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Abstract

In this paper we use duality techniques to study a combination of the well-known contact
process (CP) [Har76, Lig99] and the somewhat less-known annihilating branching process
[BDD91]. As the latter can be seen as a cancellative version of the contact process, we
rebrand it as the cancellative contact process (cCP). Our process of interest will consist
of two entries, the first being a CP and the second being a cCP. We call this process the
double contact process (2CP) and prove that it has (depending on the model parameters)
at most one invariant law under which ones are present in both processes. In particular,
we can choose the model parameter in such a way that CP and cCP are monotonely
coupled. In this case also the above mentioned invariant law will have the property that,
under it, ones in the cCP can only be present at sites where there are also ones in the CP.
Along the way we extend the monoid dualities for Markov processes discovered in [LS22]
to processes on infinite state spaces so that they, in particular, can be used for interacting
particle systems.
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1 Introduction

1.1 Aim of the paper

After having identified in [LS22] a class of duality functions based on commutative monoids,
our aim for this present paper is to apply one of those dualities to a concrete process. To do
so we combine the contact process with its cancellative version, the process formerly known as
the annihilating branching process. The considerations in [LS22] indicate that this combined
process has a self-duality that we use here to characterise all invariant laws of the process.

To use the dualities discovered in [LS22], we first have to generalise the techniques presented
in [LS22] to infinite state spaces. This is done in Section 2 and is one of the main contributions
of the present paper.

Additionally, in Section 3, we give precise definitions and some first results towards the
goal of characterising all duality functions of the type considered in [LS22] that determine the
law of a process uniquely. This was posed as an open problem in [LS22, Section 1.5].

1.2 The processes of interest

We set T := {0, 1} and let T denote the space of all functions x : Zd → T . Moreover, we let
∨ and ⊕ denote the binary operators on T defined by the addition tables:

∨ 0 1

0 0 1
1 1 1

⊕ 0 1

0 0 1
1 1 0

In words, this says that x ∨ y is the maximum of x and y and x ⊕ y is the sum of x and y
modulo 2. For all i, j ∈ Zd, we define “infection maps” inf∗ij : T → T (∗ ∈ {∨,⊕}) and a
“death map” dthi : T → T as follows:

inf∗ij(x)(k) :=

{
x(i) ∗ x(j) if k = j,

x(k) else,
, dthi(x)(k) :=

{
0 if k = i,

x(k) else.
(1.1)

We let Ni := {j ∈ Zd : ‖i− j‖1 = 1} denote the set of nearest neighbours of a site i ∈ Zd and
write i ∼ j if i and j are nearest neighbours. We define formal generators

G∗f(x) := λ
∑
i∈Zd

∑
j∈Ni

{
f
(
inf∗ij(x)

)
− f

(
x
)}

+ δ
∑
i∈Zd

{
f
(
dthi(x)

)
− f

(
x
)}

(1.2)

for ∗ ∈ {∨,⊕}, where λ, δ ≥ 0 are model parameters. In words, we can describe the dynamics
of the process generated by G∗ (∗ ∈ {∨,⊕}) as follows:

• At each site i ∈ Zd sit two “exponential clocks”, one with rate 2dλ for reproduction and
one with rate δ for death.

• If the clock for reproduction at site i ∈ Z rings, the corresponding individual reproduces
by choosing a neighbouring site j uniformly at random and adding its local state to the
local state at j, where addition has to be interpreted in the sense of the operator ∗.

• If the “death clock” at site i rings, individual i dies which means that its local state is
replaced by 0, regardless of its previous value.

The process C = (Ct)t≥0 with generator G∨ is the well-known contact process on Zd with
infection rate λ and death rate δ (we denote this process shortly as CP(λ, δ)). The process
D = (Dt)t≥0 with generator G⊕, originally known as the annihilating branching process, we
refer to as the cancellative contact process (cCP(λ, δ)). We chose the new name to stress the
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similarity of the processes, which differ only in the type of operator used in the definition of
the infection maps inf∗ij (∗ ∈ {∨,⊕}).

We will be interested in joint processes, consisting of a CP and a cCP, that are coupled in
such a way that some of the infections and deaths happen for both processes at the same times.
It will be helpful to write the generator of the coupled process in a form similar to (1.2). To
achieve this, formally we define U := T ×T = {0, 1}×{0, 1} and equip U with Y, the product
operator of ∨ and ⊕ from above, i.e. (x, y)Y (v, w) := (x∨ v, y⊕w) for (x, y), (v, w) ∈ U . This
gives the following addition table:

Y (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,1) (1,0) (1,1)

(0,1) (0,1) (0,0) (1,1) (1,0)

(1,0) (1,0) (1,1) (1,0) (1,1)

(1,1) (1,1) (1,0) (1,1) (1,0)

In parallel to the above we denote by U the space of all functions x = (x1, x2) : Zd → U
and for each i, j ∈ Zd, we define infection maps INFij , inf

1
ij , inf

2
ij : U → U and death maps

DTHi, dth
1
i, dth

2
i : U → U as

INFij(x) := (inf∨ij(x1), inf⊕ij(x2)), DTHi(x) := (dthi(x1), dthi(x2)),

inf1ij(x) := (inf∨ij(x1), x2), dth1i(x) := (dthi(x1), x2),

inf2ij(x) := (x1, inf
⊕
ij(x2)), dth2i(x) := (x1, dthi(x2)), (x = (x1, x2) ∈ U),

(1.3)

where the maps on the right hand sides are the maps from (1.1). We then define the generator
GY as

GYf(x) := λ
∑
i∈Zd

∑
j∈Ni

{
f
(
INFij(x)

)
− f

(
x
)}

+ δ
∑
i∈Zd

{
f
(
DTHi(x)

)
− f

(
x
)}

+ λ∨
∑
i∈Zd

∑
j∈Ni

{
f
(
inf1ij(x)

)
− f

(
x
)}

+ δ∨
∑
i∈Zd

{
f
(
dth1i(x)

)
− f

(
x
)}

+ λ⊕
∑
i∈Zd

∑
j∈Ni

{
f
(
inf2ij(x)

)
− f

(
x
)}

+ δ⊕
∑
i∈Zd

{
f
(
dth2i(x)

)
− f

(
x
)}
,

(1.4)

where λ, δ, λ∨, δ∨, λ⊕, δ⊕ ≥ 0 are model parameters. Standard results [Swa22, Theorem 4.30]
tell us that the process X = (X1, X2) = (X1

t , X
2
t )t≥0 with generator GY is (like C and D

before) well-defined. For later use, letting

Ufin :=
{
x = (x1, x2) ∈ U : |{i ∈ Zd : (x1(i), x2(i)) 6= (0, 0)}| <∞

}
(1.5)

denote the set of finite configurations, one has, by Theorem 12 below, for all choices of model
parameters that

X0 ∈ Ufin implies Xt ∈ Ufin (t ≥ 0) almost surely. (1.6)

We call X the double contact process and denote it shortly as 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕). If X
is a 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕), then X1 is a CP(λ+λ∨, δ+ δ∨) and X2 is a cCP(λ+λ⊕, δ+ δ⊕).

In particular, if λ = δ = 0, then X1 and X2 are independent processes. On the other
extreme, if δ∨ = λ∨ = δ⊕ = λ⊕ = 0, then X1 and X2 are fully coordinated in the sense
that their infections and deaths happen at the same times. An interesting consequence of this
choice of parameters is that the CP stochastically dominates the cCP. The first part of the

3



following lemma says that this holds a bit more generally: if δ∨ = λ⊕ = 0 and the process
is started in an initial state such that the CP dominates the cCP, then it follows from the
definition of the maps in (1.3) that this order is preserved by the evolution. The second
part of the lemma says that under the same assumption, for general initial states, if we do
not distinguish the local states (1, 0) and (1, 1), then the resulting process is still a Markov
process. This follows from [Swa22, Proposition 3.1].

Lemma 1 (Special choice of parameters) Assume that X = (X1, X2) = (X1
t , X

2
t )t≥0 is

a 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕) with δ∨ = λ⊕ = 0. Then

X1
0 (i) ≥ X2

0 (i) (i ∈ Zd) implies X1
t (i) ≥ X2

t (i) (i ∈ Zd, t ≥ 0). (1.7)

Moreover, if x 7→ x denotes the map from U to {(0, 0), (0, 1), (1, ?)} defined as

(0, 0) := (0, 0), (0, 1) := (0, 1), (1, 0) = (1, 1) := (1, ?), (1.8)

and Xt(i) := Xt(i) is defined coordinatewise, then X = (Xt)t≥0 is a Markov process.

1.3 The basic duality relation

Additive and cancellative duality are important tools in the study of interacting particle
systems [Gri79]. It is well-known that the CP is self-dual in the sense of additive systems
duality. Similarly, the cCP is self-dual in the sense of cancellative systems duality. This
suggests that the 2CP should also possess a self-duality.

To present a complete picture we repeat the definitions of the additive and the cancellative
duality funcion. Analogously to [LS22] we define ψ1, ψ2 : T × T → T as(

ψ1(0, 0) ψ1(0, 1)
ψ1(1, 0) ψ1(1, 1)

)
=

(
ψ2(0, 0) ψ2(0, 1)
ψ2(1, 0) ψ2(1, 1)

)
=

(
0 0
0 1

)
, (1.9)

in parallel to (1.5) we set

Tfin :=
{
x ∈ T : |{i ∈ Zd : x(i) 6= 0}| <∞

}
(1.10)

and, for x, y ∈ T so that either x ∈ Tfin or y ∈ Tfin, we define

ψ1(x, y) :=
∨
i∈Zd

ψ1

(
x(i), y(i)

)
and ψ2(x, y) :=

⊕
i∈Zd

ψ2

(
x(i), y(i)

)
, (1.11)

where ∨ and ⊕ are the operators defined in Section 1.2. Since either x ∈ Tfin or y ∈ Tfin, only
finitely many “summands” in the infinite “sums” above are different from 0 and hence the
expressions are well-defined. Fix λ, δ ≥ 0, let (X1

t )t≥0 denote the CP(λ, δ), and let (X2
t )t≥0

denote the cCP(λ, δ). Then it is known [Swa22, Lemmas 6.6 and 6.11] that the contact process
and cancellative contact process are self-dual in the sense that

Ex
[
ψi(X

i
t , y)

]
= Ey

[
ψi(x,X

i
t)
]

(x ∈ T , y ∈ Tfin, t ≥ 0, i = 1, 2), (1.12)

where Ez denotes expectation with respect to the law of the process started in the initial state
Xi

0 = z (i = 1, 2, z ∈ {x, y}). In general, throughout this paper, we write Pz and Ez to denote
the law and expectation of a Markov process Z = (Zt)t≥0 started in the initial state Z0 = z.

We will prove a similar self-duality for the 2CP. The first step is to find the right duality
function. To this aim, we rewrite the duality functions ψ1,ψ2 in (1.11) in such a way that
the operators ∨ and ⊕ are replaced by the product in R. For this purpose, we define maps
γi : T → R (i = 1, 2) by

γ1(0) = 1, γ1(1) = 0 and γ2(0) = 1, γ2(1) = −1. (1.13)
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Then it is easy to check that γ1(x∨ y) = γ1(x) · γ1(y) and γ2(x⊕ y) = γ2(x) · γ2(y) (x, y ∈ T ).
We define, again for x, y ∈ T so that either x ∈ Tfin or y ∈ Tfin,

ψadd(x, y) := γ1

(
ψ1(x, y)

)
and ψcanc(x, y) := γ2

(
ψ2(x, y)

)
. (1.14)

One then readily checks that

ψadd(x, y) =
∏
i∈Zd

γ1

(
ψ1(x(i), y(i))

)
and ψcanc(x, y) =

∏
i∈Zd

γ2

(
ψ2(x(i), y(i))

)
,

where the product is the usual product in R. As γ1 and γ2 are bijections from T to {0, 1} resp.
to {−1, 1}, (1.12) remains true if we replace ψ1 by ψadd and ψ2 by ψcanc. Both ψ1 and ψadd

are known in the literature as “the” additive duality function. Similarly both ψ2 and ψcanc are
known as “the” cancellative duality function. With the notions introduced in Section 3 below,
one could more formally say that ψadd and ψcanc are (good) multiplicative representations of
ψ1 and ψ2, respectively.

We now define, for x = (x1, x2), y = (y1, y2) ∈ U so that either x ∈ Ufin or y ∈ Ufin,

ψ(x, y) := ψadd(x1, y1)ψcanc(x2, y2).

One then checks that

ψ(x, y) =
∏
i∈Zd

ψ
(
x(i), y(i)

)
, (1.15)

where

ψ
(
x(i), y(i)

)
= γ1

(
ψ1(x1(i), y1(i))

)
γ2

(
ψ2(x2(i), y2(i))

)
, (1.16)

i.e. ψ : U × U → {−1, 0, 1} is defined as
ψ((0, 0), (0, 0)) ψ((0, 0), (0, 1)) ψ((0, 0), (1, 0)) ψ((0, 0), (1, 1))
ψ((0, 1), (0, 0)) ψ((0, 1), (0, 1)) ψ((0, 1), (1, 0)) ψ((0, 1), (1, 1))
ψ((1, 0), (0, 0)) ψ((1, 0), (0, 1)) ψ((1, 0), (1, 0)) ψ((1, 0), (1, 1))
ψ((1, 1), (0, 0)) ψ((1, 1), (0, 1)) ψ((1, 1), (1, 0)) ψ((1, 1), (1, 1))

 :=


1 1 1 1
1 −1 1 −1
1 1 0 0
1 −1 0 0

 .

(1.17)

The basis of the present paper is the following duality relation.

Proposition 2 (Basic duality relation) For λ, δ, λ∨, δ∨, λ⊕, δ⊕ ≥ 0 let X = (Xt)t≥0 and
Y = (Yt)t≥0 both be a 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕). Fixing a t ≥ 0, for independent initial states
such that almost surely either X0 ∈ Ufin or Y0 ∈ Ufin, we can almost surely construct X and Y
in such a way that for every s ∈ [0, t] the random variables Xs and Yt−s are independent and

[0, t] 3 s 7→ ψ(Xs, Y
−
t−s)

is constant, where Y − = (Y −t )t≥0 is the càglàd modification of Y , i.e. it is left-continuous with
right limits but coincides almost everywhere with Y , which is càdlàg, i.e. right-continuous with
left limits.

In fact, in the following we only need equality in expectation, i.e. that

E
[
ψ(Xs, Yt−s)

]
= E

[
ψ(Xu, Yt−u)

]
(1.18)

for all s, u ∈ [0, t]. In particular, setting s = t and u = 0 and restricting ourselves to the case
that Y0 = y and X0 = x are deterministic, this is a relation of the form (1.12), but with the
cancellative and additive duality functions ψ1 and ψ2 replaced by the new duality function
ψ. Note that, by (1.6) and the assumption that either X0 ∈ Ufin or Y0 ∈ Ufin, the expression
ψ(Xs, Yt−s) is well-defined for all s ∈ [0, t]. The following lemma highlights the strength of
the duality relation (1.18).
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Lemma 3 (The duality is informative) If X and X ′ are U-valued random variables such
that

E
[
ψ(X, y)

]
= E

[
ψ(X ′, y)

]
for all y ∈ Ufin, then X and X ′ are equal in distribution.

We recall that a semigroup with a neutral element is called a monoid. Examples of monoids
are (T,∨), (T,⊕) and (U,Y). These three monoids are all commutative. In the paper [LS22],
the monoid (U,Y) is called M23, the monoid ({−1, 0, 1}, ·) is called M5, and the duality function
ψ from (1.17) is called ψ235. In the special setting of Lemma 1, the duality relation (1.18)
simplifies. Assume that δ∨ = λ⊕ = 0 and that X1

0 (i) ≥ X2
0 (i) (i ∈ Zd) and hence by (1.7) also

X1
t (i) ≥ X2

t (i) (i ∈ Zd) for all t ≥ 0. Let y 7→ y be the map defined in (1.8). Then (1.17) and
(1.18) imply that

E
[
ψ(Xs, Y t−s)

]
= E

[
ψ(Xu, Y t−u)

]
for all s, u ∈ [0, t], where ψ(x, y) =

∏
i∈Zd ψ

(
x(i), y(i)

)
withψ((0, 0), (0, 0)) ψ((0, 0), (0, 1)) ψ((0, 0), (1, ?))

ψ((1, 0), (0, 0)) ψ((1, 0), (0, 1)) ψ((1, 0), (1, ?))

ψ((1, 1), (0, 0)) ψ((1, 1), (0, 1)) ψ((1, 1), (1, ?))

 :=

1 1 1
1 1 0
1 −1 0

 .

In [LS22], the duality function ψ is called ψ5 and the sub-monoid of U consisting of all
(x1, x2) ∈ U with x1 ≥ x2 is called M6. The monoid {(0, 0), (0, 1), (1, ?)} obtained from U by
identifying the elements (1, 0) and (1, 1) with the single new element (1, ?) is isomorphic to
the already mentioned M5.

1.4 Long-time behaviour

We equip U with the product topology and define shift operators θi : U → U by

(θix)(j) := x(j − i)
(
i, j ∈ Zd, x ∈ U

)
.

We say that a probability measure µ on T or on U is shift-invariant if µ = µ ◦ θ−1
i (i ∈ Zd).

For x ∈ T or x ∈ U , we let x denote the constant configuration x(i) := x (i ∈ Zd). We say
that a distribution µ on T is non-trivial if µ({0}) = 0. For a distribution µ′ on U we define
non-triviality to hold if

µ′
({

(0, 0)
})

= 0.

It is well-known [Swa22, Theorem 6.35] that the CP(λ, δ) with λ+ δ > 0 started in a non-
trivial shift-invariant distribution converges weakly to a (time-) invariant distribution ν̄ called
the upper invariant law of the contact process. Similarly, it is known [BDD91, Theorem 1.2
& Theorem 1.3] that the cCP(λ, δ) with λ + δ > 0 started in a non-trivial shift-invariant
distribution converges weakly to an invariant distribution ν̇, that we call, in accordance with
[SS08a], the odd upper invariant law of the cancellative contact process.

Letting δ0 denote the Dirac measure concentrated on the “all 0” configuration 0, ν̄ and ν̇
may or may not differ from δ0 depending on the choice of the model parameters λ and δ. For
a CP(λ, δ) (λ+ δ > 0) there exists a critical value λCP = λCP(d) ∈ (0,∞) (dependent on the
dimension d) such that ν̄ 6= δ0 if and only if λ/δ > λCP [BG90]. Here and in the following we
set x/0 =∞ for x ∈ (0,∞). For the cCP we can define λ±cCP = λ±cCP(d) as

λ−cCP := inf{λ ≥ 0 : the odd upper invariant law of the cCP(λ, 1) does not equal δ0},
λ+

cCP := sup{λ ≥ 0 : the odd upper invariant law of the cCP(λ, 1) equals δ0}.
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It is known that λ+
cCP <∞ ([BDD91, Theorem 1.1] & Proposition 20 below) and considering

the 2CP started with no i ∈ Zd in the local state (0, 1), i.e. the coupling from Section 1.2,
shows that λCP ≤ λ−cCP, thus

0 < λCP ≤ λ−cCP ≤ λ
+
cCP <∞.

Simulations suggest that λ−cCP = λ+
cCP in all dimensions but proving this is a long-standing

open problem that due to the non-monotone nature of the process seems very difficult. More-
over, one would assume that actually λCP < λ−cCP holds. In dimension one, using the bound
λCP(1) ≤ 1.942, proved in [Lig95], and the following result we can prove just that.

Proposition 4 (Lower bound for λ−cCP(1)) One has λ−cCP(1) ≥ 2.

The proof of Proposition 4, which can be found in Section 5, goes in two steps. First,
cancellative duality is used to show that one may equivalently prove that the cCP(λ, δ) with
λ < 2δ started from a finite initial state dies out almost surely. Next, Dynkin’s formula is used
to prove that for λ ≤ 2δ, the position of the right-most (left-most) one is a supermartingale
(submartingale), which is shown to imply extinction of finite processes. This last argument
is adapted from [Sud98] who uses it to prove for the CP the bound λCP ≥ 1 and shows that
better bounds can be obtained by a refined argument that constructs a supermartingale that
depends not only on the position of the right-most one but also takes into consideration the
configuration on finitely many sites left of the right-most one. As these methods are essentially
one-dimensional in nature, it is not clear how to generalise Proposition 4 to higher dimensions.

In this paper we are interested in the long-time behaviour of the 2CP started in a shift-
invariant distribution. We set

U(0,∗) :=
{
x = (x1, x2) ∈ U : x1 = 0

}
,

U(∗,0) :=
{
x = (x1, x2) ∈ U : x2 = 0

}
,

Umix := U \ (U(0,∗) ∪ U(∗,0)).

The known results for CP and cCP imply that the 2CP X = (Xt)t≥0 = (X1
t , X

2
t )t≥0 started in

a non-trivial shift-invariant distribution on U(∗,0) converges weakly to ν̄⊗ δ0. Analogously, the
2CP started in a non-trivial shift-invariant distribution on U(0,∗) converges weakly to δ0 ⊗ ν̇.
If X is started in a non-trivial shift-invariant distribution on Umix, then the laws of X1

t and
X2
t individually converge weakly as t→∞ to ν̄ and ν̇, respectively. However, as a measure on

a product space is in general not determined by its marginals, the long-time behaviour of the
joint law of Xt = (X1

t , X
2
t ) is less straightforward. A priori there might, for example, exist an

increasing sequence (tn)n∈N so that the sequence of laws of (Xtn)n∈N has several cluster points
all having the marginal distributions ν̄ and ν̇, respectively. Or the law of X might converge
weakly to different distributions depending on where on Umix its initial law is supported. We
will use the duality function ψ to show that the behaviour outlined in the last two sentences
does not occur.

Theorem 5 (Joint invariant law) Let X = (X1, X2) = (X1
t , X

2
t )t≥0 be a 2CP with param-

eters λ, δ, λ∨, δ∨, λ⊕, δ⊕ ≥ 0 so that λ + λ∨ + δ + δ∨ > 0 and λ + λ⊕ + δ + δ⊕ > 0. Then X
has an invariant law ν that is uniquely characterised by the relation∫

ψ(x, y) dν(x) = Py
[
∃t ≥ 0 : Xt = (0, 0)

] (
y ∈ Ufin

)
.

If X is started in a shift-invariant initial law that is concentrated on Umix, then

P
[
Xt ∈ ·

]
=⇒
t→∞

ν. (1.19)
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As usual, the symbol⇒ in (1.19) denotes weak convergence. Note that (1.19) implies that
ν is (as ν̄ and ν̇) shift-invariant. In the special case that δ∨ = λ⊕ = 0, corresponding to the
monotone coupling of CP and cCP, one has that

ν
({
x ∈ U : ∃i ∈ Zd : x(i) = (0, 1)

})
= 0,

as we can chose a shift-invariant initial law that is concentrated on Umix with the above
property. This property is then preserved by the dynamics. One example of such an initial
law would be the Dirac measure concentrated on (1, 1). Thus, as long as the initial distribution
of this special 2CP is shift-invariant and concentrated on Umix, the law of this 2CP converges
weakly to a monotonically coupled law, no matter how high the density of (0, 1)s was in the
initial distribution.

Taking into account our earlier remarks about initial laws on U(0,∗) and U(∗,0), one can
conclude (compare [Swa22, Corollary 6.39]) that all shift-invariant invariant laws of the 2CP
are convex combinations of δ0 ⊗ δ0, ν̄ ⊗ δ0, δ0 ⊗ ν̇ and ν.

1.5 Outline

The paper is structured as follows. In Section 2 we provide a proof for Proposition 2. If fact,
we prove in Theorem 11 a generalisation of Proposition 2 that is independent of our process of
interest, so that it can directly be applied to further processes. Section 3 deals with the proof
of Lemma 3. Also here we prove in Proposition 14 a generalisation of Lemma 3. Additionally,
towards the goal of classifying the dualities found in [LS22] regarding their ability to determine
laws of processes uniquely, we introduce two notions and show that they basically coincide in
our setup. In Section 4 we prove Theorem 5. As Proposition 4 is independent of the monoid
dualities from [LS22], we prove it last. Its proof is found in Section 5. Finally, in Appendix A
we show how Lemma 18, an auxiliary result we use for the proof of Theorem 11, follows from
a corollary from [SS08a]. As this corollary is stated in [SS08a] in a rather general form, we
decided to repeat the definitions from [SS08a], slightly reformulate the result and move this
discussion to the appendix.

2 Monoid duality for interacting particle systems

In [LS22] a duality theory is developed for Markov processes with state space of the form
SΛ where S is a finite commutative monoid and Λ is a finite set. Here we generalise this to
countable Λ which allows us to define duality relations for interacting particle systems. For
the special cases of additive and cancellative dualities infinite Λ have already been treated in
[Swa22, Chapter 6.6 & Chapter 6.7].

We start by extending the concept of duality between monoids (i.e. semigroups with a
neutral element) presented in [LS22] to monoids that carry a topology. We say that a monoid
(M,+) is a topological monoid if it is equipped with a topology so that the map M ×M 3
(x, y) 7→ x + y ∈ M is continuous, where M ×M is equipped with the product topology.
For a second topological monoid (N,+) we denote by H(M,N) the space of all continuous
monoid homomorphisms, i.e. continuous functions from M to N that preserve the operation
and map the neutral element of M to the neutral element of N . Throughout this paper we
always equip finite and countable monoids with the discrete topology, so that every finite or
countable monoid is a topological monoid. This makes every function between two finite or
countable monoids continuous. Thus, if N and M are finite, the space H(M,N) defined above
coincides with the space of all monoid homomorphisms (called H(M,N) in [LS22]).

Let M1, M2 and N be topological monoids. We say that M1 is N -dual to M2 with duality
function ψ if the following conditions are satisfied:
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(i) ψ(x1, y) = ψ(x2, y) for all y ∈M2 implies x1 = x2 (x1, x2 ∈M1),

(ii) H(M1, N) = {ψ( · , y) : y ∈ N},

(iii) ψ(x, y1) = ψ(x, y2) for all x ∈M1 implies y1 = y2 (y1, y2 ∈M2),

(iv) H(M2, N) = {ψ(x, · ) : x ∈M1}.

As we equip finite monoids with the discrete topology, the definition above coincides with the
definition of duality between monoids from [LS22] if M1,M2 and N are finite.

Repeating the definition from [LS22], for arbitrary spaces X ,Y and Z we say that the map
m : X → X is dual to the map m̂ : Y → Y with respect to the duality function ψ : X ×Y → Z
if

ψ(m(x), y) = ψ(x, m̂(y)) (x ∈ X , y ∈ Y).

In parallel to [Swa22] we say that a map m : X → X preserves a set H of functions from
X to Y if

f ◦m ∈ H for all f ∈ H.

The following proposition is the analogue of [LS22, Proposition 5], that is formulated for
dualities between monoids without attached topologies.

Proposition 6 (Maps having a dual) Let S, R and T be commutative topological monoids
such that S is T -dual to R with duality function ψ. Then a map m : S → S has a dual map
m̂ : R→ R with respect to ψ if and only if m preserves H(S, T ). The dual map m̂, if it exists,
is unique and preserves H(R, T ).

Proof. If m : S → S preserves H(S, T ), then, by property (ii) of the definition of duality, for
all y ∈ R one has ψ(m( · ), y) ∈ H(S, T ). Applying property (ii) again, it follows that there
exists an m̂(y) ∈ R such that ψ(m( · ), y) = ψ( · , m̂(y)). Property (iii) of the definition of
duality implies that m̂(y) is unique. This shows that m has a unique dual map m̂ : R→ R if
m preserves H(S, T ).

On the other hand, ifm : S → S has a dual map m̂ : R→ R, then ψ(m( · ), y) = ψ( · , m̂(y)),
i.e. m preserves {ψ( · , y) : y ∈ R}. By property (ii) of the definition of duality m then also
preserves H(S, T ). This finishes the proof that m : S → S has a dual map m̂ : R → R if and
only if m preserves H(S, T ).

Finally, if m̂ exists, then it has m as a dual map with respect to ψ† : R × S → T defined
as ψ†(y, x) := ψ(x, y) (y ∈ R, x ∈ S), and the previously proved statement implies that m̂
has to preserve H(R, T ).

Clearly, any m ∈ H(S, S) preserves H(S, T ). Conversely, if the assumptions on S, T and
R from Proposition 6 are satisfied and m : S → S preserves H(S, T ), then the proof of [LS22,
Proposition 5] shows that m : S → S has to be a monoid homomorphism. However, while
duality implies that ψ(m( · ), y) is continuous for all y ∈ R, we do not know if m itself always
has to be continuous.

We are especially interested in countable products of topological monoids as we will view
state spaces of an interacting particle system as such products. Let, throughout this section, Λ
be a countable set. For a topological monoid M with |M | ≥ 2 we equip MΛ with the product
topology, making this uncountable monoid a topological monoid. We define the countable
sub-monoid MΛ

fin ⊂MΛ as

MΛ
fin := {x ∈MΛ : |{i ∈ Λ : x(i) 6= 0}| <∞},

9



where 0 denotes the neutral element of M . As in Section 1.4, we denote by 0 the constant
configuration with 0(i) = 0 for all i ∈ Λ that is the neutral element of MΛ

fin and MΛ.
Before we investigate duality between such “product monoids” we collect some definitions

and results for general product spaces from [Swa22] that we will need in the following. Let L
and V be arbitrary spaces. For a function f : LΛ → V we say that j ∈ Λ is f-relevant if

∃x1, x2 ∈ LΛ : f(x1) 6= f(x2) but x1(k) = x2(k) ∀k 6= j.

We set

R(f) := {j ∈ Λ : j is f -relevant}

and cite the following result [Swa22, Lemma 4.13].

Lemma 7 (Continuous maps) Let L and V be finite sets equipped with the discrete topology.
A map f : LΛ → V is continuous with respect to the product topology if and only if the following
two conditions hold:

(i) R(f) is finite.

(ii) If x1, x2 ∈ LΛ satisfy x1(j) = x2(j) for all j ∈ R(f), then f(x1) = f(x2).

Let L be finite. For any map m : LΛ → LΛ and i ∈ Λ we define m[i] : LΛ → L as

m[i](x) := m(x)(i) (x ∈ LΛ).

Moreover, we let

D(m) := {i ∈ Λ : ∃x ∈ LΛ : m[i](x) 6= x(i)}.

We say that a map m : LΛ → LΛ is local if

(i) m is continuous and (ii) D(m) is finite.

For a finite monoid M we denote by Hloc(M
Λ,MΛ) the space of all maps m ∈ H(MΛ,MΛ)

that are local. As we equip, according to our conventions, MΛ with the product topology and
M with the discrete one, m : MΛ → MΛ is local if and only if D(m) is finite and m[j] satisfies
the conditions of Lemma 7 for all j ∈ Λ. Note that every m ∈ Hloc(M

Λ,MΛ) maps MΛ
fin into

itself.
Let throughout the rest of this section (S,�), (R,�) and (T,⊗) be commutative finite

(and hence topological) monoids and assume that S is T -dual to R with duality function
ψ : S ×R→ T . We denote all three neutral elements by 0 and define Ψ : SΛ ×RΛ

fin → T by

Ψ(x,y) :=
⊗
i∈Λ

ψ
(
x(i),y(i)

) (
x ∈ SΛ, y ∈ RΛ

fin

)
. (2.1)

Note that Ψ is well-defined as for all but finitely many i ∈ Λ one has y(i) = 0 and ψ( · , 0) = o
due to property (iv) of the definition of duality, where o : S → T is the function that is
constantly 0. In general, for all monoids M and N , let id ∈ H(M,M) denote the identity and
o ∈ H(M,N) the function constantly 0. Using Lemma 7 we can prove the following.

Proposition 8 (Duality on product spaces) Let S,R, T be finite commutative monoids.
If S is T -dual to R with duality function ψ, then SΛ is T -dual to RΛ

fin with duality function Ψ.
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Proof. The properties (i) and (iii) from the definition of duality follow directly from the
corresponding properties of the duality between S and R. To be more precise, assuming that
Ψ(x1,y) = Ψ(x2,y) for all y ∈ RΛ

fin in particular implies for i ∈ Λ and y ∈ R that

ψ(x1(i), y) = Ψ(x1, y
i) = Ψ(x2, y

i) = ψ(x2(i), y),

where yi ∈ RΛ
fin is defined as

yi(j) =

{
y if j = i,

0 else,
(j ∈ Λ). (2.2)

Hence, the fact that S is T -dual to R implies that x1(i) = x2(i) for all i ∈ Λ and thus x1 = x2.
Property (iii) follows in the same way.

The fact that Ψ( · ,y) and Ψ(x, · ) are monoid homomophisms for all y ∈ RΛ
fin and for

all x ∈ SΛ, respectively, also follows directly from the duality between S and R and the
definition of Ψ. As RΛ

fin is countable this implies Ψ(x, · ) ∈ H(RΛ
fin, T ). For y ∈ RΛ

fin we have
that R

(
Ψ( · ,y)

)
= {j ∈ Λ : y(j) 6= 0}, so Ψ( · ,y) satisfies the conditions of Lemma 7 and

hence also Ψ( · ,y) ∈ H(SΛ, T ).
To prove the implication ⊂ in property (iv) from the definition of duality, assume that

g ∈ H(RΛ
fin, T ). Then using (2.2), for each i ∈ Λ, we define gi : R → T as gi(y) := g(yi)

(i ∈ Λ). The fact that g ∈ H(RΛ
fin, T ) directly implies that gi ∈ H(R, T ), and the duality

between S and R implies that there exists an xi ∈ S such that gi = ψ
(
xi, ·

)
. Defining x ∈ SΛ

by x(i) := xi, one has for y ∈ RΛ
fin that

g(y) = g

(
�i:y(i)6=0

y(i)i
)

=
⊗

i:y(i)6=0

g
(
y(i)i

)
=

⊗
i:y(i)6=0

gi
(
y(i)

)
=

⊗
i:y(i) 6=0

ψ
(
xi,y(i)

)
= Ψ(x,y),

which finishes the proof of property (iv) from the definition of duality.
Lastly, we prove the implication ⊂ in property (ii) from the definition of duality. We

assume that f ∈ H(SΛ, T ). Then Lemma 7 implies that there exists a finite set ∆ ⊂ Λ such
that f only depends on the coordinates in ∆. Letting for x ∈ SΛ the restriction xΓ to some
set Γ ⊂ Λ be defined as

xΓ(j) :=

{
x(j) if j ∈ Γ,

0 else,
(j ∈ Λ),

we see that

f(x) = f
(
x∆c � x∆

)
= f

(
x∆c

)
⊗
⊗
i∈∆

f
(
x(i)i

)
,

where xi ∈ SΛ
fin is defined as yi ∈ RΛ

fin in (2.2). But as f does not depend on ∆c we conclude
that

f
(
x∆c

)
= f

(
0∆c

)
= f(0) = 0.

Analogously to above we can now define y ∈ RΛ
fin by y(i) := yi for i ∈ ∆ and y(i) := 0 for

i ∈ ∆c, where yi ∈ R satisfies f
(
x(i)i

)
= ψ(x(i), yi) independent of the value of x(i). Then

f = Ψ
(
· ,y
)
, which finishes the proof of property (ii) from the definition of duality and thus

the proof is complete.
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Having proved the duality between SΛ and RΛ
fin, Proposition 6 and the remarks below it

imply that every m ∈ H(SΛ, SΛ) has a unique dual map with respect to Ψ. In fact, using
the definition of duality and the properties of the product topology it is easy to see that
m : SΛ → SΛ has a unique dual map with respect to Ψ if and only if m ∈ H(SΛ, SΛ).

However, it is not clear how to compute the dual map of m ∈ H(SΛ, SΛ) in general, so
we will focus on local monoid homomorphisms, for which we will be able to compute the dual
maps explicitly. The following lemma generalises [LS22, Lemma 7] to infinite Λ.

Lemma 9 (Local monoid homomorphisms) Let (S,�) be a finite monoid. Let M =
(Mij)i,j∈Λ be an infinite matrix with values in H(S, S) such that the set

∆ :=
{

(i, j) ∈ Λ2 : i 6= j, Mij 6= o
}
∪
{

(i, i) ∈ Λ2 : Mii 6= id
}

(2.3)

is finite. Then setting

m[j](x) :=
⊙
i∈Λ

Mij

(
x(i)

) (
j ∈ Λ, x ∈ SΛ

)
(2.4)

defines a map m ∈ Hloc(S
Λ, SΛ). Conversely, each m ∈ Hloc(S

Λ, SΛ) is of this form.

Proof. First assume that m is of the form (2.4). Then m is well-defined as ∆ from (2.3) is
finite. As M takes values in H(S, S) it follows readily that m[j] ∈ H(SΛ, S) for all j ∈ Λ, thus
m ∈ H(SΛ, SΛ). Let j ∈ Λ. One sees that

R(m[j]) =

{
{i ∈ Λ \ {j} : (i, j) ∈ ∆} ∪ {j} if Mjj 6= o,

{i ∈ Λ \ {j} : (i, j) ∈ ∆} if Mjj = o.

In both cases R(m[j]) satisfies the conditions of Lemma 7. Additionally

D(m) = {j ∈ Λ : ∃i ∈ Λ : (i, j) ∈ ∆}

is finite and it follows that m is local, so m ∈ Hloc(S
Λ, SΛ).

Now assume that m ∈ Hloc(S
Λ, SΛ). In particular, one has that m[j] : SΛ → S is continuous

for all j ∈ Λ by the properties of the product topology. Moreover, D(m) ⊂ Λ is finite and, by
definition, for j ∈ D(m)c one has m[j](x) = x(j) for all x ∈ SΛ. Due to Lemma 7, for each
j ∈ D(m) the set R(m[j]) is finite and we can identify m[j] with a map m[j]|R(m[j]) : SR(m[j]) → S.

By [LS22, Lemma 7] there exists a vector M j = (M j
i )i∈R(m[j]) with coordinates in H(S, S)

such that

m[j]|R(m[j])(x) =
⊙

i∈R(m[j])

M j
i

(
x(i)

) (
x ∈ SR(m[j])

)
.

Defining now M = (Mij)i,j∈Λ as

Mij :=


M j
i if j ∈ D(m), i ∈ R(m[j]),

id if i = j /∈ D(m),

o else,

gives a representation of m[j] for all j ∈ Λ as in (2.4) with the property that the set ∆ from
(2.3) is finite. This completes the proof.

As already claimed, with the help of the above lemma we can compute the dual function
of each m ∈ Hloc(S

Λ, SΛ).

12



Proposition 10 (Dual local homomorphisms) Let S,R, T be finite commutative monoids
so that S is T -dual to R with duality function ψ. For each m ∈ Hloc(S

Λ, SΛ) there exists a map
m̂ ∈ Hloc(R

Λ, RΛ) so that the restriction of m̂ to RΛ
fin is the unique dual map of m with respect

to the duality function Ψ from (2.1). If M = (Mij)i,j∈Λ denotes the matrix from Lemma 9
such that (2.4) holds, then m̂ is given via

m̂[j](y) =�
j∈Λ

M̂ij

(
y(j)

)
(j ∈ Λ, y ∈ RΛ), (2.5)

where, for i, j ∈ Λ, M̂ij ∈ H(R,R) is the (unique) dual map of Mij ∈ H(S, S) with respect to
the duality function ψ.

Proof. Let x ∈ SΛ, y ∈ RΛ
fin and let m̂ be defined via (2.5). Note that m̂ indeed maps RΛ

fin

into itself as ∆ from (2.3) is finite for m and the (unique) dual maps of o, id ∈ H(S, S) with
respect to ψ are o ∈ H(R,R) and id ∈ H(R,R), respectively. Moreover, Lemma 9 implies
that m̂ ∈ Hloc(R

Λ, RΛ). We compute that

Ψ(m(x),y) =
⊗
j∈Λ

ψ
(⊙

i∈Λ
Mij(x(i)), y(j)

)
=
⊗
i,j∈Λ

ψ
(
Mij(x(i)), y(j)

)
=
⊗
i,j∈Λ

ψ
(
x(i), M̂ij(y(j))

)
=
⊗
i∈Λ

ψ
(
x(i),�j∈Λ

M̂ij(y(j))
)

= Ψ(x, m̂(y)).

Uniqueness of the dual map follows directly from property (iii) of the duality between SΛ and
RΛ

fin established in Proposition 8.

We are now ready to apply the non-probabilistic results above to Markov processes. Let
S,R and T still be the finite monoids from above and let G be a countable collection of maps
in Hloc(S

Λ, SΛ). We are considering two formal Markov generators G and Ĝ defined as

Gf(x) :=
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ SΛ), (2.6)

and

Ĝg(y) :=
∑
m∈G

rm
(
g(m̂(y))− g(y)

)
(y ∈ RΛ

fin), (2.7)

where m̂ denotes the dual map of m ∈ G from Proposition 10 and (rm)m∈G are non-negative
rates. We assume that G satisfies the summability condition

sup
i∈Λ

∑
m∈G
D(m)3i

rm
(
|R(m[i])|+ 1

)
<∞. (2.8)

Under this condition we can almost surely construct a unique interacting particle system X =
(Xt)t≥0 with generator G on SΛ (see [Swa22, Theorem 4.30]). It turns out (see Theorem 12
below) that this condition moreover already implies that there exists a non-explosive Markov
chain (Yt)t≥0 with generator Ĝ on the countable state space RΛ

fin. We want to prove the
following generalisation of Proposition 2.

Theorem 11 (Pathwise monoid duality) Let S,R and T be finite commutative monoids
so that S is T -dual to R with duality function ψ. Let G and Ĝ be the generators from (2.6)
and (2.7) defined via G, a countable collection of maps in Hloc(S

Λ, SΛ) and their unique dual
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maps from Proposition 10. Assume that G satisfies (2.8). Fixing a T ≥ 0, we can almost
surely construct X = (Xt)t≥0, the process with generator G, and Y = (Yt)t≥0, the process with

generator Ĝ, in such a way that for every t ∈ [0, T ] the random variables Xt and YT−t are
independent and

[0, T ] 3 t 7→ Ψ
(
Xt, Y

−
T−t
)

(2.9)

is constant, where Y − = (Y −t )t≥0 is the càglàd modification of Y .

By definition, we say that X and Y are pathwise dual if they can be constructed in such
a way that (2.9) is satisfied. To prove the above result we cite general theory from [Swa22].

Let L and V be arbitrary finite sets and let Y be an arbitrary countable set. As always,
we equip LΛ with the product topology and Y with the discrete one. Let ϕ : LΛ×Y → V be a
function. Let H be a countable collection of local maps in m : LΛ → LΛ and assume that every
m ∈ H has a unique dual map m̂ : Y → Y with respect to ϕ. Let (rm)m∈H be non-negative
rates and define formal generators H and Ĥ in parallel to (2.6) and (2.7) with G replaced by
H. Let ω denote a Poisson point set on H×R with intensity measure ρ({m} ×A) := rm`(A)
(m ∈ H, A ∈ B(R)), where ` denotes the Lebesgue measure. Under condition (2.8), [Swa22,
Theorem 6.16] says that we can almost surely define stochastic flows1 (X+

s,u)s≤u and (X−s,u)s≤u
of random continuous maps from LΛ to itself so that, for s ≤ u, ω+

s,u := {(m, t) ∈ ω : t ∈ (s, u]}
and ω−s,u := {(m, t) ∈ ω : t ∈ [s, u)},

X±s,u(x) = lim
ωn↑ω±s,u

Xωn
s,u(x) (x ∈ LΛ) (2.10)

pointwise, where (ωn)n is an arbitrary increasing sequence of finite subsets of ω±s,u whose union
is ω±s,u, and Xωn

s,u is the concatenation of all maps in in ωn (ordered by the time coordinate t).

Let Ĥ := {m̂ : m ∈ H} and let ω̂ be defined by

ω̂ := {(m̂,−t) : (m, t) ∈ ω}.

Then ω̂ is a Poisson point set on Ĥ × R with intensity measure ρ̂({m̂} × A) := rm`(A) and
analogously to above we can almost surely define stochastic flows (Y+

s,u)s≤u and (Y−s,u)s≤u of
random continuous maps from Y to itself so that, for s ≤ u, Y+

s,u and Y−s,u correspond to

pointwise limits as in (2.10), replacing ω+
s,u by ω̂+

s,u = {(m̂, t) : (m, t) ∈ ω−−u,−s} and ω−s,u by

ω̂−s,u = {(m̂, t) : (m, t) ∈ ω+
−u,−s}. The next statement follows from [Swa22, Theorem 6.20].

Theorem 12 (Pathwise dual of an IPS) Assume that the function ϕ : LΛ × Y → V is
continuous if we equip LΛ×Y with the product topology, and that it satisfies property (iii) of the
definition of duality, i.e. that ϕ(x, y1) = ϕ(x, y2) for all x ∈ LΛ implies y1 = y2 (y1, y2 ∈ Y).
Further assume that H satisfies (2.8). Then there exists a continuous-time Markov chain with
generator Ĥ that is non-explosive. Moreover, constructing (X±s,u)s≤u and (Y±s,u)s≤u as above,

ϕ
(
X±s,u(x), y

)
= ϕ

(
x,Y∓−u,−s(y)

)
(2.11)

holds almost surely simultaneously for all s ≤ u, x ∈ LΛ and y ∈ Y.

If two stochastic flows satisfy (2.11) for all s ≤ u and for all x and y, we say that they are
dual. Theorem 11 follows now almost directly from Theorem 12.

1By definition, (Zs,u)z≤u is a stochastic flow if Zs,s is the identity map for all s ∈ R and if Zt,u ◦Zs,t = Zs,u
(s ≤ t ≤ u).
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Proof of Theorem 11. First note that Proposition 8 and the definition of the product topology
imply that, by property (ii) of the definition of duality, Ψ from (2.1) is also continuous as a
function from SΛ×RΛ

fin to T . Proposition 10 and Theorem 12 then show that we can, almost
surely, construct stochastic flows (X±s,u)s≤u and (Y±s,u)s≤u corresponding to the maps in G as
in Theorem 12.

Fix now T ≥ 0 and choose a random variable X0 on SΛ and a random variable Y0 on RΛ
fin,

both independent of (X+
s,u)s≤u and (Y−s,u)s≤u. Setting

Xt := X+
0,t(X0) and Yt := Y+

−T,t−T (Y0) (t ≥ 0)

yields by [Swa22, Proposition 2.9 & Theorem 4.20] and Theorem 12 a Markov process X =
(Xt)t≥0 with generator G and a non-explosive continuous-time Markov chain Y = (Yt)t≥0 with

generator Ĝ. By the construction in [Swa22, Section 6.4] defining Y −t := Y−−T,t−T (Y0) for t ≥ 0

gives the càglàd modification Y − := (Y −t )t≥0 of Y . Using the duality of the stochastic flows,
i.e. (2.11), one then has for all s, u ∈ R satisfying 0 ≤ s ≤ u ≤ T that

Ψ
(
Xs, Y

−
T−s
)

= Ψ
(
X+

0,s(X0),Y−−T,−s(Y0)
)

= Ψ
(
X+

0,s(X0),Y−−u,−s ◦Y−−T,−u(Y0)
)

= Ψ
(
X+
s,u ◦X+

0,s(X0),Y−−T,−u(Y0)
)

= Ψ
(
X+

0,u(X0),Y−−T,−u(Y0)
)

= Ψ
(
Xu, Y

−
T−u

)
,

i.e. the function in (2.9) is constant, and the proof is complete.

Applying the general theory to the 2CP we prove Proposition 2.

Proof of Proposition 2. As already mentioned in Section 1, U = (U,Y) is indeed a monoid.
Next one computes H(U,U) and H(U,M), with M := ({−1, 0, 1}, · ), where · denotes the
usual multiplication in R. To compute H(U,U) = {(o, o), (o, id), (id, o), (id, id)} one can apply
[LS22, Lemma 6], noting that U = M1 ×M2, where M1 := ({0, 1},∨) and M2 := ({0, 1},⊕),
and checking that H(Mi,Mj) = {o, id} if i = j and = {o} if i 6= j (i, j ∈ {1, 2}). To
compute H(U,M) one can apply the same result, computing first H(M1,M) = {1, γ1} and
H(M2,M) = {1, γ2}, where 1 is the function constantly 1, and γ1 and γ2 are the functions
from (1.13). Using the definition of duality one then confirms that U is M -dual to itself with
respect to ψ from (1.17).

Having computed H(U,U) one directly concludes that all its maps are self-dual as o and
id are always self-dual. All maps in (1.3) (that are used in the definition of GY in (1.4)) can
be written as in (2.4) with ∆ from (2.3) finite, so Lemma 9 implies that they are elements
of Hloc(U

Λ, UΛ), with Λ = Zd and UΛ being, as always, equipped with the product topology.
Proposition 10 shows that GY can play the role of both G and Ĝ from (2.6) and (2.7). One
quickly verifies that (2.8) holds and the claim follows from Theorem 11.

One can check that the monoid U is isomorphic to M23 from [LS22, Appendix A.1] and
the monoid M = ({−1, 0, 1}, · ) is isomorphic to M5 from [LS22, Section 5.1]. The function ψ
is denoted in [LS22] as ψ235 and the fact that U is M -dual to itself can be found in the table
in [LS22, Appendix A.2]. The fact that H(U,U) = {(o, o), (o, id), (id, o), (id, id)} is, by [LS22,
Proposition 4], encoded in the duality function ψ23 from [LS22, Appendix A.2].

3 Informativeness and representations

In this subsection Lemma 3 is proved. In fact, as already stated in the outline, we are going
to prove a more general result and we are going to investigate the open task to classify the
monoid dualities from [LS22] that determine the law of processes uniquely. Let, as in the
section above, (S,�), (R,�) and (T,⊗) be commutative finite monoids and assume that S
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is T -dual to R with duality function ψ : S × R → T . Let Λ be countable, let V be a finite
dimensional real or complex vector space and let V be an arbitrary measurable space.

Towards the goal of classification we give the following definitions. For an arbitrary index
set I we call a family (fi)i∈I of measurable functions fi : SΛ → V distribution determining if,
for two random variables X and X ′ on SΛ,

E[fi(X)] = E[fi(X
′)] ∀i ∈ I implies X

d
= X ′,

where
d
= denotes equality in distribution. Similarly, we call a family (gi)i∈I of measurable

functions gi : SΛ → V weakly distribution determining if

gi(X)
d
= gi(X

′) ∀i ∈ I implies X
d
= X ′.

The first of the two definition is already widely used (compare [Swa22]), while the second one
we introduce here newly.

A family (fi)i∈I of functions fi : SΛ → V that is distribution determining is clearly also
weakly distribution determining. The reverse implication is not true in general, but holds in
the following special case. Recall that v1, . . . , vn ∈ V are called affinely independent if

n∑
k=1

λkvk = 0 with scalars λ1, . . . , λn s.t.
n∑
k=1

λk = 0 implies λ1 = . . . = λn = 0.

Proposition 13 (Equality of notions) Let (fi)i∈I be a family of functions fi : SΛ →
{v1, . . . , vn} ⊂ V. If v1, . . . , vn are affinely independent, then (fi)i∈I is distribution determining
if and only if it is weakly distribution determining.

Proof. Comparing the definitions it suffices to show for fixed i ∈ I that, under the assumption

of the proposition, E[fi(X)] = E[fi(X
′)] implies fi(X)

d
= fi(X

′). As the set {v1, . . . , vn} is
finite, the condition E[fi(X)] = E[fi(X

′)] is equivalent to writing

n∑
k=1

vk
(
P[fi(X) = vk]− P[fi(X

′) = vk]
)

= 0.

But as v1, . . . , vn are affinely independent, then also

P[fi(X) = vk]− P[fi(X
′) = vk] = 0 (k = 1, . . . , n),

i.e. fi(X) and fi(X
′) are equal in distribution.

Let now Ψ : SΛ ×RΛ
fin → T be the function from (2.1). In parallel to [Swa22] we say that

Ψ is weakly informative if (
Ψ( · ,y)

)
y∈RΛ

fin
(3.1)

is weakly distribution determining. If the monoid T is also a subset of a real or complex vector
space, we say that Ψ is informative if the functions in (3.1) are distribution determining. We
prove the following result.

Proposition 14 (Informativeness of Ψ) Under the assumptions of this subsection Ψ is
informative if T is a sub-monoid of (C, · ), where · denotes the usual multiplication.
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It is easy to see that all finite sub-monoids of (C, · ) (apart from ({0}, · )) consist of the
multiplicative group of n-th roots of unity for some n ∈ N, either with or without an added 0.
Those with cardinality up to four are named M0,M1,M2,M5,M7,M18 and M26 in our paper
[LS22], so by Proposition 14 all duality functions from [LS22] that take values in these monoids
are informative. In particular, setting (T,⊗) = ({1,−1, 0}, · ) and (S,�) = (R,�) = (U,Y),
Proposition 14 implies Lemma 3.

To prove Proposition 14 we use a Stone-Weierstrass argument. Let C(X ,Y) denote the
space of continuous functions from space X to space Y. We say that H ⊂ C(X ,Y) separates
points if for x, x′ ∈ X with x 6= x′ there exists f ∈ H such that f(x) 6= f(x′). Moreover, we
say that G ⊂ C(X ,C) is self-adjoint if f ∈ G implies f ∈ G, where f(x) := f(x) (x ∈ X ), the
complex conjugate of f(x).

Lemma 15 (Application of Stone-Weierstrass) Let E be a compact metrizable space.
Assume that G ⊂ C(E,C) separates points and is closed under products. Then G is distribution
determining.

Proof. The statement with C replaced by R is proved in [Swa22, Lemma 4.37]. Note that

E
[
f(X)

]
= E

[
f(X ′)

]
implies E

[
f(X)

]
= E

[
f(X ′)

]
(f ∈ G), (3.2)

as E
[
f(X)

]
= E

[
f(X)

]
, where X and X ′ are random variables on E. We can enlarge G with

the constant function 1, take linear combinations and convex conjugates and receive an algebra
H ⊃ G that is closed under products, self-adjoint and separates points. If E

[
f(X)

]
= E[f(X ′)]

for all f ∈ G then also E
[
f(X)

]
= E[f(X ′)] for all f ∈ H by the linearity of the integral and

(3.2). We then can apply the complex version of the Stone-Weierstrass theorem and continue
as in the proof of [Swa22, Lemma 4.37].

Proof of Proposition 14. By definition, we have to prove that the family

G :=
(
Ψ( · ,y)

)
y∈RΛ

fin

is distribution determining.
By Tychonoff’s theorem, the space SΛ, equipped with the product topology, is a compact

metrizable space. The fact that G is closed under products follows from the duality between
SΛ and RΛ

fin: Property (i) in the definition of duality implies that

Ψ(x,y1)Ψ(x,y2) = Ψ(x,y1 � y2) (x ∈ SΛ, y1,y2 ∈ RΛ
fin).

The fact that G separates points follows directly from property (ii) of the definition of (topo-
logical) duality. Applying Lemma 15 then yields Proposition 14.

To further investigate the case in which the monoid T can not naturally be written as a
sub-monoid of (C, · ), we provide some additional notions. The reader that is just concerned
with the 2CP may skip ahead to the next section.

A multiplicative representation of a commutative monoid (M,+) with neutral element 0
is a map γ : M → A, where (A,+, · ) is a unital commutative algebra with unit I, so that
γ(x+ y) = γ(x) · γ(y) and γ(0) = I. Then γ(M) = {γ(x) : x ∈M} is a sub-monoid of (A, · )
and γ : M → γ(M) is a homomorphism. We say that γ is faithful if this is an isomorphism.

We again consider the function Ψ : SΛ×RΛ
fin → T from (2.1). Recall that, by Proposition 8,

under the usual assumptions on S,R and T (see the beginning of this section), SΛ is T -dual
to RΛ

fin with duality function Ψ. If now γ : T → A is a faithful multiplicative representation,
we equip the finite monoids T and γ(T ) with the discrete topology and it follows from the
definition of duality that SΛ is also γ(T )-dual to RΛ

fin with duality function γ ◦Ψ. If γ ◦Ψ is
informative we say that γ ◦Ψ is a good multiplicative representation of Ψ. Proposition 13 and
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the faithfulness of γ imply that γ ◦Ψ is a good representation of Ψ if Ψ is weakly informative
as long as the elements of γ(T ) are affinely independent. The next result states that we can
always find such a good multiplicative representation of a weakly informative duality function,
so weak informativeness is basically all we need in practice.

Proposition 16 (Existence of good representations) Under the assumptions of this
subsection there exist a finite dimensional real unital commutative algebra A and a faithful
representation γ : T → A such that γ ◦Ψ is informative if Ψ is weakly informative.

Proof. Let RT be the space of all functions mapping from T to R. The space (RT ,+), where +
denotes the usual (pointwise) sum of real-valued functions, is a finite dimensional real vector
space on which we can define the product ∗ as

(g ∗ h)(x) :=
∑
y,z∈T

g(y)h(z)1{x}(y ⊗ z)
(
g, h ∈ RT , x ∈ T

)
,

where the sum is the usual sum in R and 1 denotes the indicator function. One readily checks
that this makes (RT ,+, ∗) a finite dimensional real unital algebra with unit 1{0}. Defining

γ : T → RT as γ(x) = 1{x} (x ∈ T ) then gives a faithful multiplicative representation of
T and clearly the elements of γ(T ) are affinely independent. The claim then follows from
Proposition 13 and the faithfulness of γ as stated above.

By the above proposition we can reformulate the classification problem by asking to classify
general duality functions (that do not map into sub-monoids of (C, · )) into the classes “weak
informative” and “not weak informative”. This remains an open problem.

We end this section with an additional observation. While RT from the proof of Propo-
sition 16 is a |T |-dimensional vector space, Proposition 14 implies that for large T also rep-
resentations in lower dimensional spaces can be good, even if the elements of γ(T ) are not
affinely independent. As it is in practice often easier to work in a lower dimensional space,
there can exist “better” representations of weakly informative duality functions than the one
from Proposition 16. In light of Proposition 14 one might even hope that γ ◦ Ψ is always a
good representation of a weakly informative Ψ as long as γ is faithful. This, however, is not
true and we provide a counterexample below.

We again consider the monoid (U,Y) defined in Section 1.2. From [LS22, Appendix A.2]
we know that there also exists the “local” duality function ψ23 mapping from U ×U back into
U . Reordering the elements of M23 as in the present paper (i.e. as in U) one has that

ψ23(x, y) =
(
ψ1(x1, y1), ψ2(x2, y2)

) (
x = (x1, x2), y = (y1, y2) ∈ U

)
,

where ψ1 and ψ2 are the “local” additive and cancellative duality function, defined in (1.9).
It follows from (1.16) that

ψ23(x, y) = ψ23(v, w) implies ψ(x, y) = ψ(v, w)
(
x, y, v, w ∈ U

)
. (3.3)

We define a “global” duality function ψ23 : U ×Ufin → U as in (1.15), but for ψ23 instead of ψ
and with the “product” taken in U . It follows from (3.3) that for two random variables X,X ′

on U and for y ∈ Ufin,

ψ23(X, y)
d
= ψ23(X ′, y) implies ψ(X, y)

d
= ψ(X ′, y),

and, due to the informativeness of ψ, the duality function ψ23 is weakly informative. Defining
now γ : U → R2 as

γ(x) :=
(
γ1(x1), γ2(x2)

)
(x = (x1, x2) ∈ U),
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with γ1, γ2 defined in (1.13), yields a faithful multiplicative representation of U in R2, viewed
as a unital algebra equipped with pointwise multiplication.

However, γ ◦ψ23 is not a good representation of ψ23. For example, the random variables
X,X ′ on U with

P[X(i) = (0, 0)] = P[X ′(i) = (0, 0)] = 1 for i ∈ Zd \ {0},

P[X(0) = x] =
1

4
for all x ∈ U P[X ′(0) = x] =

{
1
2 if x ∈ {(0, 0), (1, 1)},
0 else,

show that γ ◦ψ23 : U × Ufin → R2 is not informative. Here 0 ∈ Zd denotes the origin.

4 The main convergence result

In this section we prove Theorem 5. Recall that T denotes the space of all functions z :
Zd → T = {0, 1} and recall the definition of Tfin in (1.10). For z ∈ T we shortly write
|z| := |{i ∈ Zd : z(i) = 1}|. We are going to use several auxiliary lemmas to prove Theorem 5.
The first one is [Swa22, Lemma 6.37]. The symbol ∧ denotes the pointwise minimum, i.e.
(z1 ∧ z2)(i) = min{z1(i), z2(i)} for i ∈ Zd, z1, z2 ∈ T .

Lemma 17 (Non-zero intersection: CP) Let Z = (Zt)t≥0 be a CP(λ, δ) (λ > 0, δ ≥ 0)
with non-trivial shift-invariant initial distribution. Given ε > 0, for each time s > 0 there
exists an NCP ∈ N such that for any z ∈ T with |z| ≥ NCP one has

P
(
Zs ∧ z = 0

)
≤ ε.

Additionally we are going to use the following application of [SS08a, Corollary 9]. As
[SS08a, Corollary 9] is not stated in the most accessible form we devote Appendix A to
showing how the result below follows from it. Instead of using the result below we could have
also followed the strategy of the proof of [BDD91, Theorem 1.2]. There the authors use the
graphical representation of the cCP explicitly to work around the statement below.

Lemma 18 (Parity indeterminacy: cCP) Let Z = (Zt)t≥0 be a cCP(λ, δ) (λ > 0, δ ≥ 0)
with non-trivial shift-invariant initial distribution. Given ε > 0, for each time s > 0 there
exists an NcCP ∈ N such that for any z ∈ Tfin with |z| ≥ NcCP one has∣∣∣∣P[|Zs ∧ z| is odd

]
− 1

2

∣∣∣∣ ≤ ε.
Finally, the following result extends [Swa22, Lemma 6.36] and [BDD91, Lemma 2.1].

Lemma 19 (Extinction or unbounded growth) Let Z = (Zt)t≥0 be either a CP(λ, δ) or
a cCP(λ, δ) (λ, δ ≥ 0, λ+ δ > 0). For each z ∈ Tfin and N ∈ N one has

lim
t→∞

Pz[0 < |Zt| < N ] = 0. (4.1)

Proof. If z = 0 the statement is trivial, so let z ∈ Tfin \ {0}. In the case λ, δ > 0 [Swa22,
Lemma 6.36] and [BDD91, Lemma 2.1] imply

Pz
[
∃t ≥ 0 : Zt = 0 or |Zt| → ∞ as t→∞

]
= 1 (4.2)

for the CP and the cCP, respectively, and (4.2) clearly implies (4.1). In fact, the two proofs
are just reformulations of each other, both based on Lévy’s 0-1 law.
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In the case λ = 0, δ > 0 there is no difference between a CP and a cCP and

Pz
[
∃t ≥ 0 : Zt = 0

]
= lim

t→∞
Pz
[
Zt = 0

]
= lim

t→∞

(
1− e−δt

)|z|
= 1

since 0 is absorbing. This implies (4.2) and hence also (4.1).
In the case λ > 0, δ = 0, and if Z is a CP, the function t 7→ |Zt| is non-decreasing, hence

it converges in N ∪ {∞}. Let N ∈ N. One has

Pz
[

limt→∞ |Zt| ≤ N
]

= 1− Pz
[
∃t ≥ 0 : |Zt| > N

]
= 1− lim

t→∞
Pz[|Zt| > N ] = 0 (4.3)

as choosing a suitable sequence of neighbours and neighbours of neighbours of the infected
individuals in z yields that

Pz[|Zt| > N ] ≥
(

1− 1{|z|≤N}e
− λt
N+1−|z|

)N+1−|z|

for t > 0. Here, in the case that |z| ≤ N , we have divided time into N + 1 − |z| subintervals
and used the fact that 1 − e−λt is the probability to infect a previously chosen neighbour of
an infected individual during a time interval of length t. Finally, (4.3) implies that

Pz
[
|Zt| → ∞ as t→∞

]
= 1− Pz

[
∃N ∈ N : limt→∞ |Zt| = N

]
≥ 1−

∑
N∈N

Pz
[

limt→∞ |Zt| ≤ N
]

= 1,

again implying (4.2) and hence also (4.1).
To treat the cCP in the case λ > 0, δ = 0, we use [BDD91, Theorem 1.3]. It says that

a cCP(1,0), started in any initial state other than 0, converges weakly to the product law
assigning probability 1/2 to both 0 and 1 at every node. By changing the time scale the
same holds for a cCP(λ, 0) with an arbitrary λ > 0. Let N ∈ N and ε > 0. Choose now an
M = M(N, ε) > N so that pN := P[X ≤ N ] < ε if X is a binomially distributed random
variable with parameters n = M and p = 1/2. Additionally, choose an arbitrary x ∈ Tfin with
|x| = M . Then, by the weak convergence,

lim sup
t→∞

Pz
[
|Zt| ≤ N

]
≤ lim

t→∞
Pz
[
|Zt ∧ x| ≤ N

]
= pN < ε,

implying limt→∞ Pz
[
|Zt| ≤ N

]
= 0 (i.e. convergence in probability to ∞). Thus (4.1) holds.

Using the three lemmas above we are able to prove Theorem 5.

Proof of Theorem 5. Let Y = (Y 1, Y 2) = (Y 1
t , Y

2
t )t≥0 be an independent copy of the 2CP X =

(X1, X2) = (X1
t , X

2
t )t≥0 in the formulation of the theorem, but started in the deterministic

state y = (y1, y2) ∈ Ufin. Due to the informativeness of ψ and the compactness of U , the set
G from the proof of Lemma 3 is also convergence determining, i.e. showing

lim
t→∞

E
[
ψ(Xt, y)

]
= Py

[
∃t ≥ 0 : Yt = (0, 0)

]
(4.4)

for all y ∈ Ufin implies (1.19) (compare [Swa22, Lemma 4.38]). If y = (0, 0), (4.4) follows
trivially from the definition of ψ, so assume y 6= (0, 0). We set

λ1 := λ+ λ∨, δ1 := δ + δ∨, λ2 := λ+ λ⊕, δ2 := δ + δ⊕,

so that X1 and Y 1 are both a CP(λ1, δ1), and X2 and Y 2 are both a cCP(λ2, δ2). Assume,
for now, that λ1, λ2 > 0, so that all three auxiliary lemmas above are applicable. Let ε > 0 be
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arbitrary. Choose NCP and NcCP as in Lemma 17 and Lemma 18 in dependence of the chosen
ε, s = 1, and the model parameters. Fix t > 0. We have, using the duality equation (1.18)
and the law of total expectation, that

E[ψ(Xt+1, y)]

= E[ψ(X1, Yt)]

= E
[
ψ(X1, Yt) | Y 1

t = Y 2
t = 0

]
Py
[
Y 1
t = Y 2

t = 0
]

+ E
[
ψ(X1, Yt) | Y 1

t = 0, 0 < |Y 2
t | < NcCP

]
Py
[
Y 1
t = 0, 0 < |Y 2

t | < NcCP

]︸ ︷︷ ︸
=:p1(y,t)

+ E
[
ψ(X1, Yt) | Y 1

t = 0, |Y 2
t | ≥ NcCP

]︸ ︷︷ ︸
=:E1(y,t)

Py
[
Y 1
t = 0, |Y 2

t | ≥ NcCP

]
+ E

[
ψ(X1, Yt) | 0 < |Y 1

t | < NCP

]
Py
[
0 < |Y 1

t | < NCP

]︸ ︷︷ ︸
=:p2(y,t)

+ E
[
ψ(X1, Yt) | |Y 1

t | ≥ NCP

]︸ ︷︷ ︸
=:E2(y,t)

Py
[
|Y 1
t | ≥ NCP

]
.

(4.5)

Depending on the choice of the model parameters and y, the deterministic initial state of
Y , it might happen that some of the events on which we condition above have probability
zero. The cases that either y1 = 0 or y2 = 0, or the monotonely coupled case δ∨ = λ⊕ = 0
when y satisfies y(i) 6= (0, 1) for all i ∈ Zd are such examples. In these cases we define the
corresponding conditioned expectation (arbitrarily) to equal 1. Due to the zero probability
the line in (4.5) where it occurs then drops out, and for the remaining ones we can argue as
below.

From the definition of ψ it is clear that E
[
ψ(X1, Yt) | Y 1

t = Y 2
t = 0

]
= 1 and

Py
[
Y 1
t = Y 2

t = 0
]
↗ Py

[
∃t ≥ 0 : Yt = (0, 0)

]
as t→∞. Moreover, Lemma 19 implies that

lim
t→∞

p1(y, t) = lim
t→∞

p2(y, t) = 0.

As in the proof of [Swa22, Theorem 6.35] we use Lemma 17 to compute that

|E2(y, t)| =
∣∣P[ψ(X1, Yt) = 1 | |Y 1

t | ≥ NCP

]
− P

[
ψ(X1, Yt) = −1 | |Y 1

t | ≥ NCP

]∣∣
≤ P

[
ψ(X1, Yt) 6= 0 | |Y 1

t | ≥ NCP

]
= P

[
X1

1 ∧ Y 1
t = 0 | |Y 1

t | ≥ NCP

]
≤ ε

(4.6)

by the choice of NCP. For E1(y, t) one has that

E1(y, t) = 1− 2P
[
ψ(X1, Yt) = −1 | Y 1

t = 0, |Y 2
t | ≥ NcCP

]
= 1− 2P

[
|X2

1 ∧ Y 2
t | is odd

∣∣ Y 1
t = 0, |Y 2

t | ≥ NcCP

]
and, due to the independence of X and Y , we can apply Lemma 18 and conclude that

|E1(y, t)| ≤ 2ε.

Plugging then back into (4.5) and computing the limit inferior and the limit superior, one
concludes (4.4) as ε was arbitrary.

To finish the proof we consider the case that λ1 = 0 and/or λ2 = 0. By assumption, λi
(i ∈ {1, 2}) can only equal zero if δi > 0. The idea is to still use (4.5), where we used λ1 > 0 for
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the treatment of E2(y, t) and λ2 > 0 for the treatment of E1(y, t). However, if λ1 = 0, then Y 1

is a CP(0, δ1) with δ1 > 0, so the number of infected individuals can only decrease. Choosing
NCP := |y1|+1 makes the line in (4.5) in which E2(y, t) appears vanish. Analogously, choosing
NcCP := |y2|+ 1 makes the line in which E1(y, t) appears vanish if λ2 = 0. For the rest of the
terms one then can argue as above.

We conclude that in all cases (4.4) holds, thus also (1.19) as explained above. Lastly, it is
well-known (compare [Swa22, Lemma 4.40]) that (1.19) implies that ν is indeed invariant and
the proof is complete.

5 Survival

In this section we prove Proposition 4. Let X = (Xt)t≥0 be a cCP and let δ0 ∈ Tfin be the
configuration that equals 1 only at the origin. We say that X survives if

Pδ0
[
∃t ≥ 0 : Xt = 0

]
< 1.

The following result is known to hold for several processes. It is stated as [SS08a, Lemma 1]
for an important class of cancellative processes. However, the cCP does not fit into this class
and the definition of survival in the cited paper slightly differs from the one we are using
here, so we provide a short proof below. Recall that ν̇ is an invariant law of the cCP(λ, δ)
that is defined as the long-time limit law of the process started in a non-trivial shift-invariant
distribution, which is known to exist for λ+ δ > 0 by [BDD91, Theorem 1.2 & Theorem 1.3].

Proposition 20 (Survival of the cCP) One has ν̇ 6= δ0 if and only if the cCP survives.

Proof. We prove this statement using ψcanc, the (multiplicative representation of the) can-
cellative duality function defined in (1.14). It is well-known that ψcanc is informative, a fact
that also follows from Proposition 14. Let X = (Xt)t≥0 be a cCP(λ, δ) (λ, δ ≥ 0, λ + δ > 0)
and let x ∈ Tfin. If λ, δ > 0, then [BDD91, Theorem 1.2] implies that

ν̇
(
{y : |x ∧ y| is odd}

)
=

1

2
Px
[
Xt 6= 0 ∀t ≥ 0

]
. (5.1)

By the definition of ψcanc, (5.1) is equivalent to∫
ψcanc(x, y) dν̇(y) = Px

[
∃t ≥ 0 : Xt = 0

]
. (5.2)

Choosing x = δ0 implies that ν̇ 6= δ0 if X survives. On the other hand, if X does not survive
and Y is a random variable with law ν̇, then (5.1) with x = δ0 implies that P[Y (0) = 0] = 1
and the shift-invariance of ν̇ implies that P[Y (j) = 0] = 1 for all j ∈ Z. Hence ν̇ = δ0 as
measures on U are characterised by their final dimensional marginals.

To complete the proof we consider the two special cases λ = 0 and δ = 0. If λ = 0, then
δ > 0 and clearly X does not survive while ν̇ = δ0. If δ = 0, then λ > 0 and X survives (one
even has Pδ0 [∃t ≥ 0 : Xt = 0] = 0) and ν̇ 6= δ0 by [BDD91, Theorem 1.3].

By Proposition 20, to prove Proposition 4, it suffices to show that the cCP(λ, δ) does not
survive when λ ≤ 2δ. Let now d = 1. Following [Sud98] (compare the definition of L in his
Section 2), the idea for the proof of Proposition 4 is to construct a supermartingale applying
Dynkin’s formula to the function g : Tfin \ {0} → N0 defined as

g(x) := max{i ∈ Z : x(i) = 1} −min{i ∈ Z : x(i) = 1} (x ∈ Tfin). (5.3)

In order to be able to apply Dynkin’s formula one can “reduce” the cCP to a finite state space
similarly as in [SS08b, Proof of Lemma 3]. A full proof including the technical details is given
below.
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Proof of Proposition 4. Let d = 1 and assume that X is a cCP(λ, δ) with λ ≤ 2δ. Using the
g from (5.3) we define f : Tfin → N0 as

f(x) =

{
g(x) + 4 if x 6= 0,

0 else,
(x ∈ Tfin).

One then has that G⊕f(x) ≤ 0 for all x ∈ Tfin, where G⊕ denotes the generator of the cCP
from (1.2). To see this we first look at x101, x11 ∈ Tfin defined as

x101(i) =

{
1 if i ∈ {0, 2},
0 else,

x11(i) =

{
1 if i ∈ {0, 1},
0 else,

(x ∈ Z).

In the configuration x101 the one at the origin reproduces with rate λ to the left, increasing
the function f by one and it dies with rate δ, decreasing f by two. A reproduction to the
right has no effect on f . By symmetry, an analogous statement holds for the one at 2 ∈ Z so
that G⊕f(x101) = 2λ− 4δ. For x11 on the other hand, a reproduction of the one at the origin
to the right reduces f by one and its death reduces f by only one, while a reproduction to
the left again increases f by one. Hence G⊕f(x11) = −2δ. Let now x ∈ Tfin be an arbitrary
configuration with at least two ones. As f is shift-invariant, i.e. f = f ◦ θ−1

i for all i ∈ Z,
one has that G⊕f(x) ≤ G⊕f(x101) if x has the form 010 . . . 010, G⊕f(x) = G⊕f(x11) if x has
the form 011 . . . 110 and G⊕f(x) ≤ (G⊕f(x11) + G⊕f(x101))/2 if x has the form 010 . . . 110
or 011 . . . 010. Note we had to use inequalities above as a death event of a one at the edge
of a configuration reduces f by the number of zeros “to the inside” of this one, hence by at
least two if there is a zero directly to the inside of the one. Finally we consider the special
case x = δ0, in which with rate 2λ the lone individual reproduces (either to the left or to the
right) and with rate δ it dies. Hence G⊕f(δ0) = G⊕f(x101) = 2λ− 4δ, which was the reason
to add the 4 in the definition of f . This completes the argument that λ ≤ 2δ implies that
G⊕f(x) ≤ 0 for all x ∈ Tfin.

The rest of the proof is a standard argument from the theory of continuous-time Markov
chains, but, for the sake of completeness, we state it completely. Let N ∈ N be arbitrary and
set τN := inf{t ≥ 0 : f(Xt) ≥ N + 4}. We claim that MN = (MN

t )t≥0 defined as

MN
t := f(Xt∧τN )−

∫ t∧τN

0
G⊕f(Xs) ds (t ≥ 0)

is a martingale. Let

TN := {x ∈ Tfin : x(i) = 0 if i /∈ {0, . . . , N − 1}} ∪ {xN},

where

xN (i) :=

{
1 if i ∈ {0, N},
0 else,

(i ∈ Z).

By shifting every x ∈ Tfin so that its leftmost 1 lies at the origin we can construct a continuous-
time Markov chain Y = (Yt)t≥0 on the finite state space TN so that

MN
t = f(Yt)−

∫ t

0
G⊕f(Ys) ds (t ≥ 0).

As a continuous-time Markov chain on a finite state space Y is a Feller process and Dynkin’s
formula implies that MN is indeed a martingale.
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As G⊕f(x) ≤ 0 for all x ∈ Tfin we conclude that M s = (f(Xt∧τN ))t≥0 is a uniformly
integrable supermartingale and the martingale convergence theorem implies that M s converges
almost surely and in L1 to a random variable M∞. The random variable M∞ is supported
on {0, N + 4} as M∞ ∈ {1, . . . , N + 3} would imply that there exists a t0 ≥ 0 such that
M s
t = M s

t0 ∈ {1, . . . , N + 3} for all t ≥ t0, which has probability zero. Hence

4 = Eδ0 [f(X0)] ≥ E[M∞] = (N + 4)(1− P(M∞ = 0))

and we conclude that

Pδ0(∃t ≥ 0 : Xt = 0) ≥ Pδ0(∃t ≤ τN : Xt = 0) = P(M∞ = 0) ≥ N

N + 4
.

As N was arbitrary it follows that Pδ0(∃t ≥ 0 : Xt = 0) = 1 and Proposition 20 implies that
ν̇ = δ0. This establishes that λcCP ≥ 2.

A Parity indeterminacy

In this appendix we restate [SS08a, Corollary 9] in a more accessible form and show how
it can be derived from the somewhat less accessible formulation in [SS08a]. Then we show
how this result implies Lemma 18. Recall from Section 1.2 and Section 1.3 the definitions of
the operator ⊕ (addition modulo 2), of T , the space all functions from Zd to T = {0, 1}, of
Tfin ⊂ T , and of the cancellative duality function ψ2. Let A be the set of all matrices of the
form A = (A(i, j))i,j∈Zd with A(i, j) ∈ {0, 1} for all i, j ∈ Zd and

∑
i,j A(i, j) <∞. For A ∈ A

and x ∈ T , we define Ax ∈ Tfin, corresponding to the usual matrix-vector multiplication, as

Ax(i) :=
⊕
j∈Zd

(
A(i, j) · x(j)

)
(i ∈ Zd),

where · denotes the usual product in R. Let A†(i, j) := A(j, i) denote the adjoint of A. We will
be interested in an interacting particle system X = (Xt)t≥0 with state space T , that jumps
from its current state x as

x 7→ x⊕Ax with rate a(A), (A.1)

where (a(A))A∈A are non-negative rates and the operator⊕ has to be interpreted in a pointwise
sense, as well as the interacting particle system Y = (Yt)t≥0 that jumps as

y 7→ y ⊕A†y with rate a(A).

In order for these interacting particle systems to be well-defined, we assume that

sup
i∈Zd

∑
A∈A

a(A)
∣∣{j : A(j, i) = 1}

∣∣ <∞ and sup
i∈Zd

∑
A∈A

a(A)
∣∣{j : A†(j, i) = 1}

∣∣ <∞. (A.2)

Recall from Section 4 that |z| := |{i ∈ Zd : z(i) = 1}| (z ∈ T ). It is shown in [SS08a] that
under condition (A.2), the processes X and Y are well-defined and satisfy the duality relation

P
[
|XtY0| is odd

]
= P

[
|X0Yt| is odd

]
(t ≥ 0) (A.3)

whenever X and Y are independent and either |X0| or |Y0| is a.s. finite.
We will restate [SS08a, Corollary 9], which gives sufficient conditions for the left-hand side

of (A.3) to be close to 1/2. We assume that the rates are translation invariant in the sense
that

a(θiA) = a(A) (i ∈ Zd, A ∈ A), (A.4)
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where θiA denotes the “translated” matrix (θiA)(j, k) := A(j − i, k − i) (j, k ∈ Zd). By
definition, we say that a state x ∈ T is X-nontrivial if

Px
[(
Xt(i)

)
i∈∆

=
(
z(i)

)
i∈∆

]
> 0 for all t > 0, finite ∆ ⊂ Zd, and

(
z(i)

)
i∈∆
∈ {0, 1}∆.

(A.5)
We fix a finite subset B ⊂ A such that a(B) > 0 for all B ∈ B and we define, for x ∈ T ,

‖x‖B :=
∣∣{i ∈ Zd : ∃y ∈ T and B ∈ B s.t. ψ2

(
x, (θiB)y

)
= 1
}∣∣.

With these definitions, [SS08a, Corollary 9] can be restated as follows. Recall the definition
of the (pointwise) minimum operator ∧ from Section 4.

Proposition 21 (Parity indeterminacy) Let X be started in a shift-invariant initial law
that is concentrated on X-nontrivial configurations. Then for each ε > 0 and t > 0, there
exists an N <∞ such that ∣∣∣∣P[|Xt ∧ y| is odd

]
− 1

2

∣∣∣∣ ≤ ε (A.6)

for all y ∈ Tfin with ‖y‖B ≥ N .

Proof. This is a simple reformulation of [SS08a, Corollary 9]. There, it is proved that if
yn ∈ Tfin satisfy ‖yn‖B →∞, then P

[
|Xt ∧ yn| is odd

]
→ 1

2 . To see that this implies the claim
of Proposition 21, note that if the claim would be false, then there exists an ε > 0 such that
for all n ≥ 1 one can find yn ∈ Tfin with ‖yn‖B ≥ n such that the left-hand side of (A.6) is
> ε, contradicting [SS08a, Corollary 9].

Applying Proposition 21 to the cancellative contact process we obtain Lemma 18.

Proof of Lemma 18. We first show that the jump rates of the cancellative contact process can
be cast in the form (A.1). Let e1, . . . , ed ∈ Zd denote the unit vectors and let 0 ∈ Zd denote the
origin. For 1 ≤ k ≤ d, we define I±k ∈ A by I±k (i, j) := 1 if (i, j) = (±ek, 0) and I±k (i, j) := 0
otherwise. Also, we define D ∈ A by D(i, j) := 1 if (i, j) = (0, 0) and D(i, j) := 0 otherwise.
Finally, we define rates

(
a(A)

)
A∈A by

a(θiI
±
k ) := λ and a(θiD) := δ (i ∈ Zd, 1 ≤ k ≤ d),

and a(A) := 0 in all other cases. Clearly, these rates are translation invariant in the sense of
(A.4) and satisfy the summability condition (A.2). Also, a jump of the form x 7→ x⊕(θ−iI

±
k )x

corresponds to a jump of the form x 7→ inf⊕i,i±ek(x) in the notation of Section 1.2 and a
jump of the form x 7→ x ⊕ (θ−iD)x corresponds to a jump of the form x 7→ dthi(x), so the
process defined by these rates is a cCP(λ, δ). The claim of Lemma 18 will now follow from
Proposition 21 provided we show that: (i) each configuration x 6= 0 is X-nontrivial and: (ii)
we can choose B such that ‖y‖B = |y|.

We start by proving (ii). We set B := {I+
1 }, where I+

1 as defined above is one of the
matrices corresponding to an infection next to the origin. Then a(I+

1 ) = λ > 0. Moreover,

ψ2

(
(θ−iI

+
1 )x, y

)
= x(i) · y(i+ e1)

and hence

y(i) = 1 if and only if e1 − i ∈ {i ∈ Zd : ∃x ∈ T and B ∈ B s.t. ψ2

(
(θiB)x, y

)
= 1
}
,

which shows that ‖y‖B = |y|.
It remains to prove (i). Fix x ∈ T \ {0}, a finite set ∆ ⊂ Zd, and

(
z(i)

)
i∈∆
∈ {0, 1}∆.

Using the fact that x 6= 0 and λ > 0, in a finite number of infection steps, we can infect each
site in ∆ ∪ {i ∈ Zd : ∃j ∈ ∆ : j ∼ i}. Starting with the sites in ∆ with the highest graph
distance to Zd \∆, we then can remove the infection from all sites i such that z(i) = 0 only
using further infections, proving that the probability in (A.5) is positive for each t > 0.
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The true strength of Proposition 21 lies in the fact that it can be applied even in situations
where the definitions of X-nontriviality and the norm ‖y‖B are more complicated. In particu-
lar, [SS08a, Theorem 3] is based on an application of Proposition 21 in a situation where the
X-nontrivial configurations are all x 6= 0, 1, and ‖y‖B =

∣∣{(i, j) : |i− j| = 1, y(i) 6= y(j)}
∣∣.
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