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Abstract

A one-dimensional interacting particle system is said to exhibit interface tightness if
starting in an initial condition describing the interface between two constant configurations
of different types, the process modulo translations is positive recurrent. In a biological set-
ting, this describes two populations that do not mix, and it is believed to be a common
phenomenon in one-dimensional particle systems. Interface tightness has been proved for
voter models satisfying a finite second moment condition on the rates. We extend this
to biased voter models. Furthermore, we show that the distribution of the equilibrium
interface for the biased voter model converges to that of the voter model when the bias
parameter tends to zero. A key ingredient is an identity for the expected number of
boundaries in the equilibrium voter model interface, which is of independent interest.
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1 Introduction

1.1 Interface tightness

One-dimensional biased voter models, also known as one-dimensional Williams-Bjerknes mod-
els [Sch77, WB72], are Markov processes (Xt)t≥0 taking values in the space {0, 1}Z of infinite
sequences x = (x(i))i∈Z of zeros and ones. They have several interpretations, one of which is
to model the dynamics of two biological populations. We call Xt(i) the type of the individual
at site i ∈ Z at time t ≥ 0. Let ε ∈ [0, 1), and let a : Z → [0,∞) be a function such that∑

k a(k) <∞ and the continuous-time random walk that jumps from i to j with rate a(j − i)
is irreducible. The dynamics of (Xt)t≥0 are such that for each i, j ∈ Z, at the times t of a
Poisson point process with rate a(j − i), if the type at i just prior to t satisfies Xt−(i) = 1,
then j adopts the type 1; if Xt−(i) = 0, then with probability 1− ε, site j adopts the type 0,
and with the remaining probability ε, Xt(j) remains unchanged.

Somewhat more formally, we can define (Xt)t≥0 by specifying its generator. For x ∈
{0, 1}Z and i1, . . . , in ∈ Z, write x(i1, . . . , in) := (x(i1), . . . , x(in)) ∈ {0, 1}n. We also use
the convention of writing elements of {0, 1}n as words consisting of the letters 0 and 1, i.e.,
instead of (1, 0) we simply write 10 and similarly for longer sequences. With this notation,
the generator of the biased voter model we have just described is given by

Gεf(x) =
∑
i,j

a(j − i)1{x(i,j)=10}
{
f(x+ ej)− f(x)

}
+(1− ε)

∑
i,j

a(j − i)1{x(i,j)=01}
{
f(x− ej)− f(x)

}
,

(1.1)

where ei(j) := 1{i=j}. We call ε the bias and a the underlying random walk kernel. In
particular, for ε = 0, we obtain a normal (unbiased) voter model, in which the types 0 and 1
play symmetric roles. By contrast, for ε > 0, the 1’s replace 0’s at a faster rate than the other
way round, i.e., there is a bias in favor of the 1’s. To indicate the bias parameter, (Xt)t≥0 will
be denoted as (Xε

t )t≥0 hereafter.
Let

S01
int :=

{
x ∈ {0, 1}Z : lim

i→−∞
x(i) = 0, lim

i→∞
x(i) = 1

}
,

S10
int :=

{
x ∈ {0, 1}Z : lim

i→−∞
x(i) = 1, lim

i→∞
x(i) = 0

} (1.2)

denote the sets of states describing the interface between an infinite cluster of 1’s and an
infinite cluster of 0’s. If

∑
k a(k)|k| < ∞ and 0 ≤ ε < 1, then it is not hard to see that

Xε
0 ∈ S01

int implies that Xε
t ∈ S01

int for all t ≥ 0, a.s., and similarly for S10
int. (For unbiased voter

models, this is proved in [BMSV06]. The proof in the biased case is the same.) We will be
interested in studying the long-time behavior of the interface of (Xε

t )t≥0.
We call two configurations x, y ∈ {0, 1}Z equivalent, denoted by x ∼ y, if one is a translation

of the other, i.e., there exists some k ∈ Z such that x(i) = y(i + k) (i ∈ Z). We let x denote
the equivalence class containing x and write

S
01
int := {x : x ∈ S01

int} and S
10
int := {x : x ∈ S10

int}. (1.3)

Note that S01
int, S

01
int, S

10
int and S

10
int are countable sets. Since our rates are translation invariant,

the process modulo translations (X
ε
t )t≥0 is itself a Markov process. For non-nearest neighbor

kernels a, this Markov process is irreducible; see Lemma 2.1 below. From now on, we restrict
ourselves to the non-nearest neighbor case. We adopt the following definition from [CD95].

Definition 1.1 (Interface tightness) We say that (Xε
t )t≥0 exhibits interface tightness on

S01
int (resp. S10

int) if (X
ε
t )t≥0 is positive recurrent on S

01
int (resp. S

10
int).
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Note that because of the bias, if a is not symmetric, then there is no obvious symmetry telling
us that interface tightness on S01

int implies interface tightness on S10
int or vice versa.

In the unbiased case ε = 0, Cox and Durrett [CD95] proved that interface tightness holds
if
∑

k a(k)|k|3 <∞. This was relaxed to
∑

k a(k)k2 <∞ by Belhaouari, Mountford and Valle
[BMV07], who moreover showed that the second moment condition is optimal. Our first main
result is the following theorem that extends this to biased voter models, where the optimal
condition in the biased case turns out to be even weaker.

Theorem 1.2 (Interface tightness for biased voter models) Assume that ε ∈ [0, 1)
and that the kernel a is non-nearest neighbor, irreducible and satisfies

∑
k a(k)k2 <∞. Then

the biased voter model (Xε
t )t≥0 exhibits interface tightness on S01

int and S10
int. If ε > 0 and the

moment condition on the kernel is relaxed to
∑

k<0 a(k)k2 < ∞ and
∑

k>0 a(k)k < ∞, then
interface tightness on S01

int still holds.

To see heuristically why for interface tightness on S01
int, a finite first moment condition in the

positive direction suffices, we observe that a(k) with large positive k govern 0’s that are created
deep into the territory of the 1’s. Such 0’s do not survive long due to the bias. On the other
hand, a(k) with large negative k govern 1’s that are created deep into the territory of the 0’s.
These 1’s have a positive probability of surviving and then giving birth to 1’s even further
away. This explains heuristically why one needs to impose a stronger moment condition in
the negative direction.

The proof of interface tightness for the voter model in [CD95, BMV07] relied heavily on
the well-known duality of the voter model to coalescing random walks. A biased voter model
also has a dual, which is a system of coalescing random walks that moreover branch with
rate ε. Because of the branching, this dual process is much harder to control than in the
unbiased case. In view of this, we were unable to apply the methods of [CD95, BMV07] but
instead adapted a method of [SS08b], who provided a short proof of interface tightness for
unbiased voter models using generator calculations and a Lyapunov like function. Our key
observation is that this function admits a generalization to biased voter models, and the proof
of interface tightness can then be adapted accordingly. However, as we will see in the proof
of Theorem 1.2, the calculations are considerably more complicated in the biased case.

Interface tightness is believed to be a common phenomenon in one-dimensional interacting
particle systems. Besides the voter model, it has also been proved for one-dimensional multi-
type contact processes, see e.g., [AMPV10] and [Val10], where the proofs rely on duality,
renormalization and percolation techniques.

1.2 Convergence of equilibrium interface

Theorem 1.2 implies that, modulo translations, the biased voter model is an irreducible
countable-state Markov chain, and hence has a unique invariant law and is ergodic. In partic-

ular, if
∑

k a(k)k2 < ∞, then for each ε ≥ 0, there is a unique invariant law νε on S
01
int. It is

a natural question whether νε converges to the unique invariant law ν0 for the voter model.
Our second main result answers this question affirmatively.

Theorem 1.3 (Continuity of the invariant law) Assume that the kernel a is non-nearest
neighbor, irreducible, and satisfies

∑
k a(k)k2 < ∞. Then as ε ↓ 0, the invariant law νε

converges weakly to ν0 with respect to the discrete topology on S
01
int.

The proof of Theorem 1.3 turns out to be much more delicate than the result may suggest.

The difficulty lies in the choice of the discrete topology on S
01
int. In particular, Theorem 1.3

implies that the length of the equilibrium interface under νε is tight as ε ↓ 0, and if started at
the heaviside state x0 with

x0(i) = 0 for i < 0 and x0(i) = 1 for i ≥ 0, (1.4)

3



then the time it takes to return state x0 is also tight. Such uniform control in ε as ε ↓ 0
turns out to be difficult to obtain. We get around this difficulty by first proving the weak

convergence of νε to ν0 under the product topology, where we identify S
01
int with a subset of the

product space {0, 1}N by shifting the leftmost 1 of the interface to the origin. To strengthen

the convergence to the discrete topology on S
01
int, we then establish uniform control (w.r.t. ε)

on the expected number of boundaries in the equilibrium biased voter interface, as well as
an exact formula for the expected number of such boundaries in the equilibrium voter model
interface (see Proposition 3.7). This last result is also of independent interest.

1.3 Relation to the Brownian net

Theorem 1.3 is in fact motivated by studies of branching-coalescing random walks and their
convergence to the Brownian net under weak branching. Let us now explain this connection.

Similar to the well-known duality between the voter model and coalescing random walks,
the biased voter models are dual to systems of branching-coalescing random walks, with bias
ε being the branching rate of the random walks. While in [CD95, BMV07], coalescing random
walks were used to prove interface tightness, our motivation is the other way around: we
aim to use interface tightness as a tool to study the dual branching-coalescing random walks.
More precisely, the present paper arises out of the problem of proving convergence of rescaled
branching-coalescing random walks with weak branching to a continuum object called the
Brownian net [SS08c].

Let us first recall the graphical representation of (biased) voter models. Plot space hori-
zontally and time vertically, and for each i, j ∈ Z, at the times t of an independent Poisson
point process with intensity (1 − ε)a(j − i), draw an arrow from (i, t) to (j, t). We call such
arrows resampling arrows. Also, for each i, j ∈ Z, at the times t of an independent Poisson
process with intensity εa(j − i), draw a different type of arrow (e.g., with a different color)
from (i, t) to (j, t). We call such arrows selection arrows.

It is well-known that a voter model can be constructed in such a way that starting from
the initial state, at each time t where there is a resampling arrow from (i, t) to (j, t), the site
j adopts the type of site i. To get a biased voter model one also adds the selection arrows,
which are similar to resampling arrows, except that they only have an effect when the site i
is of type 1.

To see the duality, we construct a system of coalescing random walks evolving backwards in
time as follows: let the backward random walk at site j jump to i when it meets a resampling
arrow from i to j, and let it coalesce with the random walk at site i if there is one. A system
of backward branching-coalescing random walks can be obtained by moreover allowing the
coalescing random walks to branch at selection arrows. That is, when a random walk at j
meets a selection arrow from i to j, let it branch into two walks located at i and j, respectively.
The duality goes as follows. Let A and B be two sets of integers. For the biased voter model
starting from the state being 1 only on A at time 0, the set of 1’s at time t has nonempty
intersection with B if and only if for the backward branching-coalescing random walks starting
from B at time t, there is at least one walk in A at time 0.

It is shown in [FINR04] that for coalescing nearest neighbor random walks in the space-
time plane, the diffusively rescaled system converges to the so-called Brownian web, which,
loosely speaking, is a collection of coalescing Brownian motions starting from every space-time
point (see also [SSS17] for a survey on the Brownian web, Brownian net and related topics).
Later, in [NRS05], this result was extended to general coalescing random walks with a finite
fifth moment. This condition was then relaxed to a finite (3 + η)-th moment by Belhaouari
et al. [BMSV06]. It was observed in the same article (see [BMSV06, Theorem 1.2]) that to
verify tightness for rescaled systems of random walks, it suffices to show that for the dual voter
model starting from the heaviside state x0 (cf. 1.4), the trajectories of the left and the right
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interface boundaries converge to the same Brownian motion. In the biased case, Sun and
Swart [SS08c] showed that systems of branching-coalescing nearest neighbor random walks
converge to the Brownian net as the branching rate ε tends to zero and space and time are
diffusively rescaled with the same ε. Just as in the unbiased case, in order to extend the result
of [SS08c] to non-nearest neighbor random walks, tightness can be established by showing
that the interface boundaries of the dual biased voter model converge to the same Brownian
motion, which in contrast to the unbiased case, has a drift. A first step in this direction is to
prove that interface tightness holds in a way that is uniform as the bias parameter ε decreases
to zero, which led to our Theorem 1.3. We also remark that based on the interface tightness
result obtained in [Val10], Mountford and Valesin [MV16] showed that the interface of the
multi-type contact process has Brownian motion as its scaling limit.

1.4 Some open problems

Before closing the introduction, we list some open problems in two directions. First, while
believed to be a common phenomenon, interface tightness has so far been proved only for a
few systems, including (biased) voter models and multi-type contact processes. Staying within
the class of biased voter models, since there are two types of arrows, it would be meaningful to
consider models with different kernels for resampling and selection arrows. It seems plausible
that for such models, Theorems 1.2 and 1.3 still hold if both kernels satisfy our moment
assumptions, but unfortunately our methods break down if the kernels are different. Another
class of models for which the question of interface tightness remains open are voter models
with weak heterozygosity selection, such as the rebellious voter model introduced in [SS08a].

Another possible direction of further research is concerned with questions related to the
models studied in Theorems 1.2 and 1.3. In particular, sending the bias ε to zero and at
the same time rescaling space with a factor ε and time with a factor ε2, one would like to
show that the interface converges to a Brownian motion with drift and then use this to prove
convergence of the dual system of branching-coalescing random walks to the Brownian net.

The rest of the paper is devoted to proofs. We prove Theorem 1.2 in Section 2 and
Theorem 1.3 in Section 3.

2 Interface tightness

2.1 Elementary observations and outline

Before moving to the proof of Theorem 1.2, we present the following elementary lemma that
shows the irreducibility of non-nearest neighbor biased voter models.

Lemma 2.1 (Irreducibility of the biased voter model) Assume that the kernel a is non-
nearest neighbor (i.e., a(k) > 0 for some |k| ≥ 2), irreducible and satisfies

∑
k a(k)|k| < ∞.

Then the biased voter model (Xε
t )t≥0 on S01

int is irreducible.

Proof. As proved in [BMSV06] and also in Lemma 2.8 below, the condition
∑

k a(k)|k| <∞
guarantees that the continuous-time Markov chain on S01

int is well-defined and nonexplosive.
We will show that for any configuration x ∈ S01

int, 1) for each i ∈ Z, there is a positive
probability to reach the heaviside state xi := 1{i,i+1,...} from x, and 2) there exists some i ∈ Z
such that there is a positive probability to reach x from xi. The first statement actually holds
for any irreducible a. For such a, there exist kr, kl > 0 such that a(kr), a(−kl) > 0. Since
a(kr) > 0 (resp. a(−kl) > 0), with positive probability the leftmost 1 (resp. the rightmost 0)
can change into a 0 (resp. 1) while all other sites remain unchanged. In this way, xi can be
reached for any i ∈ Z.

For the second statement, let k be such that a(k) > 0 for some |k| ≥ 2. We will prove
that if k < 0 (resp. k > 0), then the interface can always be expanded by 1 unit at the right
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(resp. left) boundary without changing the values at other sites, which implies statement 2).
By symmetry, it suffices to consider the case k < 0. Suppose that the right boundary of Xε

t

is at site i, namely Xε
t (i) = 0 and Xε

t (j) = 1 for all j > i. Then we will construct infections
to show that at a later time s, with positive probability, it may happen that Xε

s (i, i+ 1) = 00
(similarly, it may happen that Xε

s (i, i + 1) = 10), while the values of other sites of Xε
t and

Xε
s are the same. Indeed, since a is irreducible, a path π of infections from site i to i+ 1 can

be constructed where moreover the path first does right jumps, and then left jumps. Recall
that the value of site i is 0. Thus, the value of site i + 1 is altered to 0 and all sites on the
left of i remains unchanged. Now by applying left infections of size k, one can consecutively
alter the values back to 1 for those sites on the right of i + 1 that were infected by π. After
such infections, we have Xε

s (i, i+ 1) = 00 while other sites remain unchanged. To see that the
value of site i can also be altered to 1, simply note that site i + |k| can infect site i by a left
infection of size k. Furthermore, we have Xε

s (i + |k|) = 1 since |k| ≥ 2. This completes the
proof.

The irreducibility of the biased voter model (Xε
t )t≥0 immediately implies the irreducibility

of the translated process (X
ε
t )t≥0. Also note that S01

int, and hence S
01
int, is countable. Therefore,

by Definition 1.1, (Xε
t )t≥0 exhibits interface tightness if and only if there exists an invariant

probability measure for (X
ε
t )t≥0, where the latter implies that the interface being large at a

fixed time has a small probability. More precisely, let L : S01
int → N, defined as

L(x) := max{i : x(i) = 0} −min{i : x(i) = 1}+ 1, (2.1)

be the interface length. Then interface tightness is equivalent to the family of random variables(
L(Xε

t )
)
t≥0 being tight. By definition, an inversion is a pair (i, j) such that j < i and

x(j, i) = 10. We let h : S01
int → R denote the function counting the number of inversions

h(x) :=
∣∣{(j, i) : j < i, x(j, i) = 10}

∣∣. (2.2)

It is easy to see that h(x) ≥ L(x)−1 for any configuration x. In the proofs of [CD95, BMV07],
the number of inversions h(x) plays a key role, where duality is used to show that this quantity
cannot be too big. In [SS08b], h is also a key ingredient, playing a role similar to a Lyapunov
function as in Foster’s theorem (see e.g., [MPW17, Theorem 2.6.4]). More precisely, it is
shown there that if interface tightness does not hold, then over sufficiently long time intervals,
h would have to decrease on average more than it increases, contradicting the fact that h ≥ 0.

In the rest of this section, we will adapt the method of [SS08b] to show Theorem 1.2. In the
biased case, we need a different function from h, which we call the weighted number of inver-
sions. In Subsection 2.2 , we will state three necessary lemmas and then prove Theorem 1.2.
We then prove those three lemmas in Subsection 2.3, Subsection 2.4 and Subsection 2.5,
respectively.

2.2 Proof of Theorem 1.2

Our key observation here is that the number of inversions h in (2.2) can be generalized to the
biased case as follows. Let hε : S01

int → R be defined by

hε(x) :=
∑
i>j

(1− ε)
∑

n<j x(n)1{x(j,i)=10}. (2.3)

By numbering the 1’s in x from left to right, we see that hε(x) is a weighted number of
inversions, where inversions involving the j-th 1 carry weight (1 − ε)j−1. It is clear that for
every configuration x ∈ S01

int, h
0(x) agrees with the number of inversions h(x) given in (2.2),

and hε(x)→ h0(x) as ε ↓ 0.
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To prove Theorem 1.2, we need three lemmas that generalize Lemma 2, Lemma 3 and
Proposition 4 of [SS08b] to the biased voter model. To state the first lemma that gives an
expression for the action of the generator from (1.1) on hε, we introduce the following notation.

By definition, a k-boundary is a pair (i, i + k) such that x(i) 6= x(i + k). For k ∈ Z, let
Ik : S01

int → N be the function counting the number of k-boundaries

Ik(x) :=
∣∣{i : x(i) 6= x(i+ k)}

∣∣, (2.4)

where | · | denotes the cardinality of a set.

Lemma 2.2 (Generator calculations) Under the assumption of Theorem 1.2, we have that
for any ε ∈ [0, 1) and x ∈ S01

int,

Gεhε(x) =
∑
k

a(k)
(
1
2k

2 − εRεk(x)
)
− 1

2

∑
k

a(k)Ik(x), (2.5)

where the generator Gε is defined in (1.1), and the term Rεk(x) ≥ 0 is given by Rεk(x) := 0 for
k = −1, 0, 1 and

Rεk(x) :=


∑
i

k−1∑
n=1

(1− ε)
∑

j<i x(j)(k − n)1{x(i−n,i)=01} (k > 1),

∑
i

|k|−1∑
n=1

(1− ε)
∑

j<i x(j)(|k| − n)1{x(i,i+n)=10} (k < −1).

(2.6)

Moreover, for ε ∈ (0, 1), we have

Gεhε(x) ≤ 1
2

∑
k<0

a(k)k2 + ε−1
∑
k>0

a(k)k − 1
2

∑
k

a(k)Ik(x). (2.7)

Remark 2.3 In the unbiased case ε = 0, (2.5) reduces to

G0h0(x) = 1
2

∑
k

a(k)
(
k2 − Ik(x)

)
, (2.8)

which agrees with [SS08b, Lemma 2]. Since Rεk ≥ 0 for all k 6= 0, (2.5) shows that G0h0 is an
upper bound of Gεhε uniformly in ε in the sense that Gεhε(x) ≤ G0h0(x).

Remark 2.4 In a sense, the best motivation we can give on why the weighted number of
inversions hε as in (2.3) is the “right” function to look at is formula (2.5). In the nearest-
neighbor case a(−1) = a(1) = 1

2 and a(k) = 0 for all k 6= −1, 1, formula (2.5) reduces to
Gεhε(x) = 1

2(1− I1(x)). In particular, Gεhε(x) = −1 if I1(x) = 3, which can be used to prove
(compare [SS15, Lemma 12]) that in the nearest-neighbor case, starting from an initial state
with I1(x) = 3, hε(x) is the expected time before the system reaches a heaviside state. These
observations originally motivated us to define hε as in (2.3).

We need two more lemmas. Recall that (Xε
t )t≥0 denotes the biased voter model with bias ε.

Lemma 2.5 (Nonnegative expectation) Let the biased voter model (Xε
t )t≥0 start from a

fixed configuration Xε
0 = x ∈ S01

int. Assume either condition (A) or (B) as follows.

(A) ε = 0 and
∑

k a(k)k2 <∞.

(B) ε ∈ (0, 1) and
∑

k<0 a(k)k2 +
∑

k>0 a(k)k <∞.
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Then for any t ≥ 0,

E[hε(Xε
0)] +

∫ t

0
E
[
Gεhε(Xε

s )
]
ds ≥ 0, (2.9)

where hε is the weighted number of inversions given in (2.3).

Lemma 2.6 (Interface growth) Let
∑

k a(k)|k| <∞, let a be irreducible, and let ε ∈ [0, 1).
Assume that interface tightness for (Xε

t )t≥0 in the sense of Definition 1.1 does not hold on
S01
int. Then the process started in any initial state Xε

0 = x ∈ S01
int satisfies

lim
T→∞

1

T

∫ T

0
P
[
Ik(X

ε
t ) < N

]
= 0 (k > 0, N <∞), (2.10)

where Ik is given in (2.4). The same statement holds with S01
int replaced by S10

int.

With the lemmas above, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By symmetry, it suffices to consider the case with state space S01
int.

Let the biased voter model (Xε
t )t≥0 start from the heaviside state x0 as in (1.4). Since a is

irreducible, for any constant C, there exist some k0 ∈ Z and N ≥ 1 such that

C < 1
2Na(k0). (2.11)

Let C = 1
2

∑
k a(k)k2 if a has finite second moment, and C = 1

2

∑
k<0 a(k)k2+ε−1

∑
k>0 a(k)k

if ε > 0 and the moment condition is relaxed to
∑

k<0 a(k)k2 < ∞ and
∑

k>0 a(k)k < ∞.
Then for all T > 0,

0≤ 1

T

∫ T

0
E
[
Gεhε(Xε

t )
]
dt

≤C − 1

2T

∑
k

a(k)

∫ T

0
E
[
Ik(X

ε
t )
]
dt ≤ C − Na(k0)

2T

∫ T

0
P
[
Ik0(Xε

t ) ≥ N
]
dt,

(2.12)

where in the first inequality we used Lemma 2.5 and noted that E[hε(x0)] = 0, and in the
second inequality we used Lemma 2.2, in particular, the expression (2.5) of Gεhε and the
inequalities Rεk ≥ 0 and (2.7). But on the other hand, if interface tightness did not hold, then
by Lemma 2.6,

lim
T→∞

{
C − Na(k0)

2T

∫ T

0
P
[
Ik0(Xε

t ≥ N)
]
dt
}

= C − 1
2Na(k0) < 0, (2.13)

which contradicts (2.12). Thus interface tightness must hold for the biased voter model.

2.3 Proof of Lemma 2.2

The proof is completed via a long calculation. We first change some expressions into nice
forms for later calculations. Recall from (2.3) that for ε ∈ [0, 1) and x ∈ S01

int,

hε(x) =
∑
i

1{x(i)=0}

i−1∑
j=−∞

(1− ε)
∑

n<j x(n)1{x(j)=1}. (2.14)

Since the sum
∑i−1

j=0(1− ε)j is ε−1
(
1− (1− ε)i

)
when ε > 0, we can rewrite hε(x) as

hε(x) =


∑
i>j

(
1− x(i)

)
x(j) ε = 0,

ε−1
∑
i

(
1− x(i)

)(
1− (1− ε)

∑
j<i x(j)

)
ε > 0.

(2.15)
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For each i ∈ Z, define functions

f εi (x) :=


∑
j<i

x(j) if ε = 0,

ε−1
(
1− (1− ε)

∑
j<i x(j)

)
if ε > 0,

gi(x) := 1− x(i) = 1{x(i)=0},

(2.16)

and therefore
hε =

∑
i

f εi gi. (2.17)

We also rewrite the generator (1.1) of the biased voter model as

Gε =
∑
k 6=0

a(k)Gεk, (2.18)

where Gεk denotes the generator

Gεkf(x) :=
∑
n

1{x(n−k,n)=10}
{
f(x+ en)− f(x)

}
+(1− ε)

∑
n

1{x(n−k,n)=01}
{
f(x− en)− f(x)

}
,

(2.19)

which only describes infections of size k.
We start the calculations by recalling the following useful fact. Let X be a Markov process

with countable state space S and generator of the form

Gf(x) =
∑
y

r(x, y)
{
f(y)− f(x)

}
, (2.20)

where r(x, y) is the rate of jumps from configuration x to y. Then for two real functions f
and g, by a direct calculation we have

G(fg) = fGg + gGf + Γ(f, g), (2.21)

where
Γ(f, g) :=

∑
y

r(x, y)
{
f(y)− f(x)

}{
g(y)− g(x)

}
, (2.22)

as long as all the terms involved are absolutely summable.
To find Gεhε for the biased voter model, applying formula (2.18) we can first calculate

Gεkh
ε and then sum over k. By (2.17) and (2.21), we have

Gεkh
ε =
∑
i

Gεk(f
ε
i gi) =

∑
i

{
f εi G

ε
kgi + giG

ε
kf

ε
i − Γεk(f

ε
i , gi)

}
=
∑
i

{
f εi G

ε
kgi + giG

ε
kf

ε
i

}
,

(2.23)

where in the last step we used that Γεk(f
ε
i , gi) = 0, since any transition either changes the

value of x(i), in which case f εi does not change, or the transition does not change the value of
x(i), in which case gi does not change.

We will prove that
Gεkh

ε(x) = 1
2

(
k2 − Ik(x)

)
− εRεk(x). (2.24)

Formula (2.5) follows from this by summing over k in Z with weights given by a. We distinguish
the calculation of Gεkh

ε into two cases, namely k > 0 and k < 0.
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Case k > 0. To ease notation, let us define a function Jε : N→ R by

Jε(n) :=

{
n if ε = 0,

ε−1
(
1− (1− ε)n

)
if ε > 0,

(2.25)

and thus for all ε ∈ [0, 1),
Jε(n+ 1)− Jε(n) = (1− ε)n,

f εi (x) = Jε

(∑
j<i

x(j)
)
. (2.26)

Recall that gi(x) = 1{x(i)=0}. We have

Gεkf
ε
i (x) = (1− ε)

∑
n<i

1{x(n−k,n)=01}
{
Jε
(∑
j<i

x(j)− 1
)
− Jε

(∑
j<i

x(j)
)}

+
∑
n<i

1{x(n−k,n)=10}
{
Jε
(∑
j<i

x(j) + 1
)
− Jε

(∑
j<i

x(j)
)}

=−
∑
n<i

1{x(n−k,n)=01}(1− ε)(1− ε)
∑

j<i x(j)−1

+
∑
n<i

1{x(n−k,n)=10}(1− ε)
∑

j<i x(j)

= (1− ε)
∑

j<i x(j)
∑
n<i

{
1{x(n−k,n)=10} − 1{x(n−k,n)=01}

}
= (1− ε)

∑
j<i x(j)

∑
n<i

{
1{x(n−k)=1} − 1{x(n)=1}

}
=−(1− ε)

∑
j<i x(j)

k∑
n=1

1{x(i−n)=1},

Gεkgi(x) = (1− ε)1{x(i−k,i)=01} − 1{x(i−k,i)=10}

=
(
1{x(i−k)=0} − 1{x(i)=0}

)
− ε1{x(i−k,i)=01},

(2.27)

In the calculations above we used the equality

1{x(i,j)=10} − 1{x(i,j)=01} = 1{x(i)=1} − 1{x(j)=1} = −1{x(i)=0} + 1{x(j)=0}, (2.28)

which will be used repeatedly. Substituting (2.27) into (2.23) leads to

Gεkh
ε(x) =

∑
i

f εi (x)
(
1{x(i−k)=0} − 1{x(i)=0}

)
− ε

∑
i

f εi (x)1{x(i−k,i)=01}

−
∑
i

(1− ε)
∑

j<i x(j)
k∑

n=1

1{x(i−n,i)=10}.
(2.29)

Note that in general if f, g are functions such that figi → 0 as i→ ±∞, then because

figi − fi−ngi−n =
(
fi − fi−n

)
gi−n + fi

(
gi − gi−n

)
, (2.30)

one has the summation by parts formula∑
i

(
fi+n − fi

)
gi = −

∑
i

fi
(
gi − gi−n

)
. (2.31)

Applying this to fi(x) = f εi (x) and gi(x) = 1{x(i)=0}, and using that f εi (x) → 0 as i → −∞
and 1{x(i)=0} → 0 as i→∞, we have

−
∑
i

f εi (x)
(
1{x(i)=0} − 1{x(i−k)=0}

)
=
∑
i

(
f εi+k(x)− f εi (x)

)
1{x(i)=0}. (2.32)
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We moreover observe that by (2.26)

Jε(n+ k)− Jε(n) =
k−1∑
m=0

(
Jε(n+m+ 1)− Jε(n+m)

)
=

k−1∑
m=0

(1− ε)n+m, (2.33)

and hence
f εi+k(x)− f εi (x) =Jε

( ∑
j<i+k

x(j)
)
− Jε

(∑
j<i

x(j)
)

=
k−1∑
n=0

1{x(i+n)=1}(1− ε)
∑

j<i+n x(j).

(2.34)

Inserting the identities (2.32) and (2.34) into (2.29) gives

Gεkh
ε(x) =

∑
i

k−1∑
n=0

1{x(i,i+n)=01}(1− ε)
∑

j<i+n x(j)

−
∑
i

(1− ε)
∑

j<i x(j)
k∑

n=1

1{x(i−n,i)=10}

−ε
∑
i

f εi (x)1{x(i−k,i)=01}.

(2.35)

Before further simplifying (2.35), define counting functions I10k , I
01
k : S01

int → N for all k ∈ Z by

I10k (x) :=
∣∣{i : x(i, i+ k) = 10}

∣∣ and I01k (x) :=
∣∣{i : x(i, i+ k) = 01}

∣∣. (2.36)

Hence, by the definition (2.4) of the number of k-boundaries, we have Ik = I10k +I01k . Moreover,
we observe that for x ∈ S01

int, k > 0 and i ∈ Z, along the subsequence x(. . . , i− k, i, i+ k, . . .),
there is one more adjacent pair (01) than (10), and thereby for any k > 0,

I01k (x) = I10k (x) + k and Ik(x) = 2I10k (x) + k. (2.37)

Changing the summation order, replacing i by i−n in the first term in the right-hand side of
(2.35), this term becomes

∑
i

k−1∑
n=0

1{x(i−n,i)=01}(1− ε)
∑

j<i x(j), (2.38)
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we can rewrite (2.35) as

Gεkh
ε(x) =

∑
i

(1− ε)
∑

j<i x(j)
k−1∑
n=1

{
1{x(i−n,i)=01} − 1{x(i−n,i)=10}

}
−
∑
i

(1− ε)
∑

j<i x(j)1{x(i−k,i)=10}

−ε
∑
i

f εi (x)1{x(i−k,i)=01}

=
∑
i

k−1∑
n=1

{
1{x(i−n,i)=01} − 1{x(i−n,i)=10}

}
−
∑
i

{
1− (1− ε)

∑
j<i x(j)

} k−1∑
n=1

{
1{x(i−n,i)=01} − 1{x(i−n,i)=10}

}
−
∑
i

1{x(i−k,i)=10} +
∑
i

{
1− (1− ε)

∑
j<i x(j)

}
1{x(i−k,i)=10}

−ε
∑
i

f εi (x)1{x(i−k,i)=01}

=
k−1∑
n=1

(
I01n (x)− I10n (x)

)
− I10k (x)

−ε
∑
i

f εi (x)
k−1∑
n=1

{
1{x(i−n,i)=01} − 1{x(i−n,i)=10}

}
+ε
∑
i

f εi (x)1{x(i−k,i)=10} − ε
∑
i

f εi (x)1{x(i−k,i)=01}

=
k−1∑
n=1

n− 1
2(Ik(x)− k)− ε

∑
i

f εi (x)
k∑

n=1

{
1{x(i−n,i)=01} − 1{x(i−n,i)=10}

}
= 1

2

(
k2 − Ik(x)

)
− ε

k∑
n=1

∑
i

f εi (x)
(
1{x(i−n)=0} − 1{x(i)=0}

)
.

(2.39)

where in the third and fourth equalities we used (2.36) and (2.37), respectively, and in the last
equality we interchanged the order of summation and used (2.28). We then substitute (2.32)
back into the sum in the last line of (2.39), and use (2.34) to obtain

k∑
n=1

∑
i

f εi (x)
(
1{x(i−n)=0} − 1{x(i)=0}

)
=

k∑
n=1

∑
i

(
f εi+n(x)− f εi (x)

)
1{x(i)=0}

=
∑
i

k∑
n=1

n−1∑
m=0

(1− ε)
∑

j<i+m x(j)1{x(i,i+m)=01}

=
∑
i

k−1∑
m=0

k∑
n=m+1

(1− ε)
∑

j<i x(j)1{x(i−m,i)=01}

=
∑
i

k−1∑
m=1

(1− ε)
∑

j<i x(j)(k −m)1{x(i−m,i)=01},

(2.40)

which implies (2.24) for k > 0.
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Case k < 0. Similarly, we calculate

Gεkf
ε
i (x) = (1− ε)

∑
n<i

1{x(n,n+|k|)=10}
{
Jε
(∑
j<i

x(j)− 1
)
− Jε

(∑
j<i

x(j)
)}

+
∑
n<i

1{x(n,n+|k|)=01}
{
Jε
(∑
j<i

x(j) + 1
)
− Jε

(∑
j<i

x(j)
)}

=−
∑
n<i

1{x(n,n+|k|)=10}(1− ε)(1− ε)
∑

j<i x(j)−1

+
∑
n<i

1{x(n,n+|k|)=01}(1− ε)
∑

j<i x(j)

= (1− ε)
∑

j<i x(j)
∑
n<i

{
1{x(n,n+|k|)=01} − 1{x(n,n+|k|)=10}

}
= (1− ε)

∑
j<i x(j)

|k|−1∑
n=0

1{x(i+n)=1},

Gεkgi(x) = (1− ε)1{x(i,i+|k|)=10} − 1{x(i,i+|k|)=01}

=
(
1{x(i+|k|)=0} − 1{x(i)=0}

)
− ε1{x(i,i+|k|)=10},

(2.41)

which gives

Gεkh
ε(x) =

∑
i

f εi (x)
(
1{x(i+|k|)=0} − 1{x(i)=0}

)
− ε

∑
i

f εi (x)1{x(i,i+|k|)=10}

+
∑
i

(1− ε)
∑

j<i x(j)
|k|−1∑
n=1

1{x(i,i+n)=01}.

(2.42)

Since by summation by parts,∑
i

f εi (x)
(
1{x(i+|k|)=0} − 1{x(i)=0}

)
=−

∑
i

(
f εi (x)− f εi−|k|(x)

)
1x(i)=0

=−
∑
i

|k|∑
n=1

(1− ε)
∑

j<i−n x(j)1{x(i−n,i)=10}

=−
∑
i

(1− ε)
∑

j<i x(j)
|k|∑
n=1

1{x(i,i+n)=10},

(2.43)

combining the first and last terms on the right-hand side of (2.42), we can rewrite

Gεkh
ε(x) =

∑
i

|k|−1∑
n=1

{
1{x(i,i+n)=01} − 1{x(i,i+n)=10}

}
−
∑
i

{
1− (1− ε)

∑
j<i x(j)

} |k|−1∑
n=1

{
1{x(i,i+n)=01} − 1{x(i,i+n)=10}

}
−
∑
i

1{x(i,i+|k|)=10} +
∑
i

{
1− (1− ε)

∑
j<i x(j)

}
1{x(i,i+|k|)=10}

−ε
∑
i

f εi (x)1{x(i,i+|k|)=10}

=

|k|−1∑
n=1

(
I01n (x)− I10n (x)

)
− I10|k|(x)

−ε
∑
i

f εi (x)

|k|−1∑
n=1

(
1{x(i)=0} − 1{x(i+n)=0}

)
,

= 1
2

(
k2 − I|k|(x)

)
− εRεk(x),

(2.44)
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where in the last equality we have used the summation by parts formula (2.31) and then (2.34)
as follows

|k|−1∑
n=1

∑
i

f εi (x)
(
1{x(i)=0} − 1{x(i+n)=0}

)
=

|k|−1∑
n=1

∑
i

(
f εi (x)− f εi−n(x)

)
1{x(i)=0}

=
∑
i

|k|−1∑
n=1

n∑
m=1

(1− ε)
∑

j<i−m x(j)1{x(i−m,i)=01}

=
∑
i

|k|−1∑
m=1

|k|−1∑
n=m

(1− ε)
∑

j<i x(j)1{x(i,i+m)=01}

=
∑
i

|k|−1∑
m=1

(1− ε)
∑

j<i x(j)(|k| −m)1{x(i,i+m)=01}.

(2.45)

Since I−k(x) = Ik(x) according to the definition (2.4), by (2.44), we see that (2.24) holds also
for k < 0.

In order to obtain the inequality (2.7) when ε ∈ (0, 1), let i0 := inf{i ∈ Z : x(i) = 1} and
inductively let in := inf{i > in−1 ∈ Z : x(i) = 1}, i.e., i0, i1, . . . are the positions of the first,
second etc. 1, coming from the left. Thus, by counting from the left to right, for k > 0,

Rεk(x) =
∞∑
n=0

(1− ε)n
k−1∑
m=1

(k −m)1{x(in−m)=0}

=
∞∑
n=0

(1− ε)n
( k−1∑
m=1

(k −m)−
k−1∑
m=1

(k −m)1{x(in−m)=1}

)
≥
∞∑
n=0

(1− ε)n
(
1
2k(k − 1)− kn

)
= 1

2ε
−1k(k − 1)− ε−2(1− ε)k,

(2.46)

where in the inequality we bounded
∑k−1

m=1(k −m)1{x(in−m)=1} by k
∑k−1

m=1 1{x(in−m)=1} and
then used that there are at most n 1’s on the left of site in, and in the last equality we used
the identity

∑∞
n=0(1− ε)nn = ε−2(1− ε). Inserting (2.46) into (2.24), we obtain, for ε > 0,

Gεkh
ε(x) ≤ 1

2

(
k2 − Ik(x)

)
−
(
1
2k

2 − 1
2k − ε

−1k + k
)
≤ ε−1k − 1

2Ik(x) (k > 0). (2.47)

Using this and combining it for k < 0 with the more elementary estimate Rεk(x) ≥ 0 in (2.24),
and summing over k, we then obtain (2.7).

2.4 Proof of Lemma 2.5

Though Lemma 2.5 under condition (A) is exactly Lemma 3 of [SS08b], we cannot follow
the proof there to show our result under condition (B). More precisely, the estimate (3.24)
in [SS08b] cannot be used in case (B) due to the loss of finite second moment. Instead, our
proof uses different estimates, see Lemmas 2.7 and 2.8 below, which turn out to work for the
lemma under condition (A) as well.

Let us recall from (2.36) that I10k (x) =
∣∣{i : x(i, i+ k) = 10}

∣∣.
Lemma 2.7 (Bound on number of inversions) Let x ∈ S01

int and I10n (x) be as in (2.4).
Then for any 0 ≤ n < m,

|I10m (x)− I10n (x)| ≤ (m− n)I101 (x). (2.48)
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Proof. Suppose the interface of x consists of K blocks of consecutive 1’s and K blocks of
consecutive 0’s as follows.

· · · 0000000000 1111 · · · 1111︸ ︷︷ ︸
1st 1 block

1st 0 block︷ ︸︸ ︷
0000 · · · 0000 · · · · · · · · · 1111 · · · 1111︸ ︷︷ ︸

K-th 1 block

K-th 0 block︷ ︸︸ ︷
0000 · · · 0000 1111111111 · · ·

It is straightforward to see that I101 (x) = K. Suppose that the k-th block of consecutive 1’s is
from site ik to site jk. Then

I10n (x) =

K∑
k=1

jk∑
s=ik

1{x(s+n)=0}, (2.49)

and therefore for 0 < n < m,

∣∣I10m (x)− I10n (x)
∣∣≤ K∑

k=1

∣∣ jk∑
s=ik

1{x(m+s)=0} −
jk∑
s=ik

1{x(n+s)=0}
∣∣

=
K∑
k=1

∣∣ m∑
s=n+1

1{x(jk+s)=0} −
m−1∑
s=n

1{x(ik+s)=0}
∣∣

≤
K∑
k=1

m∑
s=n+1

∣∣1{x(jk+s)=0} − 1{x(ik+s−1)=0}
∣∣

≤
K∑
k=1

(m− n) = (m− n)I101 (x).

(2.50)

In particular, when n = 1 < m, (2.50) implies that

|I10m (x)− I101 (x)| ≤ (m− 1)I101 (x), (2.51)

which results in
I10m (x) ≤ mI101 (x). (2.52)

The last inequality is nothing but (2.48) for the case of n = 0 < m, and thus the proof is
complete.

The following lemma bounds uniformly the expected number of 1-boundaries I1 from (2.4).

Lemma 2.8 (Bound on 1-boundaries) Let
∑

k a(k)|k| <∞. Let (Xε
t )t≥0 be a biased voter

model starting from a fixed configuration x ∈ S01
int. Then

sup
ε∈[0,1)

E
[
I1(X

ε
t )
]
≤ I1(x)eCt, (2.53)

where C := 2
∑

k 6=0 a(k)|k − 1|.

Remark 2.9 Below in Lemma 3.2, we also give a bound on the expected number of 1-
boundaries under the invariant law. Although the statements are similar, the proofs of Lem-
mas 2.8 and 3.2 are completely different.

Proof. We will couple the process
(
I1(X

ε
t )
)
t≥0 to a branching process (Zt)t≥0 in such a way

that I1(X
ε
t ) ≤ Zt for all t ≥ 0. The left-hand side of (2.53) can then be uniformly bounded

from above by the expectation of Zt, which in turn can be upper bounded by the right-hand
side of (2.53). To see the coupling, note that whenever an infection of the biased voter model
increases the number of 1-boundaries, it must jump across at least one 1-boundary and end
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at least a distance two from this 1-boundary. For each 1-boundary the rate of infections that
cross it in this way is

∑
k 6=0 a(k)|k − 1|. Since a single infection increases the number of 1-

boundaries at most by 2, we can a.s. bound I(Xε
t ) from above by a branching process (Zt)t≥0

started in Z0 = I1(x), where each particle produces two offspring with rate
∑

k 6=0 a(k)|k − 1|,
leading to the bound (2.53).

Proof of Lemma 2.5. By standard theory, for a bounded function f with bounded Gεf ,

Mt(f) := f(Xε
t )−

∫ t

0
Gεf(Xε

s )ds (t ≥ 0) (2.54)

is a martingale. Although the weighted number of inversions hε is not bounded from above,
with a bit extra work we can see that (2.9) still holds by a truncation-approximation argument
as in [SS08b]. Let (Xε,K

t )t≥0 be the process with the same initial state Xε,K
0 = Xε

0 and
truncated kernel aK(k) := 1{|k|≤K}a(k) (k ∈ Z). Recall that L(x), defined in (2.1), denotes
the interface length of a configuration x ∈ S01

int. Define stopping times

τK,N := inf{t ≥ 0 : L(Xε,K
t ) > N} and τN := inf{t ≥ 0 : L(Xε

t ) > N}. (2.55)

Let Gε,K denote the generator from (1.1) with the kernel a replaced by aK . For fixed K and
N , since L(Xε,K

t ) is bounded by K +N for all t ≤ τK,N , and hε(x) ≤ h0(x) where the latter
is further bounded by L(x)2, the interface length squared, we conclude that

MK,N
t := hε(Xε,K

t∧τK,N
)−

∫ t∧τK,N

0
Gε,Khε(Xε,K

s )ds (t ≥ 0) (2.56)

is a martingale, which yields

0 ≤ E[hε(Xε,K
t∧τK,N

)] = E[hε(Xε,K
0 )] + E

[ ∫ t∧τK,N

0
Gε,Khε(Xε,K

s )ds
]
. (2.57)

We will take limits as N,K →∞. Since Xε,K
0 = Xε

0 , the lemma would follow once we show

lim
N→∞

lim
K→∞

E
[ ∫ t

0
1{s<τK,N}G

ε,Khε(Xε,K
s )ds

]
= E

[ ∫ t

0
Gεhε(Xε

s )ds
]
. (2.58)

First observe that we can couple Xε and Xε,K such that there exists a random K0 so that
if K > K0, then τK,N = τN and Xε,K

t = Xε
t for all t ≤ τN . In particular, almost surely,

lim
K→∞

τK,N = τN and lim
K→∞

Xε,K(s)1{s<τK,N} = Xε(s)1{s<τN}. (2.59)

Next we note that almost surely, limN→∞ τN =∞. Indeed, if

as(k) := 1
2

(
a(k) + a(−k)

)
(2.60)

denotes the symmetrization of a(·), then we can further couple Xε and Xε,K with a uni-
directional random walk S with increment rate q(n) :=

∑∞
k=n 2as(k) (n ≥ 1) and S0 = L(Xε

0),

such that L(Xε
t ) ≤ St and L(Xε,K

t ) ≤ St for all t ≥ 0. It is then not hard to see that
limN→∞ τN =∞ almost surely.

Now recall that, similar to the expression (2.5) for Gεhε(x), we have

Gε,Khε(Xε,K
s )1{s<τK,N} =

∑
k

1{s<τK,N}1{|k|≤K}a(k)
(
1
2k

2 − εRεk(Xε,K
s )− 1

2Ik(X
ε,K
s )

)
. (2.61)
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Since τK,N → τN , τN →∞, and Xε,K(s)→ Xε(s), we see that for each s ∈ [0, t], k ∈ Z, and
almost surely, as first K →∞ and then N →∞, the summand above converges to

a(k)
(
1
2k

2 − εRεk(Xε
s )
)
− 1

2a(k)Ik(X
ε
s ), (2.62)

the sum of which over k gives Gεhε(Xε
s ). We will extend this pointwise convergence to the

convergence of their integral with respect to E
[ ∫ t

0 ds
∑

k ·
]

in (2.58).

We first treat the contribution from Ik(X
ε,K
s ) in (2.61). Note that by (2.37) and Lemma 2.7,

we have
Ik(X

ε,K
s ) = I10k (Xε,K

s ) + I01k (Xε,K
s ) ≤ |k|

(
1 + 2I101 (Xε,K

s )
)
. (2.63)

Recall that there exists a random K0 such that if K ≥ K0, then Xε,K
s = Xε

s for any s ≤ τK,N .

On the event K0 > K, we have I101 (Xε,K
s ) ≤ L(Xε,K

s ) + 1 ≤ N + 1 for all s < τK,N . Therefore

E
[
1{K0>K}

∫ t∧τK,N

0

∑
|k|≤K

a(k)Ik(X
ε,K
s )ds

]
≤ P

(
K0 > K

)∑
k

a(k)|k|
∫ t

0

(
3 + 2N

)
ds (2.64)

which tends to zero in the limit of first K →∞ and then N →∞.
On the event K0 ≤ K, because Xε,K

s = Xε
s for s < τN and τK,N = τN , we have

1{K0≤K}1{s<τK,N}1{|k|≤K}a(k)Ik(X
ε,K
s ) ≤ a(k)|k|

(
1 + 2I101 (Xε

s )
)
, (2.65)

where the right hand side is integrable with respect to E
[ ∫ t

0 ds
∑

k ·
]

by Lemma 2.8, and the
left hand side converges pointwise to a(k)Ik(X

ε
s ) as first K →∞ and then N →∞. Therefore

by dominated convergence, together with (2.64), we obtain

lim
N→∞

lim
K→∞

E
[ ∫ t

0
1{s<τK,N}

1
2

∑
|k|≤K

a(k)Ik(X
ε,K
s )ds

]
= E

[ ∫ t

0

1
2

∑
k

a(k)Ik(X
ε
s )ds

]
. (2.66)

To treat the contribution from 1
2k

2 − εRεk(X
ε,K
s ), we note that by the expression (2.6) for

Rεk(x), it is easy to see that

εRεk(x) ≤ ε
∞∑
i=1

(1− ε)i−1
|k|−1∑
n=1

n = 1
2 |k|(|k| − 1), hence 1

2k
2 − εRεk(Xε,K

s ) ≥ 1
2 |k|. (2.67)

On the other hand, by the lower bound (2.46) on Rεk(x) when k > 0 and the fact that Rεk(x) ≥ 0
when k < 0, we have

1
2k

2 − εRεk(Xε,K
s ) ≤ 1{k<0}

1
2a(k)k2 + 1{k>0}ε

−1a(k)k, (2.68)

which is integrable with respect to E
[ ∫ t

0 ds
∑

k ·
]

by either condition (A) or (B), while the left
hand side converges pointwise to 1

2k
2−εRεk(Xε

s ) as first K →∞ and then N →∞. Dominated
convergence theorem can then be applied, which together with (2.66), implies (2.58).

Remark 2.10 If we assume the kernel a(·) has finite third moment, then we can prove that
the process Mt(h

ε) = hε(Xε
t ) −

∫ t
0 G

εhε(Xε
s )ds is a martingale. To prove this, we only need

to check the uniform integrability of
(
hε(Xε,K

t∧τK,N
)
)

in K and N , because then we can take

the limit on the left-hand side of (2.57) as well, and the equality in (2.57) remains valid as
K →∞ and then N →∞. Recall that the uni-directional random walk S has increment rate
q(n) =

∑∞
k=n 2as(n) whose second moment is now finite since

E
[
(St − S0)2

]
≤ t
∑
n

q(n)n2 ≤ t
∑
k

a(k)|k|3 <∞. (2.69)
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The uniform integrability thus follows from the fact that

hε(Xε,K
t∧τK,N

) ≤ h0(Xε,K
t∧τN ) ≤ L(Xε,K

t∧τK,N
)2 ≤ S2

t a.s., (2.70)

where in the third inequality we used L(Xε,K
t∧τN ) ≤ St∧τN ≤ St.

In particular, for the unbiased voter model (X0
t )t≥0, the process (Mt(h

0))t≥0 is a martin-
gale. We claim, however, if we replace h0 by hM , the number of inversions within distance M ,
formally defined by

hM (x) :=
∣∣{(i, j) : 0 < j − i ≤M, x(i, j) = 10}

∣∣, (2.71)

then a finite second moment assumption would suffice to imply that Mt(hM ) is a martingale,
and therefore

E
[
hM (X0

t )
]
− E

[
hM (X0

0 )
]

= E
[ ∫ t

0
G0hM (X0

s )ds
]
. (2.72)

Indeed, since the inversion pairs must be inside the interface and each particle in the interface
contributes to at most 2M pairs of inversions, for any x ∈ S01

int we have

hM (x) ≤ 2ML(x). (2.73)

Thus the uniform integrability of
(
hM (X0,K

t∧τK,N
)
)

follows from

hM (X0,K
t∧τK,N

) ≤ 2ML(X0,K
t∧τK,N

) ≤ 2MSt a.s. and E[St] <∞, (2.74)

which only requires a to have finite second moment. Therefore, in order to show thatMt(hM ) is
a martingale, it remains to check the uniform integrability of

∫ t∧τK,N

0 G0,KhM (X0,K
s )ds. Using

the expression of G0,KhM in (3.24) below, one only needs to show the uniform integrability of∫ t∧τK,N

0

( ∞∑
n=1

AK(n)I10M+n(X0,K
s )−

∞∑
n=1

AK(n)I10M−1−n(X0,K
s )

)
ds (K,N ≥ 1) (2.75)

where AK(n) =
∑∞

k=n

(
aK(k) + aK(−k)

)
. Estimating I10M+n ≤ IM+n ≤ (M + n)I1 and

I10M−1−n ≤ IM−1−n ≤ |M−1−n|I1 and using Lemma 2.8, one gets that the first moment of A(·),
or equivalently, the second moment of a(·), being finite guarantees the uniform integrability of
the terms in (2.75). Thus the equality (2.72) has been proved, which we state as the following
lemma. This result will be used in the proof of Proposition 3.7 later on.

Lemma 2.11 Let the voter model (X0
t )t≥0 start from a fixed configuration X0

0 = x ∈ S01
int,

and let hM denote the number of inversions within distance M as in (2.71). Assume that∑
k a(k)k2 <∞. Then for any t ≥ 0,

E
[
hM (X0

t )
]
− E

[
hM (X0

0 )
]

= E
[ ∫ t

0
G0hM (X0

s )ds
]
. (2.76)

2.5 Proof of Lemma 2.6

We fix ε ∈ [0, 1) throughout the proof. We only state the proof for S01
int, the proof for S10

int

being the same. We start by proving the statement for k = 1. Let (Xε
t )t≥0 be started in an

initial state Xε
0 = x ∈ S01

int and consider the “boundary process” (Yt)t≥0 defined as

Yt(i) := Xε
t (i+ 1)−Xε

t (i) (i ∈ Z, t ≥ 0). (2.77)

The assumption
∑

k a(k)|k| <∞ guarantees that a.s. Xε
t ∈ S01

int for all t ≥ 0 and hence (Yt)t≥0
is a Markov process in the space of all configurations y ∈ {−1, 0, 1}Z such that

∑
i |y(i)| is
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odd (and finite) and
∑

i:i≤j y(i) ∈ {0, 1} for all j ∈ Z. For any such configuration, we set
|y| :=

∑
i |y(i)|. Then |Yt| = I1(X

ε
t ) (t ≥ 0).

In the special case that ε = 0, the process (Zt)t≥0 defined as Zt(i) := |Yt(i)| is also a
Markov process, and in fact a cancellative spin system. In this case, we can apply [SS08a,
Proposition 13] to conclude that

lim
T→∞

1

T

∫ T

0
dtP

[
|Yt| ≤ N

]
= 0 (N <∞). (2.78)

We describe this in words by saying that for each N , the process spends a zero fraction of time
in states y with |y| ≤ N . In the biased case ε > 0, the process (Zt)t≥0 is no longer a Markov
process, but we claim that the proof of [SS08a, Proposition 13] can easily be adapted to show
that (2.78) still holds. To demonstrate this, we go through the main steps of that proof and
show how to adapt them to our process (Yt)t≥0.

The main ingredient in the proof of [SS08a, Proposition 13] is formula (3.54) of that paper,
which for our process must be reformulated as

inf
{
Py[|Yt| = n] : |y| = n+ 2, y(i) 6= 0 6= y(j) for some i 6= j, |i− j| ≤ L

}
> 0 (2.79)

for all t > 0, L ≥ 1, and n = 1, 3, 5, . . .. Let us call a site i ∈ Z such that Yt(i) 6= 0 a boundary
of Xε

t . Then (2.79) says that if Xε
t contains n + 2 boundaries of which two are at distance

≤ L of each other, then there is a uniformly positive probability that after time t the number
of boundaries has decreased by 2.

The assumption that interface tightness for Xε
t does not hold on S01

int implies that (2.78)
holds for N = 1. The proof of (2.78) now proceeds by induction on N . Imagine that (2.78)
holds for N . Then it can be shown that (2.79) implies that for each L ≥ 1, the process spends
a zero fraction of time in states y with |y| = N + 2 which contain two boundaries at distance
≤ L of each other. Now imagine that (2.78) does not hold for N + 2. Then for each L ≥ 1,
the process must spend a positive fraction of time in states y with |y| = N + 2 but which do
not contain two boundaries at distance ≤ L of each other.

If L is large, then each boundary evolves for a long time as a process started in a heaviside
initial state, either of type 01 or of type 10, without feeling the other boundaries, which are
far away. By our assumption that interface tightness on S01

int does not hold, the boundaries of
type 01 are unstable in the sense that they will soon split into three or more boundaries and
on sufficient long time scales spend most of their time being three or more boundaries, rather
than one. With some care, it can be shown that this implies that the process spends a zero
fraction of time in states y with |y| = N + 2, completing the induction step. This argument
is written down more carefully in [SS08a]. Formula (3.65) of that paper has to be slightly
modified in our situation since we only know that the boundaries of type 01 are unstable. So
instead of producing at least 3(N + 2) boundaries with probability at least (1 − 2ε)N+2, in
our case, we produce at least 3(N + 3)/2 + (N + 1)/2 boundaries with probability at least
(1− 2ε)(N+3)/2, since of the N + 2 boundaries there are (N + 3)/2 of type 01 and (N + 1)/2
of type 10.

Translated back to the biased voter model (Xε
t )t≥0 started in an initial state Xε

0 = x ∈ S01
int,

formula (2.78) says that

lim
T→∞

1

T

∫ T

0
P[I1(X

ε
t ) < N ]dt = 0 (N <∞). (2.80)

To deduce (2.10) from (2.80), it suffices to prove that for any k,M ≥ 1 and s > 0,

lim
N→∞

inf
Xε

0 :I1(X
ε
0)≥N

P[Ik(X
ε
s ) < M ] = 0. (2.81)
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For if (2.81) holds, then for any s, δ > 0, there exists N large enough such that the infimum in
(2.81) is less than δ, which, letting the process in (2.80) evolve for some extra time s implies
that

lim sup
T→∞

1

T

∫ T

0
P[Ik(X

ε
t+s) < M ] < 2δ (M ≥ 1). (2.82)

As δ is arbitrary, (2.10) is obtained.
It remains to show (2.79) and (2.81). Both of them can be proved by directly constructing

specific paths with positive probabilities, by constructions very similar to those in the proof
of [SS08b, Prop. 4].

3 Continuity of the invariant law

3.1 Proof outline

As a positive recurrent Markov chain on the countable state space S
01
int, the biased voter

model modulo translations has a unique invariant law νε. This section is devoted to showing
Theorem 1.3, namely the weak convergence νε ⇒ ν0 with respect to the discrete topology

on S
01
int.

Recall that S
01
int is the set of equivalence classes of elements of S01

int that are equal up to
translations. It will be convenient to choose a representative from each equivalence class by

shifting the leftmost one to the origin. Since each equivalence class x ∈ S01
int contains a unique

element x in the set

Ŝ01
int := {x ∈ S01

int : x(i) = 0 for all i < 0 and x(0) = 1}, (3.1)

we can identify S
01
int with Ŝ01

int. Under this identification, νε on S
01
int uniquely determines a

probability measure νε on {0, 1}Z that is supported on Ŝ01
int. We let Xε

∞ denote a random
variable with law νε.

If we could show tightness for the length L(Xε
∞) of the interface (as defined in (2.1)),

then it would be relatively straightforward to prove weak continuity of the map ε 7→ νε with
respect to the discrete topology on Ŝ01

int. Unfortunately, our proof of interface tightness gives
us very little direct control on L(Xε

∞). However, our methods can be used to give a uniform
upper bound for the expected number of boundaries I1(X

ε
∞) (as defined in (2.4)) and this is

sufficient to prove weak continuity of the map ε 7→ νε with respect to the product topology
on Ŝ01

int.
We do not know if the map ε 7→ νε is continuous with respect to the discrete topology on

Ŝ01
int, but we can establish continuity at ε = 0 by a rather subtle argument. Let εn ↓ 0 and

assume that νεn ⇒ ν0 with respect to the product topology on Ŝ01
int but not with respect to the

discrete topology. Then, with positive probability, Xεn
∞ must contain boundaries that “walk

away to infinity” as εn ↓ 0. We can rule out this scenario by proving that it would violate the
equilibrium equation E[G0h0(X0

∞)] = 0, which determines the expected value of the weighted
number of k-boundaries in the equilibrium voter model interface (cf. 3.2). In this way, we
can prove Theorem 1.3 which indirectly also establishes tightness for the length L(Xεn

∞ ) of the
interface along any sequence εn ↓ 0.

The rest of this section is organized as follows. In Subsection 3.2 we derive a uniform
upper bound on the expected number of boundaries I1(X

ε
∞), and in Subsection 3.3, we use

this to prove weak continuity of the map ε 7→ νε with respect to the product topology on Ŝ01
int.

In Subsection 3.4, we establish the equilibrium equation E[G0h0(X0
∞)] = 0, which is rather

nontrivial in itself since the function h0 is not bounded. Once this is done, however, the proof
of Theorem 1.3 in Subsection 3.5 is quite short.
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3.2 Bound on the number of boundaries

The following lemma is our basic tool for controlling the number of boundaries of an equi-
librium interface. We note that in Proposition 3.7 below, when we establish the equilibrium
equation E[G0h0(X0

∞)] = 0, we will see that for ε = 0, (3.2) is in fact an equality and this fact
will be key to our proof of Theorem 1.3.

Lemma 3.1 (Bound on k-boundaries) For ε ∈ [0, 1), let Xε
∞ denote a random variable

with law νε as in Subsection 3.1. Then

E
[ ∞∑
k=1

as(k)Ik(X
ε
∞)
]
≤ 1

2σ
2, (3.2)

where Ik is defined in (2.4), as(k) = 1
2

(
a(k) + a(−k)

)
and σ2 =

∑
k a(k)k2.

Proof. Let the biased voter model (Xε
t )t≥0 start from the heaviside initial state Xε

0 = x0 as
in (1.4). For ε ∈ (0, 1), recall from (2.3) that

hε(x) =
∑
i>j

(1− ε)
∑

n<j x(n)1{x(j,i)=10}. (3.3)

Hence hε(Xε
0) ≡ 0. By Lemma 2.2 and Lemma 2.5,∫ t

0
E
[ ∞∑
k=1

as(k)
(
k2 − Ik(Xε

s )
)]

ds ≥
∫ t

0
E
[
Gεhε(Xε

s )
]
ds ≥ 0 (t > 0). (3.4)

Dividing both sides of (3.4) by t and then letting t→∞, we arrive at (3.2) by Fatou’s lemma,
since X

ε
t converges weakly to X

ε
∞.

Lemma 3.2 (Bound on 1-boundaries) There exists a constant C <∞ such that

sup
ε∈[0,1)

E
[
I1(X

ε
∞)
]
≤ C. (3.5)

Proof. Fix t > 0, and choose k ≥ 1 such that as(k) > 0. For a biased voter model started in
an initial state x such that x(i, i + 1) = 10, using the irreducibility of the kernel a, it is easy
to see that there is a positive probability p that the 1 at i spreads its type to i− k + 1 while
leaving the zero at i+ 1 as it is. Since this event only requires 1’s to spread, this probability
is uniform in the bias ε. Therefore, letting (Xε

t )t≥0 denote the biased voter model started in
the initial state νε,

E
[
I101 (Xε

0)
]

=
∑
i

E
[
1Xε

0(i,i+1)=10

]
≤
∑
i

1

p
E
[
1Xε

t (i−k+1,i+1)=10

]
=

1

p
E
[
I10k (Xε

t )
]
. (3.6)

Since the law of Xε
t modulo translations does not depend on t, the claim now follows from

Lemma 3.1.

3.3 Continuity with respect to the product topology

In this subsection we prove the following theorem.

Theorem 3.3 (Continuity with respect to the product topology) Assume that the
kernel a is irreducible and satisfies

∑
k a(k)k2 <∞. Equip {0, 1}Z with the product topology.

Then the map [0, 1) 3 ε 7→ νε is continuous with respect to weak convergence of probability
measures on {0, 1}Z.
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To prepare for the proof of Theorem 3.3, we need a few lemmas. Let (Xε
t )t≥0 denote the

biased voter model started in the initial state νε. At time t ≥ 0, denote the position of the
leftmost 1 and rightmost zero by lεt and rεt , that is,

lεt := min{i : Xε
t (i) = 1} and rεt := max{i : Xε

t (i) = 0} (t ≥ 0). (3.7)

For i ∈ Z, define a shift operator θi

θi(x)(j) := x(i+ j) (i, j ∈ Z, x ∈ S01
int). (3.8)

Then θlt(X
ε
t ) has law νε for all t ≥ 0.

Our strategy for proving Theorem 3.3 is as follows. Fix εn, ε
∗ ∈ [0, 1) such that εn → ε∗.

Since the space {0, 1}Z is compact, tightness comes for free so by going to a subsequence if
necessary, we can assume that νεn ⇒ ν∗ for some probability measure ν∗ on {0, 1}Z. Using
Lemma 3.2, we see that each subsequential limit ν∗ is concentrated on S01

int. Using convergence
of the generators, general arguments tell us that (Xεn

t )t≥0 converges to the voter model (X∗t )t≥0
with initial law ν∗. This is Lemma 3.4 below. Next, in Lemma 3.6, we show that for any
fixed t, the family (lεt )ε∈[0,1) is tight. Using this, we can show that ν∗ is an invariant law for
the process modulo translations. Since this invariant law is unique, ν∗ = νε∗ , establishing the
continuity of the map ε 7→ νε.

Lemma 3.4 (Convergence as a process) Equip {0, 1}Z with the product topology. Assume
that εn → ε∗ ∈ [0, 1) are such that νεn ⇒ ν∗ for some probability measure ν∗ on {0, 1}Z. Then

P
[
Xεn
t ∈ ·

]
=⇒
n→∞

P
[
X∗t ∈ ·

]
(t ≥ 0), (3.9)

where Xεn
0 has law νεn, and (X∗t )t≥0 is the voter model with bias ε∗ and initial law ν∗.

Proof. By [Lig85, Theorem 3.9], for each ε ∈ [0, 1), the generator Gε in (1.1) is well-defined
for any function f ∈ D with

D :=
{
f :
∑
i∈Z

sup
x∈{0,1}Z

∣∣f(x+ ei)− f(x)
∣∣ <∞}, (3.10)

and the closure of the generator Gε with domain D generates a Feller semigroup. By [Kal97,
Theorem 17.25], for (3.9) it suffices to check that ‖Gεnf −Gε∗f‖∞ → 0 for all f ∈ D, where
‖ · ‖∞ denotes the supremum norm. This follows by writing∣∣Gεnf(x)−Gε∗f(x)

∣∣= |εn − ε∗| · ∣∣∣∑
k 6=0

a(k)
∑
i

1x(i−k,i)=01

{
f(x− ei)− f(x)

}∣∣∣
≤ |εn − ε∗| ·

∑
k 6=0

a(k)
∑
i∈Z

∣∣f(x− ei)− f(x)
∣∣. (3.11)

Our next aim is to show that the position lεt of the leftmost 1 is tight in the bias parameter
ε. We need the following simple fact.

Lemma 3.5 (Stationary increments) Let X and Y be real random variables that are equal
in distribution, and assume that E

[
(Y −X)∨0] <∞. Then E

[
|Y −X|

]
<∞ and E[Y −X] = 0.

Proof. It suffices to show that E
[
(X−Y )∨0

]
= E

[
(Y −X)∨0

]
. For any real random variable

Z and constant c > 0, write Zc := Z ∧ c and Zc := Z ∨ (−c). Then E[Xn
n −Y n

n ] = 0 and hence
E
[
(Xn

n − Y n
n ) ∨ 0

]
= E

[
(Y n
n −Xn

n ) ∨ 0
]
. By monotone convergence

E
[
(Xn

n − Y n
n ) ∨ 0

]
= E

[
1{−n<X}1{Y <n}(X

n − Yn) ∨ 0
]
−→
n→∞

E
[
(X − Y ) ∨ 0

]
, (3.12)

and similarly E
[
(Y n
n −Xn

n ) ∨ 0
]

converges to E
[
(Y −X) ∨ 0

]
.
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Lemma 3.6 (Expected displacement of the leftmost one) There exists a constant
C <∞ such that uniformly in ε ∈ [0, 1) and t ≥ 0,

E
[
|lεt |
]
≤ Ct. (3.13)

Proof. We first lower bound lεt . Since for any ε ∈ [0, 1), the rate that (lεt )t≥0 jumps to the left
by k (k > 0) is given by

∑
n≥0 1{Xε

t (l
ε
t+n)=1}a(−n− k), we can couple it with a uni-directional

random walk (St)t≥0 started in S0 = 0 with increment rate q(k) :=
∑

n≥0 a(−n− k) for k < 0
and q(k) = 0 for k > 0, such that St ≤ lεt for all t ≥ 0 almost surely. This gives the estimate

E
[
(−lεt ) ∨ 0

]
≤ E[|St|] = t

∑
k≥0

k
∑
n≥0

a(−n− k) = t
∑
k≥1

a(−k)12k(k + 1). (3.14)

The same argument applied to the rightmost zero gives

E
[
(rεt − rε0) ∨ 0

]
≤ t

∑
k≥1

a(k)12k(k + 1). (3.15)

Together, these estimates show that

E
[{

(rεt − lεt )− rε0
}
∨ 0
]
<∞, (3.16)

so we can apply Lemma 3.5 to the equally distributed random variables (rεt − lεt ) and rε0 to
conclude that

E
[
(rεt − lεt )− rε0

]
= 0. (3.17)

Formulas (3.14) and (3.15) show that E[lεt ] is well-defined (but may be +∞) and also E[rεt −rε0]
is well-defined (but may be −∞), so (3.17) tells us that E[lεt ] = E

[
rεt − rε0

]
. This gives

E
[
lεt ∨ 0

]
− E

[
(−lεt ) ∨ 0

]
= E[lεt ] = E[rεt − rε0]

= E
[
(rεt − rε0) ∨ 0

]
− E

[
(rε0 − rεt ) ∨ 0

]
≤ E

[
(rεt − rε0) ∨ 0

]
,

(3.18)

and hence

E
[
|lεt |
]

= E
[
lεt ∨ 0

]
+ E

[
(−lεt ) ∨ 0

]
≤ E

[
(rεt − rε0) ∨ 0

]
+ 2E

[
(−lεt ) ∨ 0

]
≤ Ct (3.19)

with C =
∑

k≥1
[
a(−k) + 1

2a(k)
]
k(k + 1).

Proof of Theorem 3.3. Let εn, ε
∗ ∈ [0, 1) and εn → ε∗. We need to show that νεn ⇒ νε∗ .

Since the space {0, 1}Z is compact under the product topology, tightness comes for free, so
without loss of generality we may assume that νεn ⇒ ν∗ for some probability measure ν∗ on
{0, 1}Z. By Lemma 3.2, ν∗ is concentrated on S01

int. Let (Xεn
t )t≥0 denote the voter model

with bias εn started in νεn . Using again the compactness of {0, 1}Z, as well as the fact that
by Lemma 3.6, the laws of the random variables (lεnt )n≥1 are tight, going to a subsequence if
necessary, we can without loss of generality assume that (Xεn

t , lεnt ) converges in law to some
random variable (X∗t , l

∗
t ). By Skorohod’s representation theorem, we can find a coupling such

that the convergence is almost sure. From this, it is easy to see that l∗t = min{i : X∗t (i) = 1}.
By Lemma 3.4, X∗t is distributed as the voter model with bias ε∗, started in ν∗, and evaluated
at time t. Since

θlεnt

(
Xεn
t

)
−→
n→∞

θl∗t
(
X∗t
)

a.s. (3.20)

and the left-hand side of this equation has law νεn for each t ≥ 0, we see that ν∗ is an invariant
law for the voter model with bias ε∗ as seen from the leftmost one. By the uniqueness of the
latter (here we are using 2.1), we conclude that ν∗ = νε∗ .
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3.4 Equilibrium equation

In this subsection, we will only consider the unbiased voter model, and the main purpose is
to establish the equilibrium equation (3.22) below, which shows that (3.2) holds with equality
if ε = 0. For brevity, throughout this section we drop the superscript indicating the bias, for
example, the generator G0 is abbreviated by G. Let X∞ be a random variable taking values
in the space Ŝ01

int from (3.1) with law ν0, i.e., min{i : X∞(i) = 1} = 0 and the law of X∞ is
stationary for the unbiased voter model modulo translations, that is, the law of X∞ is ν0.

Proposition 3.7 (Equilibrium equation) Assume that the kernel a has finite second mo-
ment σ2 =

∑
k a(k)k2 < ∞. Then, the following equilibrium equation for the voter model

holds,
E
[
Gh(X∞)

]
= 0, (3.21)

where h = h0 is the number of inversions (2.2). Or equivalently, by the expression of Gh in
(2.5), we have

E
[ ∞∑
k=1

as(k)Ik(X∞)
]

= 1
2σ

2, (3.22)

where as(k) = 1
2

(
a(k) + a(−k)

)
and Ik(x) = |{i : x(i) 6= x(i+ k)}|.

We briefly explain our proof strategy. If h(Xt) −
∫ t
0 Gh(Xs)ds were a martingale for any

deterministic initial configuration X0, and if E[h(X∞)] and E[|Gh(X∞)|] were finite, then the
equilibrium equation (3.21) would follow. However, two difficulties arise in this approach. As
shown in Remark 2.10, we can only prove that h(Xt)−

∫ t
0 Gh(Xs)ds is a martingale when a(·)

has finite third moment, as otherwise there is no control on the expected number of inversions
E[h(Xt)]. Worse still, since h is bounded from below by the length L of the interface and
E[L(X∞)] = ∞ by [CD95, Theorem 6] or [BMSV06, Theorem 1.4], we have E[h(X∞)] = ∞.
To bypass these difficulties, we will show that the equilibrium equation (3.21) holds for hM in
place of h, where

hM (x) =
∣∣{(i, j) : 0 < j − i ≤M, x(i, j) = 10}

∣∣ (3.23)

as defined in (2.71) is a truncation of h(x). We will then take the limit as M →∞ to deduce
(3.21). To deduce this last convergence, we will use the fact that the expected number of
1-boundaries E[I1(X∞)] is finite, by Lemma 3.2.

Our first step is to do a generator calculation for hM . Recall formula (2.8) for Gh, where
h is the number of inversions. The next lemma identifies GhM .

Lemma 3.8 For any x ∈ S01
int and M ∈ N, we have

GhM (x) =

∞∑
k=1

as(k)
(
k2 − Ik(x)

)
+

∞∑
n=1

A(n)I10M+n(x)−
∞∑
n=1

A(n)I10M−1−n(x), (3.24)

where A(n) :=

∞∑
k=n

(
a(k) + a(−k)

)
= 2

∞∑
k=n

as(k).

Proof. We use the generator decomposition G =
∑

k 6=0 a(k)Gk in (2.18), and separately
calculate GkhM for k > 0 and k < 0.

For k > 0, to calculate GkhM (x), we consider all triples (i, j, j−k) with |i−j| ≤M , where
an inversion in x(i, j) is either created or destroyed because x(j) changes its value to that of
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x(j − k). Therefore,

GkhM (x) =
∑
i

1{x(i)=1}

{
−

i+M∑
j=i+1

1{x(j−k,j)=10} +
i+M∑
j=i+1

1{x(j−k,j)=01}

}
+
∑
i

1{x(i)=0}

{ i−1∑
j=i−M

1{x(j−k,j)=10} −
i−1∑

j=i−M
1{x(j−k,j)=01}

}
=
∑
i

1{x(i)=1}

i+M∑
j=i+1

(
1{x(j−k)=0} − 1{x(j)=0}

)
+
∑
i

1{x(i)=0}

i−1∑
j=i−M

(
1{x(j−k)=1} − 1{x(j)=1}

)
,

(3.25)

where in the last equality we used (2.28). To further simplify this, we observe that for any
a, b1, b2, c ∈ Z with a < b1, b2 < c,

1{a<j≤b1} − 1{b2<j≤c} = 1{a<j≤b2} − 1{b1<j≤c} (j ∈ Z). (3.26)

Applying this to a = i− k, b1 = i, b2 = i+M − k, and c = i+M , we get

i+M∑
j=i+1

(
1{x(j−k)=0} − 1{x(j)=0}

)
=
∑
j∈Z

1{x(j)=0}
(
1{i−k<j≤i+M−k} − 1{i<j≤i+M}

)
=
∑
j∈Z

1{x(j)=0}
(
1{i−k<j≤i} − 1{i+M−k<j≤i+M}

)
=

k−1∑
n=0

(
1{x(i−n)=0} − 1{x(i+M−n)=0}

)
,

(3.27)
and similarly,

i−1∑
j=i−M

(
1{x(j−k)=1} − 1{x(j)=1}

)
=
∑
j∈Z

1{x(j)=1}
(
1{i−k−M≤j<i−k} − 1{i−M≤j<i}

)
=
∑
j∈Z

1{x(j)=1}
(
1{i−k−M≤j<i−M} − 1{i−k≤j<i}

)
=

k∑
n=1

(
1{x(i−M−n)=1} − 1{x(i−n)=1}

)
.

(3.28)
Substituting this into the right-hand side of (3.25), and then using the notation I01k , I

10
k and

Ik as in (2.4), we can rewrite (3.25) as

GkhM (x) =
∑
i

k−1∑
n=0

(
1{x(i−n,i)=01} − 1{x(i,i+M−n)=10}

)
+
∑
i

k∑
n=1

(
1{x(i−M−n,i)=10} − 1{x(i−n,i)=10}

)
=

k−1∑
n=1

I01n (x)−
k−1∑
n=0

I10M−n(x)−
k∑

n=1

I10n (x) +

k∑
n=1

I10M+n(x)

= 1
2

(
k2 − Ik(x)

)
+

k∑
n=1

(
I10M+n(x)− I10M−1−n(x)

)
.

(3.29)

where in the last equality we applied (2.37) to
∑k−1

n=1

(
I01n (x)− I10n (x)

)
− I10k (x).

Using symmetry, we now also easily obtain a formula for GkhM when k < 0. For any
x ∈ S01

int, define x′ ∈ S01
int by x′(i) := 1 − x(−i) (i ∈ Z). Then, for any function f : S01

int → R,
one has Gkf(x) = G−kf

′(x′), where f ′(x) := f(x′) (x ∈ S01
int). We observe that Ik(x) = Ik(x

′)
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and hence also hM (x) =
∑M

k=1 Ik(x) is symmetric in the sense that hM (x) = hM (x′) (x ∈ S01
int).

Combining these observations with (3.29), we obtain that for any k 6= 0

GkhM (x) = 1
2

(
k2 − I|k|(x)

)
+

|k|∑
n=1

(
I10M+n(x)− I10M−1−n(x)

)
. (3.30)

Inserting this into G =
∑

k 6=0 a(k)Gk, we have

GhM (x) =
∞∑
k=1

as(k)
(
k2 − Ik(x)

)
+ 2

∞∑
k=1

as(k)
k∑

n=1

(
I10M+n(x)− I10M−1−n(x)

)
. (3.31)

Interchanging the summation order, we obtain (3.24).

We are now ready to prove Proposition 3.7.

Proof of Proposition 3.7. Let (Xt)t≥0 be the voter model starting from some configuration
x ∈ S01

int. Under the second moment assumption, by (2.76) for any t > 0,

E
[
hM (Xt)

]
− hM (x) =

∫ t

0
E
[
GhM (Xs)

]
ds. (3.32)

Assume for the moment that both hM and GhM are absolutely integrable with respect to the
law of X∞. Then we can integrate both sides of (3.32) with respect to the invariant law to
get

E
[
GhM (X∞)

]
= 0. (3.33)

By letting M → ∞, we will see in the following that (3.33) implies (3.21), the equilibrium
equation for the voter model. Recalling the expression of GhM (x) in (3.24) and Gh(x) in
(2.8), we obtain from (3.33) that

E
[
Gh(X∞)

]
= E

[ ∞∑
k=1

as(k)
(
k2 − Ik(X∞)

)]
= E

[ ∞∑
n=1

A(n)I10M−1−n(X∞)−
∞∑
n=1

A(n)I10M+n(X∞)
]
,

(3.34)

where A(n) = 2
∑∞

k=n as(k). For n ≥M , by (2.4) and (2.37), we have

I10−(n+1−M)(x) = I01n+1−M (x) = I10n+1−M (x) + (n+ 1−M). (3.35)

Therefore, by Lemma 2.7,, we can bound the difference in the expectation in (3.34) by

∣∣ ∞∑
n=1

A(n)I10M−1−n(X∞)−
∞∑
n=1

A(n)I10M+n(X∞)
∣∣

≤
M−1∑
n=1

A(n)
∣∣I10M−1−n(X∞)− I10M+n(X∞)

∣∣
+

∞∑
n=M

A(n)
∣∣I10n+1−M (X∞) + (n+ 1−M)− I10M+n(X∞)

∣∣
≤

M−1∑
n=1

A(n)(2n+ 1)I101 (X∞) +

∞∑
n=M

A(n)
{
n+ 1−M + (2M − 1)I101 (X∞)

}
≤
∞∑
n=1

3nA(n)
(
1 + I101 (X∞)

)
.

(3.36)
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Due to the second moment assumption,
∑∞

n=1 nA(n) is finite, so applying Lemma 3.2 we see
that the right-hand side of (3.36) is bounded in expectation. As a result, the term in the
expectation on the right-hand side of (3.34) is in absolute value bounded by an integrable
random variable, uniformly in M . If this term moreover converges to zero pointwise as M
tends to ∞, then applying the dominated convergence theorem to (3.34), we will obtain the
equilibrium equation

E
[
Gh(X∞)

]
= 0. (3.37)

To see the pointwise convergence, note that for every x ∈ S01
int, there exists some Mx such that

Ik(x) = 0 for all |k| > Mx, and thus when M > Mx + 1,

∞∑
n=1

A(n)I10M−1−n(x)−
∞∑
n=1

A(n)I10M+n(x) =

Mx∑
k=−Mx

A(M − 1− k)Ik(x), (3.38)

where the right-hand side decreases to 0 since A(M − 1− k) ↓ 0 as M tends to ∞.
To complete the proof, it remains to show, for fixed M , the absolute integrability of hM

and GhM with respect to the invariant law. For the nonnegative function hM , by Lemmas 2.7
and 3.2,

E
[
hM (X∞)

]
= E

[ M∑
k=1

I10k (X∞)
]
≤ E

[ M∑
k=1

kI101 (X∞)
]
<∞. (3.39)

By using the expression of GhM in (3.24), Lemma 2.7, the fact that
∑∞

n=1A(n)n < ∞ since∑
k a(k)k2 <∞, and Lemma 3.2, it is also not hard to see that E

[∣∣GhM (X∞)
∣∣] <∞.

3.5 Proof of Theorem 1.3

For each ε ≥ 0, let Xε
∞ denote a random variable taking values in the space Ŝ01

int from (3.1)

with law νε. Since there is a one-to-one correspondence between Ŝ01
int and S

01
int, it suffices to

show that as ε ↓ 0, the measures νε converge weakly to ν0 with respect to the discrete topology
on Ŝ01

int. By Theorem 3.3, the measures νε converge weakly to ν0 with respect to the product
topology on {0, 1}Z. To improve this to convergence with respect to the discrete topology, it
suffices to show that for any εn ↓ 0, the laws of the random variables(

rεn∞
)
n≥1 (3.40)

are tight, where as in (3.7), we let rε∞ := max{i : Xε
∞(i) = 0} denote the position of the

rightmost zero of Xε
∞.

Assume that for some εn ↓ 0, the laws of the random variables in (3.40) are not tight.
Then going to a subsequence if necessary, we can find δ > 0 and (mN )N≥1 such that

P
[
rεn∞ > N

]
> δ (n ≥ mN ). (3.41)

For x ∈ S01
int and N ∈ Z, let

INk (x) :=
∣∣{i ≤ N : x(i) 6= x(i+ k)}

∣∣. (3.42)

Since Xε
∞(rε∞) 6= Xε

∞(rε∞ + k) for all k ≥ 1, by Lemma 3.1 and (3.41), we see that

E
[ ∞∑
k=1

as(k)INk (Xεn
∞ )
]
≤ 1

2σ
2 −Aδ (n ≥ mN ), (3.43)
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where A =
∑∞

k=1 as(k) > 0. Letting n → ∞, using weak convergence with respect to the
product topology (Theorem 3.3), we find that

E
[ ∞∑
k=1

as(k)INk (X0
∞)
]
≤ 1

2σ
2 −Aδ. (3.44)

Since INk ↑ Ik as N → ∞, this contradicts the equilibrium equation (3.22) from Proposi-
tion 3.7.
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