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Abstract

In this paper we use duality techniques to study a coupling of the well-known contact
process (CP) and the annihilating branching process. As the latter can be seen as a
cancellative version of the contact process, we rebrand it as the cancellative contact process
(cCP). Our process of interest will consist of two components, the first being a CP and the
second being a cCP. We call this process the double contact process (2CP) and prove that
it has (depending on the model parameters) at most one invariant law under which ones
are present in both processes. In particular, we can choose the model parameters in such
a way that CP and cCP are monotonely coupled. In this case also the above mentioned
invariant law will have the property that, under it, ones (modeling “infected individuals”)
can only be present in the cCP at sites where there are also ones in the CP. Along the
way we extend the dualities for Markov processes discovered in our paper “Commutative
monoid duality” to processes on infinite state spaces so that they, in particular, can be
used for interacting particle systems.
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1 Introduction

1.1 Aim of the paper

After having identified in [LS22] a class of duality functions based on commutative monoids,
our aim for this present paper is to apply one of those dualities to a specific process. To do
so we couple the contact process with its cancellative version, the process formerly known as
the annihilating branching process. The considerations in [LS22] indicate that this coupled
process has a self-duality that we use here to characterise all invariant laws of the process.

To use the dualities discovered in [LS22], we first have to generalise the techniques presented
in [LS22] to infinite state spaces. This is done in Section 2 and is one of the main contributions
of the present paper.

Additionally, in Section 3, we give precise definitions and some first results towards the
goal of characterising all duality functions of the type considered in [LS22] that determine the
law of a process uniquely. This was posed as an open problem in [LS22, Section 1.5].

1.2 Contact processes

We set T := {0, 1} and let T denote the space of all functions x : Zd → T . Moreover, we let
∨ and ⊕ denote the binary operators on T defined by the addition tables

∨ 0 1

0 0 1
1 1 1

,

⊕ 0 1

0 0 1
1 1 0

.

In words, this says that for a, b ∈ T the quantity a ∨ b is the maximum of a and b and a ⊕ b
is the sum of a and b modulo 2. For all i, j ∈ Zd, we define “infection maps” inf∗ij : T → T
(∗ ∈ {∨,⊕}) and a “death map” dthi : T → T as follows:

inf∗ij(x)(k) :=

{
x(i) ∗ x(j) if k = j,

x(k) else,
, dthi(x)(k) :=

{
0 if k = i,

x(k) else.
(1.1)

We say that i, j ∈ Zd are nearest neighbours and write i ∼ j if ∥i− j∥1 = 1. We define formal
generators

G∗f(x) := λ
∑

i,j∈Zd:i∼j

{
f
(
inf∗ij(x)

)
− f

(
x
)}

+ δ
∑
i∈Zd

{
f
(
dthi(x)

)
− f

(
x
)}

(1.2)

for ∗ ∈ {∨,⊕}, where λ, δ ≥ 0 are model parameters. It is well-known (compare [Swa22,
Theorem 4.30]) that continuous functions that depend only on finitely many coordinates form
a core for the generator G∗ (∗ ∈ {∨,⊕}). In words, we can describe the dynamics of the
process generated by G∗ (∗ ∈ {∨,⊕}) as follows:

� At each site i ∈ Zd sit two “exponential clocks”, one with rate 2dλ for reproduction and
one with rate δ for death.

� If the clock for reproduction at site i ∈ Z rings, the corresponding individual reproduces
by choosing a neighbouring site j uniformly at random and adding its local state to the
local state at j, where addition has to be interpreted in the sense of the operator ∗.

� If the “death clock” at site i rings, individual i dies which means that its local state is
replaced by 0, regardless of its previous value.
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The process C = (Ct)t≥0 with generator G∨ is the well-known contact process on Zd with
infection rate λ and death rate δ (introduced in [Har74]). We denote this process shortly as
CP(λ, δ). The process D = (Dt)t≥0 with generator G⊕ was introduced as the annihilating
branching process in [BDD91]. We refer to it as the cancellative contact process (cCP(λ, δ))
to stress the similarity of the two processes, which differ only in the type of operator used in
the definition of the infection maps inf∗ij (∗ ∈ {∨,⊕}).

To speak about the long-time behaviour of the CP and the cCP we define shift operators
θi : T → T by

(θix)(j) := x(j − i)
(
i, j ∈ Zd, x ∈ T

)
. (1.3)

We say that a probability measure µ on T is shift-invariant if µ = µ ◦ θ−1
i (i ∈ Zd). For a ∈ T

we let a denote the constant configuration a(i) := a (i ∈ Zd). We say that a distribution µ on
T is non-trivial if µ({0}) = 0.

It is well-known [Swa22, Theorem 6.35] that the CP(λ, δ) with λ+ δ > 0 started in a non-
trivial shift-invariant distribution converges weakly to a (time-) invariant distribution ν̄ called
the upper invariant law of the contact process. Similarly, it is known [BDD91, Theorem 1.2
& Theorem 1.3] that the cCP(λ, δ) with λ + δ > 0 started in a non-trivial shift-invariant
distribution converges weakly to an invariant distribution ν̇, that we call, in accordance with
[SS08a], the odd upper invariant law of the cancellative contact process.

Letting δ0 denote the Dirac measure concentrated on the “all 0” configuration 0, ν̄ and ν̇
may or may not differ from δ0 depending on the choice of the model parameters λ and δ. For
a CP(λ, δ) (λ+ δ > 0) there exists a critical value λCP = λCP(d) ∈ (0,∞) (dependent on the
dimension d) such that ν̄ ̸= δ0 if and only if λ/δ > λCP [Lig85, Chapter IV.1], [BG90]. Here
and in the following we set x/0 = ∞ for x ∈ (0,∞). For the cCP we can define λ±cCP = λ±cCP(d)
as

λ−cCP := inf{λ ≥ 0 : the odd upper invariant law of the cCP(λ, 1) does not equal δ0},
λ+cCP := sup{λ ≥ 0 : the odd upper invariant law of the cCP(λ, 1) equals δ0}.

It is known that λ+cCP < ∞ ([BDD91, Theorem 1.1] & Proposition 22 below). By coupling
the CP and cCP in such a way that infections and deaths only occur in both processes
simultaneously (see below) one shows that λCP ≤ λ−cCP. Thus, it is established that

0 < λCP ≤ λ−cCP ≤ λ+cCP <∞.

Simulations suggest that λ−cCP = λ+cCP and λCP < λ−cCP in all dimensions. The first assertion
is a long-standing open problem that due to the non-monotone nature of the process seems
very difficult. Using the bound λCP(1) ≤ 1.942, proved in [Lig95], and the following result we
can conclude the latter assertion at least in dimension one.

Proposition 1 (Lower bound for λ−cCP(1)) One has λ−cCP(1) ≥ 2.

As the methods in the proof of Proposition 1 (to be found in Section 5) are essentially
one-dimensional in nature, it is not clear how to generalise the result to higher dimensions.

1.3 The double contact process

We will be interested in a joint process, consisting of a CP and a cCP, that are coupled in
such a way that some of the infections and deaths happen for both processes at the same
times. Our motivation to study this coupled process comes primarily from the theoretical side
of view. The duality techniques explored below are by no means restricted to this one process.
In particular, further couplings of “classic” interacting particle systems can be studied in a
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similar way. However, in order to prevent the reader from getting lost in abstract statements,
we stick to this one process. Further details regarding additional applications of monoid duality
to similar processes are given within the text below, in particular at the end of Section 2 and
below Proposition 15.

Informally, the coupled process of interest will behave in the following way. With rates
λ, δ ≥ 0 infections and deaths, respectively, happen simultaneously for the CP and the cCP.
With rates λ∨, δ∨ ≥ 0 they only happen for the CP and with rates λ⊕, δ⊕ ≥ 0 only for the
cCP.

It will be helpful to write the generator of the coupled process in a form similar to (1.2).
To achieve this, we define U := T × T = {0, 1}× {0, 1}. In parallel to the above we denote by
U the space of all functions x = (x1, x2) : Zd → U and for each i, j ∈ Zd, we define infection
maps INFij , inf

1
ij , inf

2
ij : U → U and death maps DTHi, dth

1
i, dth

2
i : U → U as

INFij(x) := (inf∨ij(x1), inf
⊕
ij(x2)), DTHi(x) := (dthi(x1), dthi(x2)),

inf1ij(x) := (inf∨ij(x1), x2), dth1i(x) := (dthi(x1), x2),

inf2ij(x) := (x1, inf
⊕
ij(x2)), dth2i(x) := (x1, dthi(x2)), (x = (x1, x2) ∈ U),

(1.4)

where the maps on the right hand sides are the maps from (1.1). We then define the generator
G⊻ as

G⊻f(x) := λ
∑

i,j∈Zd:i∼j

{
f
(
INFij(x)

)
− f

(
x
)}

+ δ
∑
i∈Zd

{
f
(
DTHi(x)

)
− f

(
x
)}

+ λ∨
∑

i,j∈Zd:i∼j

{
f
(
inf1ij(x)

)
− f

(
x
)}

+ δ∨
∑
i∈Zd

{
f
(
dth1i(x)

)
− f

(
x
)}

+ λ⊕
∑

i,j∈Zd:i∼j

{
f
(
inf2ij(x)

)
− f

(
x
)}

+ δ⊕
∑
i∈Zd

{
f
(
dth2i(x)

)
− f

(
x
)}
,

(1.5)

where λ, δ, λ∨, δ∨, λ⊕, δ⊕ ≥ 0 are model parameters. Standard results [Swa22, Theorem 4.30]
tell us that the process X = (X1, X2) = (X1

t , X
2
t )t≥0 with generator G⊻ is (like C and D

before) well-defined. For later use, letting

Ufin :=
{
x = (x1, x2) ∈ U : |{k ∈ Zd : (x1(k), x2(k)) ̸= (0, 0)}| <∞

}
(1.6)

denote the set of finite configurations, one has, by Theorem 13 below, for all choices of model
parameters that

X0 ∈ Ufin implies Xt ∈ Ufin (t ≥ 0) almost surely. (1.7)

We call X the double contact process and denote it shortly as 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕). If X
is a 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕), then X

1 is a CP(λ+λ∨, δ+ δ∨) and X
2 is a cCP(λ+λ⊕, δ+ δ⊕).

In particular, if λ = δ = 0, then X1 and X2 are independent processes. On the other
extreme, if δ∨ = λ∨ = δ⊕ = λ⊕ = 0, then X1 and X2 are fully coordinated in the sense
that their infections and deaths happen at the same times. An interesting consequence of this
choice of parameters is that the CP stochastically dominates the cCP. The first part of the
following lemma says that this holds a bit more generally: if δ∨ = λ⊕ = 0 and the process
is started in an initial state such that the CP dominates the cCP, then it follows from the
definition of the maps in (1.4) that this order is preserved by the evolution.

Lemma 2 (Special choice of parameters) Assume that X = (X1, X2) = (X1
t , X

2
t )t≥0 is

a 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕) with δ∨ = λ⊕ = 0. Then

X1
0 (k) ≥ X2

0 (k) (k ∈ Zd) implies X1
t (k) ≥ X2

t (k) (k ∈ Zd, t ≥ 0). (1.8)
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In this paper we are interested in the long-time behaviour of the 2CP started in a shift-
invariant distribution. With a slight abuse of notation we define shift operators θi : U → U
by applying the operators from (1.3) in both coordinates. As for distributions on T above we
say that a probability measure µ on U is shift-invariant if µ = µ ◦ θ−1

i (i ∈ Zd). Moreover, we
say that a distribution µ on U is non-trivial if

µ
(
{(0, 0)}

)
= 0,

where also for a ∈ U the configuration a ∈ U is defined as a(i) := a. We set

U(0,∗) :=
{
x = (x1, x2) ∈ U : x1 = 0

}
,

U(∗,0) :=
{
x = (x1, x2) ∈ U : x2 = 0

}
,

Umix := U \ (U(0,∗) ∪ U(∗,0)).

The known results for CP and cCP imply that the 2CP X = (Xt)t≥0 = (X1
t , X

2
t )t≥0 started in

a non-trivial shift-invariant distribution on U(∗,0) converges weakly to ν̄⊗ δ0. Analogously, the
2CP started in a non-trivial shift-invariant distribution on U(0,∗) converges weakly to δ0 ⊗ ν̇.
If X is started in a non-trivial shift-invariant distribution on Umix, then the laws of X1

t and
X2

t individually converge weakly as t → ∞ to ν̄ and ν̇, respectively. However, as a measure
on a product space is in general not determined by its marginals, the long-time behaviour of
the joint law of Xt = (X1

t , X
2
t ) is less straightforward.

A priori there might, for example, exist an increasing sequence (tn)n∈N so that the sequence
of laws of (Xtn)n∈N has several cluster points all having the marginal distributions ν̄ and ν̇,
respectively. Or the law of X might converge weakly to different distributions depending on
where on Umix its initial law is supported. We will show that the behaviour outlined in the
last two sentences does not occur.

Theorem 3 (Joint invariant law) Let X = (X1, X2) = (X1
t , X

2
t )t≥0 be a 2CP with param-

eters λ, δ, λ∨, δ∨, λ⊕, δ⊕ ≥ 0 so that λ+λ∨+ δ+ δ∨ > 0 and λ+λ⊕+ δ+ δ⊕ > 0. Then X has
an invariant law ν so that if X is started in a shift-invariant initial law that is concentrated
on Umix, then

P
[
Xt ∈ ·

]
=⇒
t→∞

ν, (1.9)

i.e. the law of X converges weakly to ν.

Note that (1.9) implies that ν is (as ν̄ and ν̇) shift-invariant. In the special case that
δ∨ = λ⊕ = 0, corresponding to the monotone coupling of CP and cCP, one has that

ν
({
x ∈ U : ∃ k ∈ Zd : x(k) = (0, 1)

})
= 0,

as we can chose a shift-invariant initial law that is concentrated on Umix with the above
property. This property is then preserved by the dynamics. One example of such an initial
law would be the Dirac measure concentrated on (1, 1). Thus, as long as the initial distribution
of this special 2CP is shift-invariant and concentrated on Umix, the law of this 2CP converges
weakly to a monotonically coupled law, no matter how high the density of (0, 1)s was in the
initial distribution.

Taking into account our earlier remarks about initial laws on U(0,∗) and U(∗,0), one can
conclude (compare [Swa22, Corollary 6.39]) that all shift-invariant invariant laws of the 2CP
are convex combinations of δ0 ⊗ δ0, ν̄ ⊗ δ0, δ0 ⊗ ν̇ and ν.
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1.4 Duality

The main tool to prove Theorem 3 will be duality. It is well-known that the CP is self-dual
in the sense of additive systems duality [Har76, Section 7b]. Similarly, the cCP is self-dual
in the sense of cancellative systems duality [BDD91, Proposition 1.1]. This suggests that the
2CP should also possess a self-duality.

To present a complete picture we repeat the definitions of the additive and the cancellative
duality function. Analogously to [LS22] we define ψ1, ψ2 : T × T → T as(

ψ1(0, 0) ψ1(0, 1)
ψ1(1, 0) ψ1(1, 1)

)
=

(
ψ2(0, 0) ψ2(0, 1)
ψ2(1, 0) ψ2(1, 1)

)
=

(
0 0
0 1

)
, (1.10)

in parallel to (1.6) we set

Tfin :=
{
x ∈ T : |{k ∈ Zd : x(k) ̸= 0}| <∞

}
(1.11)

and, for x, y ∈ T so that either x ∈ Tfin or y ∈ Tfin, we define

ψ1(x, y) :=
∨
k∈Zd

ψ1

(
x(k), y(k)

)
and ψ2(x, y) :=

⊕
k∈Zd

ψ2

(
x(k), y(k)

)
, (1.12)

where ∨ and ⊕ are the operators defined at the beginning of Section 1.2 corresponding to
taking the maximum and addition modulo 2, respectively. Since either x ∈ Tfin or y ∈ Tfin,
ψi(x(k), y(k)) = 0 (i = 1, 2) for all but finitely many k ∈ Zd and hence the expressions are well-
defined. Fix λ, δ ≥ 0, let (X1

t )t≥0 denote the CP(λ, δ), and let (X2
t )t≥0 denote the cCP(λ, δ).

Following [Swa22, Lemma 6.6 and Lemma 6.11] the self-dualities of the contact process and
the cancellative contact process can be written as

Ex
[
ψi(X

i
t , y)

]
= Ey

[
ψi(x,X

i
t)
]

(x ∈ T , y ∈ Tfin, t ≥ 0, i = 1, 2), (1.13)

where Ez denotes expectation with respect to the law of the process (Xi
t)t≥0 (i = 1, 2) started

in the initial state z ∈ {x, y}, i.e. Xi
0 = z. In general, throughout this paper, we write Pz and

Ez to denote the law and expectation of a Markov process Z = (Zt)t≥0 started in the initial
state Z0 = z.

We will prove a similar self-duality for the 2CP. The first step is to find the right duality
function. To this aim, we rewrite the duality functions ψ1,ψ2 in (1.12) in such a way that
the operators ∨ and ⊕ are replaced by the product in R. For this purpose, we define maps
γi : T → R (i = 1, 2) by

γ1(0) = 1, γ1(1) = 0 and γ2(0) = 1, γ2(1) = −1. (1.14)

Then it is easy to check that γ1(a ∨ b) = γ1(a) · γ1(b) and γ2(a⊕ b) = γ2(a) · γ2(b) (a, b ∈ T ).
We define, again for x, y ∈ T so that either x ∈ Tfin or y ∈ Tfin,

ψadd(x, y) := γ1
(
ψ1(x, y)

)
and ψcanc(x, y) := γ2

(
ψ2(x, y)

)
. (1.15)

One then readily checks that

ψadd(x, y) =
∏
k∈Zd

γ1
(
ψ1(x(k), y(k))

)
and ψcanc(x, y) =

∏
k∈Zd

γ2
(
ψ2(x(k), y(k))

)
,

where the product is the usual product in R. As γ1 and γ2 are bijections from T to {0, 1}
resp. to {−1, 1}, (1.13) remains true if we replace ψ1 by ψadd and ψ2 by ψcanc.

We now define, for x = (x1, x2), y = (y1, y2) ∈ U so that either x ∈ Ufin or y ∈ Ufin,

ψ(x, y) := ψadd(x1, y1)ψcanc(x2, y2).
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One then checks that

ψ(x, y) =
∏
k∈Zd

ψ
(
x(k), y(k)

)
, (1.16)

where

ψ
(
x(k), y(k)

)
= γ1

(
ψ1(x1(k), y1(k))

)
γ2
(
ψ2(x2(k), y2(k))

)
, (1.17)

i.e. ψ : U × U → {−1, 0, 1} is defined as
ψ((0, 0), (0, 0)) ψ((0, 0), (0, 1)) ψ((0, 0), (1, 0)) ψ((0, 0), (1, 1))
ψ((0, 1), (0, 0)) ψ((0, 1), (0, 1)) ψ((0, 1), (1, 0)) ψ((0, 1), (1, 1))
ψ((1, 0), (0, 0)) ψ((1, 0), (0, 1)) ψ((1, 0), (1, 0)) ψ((1, 0), (1, 1))
ψ((1, 1), (0, 0)) ψ((1, 1), (0, 1)) ψ((1, 1), (1, 0)) ψ((1, 1), (1, 1))

 :=


1 1 1 1
1 −1 1 −1
1 1 0 0
1 −1 0 0

.
(1.18)

The basis of the present paper is the following duality relation.

Proposition 4 (Basic duality relation) For λ, δ, λ∨, δ∨, λ⊕, δ⊕ ≥ 0 let X = (Xt)t≥0 and
Y = (Yt)t≥0 both be a 2CP(λ, δ, λ∨, δ∨, λ⊕, δ⊕). Fixing a t ≥ 0 one can almost surely construct
X and Y on a common probability space in such a way that for every s ∈ [0, t] the random
variables Xs and Yt−s are independent and

[0, t] ∋ s 7→ ψ(Xs, Y
−
t−s)

is constant, where Y − = (Y −
t )t≥0 is the càglàd modification of Y , i.e. it is left-continuous with

right limits but coincides almost everywhere with Y , which is càdlàg, i.e. right-continuous with
left limits.

In fact, in the following we only need equality in expectation, i.e. that

E
[
ψ(Xs, Yt−s)

]
= E

[
ψ(Xu, Yt−u)

]
(1.19)

for all s, u ∈ [0, t]. Here the symbol E denotes expectation with respect to the probability
measure of the underlying probability space on which both X and Y are constructed. In
particular, setting s = t and u = 0 and restricting ourselves to the case that Y0 = y and
X0 = x are deterministic, this is a relation of the form (1.13), but with the cancellative and
additive duality functions ψ1 and ψ2 replaced by the new duality function ψ. Note that,
by (1.7) and the assumption that either X0 ∈ Ufin or Y0 ∈ Ufin, the expression ψ(Xs, Yt−s)
is well-defined for all s ∈ [0, t]. The following lemma highlights the strength of the duality
relation (1.19).

Lemma 5 (The duality is informative) If X and X ′ are U-valued random variables such
that

E
[
ψ(X, y)

]
= E

[
ψ(X ′, y)

]
for all y ∈ Ufin, then X and X ′ are equal in distribution.

In particular, the duality function ψ characterises the invariant law ν from Theorem 3 in
the following way.

Proposition 6 (Characterisation of the invariant law) The invariant law ν from The-
orem 3 is uniquely characterised by the relation∫

ψ(x, y) dν(x) = Py
[
∃ t ≥ 0 : Xt = (0, 0)

] (
y ∈ Ufin

)
.
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1.5 Outline

The paper is structured as follows. In Section 2 we provide a proof for Proposition 4. If
fact, we prove in Theorem 12 a generalisation of Proposition 4 that is independent of our
process of interest, so that it can directly be applied to further processes. Section 3 deals with
the proof of Lemma 5. Also here we prove in Proposition 15 a generalisation of Lemma 5.
Additionally, towards the goal of classifying the dualities found in [LS22] regarding their ability
to determine laws of processes uniquely, we introduce two notions, namely the notions of weak
informativeness and informativeness, and show that they basically coincide in our setup. In
Section 4 we prove Theorem 3 and Proposition 6. As Proposition 1 is independent of the
monoid dualities from [LS22], we prove it last. Its proof is found in Section 5. Finally, in
Appendix A we show how Lemma 20, an auxiliary result we use for the proof of Theorem 12,
follows from a corollary from [SS08a]. As this corollary is stated in [SS08a] in a rather general
form, we decided to repeat the definitions from [SS08a], slightly reformulate the result and
move this discussion to the appendix.

2 Monoid duality for interacting particle systems

In [LS22] a duality theory is developed for Markov processes with state space of the form
SΛ where S is a finite commutative monoid and Λ is a finite set. Here we generalise this
to countable Λ which allows us to define duality relations for interacting particle systems on
countable lattices. For the special cases of additive and cancellative dualities infinite Λ have
already been treated in [Swa22, Chapter 6.6 & Chapter 6.7].

We start by extending the concept of duality between monoids (i.e. semigroups with a
neutral element) presented in [LS22] to monoids that carry a topology. We say that a monoid
(M,+) is a topological monoid if it is equipped with a topology so that the map M ×M ∋
(x, y) 7→ x + y ∈ M is continuous, where M × M is equipped with the product topology.
For a second topological monoid (N,+) we denote by H(M,N) the space of all continuous
monoid homomorphisms, i.e. continuous functions from M to N that preserve the operation
and map the neutral element of M to the neutral element of N . Throughout this paper we
always equip finite and countable monoids with the discrete topology, so that every finite or
countable monoid is a topological monoid. This makes every function between two finite or
countable monoids continuous. Thus, if N andM are finite, the space H(M,N) defined above
coincides with the space of all monoid homomorphisms (called H(M,N) in [LS22]).

Let M1, M2 and N be topological monoids. We say that M1 is N -dual to M2 with duality
function ψ if the following conditions are satisfied:

(i) ψ(x1, y) = ψ(x2, y) for all y ∈M2 implies x1 = x2 (x1, x2 ∈M1),

(ii) H(M1, N) = {ψ( · , y) : y ∈M2},

(iii) ψ(x, y1) = ψ(x, y2) for all x ∈M1 implies y1 = y2 (y1, y2 ∈M2),

(iv) H(M2, N) = {ψ(x, · ) : x ∈M1}.

As we equip finite monoids with the discrete topology, the definition above coincides with the
definition of duality between monoids from [LS22] if M1,M2 and N are finite.

Repeating the definition from [LS22], for arbitrary spaces X ,Y and Z we say that the map
m : X → X is dual to the map m̂ : Y → Y with respect to the duality function ψ : X ×Y → Z
if

ψ(m(x), y) = ψ(x, m̂(y)) (x ∈ X , y ∈ Y).
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In parallel to [Swa22] we say that a map m : X → X preserves a set H of functions from
X to Y if

f ◦m ∈ H for all f ∈ H.

The following proposition is the analogue of [LS22, Proposition 5], that is formulated for
dualities between monoids without attached topologies.

Proposition 7 (Maps having a dual) Let S, R and T be commutative topological monoids
such that S is T -dual to R with duality function ψ. Then a map m : S → S has a dual map
m̂ : R→ R with respect to ψ if and only if m preserves H(S, T ). The dual map m̂, if it exists,
is unique and preserves H(R, T ).

Proof. If m : S → S preserves H(S, T ), then, by property (ii) from the definition of duality,
for all y ∈ R one has ψ(m( · ), y) ∈ H(S, T ). Applying property (ii) again, it follows that there
exists an m̂(y) ∈ R such that ψ(m( · ), y) = ψ( · , m̂(y)). Property (iii) from the definition of
duality implies that m̂(y) is unique. This shows that m has a unique dual map m̂ : R→ R if
m preserves H(S, T ).

On the other hand, ifm : S → S has a dual map m̂ : R→ R, then ψ(m( · ), y) = ψ( · , m̂(y)),
i.e. m preserves {ψ( · , y) : y ∈ R}. By property (ii) from the definition of duality m then also
preserves H(S, T ). This finishes the proof that m : S → S has a dual map m̂ : R → R if and
only if m preserves H(S, T ).

Finally, if m̂ exists, then it has m as a dual map with respect to ψ† : R × S → T defined
as ψ†(y, x) := ψ(x, y) (y ∈ R, x ∈ S), and the previously proved statement implies that m̂
has to preserve H(R, T ).

Clearly, any m ∈ H(S, S) preserves H(S, T ). Conversely, if the assumptions on S, T and
R from Proposition 7 are satisfied and m : S → S preserves H(S, T ), then the proof of [LS22,
Proposition 5] shows that m : S → S has to be a monoid homomorphism. However, while
duality implies that ψ(m( · ), y) is continuous for all y ∈ R, we do not know if m itself always
has to be continuous.

We are especially interested in countable products of topological monoids as we will view
state spaces of an interacting particle system as such products. Let, throughout this section, Λ
be a countable set. For a topological monoid M with |M | ≥ 2 we equip MΛ with the product
topology, making this uncountable monoid a topological monoid. We define the countable
sub-monoid MΛ

fin ⊂MΛ as

MΛ
fin := {x ∈MΛ : |{i ∈ Λ : x(i) ̸= 0}| <∞},

where 0 denotes the neutral element of M . As in Section 1.2, we denote by 0 the constant
configuration with 0(i) = 0 for all i ∈ Λ that is the neutral element of MΛ

fin and MΛ.
Before we investigate duality between such “product monoids” we collect some definitions

and results for general product spaces from [Swa22] that we will need in the following. Let L
and V be arbitrary spaces. For a function f : LΛ → V we say that j ∈ Λ is f-relevant if

∃x1, x2 ∈ LΛ : f(x1) ̸= f(x2) but x1(k) = x2(k) ∀k ̸= j.

We set

R(f) := {j ∈ Λ : j is f -relevant}

and cite the following result [Swa22, Lemma 4.13].

Lemma 8 (Continuous maps) Let L and V be finite sets equipped with the discrete topology.
A map f : LΛ → V is continuous with respect to the product topology if and only if the following
two conditions hold:
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(i) R(f) is finite.

(ii) If x1, x2 ∈ LΛ satisfy x1(j) = x2(j) for all j ∈ R(f), then f(x1) = f(x2).

Let L be finite. For any map m : LΛ → LΛ and i ∈ Λ we define m[i] : LΛ → L as

m[i](x) := m(x)(i) (x ∈ LΛ).

Moreover, we let

D(m) := {i ∈ Λ : ∃x ∈ LΛ : m[i](x) ̸= x(i)}.

We say that a map m : LΛ → LΛ is local if

(i) m is continuous and (ii) D(m) is finite.

For a finite monoid M we denote by Hloc(M
Λ,MΛ) the space of all maps m ∈ H(MΛ,MΛ)

that are local. As we equip, according to our conventions, MΛ with the product topology and
M with the discrete one, m : MΛ → MΛ is local if and only if D(m) is finite and m[j] satisfies
the conditions of Lemma 8 for all j ∈ Λ. Note that every m ∈ Hloc(M

Λ,MΛ) maps MΛ
fin into

itself.
Let throughout the rest of this section (S,⊙), (R,⊡) and (T,⊗) be commutative finite

(and hence topological) monoids and assume that S is T -dual to R with duality function
ψ : S ×R→ T . We denote all three neutral elements by 0 and define Ψ : SΛ ×RΛ

fin → T by

Ψ(x,y) :=
⊗
i∈Λ

ψ
(
x(i),y(i)

) (
x ∈ SΛ, y ∈ RΛ

fin

)
. (2.1)

Note that Ψ is well-defined as for all but finitely many i ∈ Λ one has y(i) = 0 and ψ( · , 0) = o
due to property (iv) of the definition of duality, where o : S → T is the function that is
constantly 0. In general, for all monoids M and N , let id ∈ H(M,M) denote the identity and
o ∈ H(M,N) the function constantly 0. Using Lemma 8 we can prove the following.

Proposition 9 (Duality on product spaces) Let S,R, T be finite commutative monoids.
If S is T -dual to R with duality function ψ, then SΛ is T -dual to RΛ

fin with duality function Ψ.

Proof. The properties (i) and (iii) from the definition of duality follow directly from the
corresponding properties of the duality between S and R. To be more precise, assuming that
Ψ(x1,y) = Ψ(x2,y) for all y ∈ RΛ

fin in particular implies for i ∈ Λ and y ∈ R that

ψ(x1(i), y) = Ψ(x1, y
i) = Ψ(x2, y

i) = ψ(x2(i), y),

where yi ∈ RΛ
fin is defined as

yi(j) =

{
y if j = i,

0 else,
(j ∈ Λ). (2.2)

Hence, the fact that S is T -dual to R implies that x1(i) = x2(i) for all i ∈ Λ and thus x1 = x2.
Property (iii) follows in the same way.

The fact that Ψ( · ,y) and Ψ(x, · ) are monoid homomophisms for all y ∈ RΛ
fin and for all

x ∈ SΛ, respectively, are implied by properties (ii) and (iv) of the duality between S and R
and the definition of Ψ. As RΛ

fin is countable this implies Ψ(x, · ) ∈ H(RΛ
fin, T ). For y ∈ RΛ

fin

we have that R
(
Ψ( · ,y)

)
= {j ∈ Λ : y(j) ̸= 0}, so Ψ( · ,y) satisfies the conditions of Lemma 8

and hence also Ψ( · ,y) ∈ H(SΛ, T ).
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To prove the implication ⊂ in property (iv) from the definition of duality, assume that
g ∈ H(RΛ

fin, T ). Then using (2.2), for each i ∈ Λ, we define gi : R → T as gi(y) := g(yi)
(i ∈ Λ). The fact that g ∈ H(RΛ

fin, T ) directly implies that gi ∈ H(R, T ), and property (iv)
of the duality between S and R implies that there exists an xi ∈ S such that gi = ψ

(
xi, ·

)
.

Defining x ∈ SΛ by x(i) := xi, one has for y ∈ RΛ
fin that

g(y) = g

(
⊡i:y(i)̸=0

y(i)i
)

=
⊗

i:y(i)̸=0

g
(
y(i)i

)
=

⊗
i:y(i)̸=0

gi
(
y(i)

)
=

⊗
i:y(i) ̸=0

ψ
(
xi,y(i)

)
= Ψ(x,y),

which finishes the proof of property (iv) from the definition of duality.
Lastly, we prove the implication ⊂ in property (ii) from the definition of duality. We

assume that f ∈ H(SΛ, T ). Then Lemma 8 implies that there exists a finite set ∆ ⊂ Λ such
that f only depends on the coordinates in ∆. Letting for x ∈ SΛ the restriction xΓ to some
set Γ ⊂ Λ be defined as

xΓ(j) :=

{
x(j) if j ∈ Γ,

0 else,
(j ∈ Λ),

we see that

f(x) = f
(
x∆c ⊙ x∆

)
= f

(
x∆c

)
⊗
⊗
i∈∆

f
(
x(i)i

)
,

where xi ∈ SΛ
fin is defined as yi ∈ RΛ

fin in (2.2). But as f does not depend on ∆c we conclude
that

f
(
x∆c

)
= f

(
0∆c

)
= f(0) = 0.

Analogously to above we can now define y ∈ RΛ
fin by y(i) := yi for i ∈ ∆ and y(i) := 0 for

i ∈ ∆c, where yi ∈ R satisfies f
(
x(i)i

)
= ψ(x(i), yi) independent of the value of x(i). Then

f = Ψ
(
· ,y

)
, which finishes the proof of property (ii) from the definition of duality and thus

the proof is complete.

Having proved the duality between SΛ and RΛ
fin, Proposition 7 and the remarks below it

imply that every m ∈ H(SΛ, SΛ) has a unique dual map with respect to Ψ. In fact, using
the definition of duality and the properties of the product topology it is easy to see that
m : SΛ → SΛ has a unique dual map with respect to Ψ if and only if m ∈ H(SΛ, SΛ).

However, it is not clear how to compute the dual map of m ∈ H(SΛ, SΛ) in general, so
we will focus on local monoid homomorphisms, for which we will be able to compute the dual
maps explicitly. The following lemma generalises [LS22, Lemma 7] to infinite Λ.

Lemma 10 (Local monoid homomorphisms) Let (S,⊙) be a finite monoid. Let M =
(Mij)i,j∈Λ be an infinite matrix with values in H(S, S) such that the set

∆ :=
{
(i, j) ∈ Λ2 : i ̸= j, Mij ̸= o

}
∪
{
(i, i) ∈ Λ2 :Mii ̸= id

}
(2.3)

is finite. Then setting

m[j](x) :=
⊙
i∈Λ

Mij

(
x(i)

) (
j ∈ Λ, x ∈ SΛ

)
(2.4)

defines a map m ∈ Hloc(S
Λ, SΛ). Conversely, each m ∈ Hloc(S

Λ, SΛ) is of this form.
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Proof. First assume that m is of the form (2.4). Then m is well-defined as ∆ from (2.3) is
finite. As M takes values in H(S, S) it follows readily that m[j] ∈ H(SΛ, S) for all j ∈ Λ, thus
m ∈ H(SΛ, SΛ). Let j ∈ Λ. One sees that

R(m[j]) =

{
{i ∈ Λ \ {j} : (i, j) ∈ ∆} ∪ {j} if Mjj ̸= o,

{i ∈ Λ \ {j} : (i, j) ∈ ∆} if Mjj = o.

In both cases R(m[j]) satisfies the conditions of Lemma 8. Additionally

D(m) = {j ∈ Λ : ∃ i ∈ Λ : (i, j) ∈ ∆}

is finite and it follows that m is local, so m ∈ Hloc(S
Λ, SΛ).

Now assume that m ∈ Hloc(S
Λ, SΛ). In particular, one has that m[j] : SΛ → S is continuous

for all j ∈ Λ by the properties of the product topology. Moreover, D(m) ⊂ Λ is finite and, by
definition, for j ∈ D(m)c one has m[j](x) = x(j) for all x ∈ SΛ. Due to Lemma 8, for each
j ∈ D(m) the set R(m[j]) is finite and we can identify m[j] with a map m[j]|R(m[j]) : S

R(m[j]) → S.

By [LS22, Lemma 7] there exists a vector M j = (M j
i )i∈R(m[j]) with coordinates in H(S, S)

such that

m[j]|R(m[j])(x) =
⊙

i∈R(m[j])

M j
i

(
x(i)

) (
x ∈ SR(m[j])

)
.

Defining now M = (Mij)i,j∈Λ as

Mij :=


M j

i if j ∈ D(m), i ∈ R(m[j]),

id if i = j /∈ D(m),

o else,

gives a representation of m[j] for all j ∈ Λ as in (2.4) with the property that the set ∆ from
(2.3) is finite. This completes the proof.

As already claimed, with the help of the above lemma we can compute the dual function
of each m ∈ Hloc(S

Λ, SΛ).

Proposition 11 (Dual local homomorphisms) Let S,R, T be finite commutative monoids
so that S is T -dual to R with duality function ψ. For each m ∈ Hloc(S

Λ, SΛ) there exists a map
m̂ ∈ Hloc(R

Λ, RΛ) so that the restriction of m̂ to RΛ
fin is the unique dual map of m with respect

to the duality function Ψ from (2.1). If M = (Mij)i,j∈Λ denotes the matrix from Lemma 10
such that (2.4) holds, then m̂ is given via

m̂[i](y) =⊡
j∈Λ

M̂ij

(
y(j)

)
(i ∈ Λ, y ∈ RΛ), (2.5)

where, for i, j ∈ Λ, M̂ij ∈ H(R,R) is the (unique) dual map of Mij ∈ H(S, S) with respect to
the duality function ψ.

Proof. Let x ∈ SΛ, y ∈ RΛ
fin and let m̂ be defined via (2.5). Note that m̂ indeed maps RΛ

fin

into itself as ∆ from (2.3) is finite for m and the (unique) dual maps of o, id ∈ H(S, S) with
respect to ψ are o ∈ H(R,R) and id ∈ H(R,R), respectively. Moreover, Lemma 10 implies
that m̂ ∈ Hloc(R

Λ, RΛ). We compute that

Ψ(m(x),y) =
⊗
j∈Λ

ψ
(⊙

i∈Λ
Mij(x(i)), y(j)

)
=

⊗
i,j∈Λ

ψ
(
Mij(x(i)), y(j)

)
=

⊗
i,j∈Λ

ψ
(
x(i), M̂ij(y(j))

)
=

⊗
i∈Λ

ψ
(
x(i),⊡j∈Λ

M̂ij(y(j))
)

= Ψ(x, m̂(y)).
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Uniqueness of the dual map follows directly from property (iii) of the duality between SΛ and
RΛ

fin established in Proposition 9.

We are now ready to apply the non-probabilistic results above to Markov processes. Let
S,R and T still be the finite monoids from above and let G be a countable collection of maps
in Hloc(S

Λ, SΛ). We are considering two formal Markov generators G and Ĝ defined as

Gf(x) :=
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ SΛ), (2.6)

and

Ĝg(y) :=
∑
m∈G

rm
(
g(m̂(y))− g(y)

)
(y ∈ RΛ

fin), (2.7)

where m̂ denotes the dual map of m ∈ G from Proposition 11 and (rm)m∈G are non-negative
rates. We assume that G satisfies the summability condition

sup
i∈Λ

∑
m∈G

D(m)∋i

rm
(
|R(m[i])|+ 1

)
<∞. (2.8)

Under this condition we can almost surely construct a unique interacting particle system X =
(Xt)t≥0 with generator G on SΛ (see [Swa22, Theorem 4.30]). It turns out (see Theorem 13
below) that this condition moreover already implies that there exists a non-explosive Markov
chain (Yt)t≥0 with generator Ĝ on the countable state space RΛ

fin. We want to prove the
following generalisation of Proposition 4.

Theorem 12 (Pathwise monoid duality) Let S,R and T be finite commutative monoids
so that S is T -dual to R with duality function ψ. Let G and Ĝ be the generators from (2.6)
and (2.7) defined via G, a countable collection of maps in Hloc(S

Λ, SΛ) and their unique dual
maps from Proposition 11. Assume that G satisfies (2.8). Fixing a T ≥ 0, one can almost
surely construct X = (Xt)t≥0, the process with generator G, and Y = (Yt)t≥0, the process with

generator Ĝ, in such a way that for every t ∈ [0, T ] the random variables Xt and YT−t are
independent and

[0, T ] ∋ t 7→ Ψ
(
Xt, Y

−
T−t

)
(2.9)

is constant, where Y − = (Y −
t )t≥0 is the càglàd modification of Y .

By definition, we say that X and Y are pathwise dual if they can be constructed in such
a way that (2.9) is satisfied. To prove the above result we cite general theory from [Swa22].

Let L and V be arbitrary finite sets and let Y be an arbitrary countable set. As always,
we equip LΛ with the product topology and Y with the discrete one. Let φ : LΛ ×Y → V be
a function. Let H be a countable collection of local maps m : LΛ → LΛ and assume that every
m ∈ H has a unique dual map m̂ : Y → Y with respect to φ. Let (rm)m∈H be non-negative
rates and define formal generators H and Ĥ in parallel to (2.6) and (2.7) with G replaced by
H. Let ω denote a Poisson point set on H×R with intensity measure ρ({m} ×A) := rmℓ(A)
(m ∈ H, A ∈ B(R)), where ℓ denotes the Lebesgue measure. Under condition (2.8), [Swa22,
Theorem 6.16] says that we can almost surely define stochastic flows1 (X+

s,u)s≤u and (X−
s,u)s≤u

1By definition, (Zs,u)s≤u is a stochastic flow if Zs,s is the identity map for all s ∈ R and if Zt,u ◦Zs,t = Zs,u

(s ≤ t ≤ u).
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of random continuous maps from LΛ to itself so that, for s ≤ u, ω+
s,u := {(m, t) ∈ ω : t ∈ (s, u]}

and ω−
s,u := {(m, t) ∈ ω : t ∈ [s, u)},

X±
s,u(x) = lim

ωn↑ω±
s,u

Xωn
s,u(x) (x ∈ LΛ) (2.10)

pointwise, where (ωn)n is an arbitrary increasing sequence of finite subsets of ω±
s,u whose union

is ω±
s,u, and Xωn

s,u is the concatenation of all maps in ωn (ordered by the time coordinate t).

Let Ĥ := {m̂ : m ∈ H} and let ω̂ be defined by

ω̂ := {(m̂,−t) : (m, t) ∈ ω}.

Then ω̂ is a Poisson point set on Ĥ × R with intensity measure ρ̂({m̂} × A) := rmℓ(A) and
analogously to above we can almost surely define stochastic flows (Y+

s,u)s≤u and (Y−
s,u)s≤u of

random continuous maps from Y to itself so that, for s ≤ u, Y+
s,u and Y−

s,u correspond to

pointwise limits as in (2.10), replacing ω+
s,u by ω̂+

s,u = {(m̂, t) : (m, t) ∈ ω−
−u,−s} and ω−

s,u by

ω̂−
s,u = {(m̂, t) : (m, t) ∈ ω+

−u,−s}. The next statement follows from [Swa22, Theorem 6.20].
Recall that a continuous-time Markov chain is called non-explosive if, for any initial state x,
the probability that the chain stated in x jumps infinitely often up to a finite time t > 0 is
zero (compare [Nor97, Chapter 2.7]).

Theorem 13 (Pathwise dual of an IPS) Assume that the function φ : LΛ × Y → V
is continuous if LΛ × Y is equipped with the product topology, and that it satisfies property
(iii) of the definition of duality, i.e. that φ(x, y1) = φ(x, y2) for all x ∈ LΛ implies y1 = y2
(y1, y2 ∈ Y). Further assume that H satisfies (2.8). Then there exists a continuous-time
Markov chain with generator Ĥ that is non-explosive. Moreover, constructing (X±

s,u)s≤u and
(Y±

s,u)s≤u as above,

φ
(
X±

s,u(x), y
)
= φ

(
x,Y∓

−u,−s(y)
)

(2.11)

holds almost surely simultaneously for all s ≤ u, x ∈ LΛ and y ∈ Y.

If two stochastic flows satisfy (2.11) for all s ≤ u and for all x and y, we say that they are
dual. Theorem 12 follows now almost directly from Theorem 13.

Proof of Theorem 12. First note that Proposition 9 and the definition of the product topology
imply that, by property (ii) of the definition of duality, Ψ from (2.1) is also continuous as a
function from SΛ ×RΛ

fin to T . Proposition 11 and Theorem 13 then show that we can, almost
surely, construct stochastic flows (X±

s,u)s≤u and (Y±
s,u)s≤u corresponding to the maps in G as

in Theorem 13.
Fix now T ≥ 0 and choose a random variable X0 on SΛ and a random variable Y0 on RΛ

fin,
both independent of (X+

s,u)s≤u and (Y−
s,u)s≤u. Setting

Xt := X+
0,t(X0) and Yt := Y+

−T,t−T (Y0) (t ≥ 0)

yields by [Swa22, Proposition 2.9 & Theorem 4.20] and Theorem 13 a Markov process X =
(Xt)t≥0 with generator G and a non-explosive continuous-time Markov chain Y = (Yt)t≥0 with

generator Ĝ. By the construction in [Swa22, Section 6.4] defining Y −
t := Y−

−T,t−T (Y0) for t ≥ 0

gives the càglàd modification Y − := (Y −
t )t≥0 of Y . Using the duality of the stochastic flows,

i.e. (2.11), one then has for all s, u ∈ R satisfying 0 ≤ s ≤ u ≤ T that

Ψ
(
Xs, Y

−
T−s

)
= Ψ

(
X+

0,s(X0),Y
−
−T,−s(Y0)

)
= Ψ

(
X+

0,s(X0),Y
−
−u,−s ◦Y−

−T,−u(Y0)
)

= Ψ
(
X+

s,u ◦X+
0,s(X0),Y

−
−T,−u(Y0)

)
= Ψ

(
X+

0,u(X0),Y
−
−T,−u(Y0)

)
= Ψ

(
Xu, Y

−
T−u

)
,

i.e. the function in (2.9) is constant, and the proof is complete.
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Applying the general theory to the 2CP we prove Proposition 4.

Proof of Proposition 4. We equip U = {0, 1} × {0, 1} with ⊻, the product operator of ∨ and
⊕ from the beginning of Section 1.2, i.e. (x, y) ⊻ (v, w) := (x ∨ v, y ⊕ w) for (x, y), (v, w) ∈ U .
This gives the addition table

⊻ (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,1) (1,0) (1,1)

(0,1) (0,1) (0,0) (1,1) (1,0)

(1,0) (1,0) (1,1) (1,0) (1,1)

(1,1) (1,1) (1,0) (1,1) (1,0)

.

Then U = (U,⊻) is indeed a monoid. Next one computes H(U,U) and H(U,M), with
M := ({−1, 0, 1}, · ), where · denotes the usual multiplication in R. To compute H(U,U) =
{(o, o), (o, id), (id, o), (id, id)} one can apply [LS22, Lemma 6], noting that U =M1×M2, where
M1 := ({0, 1},∨) and M2 := ({0, 1},⊕), and checking that H(Mi,Mj) = {o, id} if i = j and
= {o} if i ̸= j (i, j ∈ {1, 2}). To compute H(U,M) one can apply the same result, computing
first H(M1,M) = {1, γ1} and H(M2,M) = {1, γ2}, where 1 is the function constantly 1, and
γ1 and γ2 are the functions from (1.14). Using the definition of duality one then confirms that
U is M -dual to itself with respect to ψ from (1.18).

Having computed H(U,U) one directly concludes that all its maps are self-dual as o and
id are always self-dual. All maps in (1.4) (that are used in the definition of G⊻ in (1.5)) can
be written as in (2.4) with ∆ from (2.3) finite, so Lemma 10 implies that they are elements
of Hloc(U

Λ, UΛ), with Λ = Zd and UΛ being, as always, equipped with the product topology.
Proposition 11 shows that G⊻ can play the role of both G and Ĝ from (2.6) and (2.7). One
quickly verifies that (2.8) holds and the claim follows from Theorem 12.

One can check that the monoid U is isomorphic to M23 from [LS22, Appendix A.1] and
the monoid M = ({−1, 0, 1}, · ) is isomorphic to M5 from [LS22, Section 5.1]. The function ψ
is denoted in [LS22] as ψ235 and the fact that U is M -dual to itself can be found in the table
in [LS22, Appendix A.2]. The fact that H(U,U) = {(o, o), (o, id), (id, o), (id, id)} is, by [LS22,
Proposition 4], encoded in the duality function ψ23 from [LS22, Appendix A.2].

Instead of using, as we did in Proposition 4, as a local state space the monoid U =M1×M2

(M1 = ({0, 1},∨) andM2 := ({0, 1},⊕) as in the proof above) one can also consider interacting
particle systems that have V := M1 ×M1 or W := M2 ×M2 as their local state space. It
follows from [LS22, Proposition 8] that V is M1-dual to itself while W is M2-dual to itself.
Note that M1 and M2 coincide with M1 and M2 from [LS22]. Continuing as in the proof
above, one can also prove the self-duality of two coupled CPs or two coupled cCPs given
via a generator as in (1.5) but using in (1.4) only infection maps with the superscript ∨ or
only infection maps with the superscript ⊕, respectively. However, Hloc(V

Λ, V Λ) is the set of
local additive maps on (M1 ×M1)

Λ and Hloc(W
Λ,WΛ) is the set of local calcellative maps

on (M2 ×M2)
Λ, so in this case one just arrives at the well-known additive and cancellative

dualities for interacting particle systems that are defined on an extended lattice, where each
site in the original lattice Λ has been replaced by two new sites, that correspond to the two
copies of M1 or M2, respectively. By contrast, the duality in Proposition 1.4 is not covered
by known results about additive or cancellative duality.

3 Informativeness and representations

In this subsection Lemma 5 is proved. In fact, as already stated in the outline, we are going
to prove a more general result and we are going to investigate the open task to classify the
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monoid dualities from [LS22] that determine the law of processes uniquely. Let, as in the
section above, (S,⊙), (R,⊡) and (T,⊗) be commutative finite monoids and assume that S
is T -dual to R with duality function ψ : S × R → T . Let Λ be countable, let V be a finite
dimensional real or complex vector space and let V be an arbitrary measurable space.

Towards the goal of classification we give the following definitions. For an arbitrary index
set I we call a family (fi)i∈I of measurable functions fi : S

Λ → V distribution determining if,
for two random variables X and X ′ on SΛ,

E[fi(X)] = E[fi(X ′)] ∀i ∈ I implies X
d
= X ′,

where
d
= denotes equality in distribution. Similarly, we call a family (gi)i∈I of measurable

functions gi : S
Λ → V weakly distribution determining if

gi(X)
d
= gi(X

′) ∀i ∈ I implies X
d
= X ′.

The first of the two definition is already widely used (compare [Swa22]), while the second one
we introduce here newly.

A family (fi)i∈I of functions fi : S
Λ → V that is distribution determining is clearly also

weakly distribution determining. The reverse implication is not true in general, but holds in
the following special case. Recall that v1, . . . , vn ∈ V are called affinely independent if

n∑
k=1

λkvk = 0 with scalars λ1, . . . , λn s.t.

n∑
k=1

λk = 0 implies λ1 = . . . = λn = 0.

Proposition 14 (Equality of notions) Let (fi)i∈I be a family of functions fi : SΛ →
{v1, . . . , vn} ⊂ V. If v1, . . . , vn are affinely independent, then (fi)i∈I is distribution determining
if and only if it is weakly distribution determining.

Proof. Comparing the definitions it suffices to show for fixed i ∈ I that, under the assumption

of the proposition, E[fi(X)] = E[fi(X ′)] implies fi(X)
d
= fi(X

′). As the set {v1, . . . , vn} is
finite, the condition E[fi(X)] = E[fi(X ′)] is equivalent to writing

n∑
k=1

vk
(
P[fi(X) = vk]− P[fi(X ′) = vk]

)
= 0.

But as v1, . . . , vn are affinely independent, then also

P[fi(X) = vk]− P[fi(X ′) = vk] = 0 (k = 1, . . . , n),

i.e. fi(X) and fi(X
′) are equal in distribution.

Let now Ψ : SΛ ×RΛ
fin → T be the function from (2.1). In parallel to [Swa22] we say that

Ψ is weakly informative if (
Ψ( · ,y)

)
y∈RΛ

fin
(3.1)

is weakly distribution determining. If the monoid T is also a subset of a real or complex vector
space, we say that Ψ is informative if the functions in (3.1) are distribution determining. We
prove the following result.

Proposition 15 (Informativeness of Ψ) Under the assumptions of this subsection Ψ is
informative if T is a sub-monoid of (C, · ), where · denotes the usual multiplication.
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It is easy to see that all finite sub-monoids of (C, · ) (apart from ({0}, · )) consist of the
multiplicative group of n-th roots of unity for some n ∈ N, either with or without an added 0.
Those with cardinality up to four are named M0,M1,M2,M5,M7,M18 and M26 in our paper
[LS22], so by Proposition 15 all duality functions from [LS22] that take values in these monoids
are informative. In particular, setting (T,⊗) = ({1,−1, 0}, · ) and (S,⊙) = (R,⊡) = (U,⊻),
Proposition 15 implies Lemma 5.

To prove Proposition 15 we use a Stone-Weierstrass argument. Let C(X ,Y) denote the
space of continuous functions from space X to space Y. We say that H ⊂ C(X ,Y) separates
points if for x, x′ ∈ X with x ̸= x′ there exists f ∈ H such that f(x) ̸= f(x′). Moreover, we
say that G ⊂ C(X ,C) is self-adjoint if f ∈ G implies f ∈ G, where f(x) := f(x) (x ∈ X ), the
complex conjugate of f(x).

Lemma 16 (Application of Stone-Weierstrass) Let E be a compact metrizable space.
Assume that G ⊂ C(E,C) separates points and is closed under products. Then G is distribution
determining.

Proof. The statement with C replaced by R is proved in [Swa22, Lemma 4.37]. Note that

E
[
f(X)

]
= E

[
f(X ′)

]
implies E

[
f(X)

]
= E

[
f(X ′)

]
(f ∈ G), (3.2)

as E
[
f(X)

]
= E

[
f(X)

]
, where X and X ′ are random variables on E. We can enlarge G with

the constant function 1, take linear combinations and convex conjugates and receive an algebra
H ⊃ G that is closed under products, self-adjoint and separates points. If E

[
f(X)

]
= E[f(X ′)]

for all f ∈ G then also E
[
f(X)

]
= E[f(X ′)] for all f ∈ H by the linearity of the integral and

(3.2). We then can apply the complex version of the Stone-Weierstrass theorem and continue
as in the proof of [Swa22, Lemma 4.37].

Proof of Proposition 15. By definition, we have to prove that the family

G :=
(
Ψ( · ,y)

)
y∈RΛ

fin

is distribution determining.
By Tychonoff’s theorem (see, for example, [Bre93, Theorem I.8.9]), the space SΛ, equipped

with the product topology, is compact. Moreover, the product topology is metrizable. For
example, if (ai)i∈Λ are are strictly positive constants such that

∑
i∈Λ ai <∞, then the metric

d, defined via

d(x,x′) :=
∑
i∈Λ

ai1{x(i)̸=x′(i)}(x,x
′) (x,x′ ∈ SΛ)

generates the product topology. The fact that G is closed under products follows from the
duality between SΛ and RΛ

fin: Property (i) in the definition of duality implies that

Ψ(x,y1)Ψ(x,y2) = Ψ(x,y1 ⊡ y2) (x ∈ SΛ, y1,y2 ∈ RΛ
fin).

The fact that G separates points follows directly from property (ii) of the definition of (topo-
logical) duality. Applying Lemma 16 then yields Proposition 15.

To further investigate the case in which the monoid T can not naturally be written as a
sub-monoid of (C, · ), we provide some additional notions. The reader that is just concerned
with the 2CP may skip ahead to the next section.

Let (A,+, · ) be a unital commutative algebra with unit I. A multiplicative representation
of a commutative monoid (M,+) with neutral element 0 is a map γ : M → A so that
γ(x+ y) = γ(x) · γ(y) and γ(0) = I. Then γ(M) = {γ(x) : x ∈M} is a sub-monoid of (A, · )
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and γ : M → γ(M) is a monoid homomorphism. We say that γ is faithful if this map (with
codomain γ(M)) is an isomorphism.

We again consider the function Ψ : SΛ × RΛ
fin → T from (2.1). By Proposition 9, the

assumptions on S,R and T stated at the beginning of this section imply that SΛ is T -dual to
RΛ

fin with duality function Ψ. Let γ : T → A be a faithful multiplicative representation. As
usual, we equip the finite monoids T and γ(T ) with the discrete topology and it follows from
the definition of duality that SΛ is also γ(T )-dual to RΛ

fin with duality function γ ◦Ψ. If Ψ is
weakly informative and if the elements of γ(T ) are affinely independent, then Proposition 14
and the faithfulness of γ imply that γ ◦Ψ is informative.

We say that γ is a good multiplicative representation of Ψ if γ is a faithful multiplicative
representation of T and γ ◦ Ψ is informative. The next result states that we can always find
such a good multiplicative representation of a weakly informative duality function.

Proposition 17 (Existence of good representations) Under the assumptions of this
subsection there exist a finite dimensional real unital commutative algebra A and a faithful
representation γ : T → A such that γ ◦Ψ is informative if Ψ is weakly informative.

Proof. Let RT be the space of all functions mapping from T to R. The space (RT ,+), where +
denotes the usual (pointwise) sum of real-valued functions, is a finite dimensional real vector
space on which we can define the product ∗ as

(g ∗ h)(a) :=
∑
b,c∈T

g(b)h(c)1{a}(b⊗ c)
(
g, h ∈ RT , a ∈ T

)
,

where the sum is the usual sum in R and 1 denotes the indicator function. One readily checks
that this makes (RT ,+, ∗) a finite dimensional real unital algebra with unit 1{0}. Defining

γ : T → RT as γ(a) = 1{a} (a ∈ T ) then gives a faithful multiplicative representation of
T and clearly the elements of γ(T ) are affinely independent. The claim then follows from
Proposition 14 and the faithfulness of γ as stated above.

By the above proposition we can reformulate the classification problem by asking to classify
general duality functions (that do not map into sub-monoids of (C, · )) into the classes “weak
informative” and “not weak informative”. This remains an open problem.

We end this section with an additional observation. While RT from the proof of Propo-
sition 17 is a |T |-dimensional vector space, Proposition 15 implies that for large T also rep-
resentations in lower dimensional spaces can be good, even if the elements of γ(T ) are not
affinely independent. As it is in practice often easier to work in a lower dimensional space,
there can exist “better” representations of weakly informative duality functions than the one
from Proposition 17. In light of Proposition 15 one might even hope that γ is always a good
representation of a weakly informative Ψ as long as γ is faithful. This, however, is not true
and we provide a counterexample below.

Example 18 (Representations of ψ23) We again consider the monoid (U,⊻) defined in
Section 1.2. From [LS22, Appendix A.2] we know that there also exists the “local” duality
function ψ23 mapping from U × U back into U . Reordering the elements of M23 as in the
present paper (i.e. as in U) one has that

ψ23(x, y) =
(
ψ1(x1, y1), ψ2(x2, y2)

) (
x = (x1, x2), y = (y1, y2) ∈ U

)
,

where ψ1 and ψ2 are the “local” additive and cancellative duality function, defined in (1.10).
It follows from (1.17) that

ψ23(x, y) = ψ23(v, w) implies ψ(x, y) = ψ(v, w)
(
x, y, v, w ∈ U

)
. (3.3)
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We define a “global” duality function ψ23 : U ×Ufin → U as in (1.16), but for ψ23 instead of ψ
and with the “product” taken in U . It follows from (3.3) that for two random variables X,X ′

on U and for y ∈ Ufin,

ψ23(X, y)
d
= ψ23(X

′, y) implies ψ(X, y)
d
= ψ(X ′, y),

and, due to the informativeness of ψ, the duality function ψ23 is weakly informative. Defining
now γ : U → R2 as

γ(x) :=
(
γ1(x1), γ2(x2)

)
(x = (x1, x2) ∈ U),

with γ1, γ2 defined in (1.14), yields a faithful multiplicative representation of U in R2, viewed as
a unital algebra equipped with pointwise multiplication. However, γ is not a good representation
of ψ23. For example, the random variables X,X ′ on U with

P[X(i) = (0, 0)] = P[X ′(i) = (0, 0)] = 1 for i ∈ Zd \ {0},

P[X(0) = x] =
1

4
for all x ∈ U P[X ′(0) = x] =

{
1
2 if x ∈ {(0, 0), (1, 1)},
0 else,

show that γ ◦ψ23 : U × Ufin → R2 is not informative. Here 0 ∈ Zd denotes the origin.

4 The main convergence result

In this section we prove Theorem 3 and Proposition 6. Recall that T denotes the space of
all functions z : Zd → T = {0, 1} and recall the definition of Tfin in (1.11). For z ∈ T we
shortly write |z| := |{i ∈ Zd : z(i) = 1}|. We are going to use several auxiliary lemmas to
prove Theorem 3. The first one is [Swa22, Lemma 6.37]. The symbol ∧ denotes the pointwise
minimum, i.e. (z1 ∧ z2)(i) = min{z1(i), z2(i)} for i ∈ Zd, z1, z2 ∈ T .

Lemma 19 (Non-zero intersection: CP) Let Z = (Zt)t≥0 be a CP(λ, δ) (λ > 0, δ ≥ 0)
with non-trivial shift-invariant initial distribution. Given ε > 0, for each time s > 0 there
exists an NCP ∈ N such that for any z ∈ T with |z| ≥ NCP one has

P
(
Zs ∧ z = 0

)
≤ ε.

Additionally we are going to use the following application of [SS08a, Corollary 9]. As
[SS08a, Corollary 9] is not stated in the most accessible form we devote Appendix A to
showing how the result below follows from it. Instead of using the result below we could have
also followed the strategy of the proof of [BDD91, Theorem 1.2]. There the authors use the
graphical representation of the cCP explicitly to work around the statement below.

Lemma 20 (Parity indeterminacy: cCP) Let Z = (Zt)t≥0 be a cCP(λ, δ) (λ > 0, δ ≥ 0)
with non-trivial shift-invariant initial distribution. Given ε > 0, for each time s > 0 there
exists an NcCP ∈ N such that for any z ∈ Tfin with |z| ≥ NcCP one has∣∣∣∣P[|Zs ∧ z| is odd

]
− 1

2

∣∣∣∣ ≤ ε.

Finally, the following result extends [Swa22, Lemma 6.36] and [BDD91, Lemma 2.1].

Lemma 21 (Extinction or unbounded growth) Let Z = (Zt)t≥0 be either a CP(λ, δ) or
a cCP(λ, δ) (λ, δ ≥ 0, λ+ δ > 0). For each z ∈ Tfin and N ∈ N one has

lim
t→∞

Pz[0 < |Zt| < N ] = 0. (4.1)
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Proof. If z = 0 the statement is trivial, so let z ∈ Tfin \ {0}. In the case λ, δ > 0 [Swa22,
Lemma 6.36] and [BDD91, Lemma 2.1] imply

Pz
[
∃ t ≥ 0 : Zt = 0 or |Zt| → ∞ as t→ ∞

]
= 1 (4.2)

for the CP and the cCP, respectively, and (4.2) clearly implies (4.1). In fact, the two proofs
are just reformulations of each other, both based on Lévy’s 0-1 law.

In the case λ = 0, δ > 0 there is no difference between a CP and a cCP and

Pz
[
∃ t ≥ 0 : Zt = 0

]
= lim

t→∞
Pz

[
Zt = 0

]
= lim

t→∞

(
1− e−δt

)|z|
= 1

since 0 is absorbing. This implies (4.2) and hence also (4.1).
In the case λ > 0, δ = 0, and if Z is a CP, the function t 7→ |Zt| is non-decreasing, hence

it converges in N ∪ {∞}. Let N ∈ N. One has

Pz
[
limt→∞ |Zt| ≤ N

]
= 1− Pz

[
∃ t ≥ 0 : |Zt| > N

]
= 1− lim

t→∞
Pz[|Zt| > N ] = 0 (4.3)

as choosing a suitable sequence of neighbours and neighbours of neighbours of the infected
individuals in z yields that

Pz[|Zt| > N ] ≥
(
1− 1{|z|≤N}e

− λt
N+1−|z|

)N+1−|z|

for t > 0. Here, in the case that |z| ≤ N , we have divided time into N + 1 − |z| subintervals
and used the fact that 1 − e−λt is the probability to infect a previously chosen neighbour of
an infected individual during a time interval of length t. Finally, (4.3) implies that

Pz
[
|Zt| → ∞ as t→ ∞

]
= 1− Pz

[
∃N ∈ N : limt→∞ |Zt| = N

]
≥ 1−

∑
N∈N

Pz
[
limt→∞ |Zt| ≤ N

]
= 1,

again implying (4.2) and hence also (4.1).
To treat the cCP in the case λ > 0, δ = 0, we use [BDD91, Theorem 1.3]. It says that

a cCP(1, 0), started in any initial state other than 0, converges weakly to the product law
assigning probability 1/2 to both 0 and 1 at every node. By changing the time scale the
same holds for a cCP(λ, 0) with an arbitrary λ > 0. Let N ∈ N and ε > 0. Choose now an
M = M(N, ε) > N so that pN := P[X ≤ N ] < ε if X is a binomially distributed random
variable with parameters n =M and p = 1/2. Additionally, choose an arbitrary x ∈ Tfin with
|x| =M . Then, by the weak convergence,

lim sup
t→∞

Pz
[
|Zt| ≤ N

]
≤ lim

t→∞
Pz

[
|Zt ∧ x| ≤ N

]
= pN < ε,

implying limt→∞ Pz
[
|Zt| ≤ N

]
= 0 (i.e. convergence in probability to ∞). Thus (4.1) holds.

Using the three lemmas above we are able to prove Theorem 3 and Proposition 6.

Proof of Theorem 3 and Proposition 6. Let Y = (Y 1, Y 2) = (Y 1
t , Y

2
t )t≥0 be a 2CP with the

same parameters as the 2CP X = (X1, X2) = (X1
t , X

2
t )t≥0 in the formulation of the theorem,

but started in the deterministic state y = (y1, y2) ∈ Ufin. Fix t > 0. Following [JK14, Propo-
sition 1.4] we can construct a probability space (Ω,F ,P) on which there exist independent
processes X̃ = (X̃t)t≥0 and Ỹ = (Ỹt)t≥0 whose finite dimensional distributions coincide with
those of X and Y , respectively, and

E
[
ψ(X̃s, Ỹt+1−s)

]
= E

[
ψ(X̃u, Ỹt+1−u)

]
(4.4)
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holds for all s, u ∈ [0, t + 1], where E denotes taking expectation with respect to P. Below,
we drop the tildes from the notation. In contrast to P, the symbol Py denotes the law of Y
started in y ∈ Ufin. Due to the informativeness of ψ and the compactness of U , the set G from
the proof of Lemma 5 is also convergence determining, i.e. showing

lim
s→∞

E
[
ψ(Xs, y)

]
= Py

[
∃ s ≥ 0 : Ys = (0, 0)

]
(4.5)

for all y ∈ Ufin implies (1.9) (compare [Swa22, Lemma 4.38]). If y = (0, 0), (4.5) follows
trivially from the definition of ψ, so assume y ̸= (0, 0). We set

λ1 := λ+ λ∨, δ1 := δ + δ∨, λ2 := λ+ λ⊕, δ2 := δ + δ⊕,

so that X1 and Y 1 are both a CP(λ1, δ1), and X
2 and Y 2 are both a cCP(λ2, δ2). Assume,

for now, that λ1, λ2 > 0, so that all three auxiliary lemmas above are applicable. Let ε > 0 be
arbitrary. Choose NCP and NcCP as in Lemma 19 and Lemma 20 in dependence of the chosen
ε, s = 1, and the model parameters. We have, using the duality equation (4.4) and the law of
total expectation, that

E[ψ(Xt+1, y)]

= E[ψ(X1, Yt)]

= E
[
ψ(X1, Yt) | Y 1

t = Y 2
t = 0

]
Py

[
Y 1
t = Y 2

t = 0
]

+ E
[
ψ(X1, Yt) | Y 1

t = 0, 0 < |Y 2
t | < NcCP

]
Py

[
Y 1
t = 0, 0 < |Y 2

t | < NcCP

]︸ ︷︷ ︸
=:p1(y,t)

+ E
[
ψ(X1, Yt) | Y 1

t = 0, |Y 2
t | ≥ NcCP

]︸ ︷︷ ︸
=:E1(y,t)

Py
[
Y 1
t = 0, |Y 2

t | ≥ NcCP

]
+ E

[
ψ(X1, Yt) | 0 < |Y 1

t | < NCP

]
Py

[
0 < |Y 1

t | < NCP

]︸ ︷︷ ︸
=:p2(y,t)

+ E
[
ψ(X1, Yt) | |Y 1

t | ≥ NCP

]︸ ︷︷ ︸
=:E2(y,t)

Py
[
|Y 1

t | ≥ NCP

]
.

(4.6)

Depending on the choice of the model parameters and y, the deterministic initial state of
Y , it might happen that some of the events on which we condition above have probability
zero. The cases that either y1 = 0 or y2 = 0, or the monotonely coupled case δ∨ = λ⊕ = 0
when y satisfies y(i) ̸= (0, 1) for all i ∈ Zd are such examples. In these cases we define
the corresponding conditioned expectation (arbitrarily) to equal 1. As these conditioned
expectations are then multiplied by 0, the lines in (4.6) where they occur drop out. For the
remaining ones we can argue as below.

From the definition of ψ it is clear that E
[
ψ(X1, Yt) | Y 1

t = Y 2
t = 0

]
= 1 and

Py
[
Y 1
t = Y 2

t = 0
]
↗ Py

[
∃ t ≥ 0 : Yt = (0, 0)

]
as t→ ∞. Moreover, Lemma 21 implies that

lim
t→∞

p1(y, t) = lim
t→∞

p2(y, t) = 0.

As in the proof of [Swa22, Theorem 6.35] we use Lemma 19 to compute that

|E2(y, t)| =
∣∣P[ψ(X1, Yt) = 1 | |Y 1

t | ≥ NCP

]
− P

[
ψ(X1, Yt) = −1 | |Y 1

t | ≥ NCP

]∣∣
≤ P

[
ψ(X1, Yt) ̸= 0 | |Y 1

t | ≥ NCP

]
= P

[
X1

1 ∧ Y 1
t = 0 | |Y 1

t | ≥ NCP

]
≤ ε

(4.7)
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by the choice of NCP. For E1(y, t) one has that

E1(y, t) = 1− 2P
[
ψ(X1, Yt) = −1 | Y 1

t = 0, |Y 2
t | ≥ NcCP

]
= 1− 2P

[
|X2

1 ∧ Y 2
t | is odd

∣∣ Y 1
t = 0, |Y 2

t | ≥ NcCP

]
and, due to the independence of X and Y , we can apply Lemma 20 and conclude that

|E1(y, t)| ≤ 2ε.

Plugging then back into (4.6) and computing the limit inferior and the limit superior, one
concludes (4.5) as ε was arbitrary.

To finish the proof we consider the case that λ1 = 0 and/or λ2 = 0. By assumption, λi
(i ∈ {1, 2}) can only equal zero if δi > 0. The idea is to still use (4.6), where we used λ1 > 0 for
the treatment of E2(y, t) and λ2 > 0 for the treatment of E1(y, t). However, if λ1 = 0, then Y 1

is a CP(0, δ1) with δ1 > 0, so the number of infected individuals can only decrease. Choosing
NCP := |y1|+1 makes the line in (4.6) in which E2(y, t) appears vanish. Analogously, choosing
NcCP := |y2|+1 makes the line in which E1(y, t) appears vanish if λ2 = 0. For the rest of the
terms one then can argue as above.

We conclude that in all cases (4.5) holds, thus also (1.9) as explained above. Lastly, it is
well-known (compare [Swa22, Lemma 4.40]) that (1.9) implies that ν is indeed invariant and
the proof is complete.

5 Survival

In this section we prove Proposition 1. Let X = (Xt)t≥0 be a cCP and let δ0 ∈ Tfin be the
configuration that equals 1 only at the origin. We say that X survives if

Pδ0
[
∃ t ≥ 0 : Xt = 0

]
< 1.

The following result is known to hold for several processes. It is stated as [SS08a, Lemma 1]
for an important class of cancellative processes. However, the cCP does not fit into this class
and the definition of survival in the cited paper slightly differs from the one we are using
here, so we provide a short proof below. Recall that ν̇ is an invariant law of the cCP(λ, δ)
that is defined as the long-time limit law of the process started in a non-trivial shift-invariant
distribution, which is known to exist for λ+ δ > 0 by [BDD91, Theorem 1.2 & Theorem 1.3].

Proposition 22 (Survival of the cCP) One has ν̇ ̸= δ0 if and only if the cCP survives.

Proof. We prove this statement using ψcanc, the (multiplicative representation of the) can-
cellative duality function defined in (1.15). It is well-known that ψcanc is informative, a fact
that also follows from Proposition 15. Let X = (Xt)t≥0 be a cCP(λ, δ) (λ, δ ≥ 0, λ + δ > 0)
and let x ∈ Tfin. If λ, δ > 0, then [BDD91, Theorem 1.2] implies that

ν̇
(
{y : |x ∧ y| is odd}

)
=

1

2
Px

[
Xt ̸= 0 ∀t ≥ 0

]
. (5.1)

By the definition of ψcanc, (5.1) is equivalent to∫
ψcanc(x, y) dν̇(y) = Px

[
∃ t ≥ 0 : Xt = 0

]
. (5.2)

Choosing x = δ0 implies that ν̇ ̸= δ0 if X survives. On the other hand, if X does not survive
and Y is a random variable with law ν̇, then (5.1) with x = δ0 implies that P[Y (0) = 0] = 1
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and the shift-invariance of ν̇ implies that P[Y (j) = 0] = 1 for all j ∈ Z. Hence ν̇ = δ0 as
measures on U are characterised by their final dimensional marginals.

To complete the proof we consider the two special cases λ = 0 and δ = 0. If λ = 0, then
δ > 0 and clearly X does not survive while ν̇ = δ0. If δ = 0, then λ > 0 and X survives (one
even has Pδ0 [∃ t ≥ 0 : Xt = 0] = 0) and ν̇ ̸= δ0 by [BDD91, Theorem 1.3].

By Proposition 22, to prove Proposition 1, it suffices to show that the cCP(λ, δ) does not
survive when λ ≤ 2δ. Let now d = 1. Following [Sud98] (compare the definition of L in
[Sud98, Section 2]), the idea for the proof of Proposition 1 is to construct a supermartingale
applying Dynkin’s formula to the function g : Tfin \ {0} → N0 defined as

g(x) := max{i ∈ Z : x(i) = 1} −min{i ∈ Z : x(i) = 1} (x ∈ Tfin). (5.3)

In order to be able to apply Dynkin’s formula one can “reduce” the cCP to a finite state space
similarly as in [SS08b, Proof of Lemma 3]. A full proof including the technical details is given
below.

Proof of Proposition 1. Let d = 1 and assume that X is a cCP(λ, δ) with λ ≤ 2δ. Using the
g from (5.3) we define f : Tfin → N0 as

f(x) =

{
g(x) + 4 if x ̸= 0,

0 else,
(x ∈ Tfin).

One then has that G⊕f(x) ≤ 0 for all x ∈ Tfin, where G⊕ denotes the generator of the cCP
from (1.2). To see this we first look at x101, x11 ∈ Tfin defined as

x101(i) =

{
1 if i ∈ {0, 2},
0 else,

x11(i) =

{
1 if i ∈ {0, 1},
0 else,

(x ∈ Z).

In the configuration x101 the one at the origin reproduces with rate λ to the left, increasing
the function f by one and it dies with rate δ, decreasing f by two. A reproduction to the
right has no effect on f . By symmetry, an analogous statement holds for the one at 2 ∈ Z so
that G⊕f(x101) = 2λ− 4δ. For x11 on the other hand, a reproduction of the one at the origin
to the right reduces f by one and its death reduces f by only one, while a reproduction to
the left again increases f by one. Hence G⊕f(x11) = −2δ. Let now x ∈ Tfin be an arbitrary
configuration with at least two ones. As f is shift-invariant, i.e. f = f ◦ θ−1

i for all i ∈ Z,
one has that G⊕f(x) ≤ G⊕f(x101) if x has the form 010 . . . 010, G⊕f(x) = G⊕f(x11) if x has
the form 011 . . . 110 and G⊕f(x) ≤ (G⊕f(x11) + G⊕f(x101))/2 if x has the form 010 . . . 110
or 011 . . . 010. Note we had to use inequalities above as a death event of a one at the edge
of a configuration reduces f by the number of zeros “to the inside” of this one, hence by at
least two if there is a zero directly to the inside of the one. Finally we consider the special
case x = δ0, in which with rate 2λ the lone individual reproduces (either to the left or to the
right) and with rate δ it dies. Hence G⊕f(δ0) = G⊕f(x101) = 2λ− 4δ, which was the reason
to add the 4 in the definition of f . This completes the argument that λ ≤ 2δ implies that
G⊕f(x) ≤ 0 for all x ∈ Tfin.

The rest of the proof is a standard argument from the theory of continuous-time Markov
chains, but, for the sake of completeness, we state it completely. Let N ∈ N be arbitrary and
set τN := inf{t ≥ 0 : f(Xt) ≥ N + 4}. We claim that MN = (MN

t )t≥0 defined as

MN
t := f(Xt∧τN )−

∫ t∧τN

0
G⊕f(Xs) ds (t ≥ 0)
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is a martingale. Let

TN := {x ∈ Tfin : x(i) = 0 if i /∈ {0, . . . , N − 1}} ∪ {xN},

where

xN (i) :=

{
1 if i ∈ {0, N},
0 else,

(i ∈ Z).

By shifting every x ∈ Tfin so that its leftmost 1 lies at the origin we can construct a continuous-
time Markov chain Y = (Yt)t≥0 on the finite state space TN so that

MN
t = f(Yt)−

∫ t

0
G⊕f(Ys) ds (t ≥ 0).

As a continuous-time Markov chain on a finite state space Y is a Feller process and Dynkin’s
formula implies that MN is indeed a martingale.

As G⊕f(x) ≤ 0 for all x ∈ Tfin we conclude that M s = (f(Xt∧τN ))t≥0 is a uniformly
integrable supermartingale and the martingale convergence theorem implies thatM s converges
almost surely and in L1 to a random variable M∞. The random variable M∞ is supported
on {0, N + 4} as M∞ ∈ {1, . . . , N + 3} would imply that there exists a t0 ≥ 0 such that
M s

t =M s
t0 ∈ {1, . . . , N + 3} for all t ≥ t0, which has probability zero. Hence

4 = Eδ0 [f(X0)] ≥ E[M∞] = (N + 4)(1− P(M∞ = 0))

and we conclude that

Pδ0(∃ t ≥ 0 : Xt = 0) ≥ Pδ0(∃ t ≤ τN : Xt = 0) = P(M∞ = 0) ≥ N

N + 4
.

As N was arbitrary it follows that Pδ0(∃ t ≥ 0 : Xt = 0) = 1 and Proposition 22 implies that
ν̇ = δ0. This establishes that λcCP ≥ 2.

A Parity indeterminacy

In this appendix we restate [SS08a, Corollary 9] in a more accessible form and show how
it can be derived from the somewhat less accessible formulation in [SS08a]. Then we show
how this result implies Lemma 20. Recall from Section 1.2 and Section 1.4 the definitions of
the operator ⊕ (addition modulo 2), of T , the space all functions from Zd to T = {0, 1}, of
Tfin ⊂ T , and of the cancellative duality function ψ2. Let A be the set of all matrices of the
form A = (A(i, j))i,j∈Zd with A(i, j) ∈ {0, 1} for all i, j ∈ Zd and

∑
i,j A(i, j) <∞. For A ∈ A

and x ∈ T , we define Ax ∈ Tfin, corresponding to the usual matrix-vector multiplication, as

Ax(i) :=
⊕
j∈Zd

(
A(i, j) · x(j)

)
(i ∈ Zd),

where · denotes the usual product in R. Let A†(i, j) := A(j, i) denote the adjoint of A. We will
be interested in an interacting particle system X = (Xt)t≥0 with state space T , that jumps
from its current state x as

x 7→ x⊕Ax with rate a(A), (A.1)

where (a(A))A∈A are non-negative rates and the operator⊕ has to be interpreted in a pointwise
sense, as well as the interacting particle system Y = (Yt)t≥0 that jumps as

y 7→ y ⊕A†y with rate a(A).
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In order for these interacting particle systems to be well-defined, we assume (compare [SS08a,
Condition (3.1)]) that

sup
i∈Zd

∑
A∈A

a(A)
∣∣{j : A(j, i) = 1}

∣∣ <∞ and sup
i∈Zd

∑
A∈A

a(A)
∣∣{j : A†(j, i) = 1}

∣∣ <∞. (A.2)

Recall from Section 4 that |z| := |{i ∈ Zd : z(i) = 1}| (z ∈ T ). Indeed, it is not hard to verify
that condition (A.2) guarantees that [Swa22, Condition (4.15)] is satisfied both for the process
X and the process Y , and hence both processes are well-defined by [Swa22, Theorem 4.19 &
Theorem 4.20]. Moreover, [Swa22, Proposition 6.10] yields the duality relation

P
[
|XtY0| is odd

]
= P

[
|X0Yt| is odd

]
(t ≥ 0) (A.3)

whenever X and Y are independent and either |X0| or |Y0| is a.s. finite.
We will restate [SS08a, Corollary 9], which gives sufficient conditions for the left-hand side

of (A.3) to be close to 1/2. We assume that the rates are translation invariant in the sense
that

a(θiA) = a(A) (i ∈ Zd, A ∈ A), (A.4)

where θiA denotes the “translated” matrix (θiA)(j, k) := A(j − i, k − i) (j, k ∈ Zd). By
definition, we say that a state x ∈ T is X-nontrivial if

Px
[(
Xt(i)

)
i∈∆ =

(
z(i)

)
i∈∆

]
> 0 for all t > 0, finite ∆ ⊂ Zd, and

(
z(i)

)
i∈∆ ∈ {0, 1}∆.

(A.5)
We fix a finite subset B ⊂ A such that a(B) > 0 for all B ∈ B and we define, for x ∈ T ,

∥x∥B :=
∣∣{i ∈ Zd : ∃ y ∈ T and B ∈ B s.t. ψ2

(
x, (θiB)y

)
= 1

}∣∣.
With these definitions, [SS08a, Corollary 9] can be restated as follows. Recall the definition
of the (pointwise) minimum operator ∧ from Section 4.

Proposition 23 (Parity indeterminacy) Let X be started in a shift-invariant initial law
that is concentrated on X-nontrivial configurations. Then for each ε > 0 and t > 0, there
exists an N <∞ such that ∣∣∣∣P[|Xt ∧ y| is odd

]
− 1

2

∣∣∣∣ ≤ ε (A.6)

for all y ∈ Tfin with ∥y∥B ≥ N .

Proof. This is a simple reformulation of [SS08a, Corollary 9]. There, it is proved that if
yn ∈ Tfin satisfy ∥yn∥B → ∞, then P

[
|Xt ∧ yn| is odd

]
→ 1

2 . To see that this implies the claim
of Proposition 23, note that if the claim would be false, then there exists an ε > 0 such that
for all n ≥ 1 one can find yn ∈ Tfin with ∥yn∥B ≥ n such that the left-hand side of (A.6) is
> ε, contradicting [SS08a, Corollary 9].

Applying Proposition 23 to the cancellative contact process we obtain Lemma 20.

Proof of Lemma 20. We first show that the jump rates of the cancellative contact process can
be cast in the form (A.1). Let e1, . . . , ed ∈ Zd denote the unit vectors and let 0 ∈ Zd denote the
origin. For 1 ≤ k ≤ d, we define I±k ∈ A by I±k (i, j) := 1 if (i, j) = (±ek, 0) and I±k (i, j) := 0
otherwise. Also, we define D ∈ A by D(i, j) := 1 if (i, j) = (0, 0) and D(i, j) := 0 otherwise.
Finally, we define rates

(
a(A)

)
A∈A by

a(θiI
±
k ) := λ and a(θiD) := δ (i ∈ Zd, 1 ≤ k ≤ d),
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and a(A) := 0 in all other cases. Clearly, these rates are translation invariant in the sense of
(A.4) and satisfy the summability condition (A.2). Also, a jump of the form x 7→ x⊕(θ−iI

±
k )x

corresponds to a jump of the form x 7→ inf⊕i,i±ek
(x) in the notation of Section 1.2 and a

jump of the form x 7→ x ⊕ (θ−iD)x corresponds to a jump of the form x 7→ dthi(x), so the
process defined by these rates is a cCP(λ, δ). The claim of Lemma 20 will now follow from
Proposition 23 provided we show that: (i) each configuration x ̸= 0 is X-nontrivial and: (ii)
we can choose B such that ∥y∥B = |y|.

We start by proving (ii). We set B := {I+1 }, where I+1 as defined above is one of the
matrices corresponding to an infection next to the origin. Then a(I+1 ) = λ > 0. Moreover,

ψ2

(
(θ−iI

+
1 )x, y

)
= x(i) · y(i+ e1)

and hence

y(i) = 1 if and only if e1 − i ∈ {i ∈ Zd : ∃x ∈ T and B ∈ B s.t. ψ2

(
(θiB)x, y

)
= 1

}
,

which shows that ∥y∥B = |y|.
It remains to prove (i). Fix x ∈ T \ {0}, a finite set ∆ ⊂ Zd, and

(
z(i)

)
i∈∆ ∈ {0, 1}∆.

Using the fact that x ̸= 0 and λ > 0, in a finite number of infection steps, we can infect each
site in ∆ ∪ {i ∈ Zd : ∃ j ∈ ∆ : j ∼ i}. Starting with the sites in ∆ with the highest graph
distance to Zd \∆, we then can remove the infection from all sites i such that z(i) = 0 only
using further infections, proving that the probability in (A.5) is positive for each t > 0.

The true strength of Proposition 23 lies in the fact that it can be applied even in situations
where the definitions of X-nontriviality and the norm ∥y∥B are more complicated. In particu-
lar, [SS08a, Theorem 3] is based on an application of Proposition 23 in a situation where the
X-nontrivial configurations are all x ̸= 0, 1, and ∥y∥B =

∣∣{(i, j) : |i− j| = 1, y(i) ̸= y(j)}
∣∣.
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