Overview structure of algebras

Jan M. Swart

April 21, 2010

Representations

 \mathcal{A} Q-algebra:

Representation = \mathcal{H} inner product space + $l : \mathcal{A} \to \mathcal{L}(\mathcal{H})$ *-algebra homomorphism. Isomorphism = faithful representation.

Def. $(A, \phi) \mapsto A\phi := l(A)\phi$.

- $A(a\phi + b\psi) = aA\phi + bA\psi$
- $(aA + bB)\phi = aA\phi + bB\phi$
- $(AB)\phi = A(B\phi)$
- $1\phi = 1$
- $\langle \phi | A\psi \rangle = \langle A^* \phi | \psi \rangle$.

Representation = inner product space \mathcal{H} + map $(A, \phi) \mapsto A\phi$ with these properties.

Def. homomorphism of representations: linear map $U: \mathcal{H}_1 \to \mathcal{H}_2$ s.t.

$$\langle U\phi|U\psi\rangle_2 = \langle \phi|\psi\rangle_1$$
 unitary $AU\psi = UA\psi \quad \forall \psi \in \mathcal{H}_1.$

If U bijection then isomorphism; say $\mathcal{H}_1, \mathcal{H}_2$ equivalent. $l_2(A) = Ul_1(A)U^{-1}$. Equivalent = same after change of orthonormal basis.

Convention: \mathcal{H} representation $\Rightarrow \mathcal{H} \neq \{0\}$.

Direct sum

 $\mathcal{V}_1,\ldots,\mathcal{V}_n$ linear spaces: Every $\psi\in\mathcal{V}_1\oplus\cdots\oplus\mathcal{V}_n$ has unique decomposition

$$\psi = \phi_1 + \dots + \phi_n$$
$$\in \mathcal{V}_1$$

 $\mathcal{H}_1, \dots, \mathcal{H}_n$ inner product spaces:

$$\langle \phi_1 + \dots + \phi_n | \psi_1 + \dots + \psi_n \rangle := \langle \phi_1 | \psi_1 \rangle + \dots + \langle \phi_n | \psi_n \rangle$$

 $\mathcal{H}_i \perp \mathcal{H}_j \ \forall i \neq j.$

 $\mathcal{A}_1, \ldots, \mathcal{A}_n$ Q-algebras:

$$(A_1 + \dots + A_n)(B_1 + \dots + B_n) : A_1B_1 + \dots + A_nB_n$$

 $(A_1 + \dots + A_n)^* := A_1^* + \dots + A_n^*$
 $1 = 1_1 + \dots + 1_n$

 $\mathcal{H}_1, \ldots, \mathcal{H}_n$ representations:

$$A(\phi_1 + \cdots + \phi_n) := A\phi_1 + \cdots + A\phi_n$$

Decomposition of algebras

Def. ideal $\mathcal{I} \subset \mathcal{A}$ subspace s.t. $A \in \mathcal{A}, B \in \mathcal{I} \Rightarrow AB \in \mathcal{I}, BA \in \mathcal{I}$.

Def. faktor: algebra with no proper ideals.

 $l: \mathcal{A} \to \mathcal{B}$ algebra homomorphism $\Rightarrow \text{Ker}(l) = \{A \in \mathcal{A} : l(A) = 0\}$ ideal.

$$\mathcal{A}$$
 Q-algebra $\Rightarrow \mathcal{A} \cong \underset{\uparrow \text{ factor}}{\mathcal{A}_1} \oplus \cdots \oplus \mathcal{A}_n$

Proof τ pseudotrace $\Rightarrow \langle A|B\rangle_{\tau} := \tau(A^*B)$ inner product on \mathcal{A} . \mathcal{I} ideal $\Rightarrow \mathcal{I}^{\perp}$ ideal. $1 = \underset{\in \mathcal{I}}{1} + \underset{\in \mathcal{I}^{\perp}}{1}$. \mathcal{I} algebra with identity 1_1 . $\mathcal{A} = \mathcal{I} \oplus \mathcal{I}^{\perp}$.

Decomposition of representations

Def. $\mathcal{F} \subset \mathcal{H}$ invariant subspace if $A \in \mathcal{A}, \phi \in \mathcal{F} \Rightarrow A\phi \in \mathcal{F}$.

Def. \mathcal{H} irreducible: no proper invariant subspaces.

$$\mathcal{H}$$
 representation $\Rightarrow \mathcal{H} \cong \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$

Proof \mathcal{F} invariant $\Rightarrow \mathcal{F}^{\perp}$ invariant, $\mathcal{H} = \mathcal{F} \oplus \mathcal{F}^{\perp}$. If \mathcal{F} has invariant subspace then continue.

Main facts

Theorem 1 Equivalent are:

- (i) \mathcal{A} is factor
- (ii) A has a faithful irreducible representation

(iii) $A \cong \mathcal{L}(\mathcal{H})$.

Theorem 2 \mathcal{A} factor, then:

- (i) Every representation of A is faithful.
- (ii) All irreducible representations of \mathcal{A} are equivalent.
- (iii) \mathcal{H} irreducible representation $\Rightarrow l : \mathcal{A} \to \mathcal{L}(\mathcal{H})$ *-algebra isomorphism.

Structure of algebras

 \mathcal{A} Q-algebra:

$$\mathcal{A} = \mathcal{A}_1 \oplus \cdots \oplus \mathcal{A}_n.$$

 \mathcal{H}_k irreducible representation of \mathcal{A}_k . Note: \mathcal{H}_k up to equivalence unique, automatically faithful, and $l_k : \mathcal{A}_k \to \mathcal{L}(\mathcal{H}_k)$ *-algebra isomorphism. View \mathcal{H}_k as representation of \mathcal{A} by defining:

$$(A_1 + \dots + A_n)\phi := A_k \phi$$

Theorem Every representation of \mathcal{A} is equivalent to a representation of the form

$$\mathcal{H} = (\underbrace{\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_1}_{m_1 \text{ times}}) \oplus \cdots \oplus (\underbrace{\mathcal{H}_n \oplus \cdots \oplus \mathcal{H}_n}_{m_n \text{ times}}),$$

with $m_i \geq 0$ (i = 1, ..., n). \mathcal{H} is faithful $\Leftrightarrow m_i \geq 1$ for all i = 1, ..., n. \mathcal{A} is abelian $\Leftrightarrow \dim(\mathcal{H}_k) = 1 \ \forall k$.

Proof \mathcal{H} representation $\Rightarrow \mathcal{H} \cong \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_m$. Def. $\mathcal{I}_k := \operatorname{Ker}(l_k)^{\perp}$. Then $l_k : \mathcal{I}_k \to \mathcal{L}(\mathcal{H}_k)$

faithful irreducible representation $\Rightarrow \mathcal{I}_k$ factor algebra. $\mathcal{I}_k \cap \mathcal{I}_l$ ideal of \mathcal{I}_k hence = $\{0\}$ or \mathcal{I}_k . Hence

$$\forall k \neq l : \quad \mathcal{I}_k = \mathcal{I}_l \text{ or } \mathcal{I}_k \cap \mathcal{I}_l = \{0\}.$$

By Theorem 2 (ii), $\mathcal{I}_k = \mathcal{I}_l \ \Rightarrow \mathcal{H}_1$ and \mathcal{H}_2 equivalent.

Note $\psi \in \mathcal{H} \Rightarrow$

$$\psi = \phi_{1,1} + \dots + \phi_{1,m_1} + \dots + \phi_{n,1} + \dots + \phi_{n,m_n}$$

$$\in \mathcal{H}_1 \qquad \in \mathcal{H}_n \qquad \in \mathcal{H}_n$$

Now

$$(A_{1} + \dots + A_{n})(\phi_{1,1} + \dots + \phi_{1,m_{1}} + \dots + \phi_{n,1} + \dots + \phi_{n,m_{n}})$$

$$\in \mathcal{A}_{1} \qquad \in \mathcal{A}_{n} \qquad \in \mathcal{H}_{1} \qquad \in \mathcal{H}_{1} \qquad \in \mathcal{H}_{n} \qquad \in \mathcal{H}_{n}$$

$$= (A_{1}\phi_{1,1} + \dots + A_{1}\phi_{1,m_{1}} + \dots + A_{n}\phi_{n,1} + \dots + A_{1}\phi_{n,m_{n}})$$

$$= \begin{pmatrix} A_1 & & & & & & \\ & \ddots & & & & & \\ & & A_1 & & & & \\ & & & \ddots & & & \\ & & & A_n & & & \\ & & & & A_n & & \\ & & & & & A_n \end{pmatrix} \begin{pmatrix} \phi_{1,1} & & & \\ \vdots & & & & \\ \phi_{1,m_1} & & & \\ \vdots & & & & \\ \phi_{n,1} & & & \\ \vdots & & & \\ \phi_{n,m_n} \end{pmatrix}$$

Proofs

 $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ sub-*-algebra: Def. $\mathcal{A}^c := \{B \in \mathcal{L}(\mathcal{H}) : AB = BA \ \forall A \in \mathcal{A}\}$ commutant.

Neumann's bicommutant theorem $(A^c)^c = A$.

Proof Theorem 2 (i) imagine \mathcal{H} not faithful, then Ker(l) proper ideal, contradiction.

Proof Theorem 1 (i) \Rightarrow **(ii)** By assumption there exists a faithful representation of \mathcal{A} , Decomposing into irreducible representations proofs \mathcal{A} has at least one irreducible representation. By what we just proved faithful.

Proof Theorem 2 (iii) Imagine $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ sub-*-algebra, \mathcal{H} has no invariant subspaces. By Neumann suffices to prove that $\mathcal{A}^c = \{a1 : a \in \mathbb{C}\}$. Little argument shows $\mathcal{A}^c = \text{span}\{B \in \mathcal{A}^c : B \text{ hermitian}\}$. Imagine $B \in \mathcal{A}^c$ hermitian, not multiple of 1, then functional calculus for normal operators $\Rightarrow \exists \text{ projektor } P \in \mathcal{A}^c, P \neq 0, 1$. Now $P = P_{\mathcal{F}}$ where \mathcal{F} invariant subspace, contradiction.

Proof Theorem 1 (ii)⇒(iii) Immediate from what we have just proved.

Proof Theorem 1 (iii) \Rightarrow (i) Imagine $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ not a factor, then $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2$. Now identity $1_1 \in \mathcal{A}_1$ satisfies $1_1 \in \mathcal{A}^c \Rightarrow \mathcal{A}^c \neq \{a1 : a \in \mathbb{C}\}$. But it is easy to see that if $\mathcal{A} = \mathcal{L}(\mathcal{H})$, then $\mathcal{A}^c = \{a1 : a \in \mathbb{C}\}$.

Proof Theorem 2 (ii) See lecture notes.

Proof Neumann's bicommutant theorem See lecture notes.