property

}
to denote the subset of B consisting of all elements of B that have that
property. We use this notation even if all elements of B have the given

13
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property, in which case A = B, or if none of them have it, in which case
A = ∅. For example:

N := {n ∈ Z : n ≥ 0},
Q := {q ∈ R : there exist n,m ∈ Z with m 6= 0 such that q = n/m},
∅ := {x ∈ R : x < 0 and x > 1}.

If A and B are sets, then we let A ∩ B denote the intersection of A and
B, we let A ∪ B denote the union of A and B, and we let A\B denote the
difference of A and B, which are defined as

A ∩B := {x : x ∈ A and x ∈ B},
A ∪B := {x : x ∈ A or x ∈ B},
A\B := {x : x ∈ A and x 6∈ B}.

Here we use the word “or” in an inclusive way. So, when we wite “or”
between two properties, we mean that either only the first property holds, or
only the second, or both. Note that the notation here is a bit different from
our previous formulas. We could also have written

A ∩B := {x ∈ A : x ∈ B},
A\B := {x ∈ A : x 6∈ B},

but there is no such formula for A ∪ B, because a priori, before we have
defined A∪B, we do not have at our disposition a set that A∪B is a subset
of. For finite sets, i.e., sets that have only a finite number of elements, we
also write down a set simply by listing all its elements. For example:

{n ∈ Z : 0 < n < 5} := {1, 2, 3, 4},
{a ∈ R : a = −a} := {0},
{a ∈ R : a2 = a} := {0, 1}.

Note that in such a list, each element can only occur once. Also, the order
in which we list the elements does not matter, so

{1, 2, 3, 4} = {3, 1, 2, 4}.

In an informal text, we sometimes use this sort of notation that simply lists
all elements also for infinite sets, when it is clear how the sequence continues:

{n ∈ N+ : 2 is a divisor of n}= {2, 4, 6, . . .},
{n ∈ N+ : n is a square}= {1, 4, 9, 16, 25, . . .}.
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Intervals are subsets I ⊂ R of the real line with the property that if a ∈ I
and b ∈ I, then all numbers that lie between a and b are also elements of I.
Our notation for intervals of finite length is as follows:

[a, b] = {x ∈ R : a ≤ x ≤ b},
(a, b] = {x ∈ R : a < x ≤ b},
[a, b) = {x ∈ R : a ≤ x < b},
(a, b) = {x ∈ R : a < x < b}.

We also write:
[a,∞) = {x ∈ R : a ≤ x},
(a,∞) = {x ∈ R : a < x},
(∞, a] = {x ∈ R : x ≤ a},
(∞, a) = {x ∈ R : x < a}.

Note that according to our definition, ∅ and R are also intervals.
The Carthesian product of two sets A and B is the set of all ordered pairs

(a, b) with a ∈ A and b ∈ B. We denote the Carthesian product of A and B
as A×B. So

A×B :=
{

(a, b) : a ∈ A, b ∈ B
}
.

The Carthesian product of three or more sets is defined similarly. We write

An := A× A× · · · × A︸ ︷︷ ︸
n times

.

In particular,
R2 = R× R and R3 = R× R× R

are the two- and three dimensional euclidean spaces discussed in Section 1.4.
Also,

[0, 1]2 = [0, 1]× [0, 1] =
{

(a1, a2) : 0 ≤ a1 ≤ 1 and 0 ≤ a2 ≤ 1
}

is a square.
It is even possible to make the Carthesian product of infinitely many sets.

In particular, we let

AN+ :=
{

(a1, a2, . . .) : ak ∈ A for all k ∈ N+

}
denote the set whose elements are infinite sequences of elements of A.

If A is a finite set, then we let |A| denote the number of its elements,
which is a natural number. Sums and products of natural numbers have a
natural interpretation in set theory. In particular,
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• A ∩B = ∅ implies that |A ∪B| = |A|+ |B|,

• |A×B| = |A| · |B|.

If A ∩B = ∅, then we say that the sets A and B are disjoint.
Two mathematical symbols often come in handy when discussing sets.

These are the symbols

∀ “for all” and ∃ “there exists”.

So, for example, if A1, . . . , An are sets, then

A1 ∩ · · · ∩ An =
{
a : a ∈ Ak ∀k ∈ {1, . . . , n}

}
,

A1 ∪ · · · ∪ An =
{
a : ∃k ∈ {1, . . . , n} such that a ∈ Ak

}
.

Sometimes we abbreviate even more and write “:” instead of “such that”.
So {a : a ∈ A and a ∈ B} can be read as “the set of all a such that a is an
element of A and a is an element of B”.

2.2 Functions

Let A and B be sets and let F ⊂ A × B be a subset of their Carthesian
product with the property that

for all a ∈ A there is a unique b ∈ B such that (a, b) ∈ F.

In such a situation, it is convenient to have notation that tells us what b is,
if we know a. Indeed, we can define

f(a) := the unique b ∈ B such that (a, b) ∈ F.

Mathematicians say in such a situation that f is a function from the set A
into the set B. The set F is called the graph of f . On a very formal level, a
function and its graph are sort of the same thing, but in practice, we think
about them differently. When we think about a graph, we really imagine
a subset of the Carthesian product space A × B. When we think about a
function, we think about an object that takes an element the set A set, and
turns it into an element of the set B. We often write

Let f : A→ B be a function

to indicate that f goes “from A to B”, so to say. We have already seen many
examples of functions:
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• The function f : R → R defined as f(a) := −a takes a real number
and turns it into minus that number.

• The function f : Rn → R defined as f(~a) := ‖~a‖ takes a vector gives
out its length.

• The function f : (R\{0})→ R defined as f(a) := 1/a takes a nonzero
real number and turns it into its inverse.

• The function f : [0,∞) → [0,∞) defined as f(a) :=
√
a takes a non-

negative real number and gives its root.

A function f is:

• surjective if ∀b ∈ B ∃a ∈ A such that f(a) = b.

• injective (also called one-to-one) if ∀b ∈ B, there exists at most one
a ∈ A such that f(a) = b.

• a bijection if it is both surjective and injective.

If f : A→ B is a bijection, then the set

F−1 :=
{

(b, a) : (a, b) ∈ F
}

is the graph of a function f−1 : B → A that satisfies

f−1
(
f(a)

)
= a ∀a ∈ A and f

(
f−1(b)

)
= b ∀b ∈ B.

The function f−1 is called the inverse of the function f . Note that f−1 is also
a bijection and f is the inverse of f−1. Here are some examples of inverse
functions that we have already seen.

• For each real number x, the function f : R→ R defined as f(x) := x+a
is a bijection, and f−1(x) = x− a is its inverse.

• For each real number a 6= 0, the function f : R→ R defined as f(x) :=
ax is a bijection, and f−1(x) = x/a is its inverse.

• For each integer n ≥ 2, the function f : [0,∞) → [0,∞) defined as
f(x) := xn is a bijection, and f−1(x) = n

√
x is its inverse.

As we can see from these examples, if f : X → Y is a bijection, then for
each x ∈ X, the equation f(x) = y has a unique solution, which is given
by x = f−1(y). Subtraction was invented to solve equations of the form



18 CHAPTER 2. SETS AND FUNCTIONS

x+a = y. Division was invented to solve equations of the form ax = y. And
the n-th root was invented to solve equations of the form xn = y.

If X, Y , and Z are sets and f : X → Y and g : Y → Z are function, then
we can define a function h : X → Z by h(x) := g(f(x)). The function h is
called the composition of f and g and denoted by h = g ◦ f . Thus:

g ◦ f(x) := g
(
f(x)

)
.

If f : X → Y is a bijection, then f−1(f(x)) = x for all x ∈ X, and
f(f−1(y)) = y for all y ∈ Y , i.e., the function f−1 ◦ f : X → X and
f ◦ f−1 : Y → Y are the identity function on X and Y , respectively, which
map each element of X, respectively Y , into itself.

2.3 Relations

Let A be a set and let R ⊂ A× A be any subset of the Carthesian product
of A with itself. Then R represents a property that an ordered pair (a, b) of
elements of A can have: either (a, b) ∈ R or (a, b) 6∈ R. Often, it is nice to
use a bit different notation for this. For example, we can write

a ` b if (a, b) ∈ R and a 6 ` b if (a, b) 6∈ R.

In this case, we call ` a relation. Examples of relations that we have already
seen are

< ≤ > ≥ =

Also ,if A is a set and S := {B : B ⊂ A} is the set of all subsets of A, then
⊂ is a relation on S. It is tempting to view also ∈ as a relation, but if we do
this, then it is not completely clear on which set this relation is defined.

Let ` be a relation on a set A. Then we say that:

• ` is reflexive if a ` a for all a ∈ A,

• ` is symmetric if a ` b implies b ` a,

• ` is transitive if a ` b and b ` c imply a ` c.

For example, ≤ and = are reflexive, but < is not. The relation = is symmetric
but < and ≤ are not. Finally, all of the relations <, ≤, and = are transitive.

An equivalence relation is relation that is reflexive, symmetric, and tran-
sitive. If ∼ is an equivalence relation on a set A and a is an element of A,
then the subset of A defined as

[a] := {b ∈ A : b ∼ a}
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is called the equivalence class of a. Note that a ∈ [a] by reflexivity. If a and
b are elements of A such that a ∼ b, then using symmetry and transitivity,
it is easy to see that [a] = [b]. On the other hand, if a 6∼ b, then [a]∩ [b] = ∅,
i.e., [a] and [b] are disjoint.

Equivalence relations are used a lot in mathematics. Often, we start with
a set A whose elements a contain “too much information”. By forgetting
some of this information, one naturally arives at equivalence classes. In the
next section, we demonstrate this on the example of calculation modulo a
natural number.

2.4 Calculation modulo a natural number

Let q ≥ 2 be a natural number. Then we can define an equivalence relation
on Z by setting

n ∼ m if and only if ∃k ∈ Z such that k = m+ kq.

(The reader should check that this relation is indeed reflexive, symmetric,
and transitive.) Then

[k] = {. . . , k − 2q, k − q, k, k + q, k + 2q, . . .}.

The set of all equivalence classes is

Z/q :=
{

[0], [1], . . . , [q − 1]
}
.

Note that the set on the right indeed lists all equivalence classes, since [q] =
[0], [q+ 1] = [1], etcetera, and on the other side, [−1] = [q−1], [−2] = [q−2]
etcetera. The interesting thing about the equivalence relation ∼ is that
(check!)

• n ∼ n′ and m ∼ m′ implies n+m ∼ n′ +m′,

• n ∼ n′ and m ∼ m′ implies nm ∼ n′m′.

As a result of this, we can define the sum and product of elements of Z/q as
follows:

[n] + [m] := [n+m] and [n] · [m] := [nm] ∀n,m ∈ Z.

Note that a priori, it is not clear that these are valid definitions. A priori, it is
conceivable that there exist integers n, n′,m, and m′ such that [n′] = [n] and
[m′] = [m], but [n+m] 6= [n′ +m′]. If that were the case, then according to
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our definition, [n]+ [m] would have to be equal to both [n+m] and [n′+m′],
which is impossible. But because of the special properties of ∼ listed above,
this problem does not occur and our definition is valid.

The following theorem shows that if q is a prime number, then Z/q is a
field, as defined in Section 1.2.

Theorem 2.1 (Calculation modulo q) The sum and product on Z/q sat-
isfy the properties (i)–(viii) of Section 1.2, where [0] plays the role of 0 and
[1] plays the role of 1. If q is a prime number, then property (ix) holds too.

Instead of n ∼ m, one usually writes:

n = m mod(q).

This is pronounced as “n and m are equal modulo q”. Theorem 2.1 says
that we can calculate modulo q more or less in the same way as we calculate
normally. If q is a prime number, then we can even divide two numbers
modulo q.

2.5 Cardinality

Recall that a function f : A→ B is injective if ∀b ∈ B, there exists at most
one a ∈ A such that f(a) = b. If there exists an injection from A to B, then
B must, in a sense, be “at least as large” as A. To indicate this, for two sets
A and B, let us write A ≺ B if there exists an injection f : A → B. Since
the identity map is an injection, and since the composition of two injections
is again an injection, the relation ≺ is reflexive and transitive.

Recall that a function f : A → B is a bijection if it is both surjective
and injective, i.e., for each b ∈ B there exists precisely one a ∈ A such that
f(a) = b. If there exists a bijection from A to B, then B must, in a sense,
be “equally large” as A. To indicate this, for two sets A and B, let us write
A ∼ B if there exists a bijection f : A→ B.

The following theorem was first proved by Dedekind. In line with Stigler’s
law,1 the theorem is known as the Schroeder-Bernstein theorem.

Theorem 2.2 (Schroeder-Bernstein) A ≺ B and B ≺ A imply A ∼ B.

Clearly,2 ∼ is an equivalence relation. We will be interested in the equiv-
alence classes. Let us first look at finite sets. If A and B are finite sets,

1Stigler’s law states that no scientific discovery is named after its original discoverer.
True to its name, Stigler is not the original discoverer of this “law”.

2Well, not so clearly. It is true that ∼ is reflexive, symmetric and transitive. But it is
not so clear on which set ∼ is defined. Naively, one would say, “on the set of all sets”, but
as we will later see, there is no such thing. We ignore this problem for the moment but
will get back to it later.
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say:

A = {a1, . . . , an} and B = {b1, . . . , bm},

then one has A ∼ B if and only if n = m, i.e., if A and B have the same num-
ber of elements. Thus, each natural number n corresponds to an equivalence
class, which consists of all sets that have precisely n elements. Note that ∅ is
the only set with zero elements. As we have already seen in Section 2.1, the
sum and product on N have a natural interpretation in terms of sets, since
A ∩B = ∅ implies that |A ∪B| = |A|+ |B| and |A×B| = |A| · |B|.

Now let us look at infinite sets. If A is a finite set and b 6∈ A, then
|A ∪ {b}| = |A| + 1 and hence A ∪ {b} 6∼ A. But for infinite sets, this is no
longer true. Indeed, N contains precisely one element that is not contained
in N+, yet the function f : N+ → N defined as f(n) := n − 1 is a bijection.
It is even possible to define a bijection from the natural numbers to the even
natural numbers, by setting f(n) := 2n. This phenomenon is informally
known as “Hilbert’s hotel”.

In view of this, one might be tempted to think that all infinite sets are
“equally large” in the sense of ∼, but this is not true. Recall from Section 2.1
that

{0, 1}N+ =
{

(x1, x2, . . .) : xk ∈ {0, 1} for all k ∈ N+

}
denotes the set of all infinite sequences of zeros and ones. The next theorem
says that this set is strictly larger than N+.

Theorem 2.3 (An uncountable set) One has N+ ≺ {0, 1}N+. On the
other hand, N+ 6∼ {0, 1}N+.

Proof We can define an injection f : N+ → {0, 1}N+ by setting

f(k) := (0, . . . , 0,1, 0, . . .).
↑ k-th coordinate

On the other hand, we claim that a function f : N+ → {0, 1}N+ can never be
surjective, and as a result, there exist no bijections between N+ and {0, 1}N+ .
To see this, let f : N+ → {0, 1}N+ be a function. Then we can write

f(k) =
(
f1(k), f2(k), f3(k), . . .

)
,

where for each n ∈ N+, fn : N+ → {0, 1} is a function. Now we can define
an infinite sequence (x1, x2, . . .) of zeros and ones by setting

xk :=

{
1 if fk(k) = 0,
0 if fk(k) = 1.
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Then xk 6= fk(k) and as a result(
x1, x2, x3, . . .

)
6=
(
f1(k), f2(k), f3(k), . . .

)
∀k ∈ N+.

This shows that f is not surjective.

If a set A satisfies A ∼ N+, then we say that A is countably infinite. We
have already seen that N is countably infinite. The same is true for Z, since
we can define a bijection f : N+ → Z by setting:

f(1) := 0, f(1) := 1, f(2) := −1, f(3) := 2, f(4) := −2, f(5) := 3,

etcetera. We claim that the Carthesian product N × N is also countably
infinite. Indeed, we can define a bijection f : N+ → N× N by

f(1) := (0, 0) f(2) := (0, 1) f(3) := (1, 0) f(4) := (0, 2)
f(5) := (1, 1) f(6) := (2, 0) f(7) := (0, 3) f(8) := (1, 2)
f(9) := (2, 1) f(10) := (3, 0) f(11) := (0, 4) f(12) := (1, 3)

etcetera, which goes through N× N as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

We moreover note that:

• Each infinite subset A ⊂ N+ satisfies A ∼ N+.

As a result, there are no infinite sets that are “smaller” than N. A set is
called countable if it is either finite or countably infinite. Sets that are not
countable are called uncountable. Note that by what we just said, such sets
are “larger” than N+. Theorem 2.3 shows that the set {0, 1}N consisting of
infinite sequences of zeros and ones is uncountable.

Theorem 2.4 (Reals are uncountable) The set R is uncountable.



2.6. AXIOMATIC SET THEORY 23

Proof By Theorem 2.3, the set {0, 1}N of infinite sequences of zeros and
ones is uncountable. Let S denote the set of real numbers between zero and
one whose decimals only consist of zeros and ones. For example, an element
of S could look like this: 0.110100011010 . . .. Then clearly, there exists a
bijection between {0, 1}N and S, so these sets are “of the same size”. Thus,
S must be uncountable. Since S ⊂ R, this seems to say that R must be even
larger.

Indeed, if R would be countably infinite, then there would exist a bijection
f : N+ → R. Let A := {n ∈ N+ : f(n) ∈ S}. Then the restriction of f to A
is a bijection from A to S. But since A ⊂ N+, the set A is countable, so this
contradicts the fact that S is uncountable.

2.6 Axiomatic set theory

Mathematics is first and foremost the art of proving statements. Statements
cannot be proved out of nothing. Indeed, a mathematical proof is always an
argument that shows that if certain statements are true, then certain other
statements must also be true. Therefore, every mathematician needs a set
of elementary statements to start with, from which all other statements can
then be derived. These elementary statements are called axioms.

The first set of axioms to be widely used are the axioms for planar geome-
try formulated by Euclid in his book Elements, written approximately 300 BC
in Alexandria. He started his book with 5 “common notions”, which sound
like definitions of the main objects of interest such as points and lines, and
5 “postulates”, which sound more like statements about properties of these
objects. In what follows, he derives a large number of nontrivial statements
from these common notions and postulates, although critics have pointed out
several places where he seems to use “obvious” facts that nevertheless are
not part of his original 5 + 5 assumptions.

Nevertheless, the Elements were hugely influential. In the 17th century,
when modern calculus was being developed, different “sorts” of mathemat-
ics (based on different sets of elementary assumptions) started to rise to
prominence. Nevertheless, Euclid’s geometry was still considered the golden
standard of mathematical rigor, and mathematicians like Newton made an
effort to show their new differential calculus could be derived from Euclid’s
axioms. The Elements remained prominent till the late nineteenth century
and influenced school books well into the twentieth century.

Depending on what one is interested in, one can use various systems of
axioms. For example, there exist axioms for the real numbers, from which all
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properties of the real numbers3 can be deduced. These axioms include the
properties (i)–(ix) from Section 1.2. As we have seen in Section 2.4, the ax-
ioms (i)–(ix) from Section 1.2 are not enough to characterize the real numbers
uniquely, as they are also satisfied by Z/q when q is a prime number. Nev-
ertheless, by adding some additional axioms, one can uniquely characterize
the real numbers.

Obviously, one can not just write down any collection of axioms. In
particular, one would like to know that a given system of axioms, such as
the one for the real numbers, is consistent. With this we mean that if with
a system of axioms it is possible to prove a certain statement, then it should
not be possible to also prove the converse of that statement. Unfortunately,
for most4 systems of axioms, it is impossible to be sure they are consistent. In
particular, Gödel proved in 1930 that the consistency of a system of axioms
cannot be proved within their own system. In view of this, mathematicians
like to work with well-known systems of axioms that they trust.

Today, almost all of mathematics is based on the axioms of set theory,
which were developed in the early twentieth century. The Zermelo-Fraenkel
axioms are best known but certain other systems of axioms, such as those
developed by Von Neumann, Bernays, and Gödel, also enjoy wide popular-
ity. The latter system is a bit stronger than the Zermelo-Fraenkel axioms
and more suitable for category theory, but in practice, for most branches of
mathematics, the differences between the axiomatic systems play no role in
daily life.

Early, “naive” set theory defined sets as objects of the form

{a : a has property φ},

which can be read as “the set of all a that have property φ”. In 1901,
Bertrand Russell noted that if one allows this sort of definitions without any
restriction, then it would seem perfectly allowed to define a set R by:

R := {A : A 6∈ A}

i.e., R is the set of all sets that do not contain themselves as an element. One
can now ask whether R contains itself as an element. If it does, then that
implies it does not, but if it does not, then that implies that it does. Thus,
the statement R ∈ R cannot be true, but it cannot be false either. This is
known as Russel’s paradox. As a result, naive set theory is inconsistent.

Modern set theory, such as the theory of Zermelo and Fraenkel, carefully
avoids Russel’s paradox by restricting which objects can be called “sets”. If

3At least, almost all properties that one is usually interested in.
4In particular, all systems that are “rich” enough to define the natural numbers.
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A is a set and φ is a property that elements of A can have, then we can always
define a subset of A as {a ∈ A : a has property φ}. However, in modern set
theory, there exists no “set of all sets”, so the definition of Russel’s set R is
not allowed. Nevertheless, some versions of modern set theory allow for other
objects called categories that are more general than sets. In such systems,
there is a category of all sets.

Axiomatic set theory is quite complicated. Luckily, in practice, we do not
need it very much as long as we make sure that we always start from some
well-known sets and define new sets in terms of these old sets by well-known
legal operations, such as the Carthesian product or defining a subset of an
existing set in terms of some property of its elements.

However, the fact that there exists no “set of all sets” means that some
of our discussion in Section 2.5 was a bit too simplistic. In particular, the
relation ∼ is defined on the category of all sets, which is not a set, and the
resulting equivalence classes, which are all possible cardinal numbers, also
form a catagory but not a set. Nevertheless, we can identify the cardinal
numbers of finite sets with the natural numbers, which form a set.

A well-known axiom that is usually included in the axioms of set-theory
is the axiom of choice:

• If X is a set whose elements are nonempty sets, and Y := {x : x ∈
A for some A ∈ X} is the union of all sets A ∈ X, then there exists a
function f : X → Y such that f(A) ∈ A.

Informally, this says that for given a collection of nonempty sets, it is possible
to choose one element out of each set. Another equivalent formulation is that
the Carthesian product of (maybe infinitly many) nonempty sets is nonempty.

Here is a simple example of an application of the axiom of choice. Recall
that in Section 2.5 we wrote A ≺ B if there exists a injection f : A→ B.

Theorem 2.5 (Injections and surjections) Let A and B be nonempty
sets. Then there exists an injection f : A → B if and only if there exists a
surjection g : B → A.

Proof Assume that there exists an injection f : A→ B. Let B′ := {b ∈ B :
∃a ∈ A such that f(a) = b} denote the image of A under the map f . Then
f : A → B is a bijection. Since A is nonempty, there exists some a ∈ A.
Now we can define a surjection g : B → A by setting g(b) := f−1(b) if b ∈ B′
and g(b) := a otherwise.

Conversely, assume that there exists a surjection g : B → A. Then for
each a ∈ A, the set {b ∈ B : g(b) = a} is nonempty. By the axiom of choice,
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for each a ∈ A, we can choose an element f(a) ∈ {b ∈ B : g(b) = a}. Then
f : A→ B is an injection.

Although the axiom of choice sounds innocent and has nice consequences
such as Theorem 2.5, we will later see that it can also have very counter-
intuitive consequences. These counterintuitive results only occur when the
axiom is applied to a uncountable collections of sets. In view of this, math-
ematicians sometimes work with alternative systems of axioms, where the
axiom of choice is valid only for countable collections of sets. It is interesting
that Theorem 2.2 can be proved without the axiom of choice.

We already mentioned that Gödel proved that for any “decent”5 system of
axioms, it is impossible to prove that it is consistent. He also proved that any
such system must be incomplete in the sense that there are statements that
are undecidable in the sense that they cannot be proved, but their converse
can also not be proved. Recall from Section 2.5 that R is larger than N in
the sense that N ≺ R but N 6∼ R. One may ask if there exist sets A such
that N ≺ A ≺ R but N 6∼ A 6∼ R. Cantor conjectured in 1878 that such sets
do not exist. This conjecture became known as the continuum hypothesis.
In 1963, Paul Cohen proved that the question whether such sets exist is
undecidable with the usual axioms for set theory. More precisely, he showed
that assuming that the usual axioms for set theory are consistent, one can
add the continuum hypothesis and still have a consistent set of axioms, but
one can also postulate the converse of the continuum hypothesis and again
have a consistent set of axioms.

2.7 Construction of the rational numbers

As we have already seen in Sections 2.1 and 2.5, there is a one-to-one cor-
respondence between the cardinals of finite sets and the natural numbers N.
Moreover, addition and multiplication have natural interpretations in terms
of the union of two disjoint sets and the Carthesian product. In view of this,
one can easily prove that the sum and product satisfy properties (i)–(vii)
from Section 1.2.

In order to also satisfy property (viii), we need to extend N. One can
prove that Z is the smallest possible extension of N that satisfies (i)–(viii).
We will not give a full proof here but sketch the main line. Since 0 + 0 = 0,
(viii) can be satisfied for a = 0 by setting −0 := 0. For all elements a ∈ N+

we introduce a new “number” called −a. To extend the definition of the sum
to Z, we first prove that for all a, b ∈ N with 0 ≤ a ≤ b, there exists a unique

5In the sense that it is “rich” enough to define the natural numbers.
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element c ∈ N such that b = a + c. Denoting this element by c := b− a, we
define for all a, b ∈ N with 0 ≤ a ≤ b:

(−a) + b = b+ (−a) := b− a, a+ (−b) = (−b) + a := −(b− a),

and (−a) + (−b) = (−b) + (−a) := −(a+ b).

Next, we extend the definition of the product by defining, for a, b ∈ N:

a · (−b) := −ab, (−a) · b := −ab, and (−a) · (−b) := ab.

With these definitions, one can prove that the sum and product on Z satisfy
properties (i)–(viii) from Section 1.2.

In order to also satisfy property (ix) from Section 1.2, we need to introduce
rational numbers. We can view a rational number as a pair of numbers n/m
with n ∈ Z and m ∈ N+. We consider two pairs to be equivalent, which
we denote by writing n/m = n′/m′, if there exist numbers k ∈ N+ and
k′ ∈ N+ such that kn = k′n′ and km = k′m′. We claim that this defines
an equivalence relation. Reflexivity and symmetry are easy. To see that
transitivity holds, assume that n/m = n′/m′ and n′/m′ = n′′/m′′. Then
there exist k, k′ such that kn = k′n′ and km = k′m′, and moreover, there
exist l′, l′′ such that l′n′ = l′′n′′ and l′m′ = l′′m′′. It follows that

(kl′)n = k′l′n′ = (k′l′′)n′′ and (kl′)m = k′l′m′ = (k′l′′)m′′,

proving that n/m = n′′/m′′. Formally, rational numbers then correspond to
equivalence classes with respect to this equivalence relation. One can prove
that there is a unique way to extend the definition of the sum and product
to Q so that properties (i)–(vii) remain valid, and that Q also satisfies (viii)
and (ix).

In the next chapter, we will see how the real numbers can be formally
defined as limits of natural numbers.
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Chapter 3

Limits

3.1 Limits and continuity

Let (xk)k≥1 = (x1, x2, . . .) be an infinite sequence of real numbers. By defi-
nition, we say that the sequence (xk)k≥1 converges to a limit x ∈ R if

∀ε > 0 ∃m ∈ N+ such that |xn − x| ≤ ε ∀n ≥ m.

This definition looks a bit complicated at first, but it expresses a simple idea:
as n increases, the points xn approximate the limit point x. The definition
is illustrated in the picture below: if we think of the horizontal axis as time,
then for every ε > 0, there exists an m such that from time m onwards, the
sequence never leaves the interval [x− ε, x+ ε].

k

xk

x
ε

ε

m

There exist a number of ways to write down that a sequence (xk)k≥1
converges to a limit x. The formulas

lim
k→∞

xk = x, xk → x as k →∞, xk −→
k→∞

x,

29
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all mean the same thing, namely, that (xk)k≥1 converges to the limit x. Note
that not every sequence has a limit. For example, the seqences

(1, 2, 3, 4, 5, . . .) and (1, 0, 1, 0, 1, . . .)

do not converge to any limit. The following elementary properties of limits
are easy to prove:

• A sequence can have only one limit, i.e., xk −→
k→∞

x

and xk −→
k→∞

x′ imply x = x′.

• xk −→
k→∞

x and yk −→
k→∞

y imply xk + yk −→
k→∞

x+ y.

• xk −→
k→∞

x and yk −→
k→∞

y imply xkyk −→
k→∞

xy.

If I ⊂ R is an interval and f : I → R is a function, then we say that f is
continuous if:

xk −→
k→∞

x implies f(xk) −→
k→∞

f(x).

One can check that this is equivalent to:

∀x ∈ I and ε > 0 ∃δ > 0 such that
∣∣f(y)− f(x)

∣∣ ≤ ε ∀y ∈ [x− δ, x+ δ].

Informally, a real function is continuous if its graph can be drawn in a single
stroke, without lifting the pen from the paper.

x

f(x)

a continuous function

x

g(x)

y

(y, b)

(y, a)

a discontinuous function

The function g in the picture on the right is continuous everywhere except
in the point y, where it jumps from the value a to the value b. The closed
and open circle in the picture indicate that g(y) = a and g(y) 6= b. If (yk)k≥1
is a sequence of real numbers such that yk → y, then we can distinguish the
following three cases:

• If there exists an m such that yk ≤ y for all k ≥ m,
then g(yk) −→

k→∞
a = g(y).
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• If there exists an m such that yk > y for all k ≥ m,
then g(yk) −→

k→∞
b.

• If both yk ≤ y and yk > y occur for infinitely many values of k,
then the limit lim

k→∞
g(yk) does not exist.

Of course, discontinuous functions can be much more complicated than this.
For example, we can define h(x) := 1 if x is a rational number and h(x) :=
0 if x is irrational. We cannot draw the graph of such a function in an
understandable way.

The following rules are easy to prove:

(i) The constant function f(x) := 1 is continuous on R.

(ii) The function f(x) := x is continuous on R.

(iii) The function f(x) := 1/x is continuous on the intervals (−∞, 0) and
(0,∞).

(iv) If f and g are continuous, then h(x) := f(x) + g(x) is continuous.

(v) If f and g are continuous, then h(x) := f(x)g(x) is continuous.

(vi) If I and J are intervals and f : I → J and g : J → R are continuous
functions, then their concatenation g ◦ f : I → R is continuous.

Using these rules, we can prove for many functions that they are continuous.
For example, the function f(x) := x2 is continuous by (ii) and (v). Using
also (i) and (iv), we see that f(x) := 1 +x2 is continuous. Applying (iii) and
(vi), we obtain that

f(x) :=
1

1 + x2

is continuous.

3.2 Metric spaces

In Section 2.1, we introduced the notation Rn for the n-dimensional real
space consisting of all n-dimensional vectors. In Section 1.4, we denotes such
a vector by ~x = (x1, . . . , xn) and defined its length as

‖~x‖ :=
√
x21 + · · ·+ x2n.
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We call ~0 := (0, . . . , 0) the origin. As already explained in Section 1.4, we
can think of vectors as arrows, but we can also think about them as points in
space. The distance between two points ~x and ~y is then equal to the length
of the vector that connects them. We denote this distance by

d(~x, ~y) := ‖~x− ~y‖ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2. (3.1)

In general, if A is a set and d : A× A→ R is a function satisfying:

(i) d(a, b) = 0 if and only if a = b,

(ii) d(a, b) = d(b, a),

(iii) d(a, c) ≤ d(a, b) + d(b, c),

then such a function d is called a metric. Property (iii) is called the triangle
inequality. Note that properties (i)–(iii) imply 0 = d(a, a) ≤ d(a, b)+d(b, a) =
2d(a, b) and hence d(a, b) ≥ 0 for all a, b. One can check that the distance
function in (3.1) is a metric. By definition, a metric space is a pair (A, d)
where A is a set and d is a metric on A.

Let (A, d) be a metric space. By definition, a sequence (ak)k≥1 of elements
of A converges to a limit a ∈ A if

d(ak, a) −→
k→∞

0.

This is equivalent to

∀ε > 0 ∃m ∈ N+ such that d(an, a) ≤ ε ∀n ≥ m.

For each r > 0 and a ∈ A, we call

Br(a) := {b ∈ A : d(a, b) < r}

the open ball of radius r around a. By definition, a set B ⊂ A is open if

∀b ∈ B ∃ε > 0 such that Bε(b) ⊂ B.

Note that the open ball Br(a) is indeed an open set, since d(a, b) < r implies
that Bε(b) ⊂ Br(a) for all ε < r − d(a, b). By definition, a set B ⊂ A is
closed if

bk ∈ B ∀k ≥ 1 and bk −→
k→∞

b ∈ A imply b ∈ B,

i.e., B contains all limits of sequences in B. For example, the closed ball of
radius r around a, defined as

Br(a) := {b ∈ A : d(a, b) ≤ r}
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is a closed set.
In mathematics, it is custom to call only the most important results

“theorems”. A less important result is called a “proposition”. Small results,
often of a technical nature, are called “lemmas”. We are ready to formulate
our first lemma.

Lemma 3.1 (Open and closed sets) Let (A, d) be a metric space and
B ⊂ A. Then B is closed if and only if its complement A\B is open.

Proof Assume that B is closed. We want to show that A\B is open, i.e.,
for all a ∈ A\B there exists an ε > 0 such that Bε(a) ⊂ A\B. Assume that
this is not true. Then there exists an a ∈ A\B such that B1/k(a) ∩ B 6= ∅
for all k ≥ 1. Now we can choose bk ∈ B1/k(a) ∩ B. Then d(bk, a) < 1/k so
limk→∞ bk = a. Since bk ∈ B for each k this contradicts the assumption that
B is closed.

Assume that A\B is open. We want to show that B is closed. Assume the
converse. Then there exist bk ∈ B such that d(bk, a)→ 0 for some a ∈ A\B.
This implies that for each ε > 0 we can find bk ∈ B such that d(bk, a) < ε. In
other words, Bε(a) ∩ B 6= ∅ for all ε > 0, which contradicts the assumption
that A\B is open.

If (A, d) is a metric space, then according to our definitions, the sets ∅
and A, viewed as subsets of A, are the same time both open and closed. By
definition, a metric space is connected if these are the only subsets of A with
this property, i.e., if

B ⊂ A is both open and closed implies B = ∅ or B = A.

The set of real numbers, equipped with the metric d(x, y) := |x − y|, is
a connected metric space. On the other hand, if we equip the space A :=
[0, 1]∪[2, 3] with the same metric, then A is not connected, since B := [0, 1] is
both open and closed1 as a subset of A. Also, if we equip the set of rational
numbers Q with the metric d(x, y) := |x − y|, then Q is not connected,
since the set B := {x ∈ Q : x >

√
2} is both open and closed as a subset

of Q. Indeed, it is easy to see that B is open, and the same is true for
Q\B = {x ∈ Q : x <

√
2}. Here we have used Theorem 1.3 which implies

that
√

2 6∈ Q.
The next lemma says that we can always “close” a set B by adding all

limits of sequences in B. The set B is called the closure of B.

Lemma 3.2 (Closure of a set) Let (A, d) be a metric space and B ⊂ A.
Then

B := {b ∈ A : ∃bk ∈ B such that bk −→
k→∞

b}

1Indeed, B := [0, 1] and A\B = [2, 3] are both closed.
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is a closed subset of A.

Proof Let

C :=
{
c ∈ A : ∃ε > 0 such that Bε(c) ∩B = ∅

}
.

We claim that C is an open set. To see this, let c ∈ C. Then there exists an
ε > 0 such that Bε(c) ∩B = ∅. Now by the triangle inequality, there cannot
exist points a ∈ A and b ∈ B such that d(c, a) < ε/3 and d(a, b) < ε/3. As a
result, for each a ∈ Bε/3(c) we must have Bε/3(a) ∩ B = ∅ and hence a ∈ C.
This shows that Bε/3(c) ⊂ C. Since c is arbitrary, we conclude that C is
open.

To prove the lemma, it now suffices to prove that B = A\C. If c ∈ C,
then there exists an ε > 0 such that Bε(c) ∩ B = ∅ i.e., d(b, c) ≥ ε for all
b ∈ B. This clearly implies that there cannot exist bk ∈ B such that bk → c.
On the other hand, if a 6∈ C, then B1/k(a) ∩ B 6= ∅ for all k ≥ 1 so we can
choose bk ∈ B such that d(bk, a)→ 0, proving that a ∈ B.

In mathematics, a result that follows immediately from another result,
or that follows immediately a side-result of a proof, is called a “corollary”.
In particular, our previous proof yields the following corollary. The set B̊ is
called the interior of B.

Corollary 3.3 (Interior of a set) Let (A, d) be a metric space and D ⊂ A.
Then

D̊ :=
{
a ∈ A : ∃ε > 0 such that Bε(a) ⊂ D

}
.

is an open subset of A.

Proof Let B = A\D. Then the set C defined in our proof of Lemma 3.2 is
the same as D̊. We already proved that C is open, so we are done.

For any set B, we call ∂B := B\B̊ the boundary of B. Then a set B
is closed if and only if it includes its boundary, i.e., if ∂B ⊂ B, and open
if and only if it does not include its boundary, i.e., if ∂B ∩ B = ∅. For
example, for a ball in Rn of radius r around ~0, the boundary is the surface
{~x ∈ Rn : ‖~x‖ = r}. When we think about subsets of Rn, we often imagine
“nice” sets such as balls or retangles that have the properties:

B̊ = B and B̊ = B̊.

There are, however, many sets that do not have these nice properties. For
example, the interior of Q, viewed as a subset of R, is empty, while Q = R.
In general, if (A, d) is a metric space and D ⊂ A, then we say that D is dense
in A if D = A.
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3.3 Completeness

In the previous section, we have defined the closure B of a subset B ⊂ A of
a metric space (A, d). For example, if we view the set Q of rational numbers
as a subset of the space (R, d) with d(x, y) := |x − y|, then Q = R. This
suggests that it should be possible to define the real numbers as some sort of
“closure” of the rational numbers, by adding the limits of all sequences that
“should” converge, but whose limit is not in Q.

Let (A, d) be a metric space. By definition, a Cauchy sequence is a se-
quence (ak)k≥1 of elements of A such that:

∀ε > 0 ∃m ∈ N+ such that d(ak, an) ≤ ε ∀k ≥ m and n ≥ m.

Note that this looks a lot like the definition of convergence to a limit, but
the limit point a is never mentioned. Instead, from the point m onwards, all
elements of the sequence stay close to each other. It is easy to see that:

• Every convergent sequence is a Cauchy sequence, i.e., if (ak)k≥1 satisfies
ak → a for some a ∈ A, then (ak)k≥1 is a Cauchy sequence.

By definition, a metric space (A, d) is complete if the converse conclusion can
be drawn, i.e., if every Cauchy sequence has a limit. More formally, (A, d) is
complete if:

∀ Cauchy sequence (ak)k≥1 ∃a ∈ A such that ak −→
k→∞

a.

We state the following fact without proof:

• The space R, equipped with the metric d(x, y) := |x− y|, is complete.

As we will see in Section 3.4 below, the completeness of R is more of less a
direct conequence of the formal mathematical definition of R, which we have
not given yet.

The following theorem says that for any metric space A, we can take some
sort of “closure” of A even if a priori we do not view A as a subset of some
larger space.

Theorem 3.4 (Completion of a metric space) Let (A, d) be a metric
space. Then there exists a metric space (A, d) with the following properties:

(i) (A, d) is complete.

(ii) A is a dense subset of A.

(iii) d(a, b) = d(a, b) for all a ∈ A and b ∈ A.
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Proof (sketch) Let C be the set of all Cauchy sequences (ak)k≥1 in A. We
call two Cauchy sequences (ak)k≥1 and (a′k)k≥1 equivalent, which we denote
as (ak)k≥1 ∼ (a′k)k≥1, if

∀ε > 0 ∃m such that d(ak, a
′
k) ≤ ε ∀k ≥ m.

We let A denote the set of equivalence classes for this equivalence rela-
tion. If (ak)k≥1 and (bk)k≥1 are Cauchy sequences, then one can check that(
d(ak, bk)

)
k≥1 is a Cauchy sequence in R, and hence by the completeness of

R, the limit
d̂
(
(ak)k≥1, (bk)k≥1

)
:= lim

k→∞
d(ak, bk)

exists. Moreover, one can check that

(ak)k≥1 ∼ (a′k)k≥1 and (bk)k≥1 ∼ (b′k)k≥1

imply d̂
(
(ak)k≥1, (bk)k≥1

)
= d̂
(
(a′k)k≥1, (b

′
k)k≥1

)
.

As a result, d̂
(
(ak)k≥1, (bk)k≥1

)
depends only on the equivalence classes of

(ak)k≥1 and (bk)k≥1, so there exists a function d : A× A→ R such that

d̂
(
(ak)k≥1, (bk)k≥1

)
= d
(
[(ak)k≥1], [(bk)k≥1]

)
,

where [(ak)k≥1] denotes the equivalence class containing (ak)k≥1. Now one
can prove that d is a metric on A, i.e., it satisfies properties (i)–(iii) of the
definition of a metric.

If (ak)k≥1 and (a′k)k≥1 are equivalent Cauchy sequences, then it is not
hard to prove that there are two possibilities. Either (ak)k≥1 and (a′k)k≥1
both converge to the same limit a ∈ A, of (ak)k≥1 and (a′k)k≥1 both do not
have a limit in A. We use this to view A as a subset of A. More precisely,
we identify a ∈ A with the equivalence class of sequences that converge2

to a. If we view A as a subset of A in this way, then one can prove that
d(a, b) = d(a, b) and moreover A is dense in A. Finally, one can prove that
the metric space (A, d) is complete.

The proof of Theorem 3.4 is very formal, and, if one wants to fill in all
the details, also quite long. Things are much easier if we already know that
A is a subset of another metric space, which is complete. If (A, d) is a metric
space and B ⊂ A is a subset of A, then we can view B as a metric space
equipped with the metric d′ : B × B → R defined as d′(a, b) := d(a, b), i.e.,
d′ is the restriction of d to B. We say that B is complete (as a subset of A)
if (B, d′) is complete.

2Recall that every convergent sequence is automatically a Cauchy sequence.
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Lemma 3.5 (Complete subsets) Let (A, d) be a complete metric space.
Then a subset B ⊂ A is complete if and only if it is closed.

Proof Assume that B is complete. If bk ∈ B satisfy bk → a for some a ∈ A,
then (bk)k≥1 must be a Cauchy sequence, and hence by the completeness of
B must converge to a limit in B. It follows that a ∈ B. Since this holds for
every sequence in B, the set B is closed.

Conversely, if B is closed and (bk)k≥1 is a Cauchy sequence in B, then
by the completeness of A we must have bk → a for some a ∈ A. Since B is
closed, this implies a ∈ B. Thus, every Cauchy sequence in B has a limit in
B proving that B is complete.

In particular, if (A, d) be a complete metric space and B ⊂ A is any
subset of A, then B (equipped with the metric d restricted to B) is a complete
metric space that contains B as dense subset. Since moreover the metric on
B agrees with the metric on B, this means that B has properties (i)–(iii)
of the completion of B as stated in Theorem 3.4, so we can view B as the
completion of B.

3.4 Construction of the real numbers

In Section 1.1, we defined real numbers as numbers that can be written in
decimal notation, and in Section 1.2 we claimed without proof that addi-
tion and multiplication of such numbers can be defined in such a way that
properties (i)–(ix) hold. In Section 1.3 we introduced rational numbers and
showed that there are real numbers that are not rational.

In Chapter 2 and more specifically in Section 2.7 we indicated, without
going into details, how one can use the axioms of set theory to construct the
rational numbers and to prove that addition and multiplication of rational
numbers can be defined in such a way that properties (i)–(ix) of Section 1.2
hold. In the present section, we will extend this construction to the real
numbers. Finally, in Section 3.6 below, we will the prove that each real
number has a unique decimal notation. This then (finally!) confirms that
indeed, the real numbers as defined in Section 1.1 can be added and multiplied
in the way we claimed in Section 1.2.

As already suggested in Section 3.3, we want to construct R in such a way
that it is the completion of Q with respect to the metric d(x, y) := |x − y|.
We can, however, not simply apply Theorem 3.4 to define R. Indeed, the
proof of Theorem 3.4 already uses the fact that R is complete, so such an
argument would be circular. Nevertheless, by being a bit more careful, we
can use the same idea as in the proof of Theorem 3.4.
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Let Q+ := {x ∈ Q : x > 0}. We start by noting that |x − y| ∈ Q+ for
all x, y ∈ Q and that a sequence (xk)k≥1 of rational numbers is a Cauchy
sequence if and ony if

∀ε ∈ Q+ ∃m ∈ N+ such that |xk − xn| ≤ ε ∀k ≥ m and n ≥ m.

Thus, we do not need the real numbers to say what a Cauchy sequence of
rational numbers is. Similar to what we did in the proof of Theorem 3.4, we
call two such Cauchy sequences (xk)k≥1 and (x′k)k≥1 equivalent if and only if

∀ε ∈ Q+ ∃m such that |xk − x′k| ≤ ε ∀k ≥ m,

and we define R to be the corresponding set of equivalence classes. Now one
can show that

(xk)k≥1 ∼ (x′k)k≥1 and (yk)k≥1 ∼ (y′k)k≥1

imply (xk + yk)k≥1 ∼ (x′k + y′k)k≥1 and (xkyk)k≥1 ∼ (x′ky
′
k)k≥1,

which allows us to unambiguously define the sum and product of two equiv-
alence classes. Next, one can prove that the sum and product on R, defined
in this way, satisfy properties (i)–(ix) from Section 1.2.

We note that if two sequences (xk)k≥1 and (yk)k≥1 satisfy

∃m ∈ N+ such that xk < yk ∀k ≥ m, (3.2)

and (xk)k≥1 ∼ (x′k)k≥1 and (yk)k≥1 ∼ (y′k)k≥1, then (3.2) also holds with xk
and yk replaced by x′k and y′k. We can use this to unambiguously define the
relation < on R. We can use this to define |x| and prove that R, equipped
with the metric d(x, y) := |x − y|, is a complete metric space. This then
implies that R is the completion of Q, as we originally wanted. Filling in all
the details is quite a long job, but not very difficult, so we skip the boring
details.

3.5 Calculating with infinity

Let us define a function ψ : R→ R by

ψ(x) :=
x

1 + |x|
.

This function is continuous, satisfies ψ(x) < ψ(y) for all x < y, as well as
limk→∞ ψ(−k) = 1 and limk→∞ ψ(k) = 1.
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x

ψ(x)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−1

1

In Section 1.1, we drew the real numbers on an infinite straight line. The
function ψ is a bijection from R to the interval (−1, 1). By drawing a real
number x at the position ψ(x) instead of x, we get a picture of the real line
that looks like this:

0 1 2 3 4 10−1−2−20

It is now very natural to give names to the endpoints of this line segment.
We call the left endpoint −∞ “minus infinity” and the right endpoint ∞
“infinity”, also called “plus infinity”. The picture then looks like this:

0 1 2 3 4 10 ∞−1−2−7−∞

We call the set R := R ∪ {−∞,∞} the extended real numbers. Another
way of looking at R is as follows. Let us define ψ(−∞) := −1 and ψ(∞) := 1
and let us define a function d : R× R→ R by

d(x, y) :=
∣∣ψ(x)− ψ(y)

∣∣,
i.e., d(x, y) is the distance between x and y in our last two pictures, where
we have used the map ψ to transform the infinite real line into a finite line
segment. Then it is easy to see that d is a metric on R (i.e., satisfies the
properties (i)–(iii) of the definition of a metric). Moreover, if (xk)k≥1 is a
sequence of real numbers and x ∈ R, then

|xk − x| −→
k→∞

0 if and only if d(xk, x) −→
k→∞

0,

so a sequence (xk)k≥1 of real numbers converges to a limit x ∈ R with respect
to the usual distance if and only if it converges with respect to the new
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distance function d. However, certain sequences that did not have a limit
before now have a limit. For example,

d(k2,∞) −→
k→∞

0 and d(−k,−∞) −→
k→∞

0

which we can write down differently as

lim
k→∞

k2 =∞ and lim
k→∞

(−k) = −∞.

A slightly different way of looking at this is as follows. Let d : R × R → R
denote the restriction of d to R×R. Then (R, d) is a metric space and (R, d)
is the completion of (R, d).

For intervals in R the usual notation applies. In particular [−∞,∞] = R
and (−∞,∞) = R. By definition, −∞ < x < ∞ for all x ∈ R. In many
ways, it is possible to calculate with∞ as if it were a real number. The usual
conventions are that

x+∞ :=∞ ∀x ∈ R, x · ∞ :=∞ ∀x > 0, and 0 · ∞ := 0.

Then the set of extended nonnegative numbers [0,∞] satisfies the rules (i)–
(vii) from Section 1.2 without an exception. However, we cannot extend
[0,∞] in a way so that also rules (viii) and (ix) hold. We could try to satisfy
(viii) by defining∞−∞ := 0, but this would lead to problems. For example,
this would violate rule (ii) since such a definition would have the result that

3 + (∞−∞) = 3 + 0 = 3 6= 0 =∞−∞ = (3 +∞)−∞.

In view of this, the usual convention is that ∞−∞ is undefined. As soon
as this occurs somewhere in a formula, the result is undefined. However, as
long as we never have to subtract infinity from infinity, rules (i)–(vii) remain
valid.

It is also not possible to satisfy rule (ix) for a =∞. One sometimes defines
1/∞ := 0, but then using our earlier rules we have∞·(1/∞) =∞·0 = 0 6= 1,
in violation of rule (ix).

The extended real numbers have some pleasant properties that the real
numbers do not have. We say that a sequence (xk)k≥0 is increasing if
xk ≤ xk+1 for all k ≥ 1. If xk < xk+1 for all k ≥ 1, then we say that the
sequence is strictly increasing. Similarly, we say that a sequence is decreasing
(respectively, strictly decreasing) if xk ≥ xk+1 (respectively, xk > xk+1) for all
k ≥ 1. Instead of increasing one sometimes says nondecreasing and instead
of decreasing one sometimes says nonincreasing, to stress the fact that one
does not mean strictly increasing/decreasing. Some pleasant properties of
the extended real numbers are:
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• Each increasing sequence has a limit in R.

• Each decreasing sequence has a limit in R.

• For each set A ⊂ B, there exists a number y ∈ R such that {x ∈ R :
x ≥ a for all a ∈ A} = [y,∞]. This number y is called the supremum
of A and denoted as supA := y.

• For each set A ⊂ B, there exists a number y ∈ R such that {x ∈ R :
x ≤ a for all a ∈ A} = [−∞, y]. This number y is called the infimum
of A and denoted as inf A := y.

If supA ∈ A, then we call supA the maximum of A. Similarly, if inf A ∈ A,
then we call inf A the minimum of A. Note, however, that in general a set
need not contain its supremum or infimum. For example, sup(0, 1) = 1 and
inf R = −∞. We use the word “maximum” or “maximal element” only if
supA is an element of A. The same applies to the words “minimum” and
“minimal element”. For finite sets, there is of course no difference between
the two concepts. We use the notation

x ∨ y := max{x, y} = sup{x, y} and x ∧ y := min{x, y} = inf{x, y}.

3.6 Infinite sums

If (xk)k≥1 is a sequence of real numbers, then we let

n∑
k=1

xk := x1 + x2 + · · ·+ xn

denote the sum of its first n terms. Sometimes it is more natural to consider
sequences indexed by N instead of N+ and to start the sum with x0. In that
case, we write

∑n
k=0. In general,

n∑
k=m

xk := xm + xm+1 + · · ·+ xn.

By definition, we write

∞∑
k=m

xk := lim
n→∞

n∑
k=m

xk

if the limit exists as an extended real number (including −∞ and ∞); oth-
erwise, the infinite sum is not defined.
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Lemma 3.6 (Finite geometric sum) For any real number a 6= 1, one has

n−1∑
k=0

an =
1− an

1− a
.

Proof Recall that in Section 1.2 we defined a0 := 1. Then

(1− a)
n−1∑
k=0

an =
n−1∑
k=0

an −
n−1∑
k=0

a · an =
n−1∑
k=0

an −
n∑
k=1

an = 1− an.

Using the assumption that a 6= 1, we can divide both sides of this equation
by 1− a to arrive at the formula in the lemma.

Remark A different way to write down the proof of Lemma 3.6, that does
not use the new notation for sums, is as follows:

(1−a)
(
1+a1+· · ·+an−1

)
=
(
1+a1+· · ·+an−1

)
−
(
a1+a2+· · ·+an

)
= 1−an.

Note that when we write (1− a)
∑n−1

k=0 a
n, we mean (1− a)

(∑n−1
k=0 a

n
)
, even

when we do not write the brackets.

Proposition 3.7 (Infinite geometric sum) If a is a real number such
that |a| < 1, then

∞∑
k=0

ak =
1

1− a
.

If a ≥ 1, then
∑∞

k=0 a
k = ∞, while for a ≤ −1, the infinite sum is not

defined.

Proof If |a| < 1, then an → 0 as n → ∞. Since the function f(x) :=
(1− x)/(1− a) is continuous, it follows that

lim
n→∞

1− an

1− a
=

1

1− a
,

so the claim follows from Lemma 3.6. If a = 1, then
∑n−1

k=0 a
k = n, which

tends to infinity. If a > 1, then
∑n−1

k=0 a
k = (an − 1)/(a − 1) which tends to

infinity since an tends to infinity. If a = −1, then
∑n−1

k=0 a
k = 1 for odd n

and = 0 for even n, so the limit as n → ∞ does not exist. If a < −1, then
limn→∞(1− a2n)/(1− a) = −∞ while limn→∞(1− a2n+1)/(1− a) = +∞, so
(an − 1)/(a− 1) does not converge as n→∞.

Remark In particular,

1 +
1

n
+

1

n2
+

1

n3
+ · · · = 1

1− 1
n

=
n

n− 1
= 1 +

1

n− 1
.
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So, for example,
1

2
+

1

22
+

1

23
+ · · · = 1

1
= 1,

1

3
+

1

32
+

1

33
+ · · · = 1

2
,

1

4
+

1

42
+

1

43
+ · · · = 1

3
,

etcetera.

In many ways, it is possible to calculate with infinite sums as if they were
finite sums. There is one point one has to be careful with. In Section 3.5,
we have seen that ∞ −∞ is ill-defined. As a consequence, strange things
can happen when the sum of all positive terms is +∞ while the sum of all
negative terms is −∞. On the other hand, if all terms are nonnegative,
then the following theorem shows that infinite sums are always well-defined
(though the outcome can be +∞) and that the outcome does not depend on
the summation order.

Theorem 3.8 (Nonnegative sums) Let I be a countable set and let (xk)k∈I
be numbers with xk ∈ [0,∞]. Then there exists a number S ∈ [0,∞] such
that

S = lim
n→∞

n∑
k=1

xφ(k)

for every bijection φ : N+ → I. In particular, the outcome does not depend
on the choice of the bijection φ.

Proof Since each increasing sequence has a limit in R, it is clear that the
limit exists. We need to show that outcome does not depend on the choice
of the bijection. Let φ : N+ → S and ψ : N+ → S be bijections and let

S = lim
n→∞

n∑
k=1

xφ(k) and T = lim
n→∞

n∑
k=1

xψ(k).

We observe that

∀n ∈ N+ ∃m ∈ N+ such that {ψ(1), . . . , ψ(m)} ⊃ {φ(1), . . . , φ(n)}.

As a consequence

∀n ∈ N+ ∃m ∈ N+ such that
m∑
k=1

xψ(k) ≥
n∑
k=1

xφ(k).
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Since
∑m′

k=1 xψ(k) ≥
∑m

k=1 xψ(k) for m′ ≥ m, it follows that

T ≥
n∑
k=1

xφ(k) ∀n ∈ N+,

and hence T ≥ S. Since φ and ψ play symmetric roles, the same argument
shows that S ≥ T .

We denote the number S ∈ [0,∞] from Theorem 3.8 by
∑

k∈I xk. More
generally, we define∑

k∈I

xk :=
∑
x∈I+

xk −
∑
x∈I−

(−xk)

with I+ := {k ∈ I : xk > 0} and I− := {k ∈ I : xk < 0},

provided this is not ∞−∞, which is not defined. If the sum of the positive
and negative terms yields ∞−∞, then it will still be true that the limit

lim
n→∞

n∑
k=1

xφ(k)

exists for some bijection φ : N+ → I, but the limit will depend on the choice
of φ and for some bijections the limit does not exist at all. Here are some ad-
ditional rules that hold for infinite sums of nonnegative numbers. In the first
rule, (x(n,m))(n,m)∈N+×N+ is any collection of nonnegative extended numbers
indexed by N+ × N+, which as we have seen in Section 2.5 is countable.

•
∞∑
n=1

∞∑
m=1

x(n,m) =
∑

(n,m)∈N+×N+

x(n,m).

•
( ∞∑
n=1

xn
)( ∞∑

m=1

ym
)

=
∑

(n,m)∈N+×N+

xnym.

•
∞∑
k=0

xk +
∞∑
k=0

yk =
∞∑
k=0

(xk + yk).

A sequence (xk)k∈N+ is absolutely summable if

∞∑
k=1

|xk| <∞.

By our previous remarks, if (xk)k∈N+ is absolutely summable, then the infinite
sum

∑∞
k=1 xk is well-defined, the outcome is finite, and does not depend on

the summation order.
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Recall that at the end of Section 1.1, we defined

a−n :=
1

an
∀a 6= 0, n ∈ Z.

Let n ≥ 2 be an integer. Then we claim that every nonnegative real number
a can be written in the form

a =
∞∑
k=m

xkn
k with m ∈ Z and xk ∈ {0, . . . , n− 1} ∀k.

For example, for n = 10, we have

π = 3.14159265 . . .

= 3 · 100 + 1 · 10−1 + 4 · 10−2 + 1 · 10−3 + 5 · 10−4 + 9 · 10−5 + · · · ,

i.e., this is just the usual decimal expansion of a real number, that we started
our informal discussion with in Section 1.1.
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