
The Hausdorff metric

Let (E, d) be a metric space, let K(E) be the space of all compact subsets of E and set K+(E) := {K ∈
K(E) : K ̸= ∅}. Then the Hausdorff metric dH on K+(E) is defined as

dH(K1, K2) := sup
x1∈K1

inf
x2∈K2

d(x1, x2) ∨ sup
x2∈K2

inf
x1∈K1

d(x1, x2)

= sup
x1∈K1

d(x1, K2) ∨ sup
x2∈K2

d(x2, K1),
(1)

where d(x,A) := infy∈A d(x, y) denotes the distance between a point x ∈ E and a set A ⊂ E. The
corresponding topology is called the Hausdorff topology. We extend this topology to K(E) by adding ∅
as an isolated point. The next lemma shows that the Hausdorff topology depends only on the topology
on E, and not on the choice of the metric.

Lemma 1 (Convergence criterion) Let Kn, K ∈ K+(E) (n ≥ 1). Then Kn → K in the Hausdorff
topology if and only if there exists a C ∈ K+(E) such that Kn ⊂ C for all n ≥ 1 and

K = {x ∈ E : ∃xn ∈ Kn s.t. xn → x}
= {x ∈ E : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N}.

(2)

The following lemma shows that K(E) is Polish if E is.

Lemma 2 (Properties of the Hausdorff metric)

(a) If (E, d) is separable, then so is (K+(E), dH).

(b) If (E, d) is complete, then so is (K+(E), dH).

Recall that a subset A of a metric space is precompact if its closure is compact. This is equivalent to
the statement that each sequence of points xn ∈ A has a convergent subsequence.

Lemma 3 (Compactness in the Hausdorff topology) A set A ⊂ K(E) is precompact if and only
if there exists a C ∈ K(E) such that K ⊂ C for each K ∈ A.

The following lemma is useful when proving convergence of K(E)-valued random variables.

Lemma 4 (Tightness criterion) Assume that E is a Polish space and let Kn (n ≥ 1) be K(E)-valued
random variables. Then the collection of laws {P[Kn ∈ · ] : n ≥ 1} is tight if and only if for each ε > 0
there exists a compact C ⊂ E such that P[Kn ⊂ C] ≥ 1− ε uniformly in n ∈ N.

If E is compact, then the Hausdorff topology on K(E) coincides with the Fell topology defined in
[Kal02, Thm. A.2.5]. The Hausdorff metric may more generally be defined on the space of nonempty
bounded closed subsets of (E, d). In particular, if d is bounded, then dH(A1, A2) can be defined for any
nonempty closed A1, A2. In this more general set-up, Lemma 2 (b) and the ‘if’ part of Lemma 3 remain
true, as well as the ‘if’ part of Lemma 5 below. This is Excercise 7 (with some hints for a possible
solution) in [Mun00, § 45]. A detailed solution of this excercise can be found in [Hen99]. We are not
aware of any reference for the other statements in Lemmas 1–4, although they appear to be well-known.
For completeness, we provide self-contained proofs of all these lemmas. We start with some preparations.

Recall that for any metric space (E, d), a set A ⊂ E is totally bounded if for every ε > 0 there exists
a finite collection of points x1, . . . , xn ∈ E such that A ⊂

⋃n
i=1Bε(xi), where Bε(x) denotes the open

ball of radius ε around x. This is equivalent to the statement that every sequence xn ∈ A has a Cauchy
subsequence. As a consequence, a set A ⊂ E is compact if and only if it is complete and totally bounded.
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Lemma 5 (Totally bounded sets in the Hausdorff metric) A set A ⊂ K+(E) is totally bounded
in (K+(E), dH) if and only if the set A := {x ∈ E : ∃K ∈ A s.t. x ∈ K} is totally bounded in (E, d).

Proof. Assume that A is totally bounded. Let ε > 0 and let ∆ ⊂ E be a finite set such that
A =

⋃
x∈∆Bε(x). Let K ∈ A and set ∆′ := {x ∈ ∆ : Bε(x) ∩ K ̸= ∅}. Then for all y ∈ K there is

an x ∈ ∆′ such that d(x, y) < ε and for all x ∈ ∆′ there is a y ∈ K such that d(x, y) < ε proving that
dH(∆

′, K) < ε. This shows that A is covered, in the Hausdorff metric, by the collection of open balls of
radius ε centered around finite subsets of ∆. Since ε is general, we conclude that A is totally bounded.

Conversely, if A is totally bounded, then for each ε > 0 we can find K1, . . . , Kn ∈ K+(E) such
that A ⊂

⋃n
k=1 Bε/2(Kn), where Bε(K) denotes the open ball in the Hausdorff metric of radius ε

centered around a compact set K. Since each Kk is compact, there exist xk,1, . . . , xk,mk
such that

Kk ⊂
⋃mk

j=1Bε/2(xk,j), hence A ⊂
⋃n

k=1

⋃mk

j=1Bε(xk,j).

Lemma 6 (Cauchy sequences in the Hausdorff metric) Let Kn ∈ K+(E) be a Cauchy sequence
in (K+(E), dH). Then there exists a closed set K such that (2) holds.

Proof. The sets on the first and second line of the right-hand side of (2) are, respectively,

A = {x ∈ E : lim
n→∞

d(x,Kn) = 0} and B = {x ∈ E : lim inf
n→∞

d(x,Kn) = 0}. (3)

If x ∈ B\A, then there is some ε > 0 such that for each k ≥ 1 we can find n,m ≥ k such that d(x,Kn) ≤ ε
and d(x,Km) ≥ 2ε, hence dH(Kn, Km) ≥ ε, contradicting the assumption that the Kn form a Cauchy
sequence.

To complete the proof, it suffices to show that if A = B, then K := A = B is closed. We will show
that if xk ∈ A satisfy xk → x for some x ∈ E, then x ∈ B. Since xk ∈ A we can find xk,n ∈ Kn such
that xk,n → xk as n → ∞. For each k, we can choose n(k) ≥ k such that d(xk,n(k), xk) ≤ d(xk, x). Then
n(k) → ∞ and d(x,Kn(k)) ≤ d(xk,n(k), x) ≤ 2d(xk, x) → 0 as k → ∞ and hence x ∈ B.

Lemma 7 (Sufficient conditions for convergence) The conditions for convergence in the Hausdorff
topology given in Lemma 1 are sufficient.

Proof. Our assumptions imply that d(x,Kn) → 0 for each x ∈ K. We wish to show that in fact
supx∈K d(x,Kn) → 0. If this is not the case, then by going to a subsequence if necessary we may assume
that there exist xn ∈ K and ε > 0 such that lim infn→∞ d(xn, Kn) ≥ ε. Since K is compact, by going to
a further subsequence if necessary, we may assume that xn → x ∈ K. But then lim infn→∞ d(x,Kn) ≥
lim infn→∞(d(xn, Kn) − d(x, xn)) ≥ ε for this subsequence, contradicting the fact that for the original
sequence, d(x,Kn) → 0 for each x ∈ K.

The proof that supx∈Kn
d(x,K) → 0 is similar. If this is not true, then we can go to a subsequence of

the Kn and then find xn ∈ Kn such that d(xn, K) ≥ ε for all n, for some ε > 0. Using the compactness of
C, we can select a further subsequence such that xn → x ∈ C. Now x is a cluster point of some xn ∈ Kn

but d(x,K) ≥ ε, contradicting the fact that the two sets on the right-hand side of (2) are equal.

Proof of Lemma 2. To prove part (a), it suffices to show that if D is a countable dense subset of (E, d),
then the collection of finite subsets of D is a countable dense subset of (K+(E), dH). Since a compact set
K ⊂ E is totally bounded, for each ε > 0, we can find a finitely many points x1, . . . , xn ∈ E such that
K ⊂

⋃n
i=1Bε/2(xi). Since D is dense, we can choose x′

i ∈ D ∩ Bε/2(xi). Then dH(K, {x′
1, . . . , x

′
n}) ≤ ε,

proving our claim.
To prove part (b), let Kn ∈ K+(E) be a Cauchy sequence. Then, by Lemma 6, there exists a closed

set K such that (2) holds. Since each sequence in the set {Kn : n ≥ 1} contains a Cauchy subsequence,
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the set {Kn : n ≥ 1} is totally bounded, hence by Lemma 5, there exists some totally bounded set
containing all of the Kn. Let C denote its closure. Then C is compact since E is complete, hence also
K ⊂ C is compact and Lemma 7 implies that Kn → K.

Proof of Lemma 3. It suffices to prove the statement for A ⊂ K+(E). If there exists a compact C ⊂ E
such that K ⊂ C for all K ∈ A, then C is totally bounded and complete, so by Lemmas 5 and 2 (b),
the same is true for {K ∈ K+(E) : K ⊂ E}, implying the latter is compact and hence its subset A is
precompact. To complete the proof, it suffices to show that if the closure A of A is compact, then the
set C := {x ∈ E : ∃K ∈ A s.t. x ∈ K} is compact. Since A is totally bounded, Lemma 5 implies that
C is totally bounded too. It therefore suffices to show that C is complete. For this, it suffices to show
that each sequence xn ∈ C has a cluster point x ∈ C. Choose Kn ∈ A such that xn ∈ Kn. Since A is
compact, by going to a subsequence if necessary, we may assume that Kn → K for some K ∈ A. Choose
x′
n ∈ K such that d(xn, x

′
n) → 0. Since K is compact, by going to a further subsequence if necessary, we

may assume that x′
n → x for some x ∈ K. Since d(xn, x) ≤ d(xn, x

′
n) + d(x′

n, x) → 0 this proves that the
sequence xn has a cluster point x ∈ K ⊂ C.

Proof of Lemma 4. Immediate from Lemma 3 and the definition of tightness.

Proof of Lemma 1. By Lemma 7, we only need to prove that if Kn ∈ K+(E) converge to a limit K,
then there exists a C ∈ K+(E) such that Kn ⊂ C for all n and (2) holds. If Kn → K then the set
{Kn : n ≥ 1} is precompact, hence by Lemma 3 there exists a C ∈ K+(E) such that Kn ⊂ C for all n.
Formula (2) follows from the facts that if x ∈ K, then d(x,Kn) → 0 hence there exist Kn ∋ xn → x,
while if x ̸∈ K, then Bε(x) ∩Kn = ∅ for all n large enough such that supx′∈K d(x′, Kn) < ε, hence x is
not a cluster point of some xn ∈ Kn.
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