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Abstract

The rebellious voter model, introduced by Sturm and Swart (2008), is a variation of the
standard, one-dimensional voter model, in which types that are locally in the minority
have an advantage. It is related, both through duality and through the evolution of its
interfaces, to a system of branching annihilating random walks that is believed to belong
to the ‘parity-conservation’ universality class. This paper presents numerical data for the
rebellious voter model and for a closely related one-sided version of the model. Both
models appear to exhibit a phase transition between noncoexistence and coexistence as
the advantage for minority types is increased. For the one-sided model (but not for the
original, two-sided rebellious voter model), it appears that the critical point is exactly a
half and two important functions of the process are given by simple, explicit formulas, a
fact for which we have no explanation.

MSC 2000. Primary: 82C22; Secondary: 65C05, 82C26, 60K35
Keywords. Rebellious voter model, parity conservation, exactly solvable model, coexistence,
interface tightness, cancellative systems, Markov chain Monte Carlo.
Acknowledgements. Work sponsored by GAČR grant 201/06/1323 and MŠMT ČR grant DAR
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1 Introduction

1.1 Definition of the models

Let
{0, 1}Z :=

{
x = (x(i))i∈Z : x(i) ∈ {0, 1} ∀i ∈ Z

}
(1.1)

be the space whose elements x are infinite arrays of zeroes and ones, situated on the integer
lattice Z. We will be interested in Markov processes taking values in {0, 1}Z. More precisely,
we study the rebellious voter model introduced in [SS08a], and a variation on this model,
which we call the one-sided rebellious voter model. For expository reasons, we will also shortly
discuss two other models, the disagreement and swapping voter models.

In the one-sided rebellious voter model, initially, each site i ∈ Z has a type x(i) ∈ {0, 1}
assigned to it, and these types are updated according to the following stochastic dynamics.
Independently for each site i ∈ Z, one constructs times 0 < τ1(i) < τ2(i) < · · · according to a
Poisson process with rate 1, i.e., τ1(i)− 0, τ2(i)− τ1(i), τ3(i)− τ2(i), . . . are i.i.d. exponentially
distributed with mean 1. At each time t = τk(i), with k = 1, 2, . . ., the type of site i is updated
according to the following rules. With probability α, the site i looks at the site i − 1 on its
left, and if the type of site i − 1 is different from the type of i, then site i changes its type.
With the remaining probability 1 − α, the site i looks at the two sites i − 2 and i − 1 on its
left, and if the type of site i− 2 is different from the type of i− 1, then site i changes its type.
If we let Xt(i) denote the type of site i at time t, then (Xt)t≥0 is a continuous-time Markov
process taking values in {0, 1}Z, which we call the one-sided rebellious voter model. Another
way of describing its dynamics is to say that in this model, for any i ∈ Z, the process X makes
the transition

x 7→ x{i} with rate

α1{x(i−1)6=x(i)} + (1− α)1{x(i−2)6=x(i−1)},
(1.2)

where 1A denotes the indicator function of an event A and for any x ∈ {0, 1}Z and ∆ ⊂ Z, we
let

x∆(j) :=
{

1− x(j) if j ∈ ∆,
x(j) if j 6∈ ∆

(1.3)

denote the configuration obtained from x by changing the types of all sites in ∆.
The original rebellious voter model as introduced in [SS08a] is similar to the process de-

scribed above, except that sites do not only look to the left, but also to the right when deciding
whether to update their type. More precisely, in this case, at each time τk(i) as defined above,
the site i decides, with probability 1/2 each, to look either to the left or to the right. If the
site looks to the left, then its type is updated as before. If the site i looks to the right, then
with probability α, it looks at the site i + 1 on its right, and if the types of i and i + 1 are
different, then i changes its type. With the remaining probability 1 − α, the site i looks at
the two sites i + 1 and i + 2 on its right, and if the types of i + 1 and i + 2 different from each
other, then i changes its type. Another way of describing these dynamics is to say that in this
model, for any i ∈ Z, the process makes the transition

x 7→ x{i} with rate
1
2α

(
1{x(i−1) 6=x(i)} + 1{x(i) 6=x(i+1)}

)
+1

2(1− α)
(
1{x(i−2)6=x(i−1)} + 1{x(i+1)6=x(i+2)}

)
.

(1.4)
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We note that our description of the rebellious voter model differs a factor 1/2 in the speed of
time in comparison to the original definition in [SS08a].

A third and fourth model, that we also shortly discuss in this introduction, are the dis-
agreement and swapping voter models. The disagreement voter model evolves as

x 7→ x{i} with rate

α
(
1{x(i−1)6=x(i)} + 1{x(i)6=x(i+1)}

)
+ (1− α)1{x(i−1) 6=x(i+1)},

(1.5)

while the swapping voter model evolves as

x 7→ x{i} with rate α
(
1{x(i−1) 6=x(i)} + 1{x(i) 6=x(i+1)}

)
,

x 7→ x{i,i+1} with rate (1− α)1{x(i) 6=x(i+1)}.
(1.6)

In case of the rebellious voter model and its one-sided counterpart, the parameter 0 ≤ α ≤ 1
can be interpreted as the competition parameter. For α = 1, the model is a standard, one-
dimensional voter model, as first introduced in [CS73, HL75]. For α < 1, one can check that
the dynamics give an advantage to types that are locally in the minority. As a consequence,
at least on a heuristic level, decreasing α should make it harder for any type to die out. The
rebellious voter model has been introduced in [SS08a] in an attempt to model the distribution
of two closely related species where competition between organisms belonging to different
species is less strong than competetion between organisms of the same species.

1.2 Interface and dual models

The models introduced so far are in two ways related to parity preserving branching annihi-
lating particle systems. First, if X is any of the models defined in (1.2) and (1.4)–(1.6), then
setting

Yt(i) := 1{Xt(i) 6=Xt(i+1)} (t ≥ 0, i ∈ Z) (1.7)

defines a Markov process taking values in {0, 1}Z that we call the interface model associated
with X. (The sites i such that Xt(i) 6= Xt(i + 1) are called interfaces, or also kinks or domain
walls.) Indeed, in case of the one-sided rebellious voter model, it is not hard to see that Y
jumps as

y 7→ y{i,i+1} with rate α1{y(i)=1} + (1− α)1{y(i−1)=1}, (1.8)

where we use notation defined in (1.3). For the two-sided process, the dynamics of Y are given
by

y 7→ y{i,i+1} with rate
1
2α

(
1{y(i)=1} + 1{y(i+1)=1}

)
+ 1

2(1− α)
(
1{y(i−1)=1} + 1{y(i+2)=1}

) (1.9)

(see [SS08a, Section 1.2]), while for the disagreement voter model we get the ‘swapping anni-
hilating random walk’ (SARW)

y 7→ y{i,i+1} with rate α
(
1{y(i)=1} + 1{y(i+1)=1}

)
+ (1− α)1{y(i) 6=y(i+1)}, (1.10)

and for swapping voter model we get

y 7→ y{i,i+1} with rate α
(
1{y(i)=1} + 1{y(i+1)=1}

)
y 7→ y{i−1,i+1} with rate (1− α)1{y(i)=1}.

(1.11)
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Following [Sud90], we call this latter model the double branching annihilating random walk
(DBARW); very similar models (usually in discrete time) have been called BARW2 or BAW
in the physics literature (see, e.g., [TT92]).

In each of these interface models, since Y always flips the types of two sites at once, it is
easy to see that Y preserves parity, i.e., if Y is started in an initial state Y0 which contains a
finite, even (resp. odd) number of ones, then Yt contains an even (resp. odd) number of ones
for each t ≥ 0. In particular, if Y is started with an odd number of ones, then the ones can
never completely die out.

There is a second relation between our models and parity preserving branching-annihilating
particle systems, namely, through duality. Let xy(i) := x(i)y(i) denotes the componentwise
product of configurations x, y ∈ {0, 1}Z, and let |z| :=

∑
i z(i) denote the number of ones in

a configuration z. Then, since our models are cancellative particle systems in the sense of
[Gri79], for each of our processes X there exists a dual Markov process Y whose transition
probabilities are uniquely determined by the requirement that

P
[
|XtY0| is odd

]
= P

[
|X0Yt| is odd

]
(t ≥ 0) (1.12)

whenever X and Y are independent (with arbitrary initial laws), and either |X0| or |Y0| is
finite.

A special property of the rebellious voter model (that motivated its introduction in [SS08a])
is that its interface model and dual model coincide, i.e., if X is the rebellious voter model,
then (1.12) holds for the same Y , with dynamics described in (1.9), that also describes the
interfaces of X (see [SS08a, formula (1.8)]). For the one-sided rebellious voter model, this is
not quite the case; however, its dual is the mirror image of its interface model, i.e., its dual is
the model with dynamics described by (compare (1.8))

y 7→ y{i−1,i} with rate α1{y(i)=1} + (1− α)1{y(i+1)=1}. (1.13)

It turns out that the dual of the disagreement model is the DBARW (which is the interface
model of the swapping voter model) while the dual of the swapping voter model is the SARW
(which is the interface model of the disagreement voter model) (see [SS08a, Section 2.1]). Note
that in the SARW there is no branching, which has far-reaching consequences for both the
disagreement and swapping voter models.

1.3 Coexistence, survival and interface tightness

It is easy to see that the constant configurations 0 and 1 are traps for the various voter models
we have introduced. By definition, we say that a Markov process taking values in {0, 1}Zd

exhibits coexistence if there exists an invariant law that is concentrated on configurations that
are not identically zero or one. It is known that nearest-neighbor voter models on Zd exhibit
coexistence if and only if d > 2; in particular, for α = 1, our models, being one-dimensional
voter models, do not exhibit coexistence. On the other hand, our models exhibit coexistence
for α = 0 since in this case one can check that product measure with intensity a half is an
invariant law.

The question is whether there is a nontrivial phase transition between coexistence and
noncoexistence. For the disagreement and swapping voter models it turns out that this is not
the case. Indeed, it can be rigorously proved [Sud90, NP99, SS08a] that these model exhibits
noncoexistence for all α > 0. On the other hand, it appears that the rebellious voter model

4



and its one-sided counterpart do exhibit a nontrivial phase transition between coexistence and
noncoexistence at some 0 < αc < 1.

We will mainly be interested in two functions of our processes. It is said that a voter
model survives if there is a positive probability that the process started with a single one
never gets trapped in 0. In view of this, for the (one- or two-sided) rebellious voter model
with competition parameter α, we will be interested in the survival probability

ρ(α) := Pδ0
[
Xt 6= 0 ∀t ≥ 0

]
, (1.14)

where Pδ0 denotes the law of the process started in X0 = δ0, with δ0(i) := 1{i=0}. It seems
plausible that for many models of the type we are considering, survival is equivalent to co-
existence. Indeed, using the fact that its interface and dual models coincide, this can be
rigorously proved for the rebellious voter model [SS08a, Lemma 2]; the same proof works for
the one-sided process. One of the main aims of the present paper is to obtain good numerical
data for the function ρ.

The function ρ quantifies, in a sense, how strongly the process exhibits coexistence (see
also formulas (1.7) and (2.1) below). We need a similar formula to quantify noncoexistence.
For any i ∈ Z, let xH

i ∈ {0, 1}Z, defined as

xH
i (j) :=

{
0 if j < i,
1 if i ≤ j

(1.15)

denote a ‘Heaviside’ configuration of zeros and ones that are ‘completely separated’. Following
[CD95], we say that a model X (with given parameter α) exhibits interface tightness if

χ(α) := lim
t→∞

PxH
0
[
Xt = xH

i for some i ∈ Z
]

> 0, (1.16)

i.e., if the process started in a Heaviside configuration spends a positive fraction of its time in
such configurations. It is intuitively plausible that interface tightness implies noncoexistence.
It is rigorously known that the swapping voter model exhibits interface tightness for all α > 0
[SS08b].

The main aim of the present paper is to obtain good numerical data for the functions ρ
and χ, both for the rebellious voter model and for its one-sided analogue.

1.4 Known results

The study of parity preserving branching-annihilating particle systems has a long history in
the physics literature. Their main interest lies in the fact that they provide a rare example
of systems that exhibit a phase transition of survival/extinction type (the physics literature
usually speaks of a transition between an ‘active’ and an ‘absorbing’ phase) that does not
belong to the directed percolation (DP) universality class.

Indeed, the phase transition of these models appears to belong to a different ‘parity conser-
vation’ (PC) universality class, characterized by its own critical exponents. The first example
of a phase transition belonging to this universality class was described in [GKT84]; this con-
cerned a one-dimensional model for interfaces, motivated by solid state physics. Numerical
simulations for parity preserving branching-annihilating particle systems on Zd in dimensions
d = 1, 2, 3 and also on Sierpinski gaskets can be found in [TT92]. Further simulations for a
one-dimensional model were made in [Jen94]. This paper also contains the conjecture that the
order parameter critical exponent β equals 13/14; in another paper the author has conjectured
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that β = 1. The latter value was also found in [IT98], while more recent literature seems to
agree on a value of β ≈ 0.92 or slightly higher, see e.g. [Hin00, OS05]. Our work is relevant to
the question of determining the value of β since our proposed explicit formula for the survival
probability ρ of the one-sided rebellious voter model, if it is correct, implies that β = 1.

Field-theoretic (renormalization group) work on the PC universality class was carried
out in [CT98], who found two critical dimensions. The (usual) upper critical dimension is
dc = 2, above which one should find mean-field exponents. There is, however, a second critical
dimension d′c ≈ 4/3 (the literature is unclear as to whether this is an exact or approximate
value) such that only in dimensions below d′c there is a nontrivial absorbing phase. Except for
field-theoretical arguments, it seems no reasons have been suggested in the literature explaining
the origin of this second critical dimension.

We suggest the following possible explanation. Consider three independent random walks
started from some arbitrary but fixed initial positions, and let τij be the first time the i-th
and j-th walk meet. In dimensions d < 2, it seems plausible that

P[τ12 ∧ τ23 ∧ τ31 ≥ t] ∝ t−γ(d) as t →∞, (1.17)

where γ(d) is some critical exponent depending on the dimension. It is known that γ(1) = 3/2.
It seems plausible that γ(d) is decreasing in d and that γ(d′c) = 1, since this is the point where
the expected time until two of three annihilating random walks annihilate each other becomes
infinite, hence the branching becomes infinitely effective, in a sense. Unfortunately, we do not
know the function γ(d). A naive linear interpolation between γ(1) = 3/2 and γ(2) = 0 is
consistent with a critical dimension d′c = 4/3, however.

Of course, from the mathematical point of view, there is a considerable ambiguity in how
one defines noninteger dimensions, while field-theoretical renormalization group arguments
are out of scope of present day rigorous methods. From the field-theoretical perspective, the
existence of a second critical dimension leads to considerable difficulties, to which the authors
of [HCDDM05] reacted by considering non-perturbative techniques.

Recently, some rigorous mathematical work has been carried out on models belonging to
the PC universality class. The DBARW from (1.11) has been studied in [Sud90]. This model
can be exactly solved, in a certain sense, but unfortunately the model is in the absorbing phase
for all α > 0, hence there is no ‘true’ phase transition. (Nevertheless, its solution has been
used in papers such as [CT98] to draw conclusions that presumably hold for the whole PC
universality class.) No solvable models seem to be known that exhibit a true phase transition.
(The one-sided rebellious voter model may be such a model, but we have not solved it; our
proposed explicit formulas are backed up by simulations but not by calculations.)

Strong impetus to the mathematical study of models from the PC universality class
came from the paper of Neuhauser and Pacala [NP99], which proposes a variation on the
d-dimensional range-N voter model governed by a parameter α similar to our models. (This
paper also considers more general models, where the symmetry between ones and zeros is
broken, which fall outside the scope of the present paper.) Their model is dual to a system of
parity preserving branching-annihilating random walks. For d = 1, N = 1, up to a rescaling
of time, this dual model is the DBARW; this implies that the model of Neuhauser and Pacala
with d = 1, N = 1 exhibits noncoexistence for all α > 0. For N ≥ 2 and d = 1, their model is
supposed to exhibit a nontrivial phase transition between coexistence and noncoexistence. For
d = 2, their model is supposed to exhibit noncoexistence only for α = 1 while in dimensions
d ≥ 3 noncoexistence holds for all α, in line with the predictions made in [CT98].
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Much of this lacks rigorous proof. First of all, it is not rigorously known that coexistence
is a decreasing property in α, or, in terms of the dual model, that increasing the branching
rate leads to more particles in the system. Obvious as this may seem, finding a rigorous
proof seems hard. Second, there exists no rigorous proof of noncoexistence (or equivalently,
the existence of an absorbing phase for the dual model) except in the trivial cases α = 1
(pure voter) or d = 1, N = 1 (related to DBARW). On the other hand, there exist a number
of rigorous results proving coexistence (or equivalently, the existence of an active phase for
the dual model). Neuhauser and Pacala proved that their model exhibits coexistence for α
sufficiently close to zero for all values of d and N except d = 1, N = 1. The analogue result for
the rebellious voter model was proved in [SS08a, Theorem 4]; see also [BEM06] which proved
a similar result for branching-annihilating random walks which allow for more particles at
one site. In [CP06], it has been proved that the model of Neuhauser and Pacala exhibits
coexistence in dimensions d ≥ 3 for α sufficiently close to one (the case of intermediate α is
still open due to the lack of a proof of monotonicity in α). The analogue result in d = 2 is
proved in [CMP09].

2 Main results

In this and the next section, we present data obtained by numerical simulations of the rebel-
lious voter model and its one-sided counterpart. One of our main results is that two important
functions one the one-sided process seem to be given by explicit formulas (see (2.7) below).
In spite of our efforts, we have found no theoretical explanation for this apparent fact, not
have we been able to find explicit formulas for any other functions of our processes. For those
interested, the data underlying our figures are available from the homepage of the first author.

2.1 Methods

In our simulations, we start the interface process Y of either the rebellious voter model or
its one-sided counterpart with an odd number of ones on an interval of N sites with periodic
boundary conditions. Note that in this case, because the number of ones is odd and because of
the periodic boundary conditions, we can no longer represent Y as in (1.7), but the dynamics
in (1.8) and (1.9), as well as the duality relation (1.12), still make sense. Since we start with
one particle, because of parity conservation, the system cannot die out. Letting Y∞ denote the
process in equilibrium, we assume that for large N , the following approximations are valid:

(i) ρ(α) ≈ 2P
[
Y∞(0) = 1

]
= 2

N E
[
|Y∞|

]
,

(ii) χ(α) ≈ P
[
|Y∞| = 1

]
.

(2.1)

The arguments why formula (2.1) (ii) should hold are obvious from (1.7) and (1.16). The
justification of formula (2.1) (i) is more subtle. Let Y 1/2 denote the interface process of the
rebellious voter model on Z, started in an initial law such that the (Y0(i))i∈Z are independent
with P[Y0(i) = 0] = P[Y0(i) = 1] = 1

2 , and let X be the rebellious voter model started in
X0 = δ0. Then by duality (1.12),

P
[
Y

1/2
t (0) = 1

]
= P

[
|Y 1/2

t X0| is odd
]

= P
[
|Y 1/2

0 Xt| is odd
]

= 1
2P

[
Xt 6= 0

]
, (2.2)

where 0 denotes the constant zero configuration. It is known that the law of Y
1/2
t converges

as t → ∞ to an invariant law, which is in fact the unique spatially homogeneous, nontrivial
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Figure 1: The interface model Y of the rebellious voter model for α = 0.4, α = 0.5, α = 0.51
and α = 0.6, started with a single interface. Space is plotted horizontally and time vertically,
with a black spot at a point (i, t) indicating that Yt(i) = 1. Total time elapsed in each picture
is 1800.

invariant of the process [SS08a, formula (1.12) and Theorem 3 (b)]. Taking the limit t → ∞
in (2.2), we see that for this invariant law, formula (2.1) (i) holds with equality. Since it seems
reasonable that the invariant laws of our finite systems approximate the invariant law of the
infinite system, this justifies (2.1) (i). Similar arguments apply to the one-sided model.

2.2 A first qualitative look

Before we present our numerical data for the functions ρ and χ from (2.1), we first take a look
at the qualitative behavior of the interface model Y of the rebellious voter model and its one-
sided analogue. In Figure 1, we have graphically plotted Y for the two-sided process, started
with a single one, with time running upwards and a black spot at a point (i, t) indicating that
Yt(i) = 1. The figures shows the process for four values of α, where αc ≈ 0.51 is the estimated
critial value for this process (see Section 2.3 below).

The pictures show that for α < αc, all ones are contained in an interval with edges that
grow at an approximately linear speed, and that inside this interval, ones occur at some
approximately constant equilibrium density. On the other hand, for α > αc, the process
spends a positive fraction of its time in states where there is just a single site in state one,
which indicates that the rebellious voter model exhibits interface tightness (see (1.16)). What
happens exactly at α = αc is less clear from these pictures, but our numerical data, presented
in Sections 2.3 and 3.3 below, suggest that at α = αc, the edge speed is zero and the rebellious
voter model exhibits neither coexistence nor interface tightness.

The picture for the one-sided process is very similar, except that now, due to the nature of
the process, the process as a whole tends to drift to the right at some approximately constant
speed; see Figure 2.
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Figure 2: The interface model of the one-sided rebellious voter model for α = 0.3, α = 0.5
and α = 0.6.

2.3 The two-sided model

We simulated the interface model Y of the rebellious voter model on an interval of N sites
with periodic boundary conditions by slowly increasing or decreasing α from some initial value
αb to some final value αe during a time interval of length T . We then divided our time interval
into n equal pieces and plotted the average value of 2|Y |/N (for the function ρ) or the fraction
of the time that |Y | = 1 (for the function χ) against the average value of α, for each of the
n time intervals. The resulting approximations for ρ and χ for one such run are plotted in
Figure 3. These data use the parameters:

for ρ : N = 215, n = 29, T = 108, αb = 0, αe = 0.55,
for χ : N = 215, n = 29, T = 1012, αb = 0.99, αe = 0.49.

(2.3)

The values ρ(0) = 1 and χ(1) = 1 are expected on theoretical grounds. Indeed, it is easy
to check that the rebellious voter model with α = 0 never dies out (recall (1.14)) while in the
pure voter case α = 1, the process started in a Heaviside state stays in such a state for all
time (recall (1.16)).

The numerical data for ρ are well fitted by a linear fractional function of the form

ρ(α) =
1− c1α

1− c2α
with c1 = 1.958± 0.001 and c2 = 0.975± 0.002, (2.4)

(see Figure 4). Assuming this sort of function fitting is justified, we arrive at an estimate for
the critical point of

αc = 0.5107± 0.0003. (2.5)

This estimate is to be viewed with caution, since this is based on extrapolation of data for
(approximately) 0 ≤ α ≤ 0.35, assuming that the linear fractional form (2.4) holds for all
α ≤ αc. A more robust method (see Figure 5) based on our best data for the functions ρ and
χ near the critical point leads to the estimate:

αc = 0.510± 0.002. (2.6)
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Figure 3: The functions ρ and χ for the rebellious voter model. Data obtained with parameters
as in (2.3).
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Figure 6: The functions ρ and χ for the one-sided rebellious voter model. Data obtained with
parameters as in (2.3).

(See also Figure 8.) It seems that linear fractional functions do not fit the numerical data for
χ really well.

Our data strongly suggest that ρ(αc) = 0 = χ(αc), which implies that at criticality, the
process exhibits neither coexistence nor interface stability. Summarizing, the picture that
emerges from our numerical data is as follows:

There exists a critical value αc ≈ 0.510 such that the rebellious voter model exhibits
coexistence if and only if α < αc and interface tightness if and only if α > αc. The
function ρ from (1.14) has a finite negative slope and is concave on [0, αc], and is
approximately given by a linear fractional function of the form (2.4). The function
χ from (1.16) has a finite positive slope and is concave on [αc, 0].

2.4 The one-sided model

We have run the same simulation as described in the previous section, with parameters as
in (2.3), also for the one-sided rebellious voter model. The resulting approximations for the
functions ρ and χ are plotted in Figure 6.

At first sight, Figure 6 looks extremely similar to Figure 3. A closer inspection reveals,
however, that the two plots are not identical. Indeed, it seems that for the one-sided model,
the functions ρ and χ are described by the explicit formulas:

ρ(α) = 0 ∨ 1− 2α

1− α
and χ(α) = 0 ∨

(
2− 1

α

)
. (2.7)

In particular, one has the symmetry ρ(1− α) = χ(α) and the critical parameter seems to be
given by

αc = 0.500± 0.002 = 1
2 (?) (2.8)

In Figure 7, we have plotted the differences between the explicit functions in (2.7) and our
data for ρ and χ, respectively. We have no idea why these explicit formulas should fit our
numerical data so precisely. In fact, most hypothetical explanations that come to one’s mind
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Figure 7: Difference between the explicit formulas in (2.7) and the functions ρ and χ for the
one-sided rebellious voter model, with detail of the left and right side of the picture.

should apply to the two-sided model as well, for which our numerical data convincingly show
that the formulas in (2.7) do not fit. We have no idea why the one-sided model, which has less
symmetry than the two-sided model, should be more tractable than the latter.1 A detailed
comparison of the two-sided and one-sided model near the critical point is shown in Figure 8.

2.5 Finite size effects

To gain more insight into how close our numerical data are to the real functions ρ and χ, we
tested the effect of varying the system size N . In Figure 9 we have plotted our approximation
(see (2.1)) of the function ρ for different values of the system size N . The pictures for the
two-sided and one-sided process are extremely similar, except for a shift of the critical point.
In view of Figure 9, it seems that we can rule out the possibility that the observed differences
between the two-sided and one-sided process are due to finite space effects (and a hypothetical
slower convergence for the two-sided model).

Note that in Figure 9, our approximations to ρ near the critical point become more rough as
the system size is increased. This can be understood due to two effects. On the one hand, near

1Perhaps the only aspect in which the one-sided model is potentially simpler than the two-sided model is
that in the former, information is passed only from left to right. A third model, which we have only studied
briefly, in which voter model updates look to the right and rebellious updates look to the left, seems to have a
critical point αc = 0.510 ± 0.003 and functions ρ, χ that are close, but not identical to those of the two-sided
rebellious voter model.
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Figure 8: A detailed simulation near the critical point of the functions ρ and χ for the two-
sided process and the one-sided process. Our simulations for ρ use the parameters N = 215,
n = 27, T = 109, αb = 0.55, αe = 0.45. Our plots for χ show detail of a simulation with the
parameters N = 215, n = 29, T = 1012, αb = 0.99, αe = 0.5.

criticality, the random variable |Y∞| assumes the values 1, 3, 5, 7, . . . with approximately equal
probabilities (see Section 3.2), which means that the number of ones in the system fluctuates
from being close to one to a positive fraction of all sites in the lattice. As the system size
gets large, this means huge fluctuations, which are moreover slow since at criticality, the edge
speed is zero.

In Figure 10, we have plotted our approximations for the function χ for various values
of N . To counteract the ‘roughening’ effect we have just described, in these simulations, we
have increased the total time T together with the system size N . Again, the pictures for the
two-sided and one-sided process are similar except for a small shift in the critical point.

We have also run simulations for different values of the total elapsed time, to investigate
the effect of this parameter on the quality of our data. Since short times mean the system
does not have enough time for time averages to reach their equilibrium values, the main effect
of increasing T is to smoothen our approximated functions. For the function ρ, this effect is
demonstrated in Figure 11. A second effect of choosing a too short time T is that the numerical
functions ‘lag behind’ in that they show values belonging to an α that lies somewhat in the
past. This effect is demonstrated in Figure 12. In this case, our approximations near the
critical point depend on the direction in which we vary α: the graph produced by increasing α
‘overshoots’ the critical point while the graph produced by lowering α picks up too late. Also
note the ‘hook’ at the beginning of the graph started with α below the critical point, which
is due to the fact that we start with a single one and the finite edge speed needs several time
steps to fill out all space. This sort of effects only occur when T is small relative to N ; in
all our simulations (except those in Figure 12) we have taken care to avoid such a choice of
parameters.
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Figure 9: Effect of the system size on our approximation of the function ρ from (2.1). Plotted
are our approximations for ρ using the parameters n = 27, T = 108, αb = 0.55, αe = 0.45, and
the system sizes N = 27, 28, 29, 210, 211, 212, respectively. On the left: the two-sided model.
On the right: the one-sided model.
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Figure 10: Effect of the system size on our approximation of the function χ from (2.1).
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Figure 12: Effects of choosing the time too small compared to the system size, in simulations
of ρ for the one-sided model. The blue curve was produced by raising α from αb = 0.4 to
αe = 0.6 while for the red curve we lowered α from αb = 0.6 to αe = 0.4. The other simulation
parameters were n = 27, N = 213, and T = 106.

3 Other functions of the process

3.1 Harmonic functions

We have obtained numerical data for a number of other functions of our processes. We have
mainly concentrated on the one-sided model, in view of the apparent explicit formulas for the
functions ρ and χ in this case. We have not been able, however, to find explicit formulas
for any other functions than these two. Nevertheless, our additional functions show some
interesting phenomena, which we discuss here. In the present section, we discuss a harmonic
function for the (one-sided) rebellious voter model. In the next two sections, we look at the
equilibrium probabilities of seeing 3, 5, 7, . . . ones in the interface model, and edge speeds,
respectively.

We first need to introduce some notation. In this section, we let Xt denote the rebellious
voter model,

→
Xt the one-sided rebellious voter model, and

←
Xt the mirror image of the latter,

i.e., the model that jumps as

x 7→ x{i} with rate

α1{x(i) 6=x(i+1)} + (1− α)1{x(i+1)6=x(i+2)}.
(3.1)

Let
←
Yt be the interface model of this mirrored one-sided rebellious voter model on an

interval of N sites with periodic boundary conditions, started with an odd number of ones,
and let

←
Y∞ denote the process in equilibrium. For each x ∈ {0, 1}N , we define

→
fx,N (α) :=

P[|x
←
Y∞| is odd]

P[
←
Y∞(0) is odd]

. (3.2)

(The reason for this notation with the vector on
→
fx,N (α) pointing to the right is that this is

a harmonic function for the one-sided rebellious voter model
→
X, as explained below.)

We will mainly be interested in the case that x contains just a few ones close together.
In view of this, we only write down only the part of x that is nonzero. For example, we
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write
→
f1101,N (α) to denote the function

→
fx,N (α) where x is any element of {0, 1}N such that

(x(i), x(i + 1), x(i + 2), x(i + 3)) = (1, 1, 0, 1) for some i ∈ {0, . . . , N − 1} and x(j) = 0 for all
j 6= i, i + 1, i + 2, i + 3. Note that since the law of

←
Y∞ is translation invariant (modulo N),

this definition does not depend on the value of i.
Using the fact that

←
Yt is dual to

→
Xt in the sense of formula (1.12), it is not hard to show

that
→
fx,N (α), as a function of x, is a harmonic function for the one-sided rebellious voter model

→
Xt (on a finite interval with periodic boundary conditions), i.e., this is a function such that
the process with competition parameter α started in

→
X0 = x satisfies E[

→
f→

Xt,N
(α)] = fx,N (α)

for all t ≥ 0.
Our simulations suggest that the functions

→
fx,N (α) converge as N → ∞ to a nontrivial

limit function
→
fx(α), which is a harmonic function for the one-sided rebellious voter model

→
Xt

on Z, started with finitely many ones. If α < αc, then on theoretical grounds one may expect
that

→
fx(α) =

→
ρx(α)
→
ρ1(α)

, where →
ρx(α) := Px

[ →
Xt 6= 0 ∀t ≥ 0

]
(3.3)

denotes the probability that the one-sided rebellious voter model
→
Xt started in the initial

state x survives. For α > αc, it is less obvious how to interpret
→
fx(α), but we still expect the

limiting function to be harmonic. The fact that
→
fx(α) is harmonic means that

→
G
→
fx(α) = 0,

where
→
G is the generator of the one-sided rebellious voter model, defined as

→
Gfx :=

∑
i

(
α1{x(i−1) 6=x(i)} + (1− α)1{x(i−2) 6=x(i−1)}

)(
fx{i} − fx

)
. (3.4)

In particular, the facts that
→
G
→
f1(α) = 0 and

→
G
→
f11(α) = 0 lead to the relations

α
(→
f∅(α)−

→
f1(α)

)
+

(→
f11(α)−

→
f1(α)

)
+ (1− α)

(→
f101(α)−

→
f1(α)

)
= 0,

α
(→
f111(α)−

→
f11(α)

)
+

(→
f1(α)−

→
f11(α)

)
+ (1− α)

(→
f1101(α)−

→
f11(α)

)
= 0,

(3.5)

where
→
f∅(α) = 0 and

→
f1(α) = 1. An inspection of our numerical data shows that these

equations are satisfied within the precision of our simulations.
Our numerical data for the functions

→
fx(α), for some simple choices of the pattern x, are

shown in Figure 13. Note that
→
f1(x) (not shown in the figure) is by definition identically one,

because of the normalization chosen in (3.2). A surprising fact is that the functions
→
fx(α)

and their derivatives (shown in Figure 14) appear to continue smoothly across the critical
point. Note that the normalization in (3.2) is crucial here, since above αc, both the numinator
and the denuminator tend to zero as N → ∞. For α = 1 one has

→
fx(α) = |x|, which is a

well-known harmonic function for the pure voter model. For α = 0, one has
→
fx(α) = 1 for all

nonzero x, reflecting the fact that the process with α = 0 never dies out.
A few regularities may be observed from Figures 13 and 14. Let

xn := 111111111︸ ︷︷ ︸
n ones

and x′n := 1000000︸ ︷︷ ︸
n−2 zeros

1. (3.6)

One expects that for α < αc,

lim
n→∞

→
ρxn(α) = 1 and lim

n→∞
→
ρx′n(α) = 1− (1− →ρ1(α))2. (3.7)
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Hence, in view of (3.3), one expects that

lim
n→∞

→
fxn(α) = →

ρ1(α)−1 and lim
n→∞

→
fx′n(α) = 2− →ρ1(α), (3.8)

which is indeed what we observe.
From Figure 14 we moreover observe that

∂
∂α

→
fxn(α)

∣∣
α=1

= 2(n− 1) (n ≥ 2). (3.9)

This can be explained on theoretical grounds. Indeed, if we write
→
G = α

→
Gvot + (1 − α)

→
Greb,

where
→
Gvot and

→
Greb are the (one-sided) voter and rebellious parts of the generator, then a

simple calculation shows that
→
Gvot

∂
∂α

→
fx(α)

∣∣
α=1

=
→
Greb

→
fx(1). (3.10)

Setting gx := ∂
∂α

→
fx(α)

∣∣
α=1

, this yields

g11 + g∅ − 2g1 =
→
Gvotg1 =

→
Greb

→
f1(1) = 2,

g111 + g1 − 2g11 =
→
Gvotg11 =

→
Greb

→
f11(1) = 0,

g1111 + g11 − 2g111 =
→
Gvotg111 =

→
Greb

→
f111(1) = 0,

etcetera

(3.11)

Since f∅(α) = 0 and f1(α) = 1 we have g∅ = g1 = 0 and we can solve gx inductively for
x = 11, 111, 1111, . . . from (3.11).

The fact that the critical point and various other functions of the invariant law are different
for the one-sided and two-sided model implies that the law of

→
Y∞ cannot be mirror symmetric.

Indeed, we observe that the functions f1011(α) and f1101(α) are not identical, as show in
Figure 15.

3.2 Frequencies for three and more particles

As in the previous section, letting
←
Y∞ denote the equilibrium interface process for the one-sided

rebellious voter model, we have plotted in Figure 16 (picture on top left) the functions

χk(α) = P
[
|
←
Y∞| = k

]
(k = 1, 3, 5, . . .). (3.12)

In particular, χ1 is the function χ from (2.1) (ii). Except for the case k = 1 (see (2.7)), we have
not found any simple explicit formulas that fit these curves. Nevertheless, some regularities
may be noted. In particular, if we define

θk(α) :=
χk+2(α)
χk(α)

and φk(α) :=
θk+2(α)
θk(α)

(k = 1, 3, 5, . . .), (3.13)

then it seems that the functions θk converge very fast to a limiting function θ∞(α) :=
limk→∞ θk(α). (See Figure 16 picture on top right; the functions θ3, θ5, . . . all seem to fall
on top of each other.) Likewise, the functions φk converge very fast to the function that is
identically one. (See Figure 16, two bottom pictures.) It is hard to obtain sufficiently precise
data, but our best data (shown here) suggest that the function φ3 is not identically one, al-
though it is close. This means that the functions θ3 and θ5 are probably not identical, even
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though they almost fit each other in the picture on top right. Our numerical data are well
fitted by the linear/constant functions:

φ1(α)≈ c0 + c1(α− 1
2) with c0 = 0.9115± 0.0015 and c1 = −0.13± 0.01,

φ3(α)≈ 1.0027± 0.0005.
(3.14)

and φk(α) = 1 for k ≥ 5. We note that if one assumes that the explicit formula for χ1(α)
in (2.7) is correct, and one knows the functions φk(α) for each k = 1, 3, . . ., then using the
fact that

∑∞
n=0 χ2n+1(α) = 1 one has enough equations to solve the functions χk(α) for each

k = 1, 3, . . ..
The limiting function θ∞(α) := limk→∞ θk(α) seems to be be strictly decreasing and

concave on [12 , 1] and satisfy θ(1
2) = 1, θ(1) = 0. This implies that the distribution of the

number of particles in equilibrium has an exponentially decaying tail for each α > 1
2 . In

particular, the mean number of particles

µ(α) := E
[
|Y∞|

]
(3.15)

is finite for all α > 1
2 and diverges as α ↓ 1

2 .
The picture for the (two-sided) rebellious voter model is extremely similar, except that the

critical point is no longer 0.5 and we have no explicit formula for χ1(α).

3.3 Edge speeds

Let Yt be the interface model of the (two- or one-sided) rebellious voter model started with a
finite number of ones and let

lt := inf{i ∈ Z : Yt(i) = 1} and rt := sup{i ∈ Z : Yt(i) = 1} (3.16)

denote the position of the left-most and right-most ones, respectively. Our simulations suggest
that there exist constants v−(α) ≤ v+(α), called the left and right edge speed, respectively,
such that

lim
t→∞

lt
t

= v−(α) and lim
t→∞

rt

t
= v+(α) a.s. (3.17)

Set
Zt(i) := Yt(lt + i) (i ≥ 0, t ≥ 0). (3.18)

Then Zt describes the process Yt as seen from the left-most one. It seems reasonable to assume
that the law of Zt converges as t → ∞ to some equilibrium law. Let Z∞ denote the process
in equilibrium. The left edge speed v−(α) can be obtained as the equilibrium expectation
E[f(Z∞)] of a suitable function f which sums the sizes of all possible changes of lt multiplied
with the rate at which they occur.

We have simulated the process Zt on a finite interval of N sites by neglecting all particles
that fall off the right edge of the interval due to the dynamics of Yt or the shifts in lt. This
process does not preserve parity, but if N is large enough the probability that all particles
annihilate each other is very small. For most of our data points, such events never occurred,
and when they occurred (especially near the critical point) they were so rare that they likely
had no big influence on our estimate of the speeds. By slowly lowering or raising α in our usual
fashion and keeping track of all changes in Zt that correspond to a change in lt we obtained
numerical data for the left edge speed v−(α) and, in a similar fashion, also for the right edge
speed v+(α), both for the two-sided and one-sided model.
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Figure 17: Edge speeds for the rebellious voter model (left) and its one-sided counterpart
(right). The pictures show the speed of the right edge and left edge as a function of α.
Parameters used are N = 211, n = 29, T = 109, αb = 0, αe = 0.5 (left half of each picture)
and N = 211, n = 29, T = 1011, αb = 0.999, αe = 0.5 (right half of each picture).
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Figure 18: Detail of Figure 17. Parameters used are N = 215, n = 29, T = 1011, with
αb = 0.52, αe = 0.5 for the two-sided model and αb = 0.51, αe = 0.49 for the one-sided model.
The curves have been smooted a bit, corresponding to (effectively) n = 29/3.

The results are shown in Figure 17. One has v−(α) < v+(α) if and only if α < αc and the
functions v−(α) and v+(α) are strictly increasing resp. decreasing on [0, αc). For the two-sided
model, by symmetry, v−(α) = −v+(α) and hence v−(α) = 0 = v+(α) for α ≥ αc, while for the
one-sided model one has 0 ≤ v−(α), but otherwise the two pictures are remarkably similar.
A detailed simulation near the critical point (shown in Figure 18) shows that the estimates
for the critical points which one obtains from these simulations are consistent with our earlier
estimates. Apart from the obvious values v−(0) = 0 and v−(1) = v+(1) = 1 (for the one-sided
model) and v−(1) = v+(1) = 0 (for the two-sided model) we are not able to say anything
explicit about the curves v−(α) and v+(α).
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