The Hausdorff metric

Let (E, d) be a metric space, let $\mathcal{K}(E)$ be the space of all compact subsets of E and set $\mathcal{K}_+(E) := \{K \in \mathcal{K}(E) : K \neq \emptyset\}$. Then the *Hausdorff metric* d_{H} on $\mathcal{K}_+(E)$ is defined as

$$d_{\mathrm{H}}(K_{1}, K_{2}) := \sup_{x_{1} \in K_{1}} \inf_{x_{2} \in K_{2}} d(x_{1}, x_{2}) \lor \sup_{x_{2} \in K_{2}} \inf_{x_{1} \in K_{1}} d(x_{1}, x_{2})$$

$$= \sup_{x_{1} \in K_{1}} d(x_{1}, K_{2}) \lor \sup_{x_{2} \in K_{2}} d(x_{2}, K_{1}), \qquad (1)$$

where $d(x, A) := \inf_{y \in A} d(x, y)$ denotes the distance between a point $x \in E$ and a set $A \subset E$. The corresponding topology is called the *Hausdorff topology*. We extend this topology to $\mathcal{K}(E)$ by adding \emptyset as an isolated point. The next lemma shows that the Hausdorff topology depends only on the topology on E, and not on the choice of the metric.

Lemma 1 (Convergence criterion) Let $K_n, K \in \mathcal{K}_+(E)$ $(n \ge 1)$. Then $K_n \to K$ in the Hausdorff topology if and only if there exists a $C \in \mathcal{K}_+(E)$ such that $K_n \subset C$ for all $n \ge 1$ and

$$K = \{ x \in E : \exists x_n \in K_n \ s.t. \ x_n \to x \}$$

= $\{ x \in E : \exists x_n \in K_n \ s.t. \ x \ is \ a \ cluster \ point \ of \ (x_n)_{n \in \mathbb{N}} \}.$ (2)

The following lemma shows that $\mathcal{K}(E)$ is Polish if E is.

Lemma 2 (Properties of the Hausdorff metric)

- (a) If (E, d) is separable, then so is $(\mathcal{K}_+(E), d_{\mathrm{H}})$.
- (b) If (E, d) is complete, then so is $(\mathcal{K}_+(E), d_{\mathrm{H}})$.

Recall that a subset A of a metric space is *precompact* if its closure is compact. This is equivalent to the statement that each sequence of points $x_n \in A$ has a convergent subsequence.

Lemma 3 (Compactness in the Hausdorff topology) A set $\mathcal{A} \subset \mathcal{K}(E)$ is precompact if and only if there exists a $C \in \mathcal{K}(E)$ such that $K \subset C$ for each $K \in \mathcal{A}$.

The following lemma is useful when proving convergence of $\mathcal{K}(E)$ -valued random variables.

Lemma 4 (Tightness criterion) Assume that E is a Polish space and let K_n $(n \ge 1)$ be $\mathcal{K}(E)$ -valued random variables. Then the collection of laws $\{\mathbb{P}[K_n \in \cdot] : n \ge 1\}$ is tight if and only if for each $\varepsilon > 0$ there exists a compact $C \subset E$ such that $\mathbb{P}[K_n \subset C] \ge 1 - \varepsilon$ uniformly in $n \in \mathbb{N}$.

If E is compact, then the Hausdorff topology on $\mathcal{K}(E)$ coincides with the Fell topology defined in [Kal02, Thm. A.2.5]. The Hausdorff metric may more generally be defined on the space of nonempty bounded closed subsets of (E, d). In particular, if d is bounded, then $d_{\rm H}(A_1, A_2)$ can be defined for any nonempty closed A_1, A_2 . In this more general set-up, Lemma 2 (b) and the 'if' part of Lemma 3 remain true, as well as the 'if' part of Lemma 5 below. This is Excercise 7 (with some hints for a possible solution) in [Mun00, § 45]. A detailed solution of this excercise can be found in [Hen99]. We are not aware of any reference for the other statements in Lemmas 1–4, although they appear to be well-known. For completeness, we provide self-contained proofs of all these lemmas. We start with some preparations.

Recall that for any metric space (E, d), a set $A \subset E$ is *totally bounded* if for every $\varepsilon > 0$ there exists a finite collection of points $x_1, \ldots, x_n \in E$ such that $A \subset \bigcup_{i=1}^n B_{\varepsilon}(x_i)$, where $B_{\varepsilon}(x)$ denotes the open ball of radius ε around x. This is equivalent to the statement that every sequence $x_n \in A$ has a Cauchy subsequence. As a consequence, a set $A \subset E$ is compact if and only if it is complete and totally bounded. Lemma 5 (Totally bounded sets in the Hausdorff metric) A set $\mathcal{A} \subset \mathcal{K}_+(E)$ is totally bounded in $(\mathcal{K}_+(E), d_H)$ if and only if the set $A := \{x \in E : \exists K \in \mathcal{A} \text{ s.t. } x \in K\}$ is totally bounded in (E, d).

Proof. Assume that A is totally bounded. Let $\varepsilon > 0$ and let $\Delta \subset E$ be a finite set such that $A = \bigcup_{x \in \Delta} B_{\varepsilon}(x)$. Let $K \in \mathcal{A}$ and set $\Delta' := \{x \in \Delta : B_{\varepsilon}(x) \cap K \neq \emptyset\}$. Then for all $y \in K$ there is an $x \in \Delta'$ such that $d(x, y) < \varepsilon$ and for all $x \in \Delta'$ there is a $y \in K$ such that $d(x, y) < \varepsilon$ proving that $d_{\mathrm{H}}(\Delta', K) < \varepsilon$. This shows that \mathcal{A} is covered, in the Hausdorff metric, by the collection of open balls of radius ε centered around finite subsets of Δ . Since ε is general, we conclude that \mathcal{A} is totally bounded.

Conversely, if \mathcal{A} is totally bounded, then for each $\varepsilon > 0$ we can find $K_1, \ldots, K_n \in \mathcal{K}_+(E)$ such that $\mathcal{A} \subset \bigcup_{k=1}^n \mathcal{B}_{\varepsilon/2}(K_n)$, where $\mathcal{B}_{\varepsilon}(K)$ denotes the open ball in the Hausdorff metric of radius ε centered around a compact set K. Since each K_k is compact, there exist $x_{k,1}, \ldots, x_{k,m_k}$ such that $K_k \subset \bigcup_{i=1}^{m_k} B_{\varepsilon/2}(x_{k,j})$, hence $A \subset \bigcup_{k=1}^n \bigcup_{i=1}^{m_k} B_{\varepsilon}(x_{k,j})$.

Lemma 6 (Cauchy sequences in the Hausdorff metric) Let $K_n \in \mathcal{K}_+(E)$ be a Cauchy sequence in $(\mathcal{K}_+(E), d_H)$. Then there exists a closed set K such that (2) holds.

Proof. The sets on the first and second line of the right-hand side of (2) are, respectively,

$$A = \{ x \in E : \lim_{n \to \infty} d(x, K_n) = 0 \} \text{ and } B = \{ x \in E : \liminf_{n \to \infty} d(x, K_n) = 0 \}.$$
 (3)

If $x \in B \setminus A$, then there is some $\varepsilon > 0$ such that for each $k \ge 1$ we can find $n, m \ge k$ such that $d(x, K_n) \le \varepsilon$ and $d(x, K_m) \ge 2\varepsilon$, hence $d_H(K_n, K_m) \ge \varepsilon$, contradicting the assumption that the K_n form a Cauchy sequence.

To complete the proof, it suffices to show that if A = B, then K := A = B is closed. We will show that if $x_k \in A$ satisfy $x_k \to x$ for some $x \in E$, then $x \in B$. Since $x_k \in A$ we can find $x_{k,n} \in K_n$ such that $x_{k,n} \to x_k$ as $n \to \infty$. For each k, we can choose $n(k) \ge k$ such that $d(x_{k,n(k)}, x_k) \le d(x_k, x)$. Then $n(k) \to \infty$ and $d(x, K_{n(k)}) \le d(x_{k,n(k)}, x) \le 2d(x_k, x) \to 0$ as $k \to \infty$ and hence $x \in B$.

Lemma 7 (Sufficient conditions for convergence) The conditions for convergence in the Hausdorff topology given in Lemma 1 are sufficient.

Proof. Our assumptions imply that $d(x, K_n) \to 0$ for each $x \in K$. We wish to show that in fact $\sup_{x \in K} d(x, K_n) \to 0$. If this is not the case, then by going to a subsequence if necessary we may assume that there exist $x_n \in K$ and $\varepsilon > 0$ such that $\liminf_{n\to\infty} d(x_n, K_n) \ge \varepsilon$. Since K is compact, by going to a further subsequence if necessary, we may assume that $x_n \to x \in K$. But then $\liminf_{n\to\infty} d(x, K_n) \ge 1$ $\liminf_{n\to\infty} d(x, K_n) \to 0$ for this subsequence, contradicting the fact that for the original sequence, $d(x, K_n) \to 0$ for each $x \in K$.

The proof that $\sup_{x \in K_n} d(x, K) \to 0$ is similar. If this is not true, then we can go to a subsequence of the K_n and then find $x_n \in K_n$ such that $d(x_n, K) \ge \varepsilon$ for all n, for some $\varepsilon > 0$. Using the compactness of C, we can select a further subsequence such that $x_n \to x \in C$. Now x is a cluster point of some $x_n \in K_n$ but $d(x, K) \ge \varepsilon$, contradicting the fact that the two sets on the right-hand side of (2) are equal.

Proof of Lemma 2. To prove part (a), it suffices to show that if \mathcal{D} is a countable dense subset of (E, d), then the collection of finite subsets of \mathcal{D} is a countable dense subset of $(\mathcal{K}_+(E), d_{\rm H})$. Since a compact set $K \subset E$ is totally bounded, for each $\varepsilon > 0$, we can find a finitely many points $x_1, \ldots, x_n \in E$ such that $K \subset \bigcup_{i=1}^n B_{\varepsilon/2}(x_i)$. Since \mathcal{D} is dense, we can choose $x'_i \in \mathcal{D} \cap B_{\varepsilon/2}(x_i)$. Then $d_{\rm H}(K, \{x'_1, \ldots, x'_n\}) \leq \varepsilon$, proving our claim.

To prove part (b), let $K_n \in \mathcal{K}_+(E)$ be a Cauchy sequence. Then, by Lemma 6, there exists a closed set K such that (2) holds. Since each sequence in the set $\{K_n : n \ge 1\}$ contains a Cauchy subsequence,

the set $\{K_n : n \ge 1\}$ is totally bounded, hence by Lemma 5, there exists some totally bounded set containing all of the K_n . Let C denote its closure. Then C is compact since E is complete, hence also $K \subset C$ is compact and Lemma 7 implies that $K_n \to K$.

Proof of Lemma 3. It suffices to prove the statement for $\mathcal{A} \subset \mathcal{K}_+(E)$. If there exists a compact $C \subset E$ such that $K \subset C$ for all $K \in \mathcal{A}$, then C is totally bounded and complete, so by Lemmas 5 and 2 (b), the same is true for $\{K \in \mathcal{K}_+(E) : K \subset E\}$, implying the latter is compact and hence its subset \mathcal{A} is precompact. To complete the proof, it suffices to show that if the closure $\overline{\mathcal{A}}$ of \mathcal{A} is compact, then the set $C := \{x \in E : \exists K \in \overline{\mathcal{A}} \text{ s.t. } x \in K\}$ is compact. Since $\overline{\mathcal{A}}$ is totally bounded too. It therefore suffices to show that C is complete. For this, it suffices to show that each sequence $x_n \in C$ has a cluster point $x \in C$. Choose $K_n \in \overline{\mathcal{A}}$ such that $x_n \in K_n$. Since $\overline{\mathcal{A}}$ is compact, by going to a subsequence if necessary, we may assume that $K_n \to K$ for some $K \in \overline{\mathcal{A}}$. Choose $x'_n \in K$ such that $d(x_n, x'_n) \to 0$. Since K is compact, by going to a further subsequence if necessary, we may assume that $x'_n \to x$ for some $x \in K$. Since $d(x_n, x'_n) + d(x'_n, x) \to 0$ this proves that the sequence x_n has a cluster point $x \in C$.

Proof of Lemma 4. Immediate from Lemma 3 and the definition of tightness.

Proof of Lemma 1. By Lemma 7, we only need to prove that if $K_n \in \mathcal{K}_+(E)$ converge to a limit K, then there exists a $C \in \mathcal{K}_+(E)$ such that $K_n \subset C$ for all n and (2) holds. If $K_n \to K$ then the set $\{K_n : n \geq 1\}$ is precompact, hence by Lemma 3 there exists a $C \in \mathcal{K}_+(E)$ such that $K_n \subset C$ for all n. Formula (2) follows from the facts that if $x \in K$, then $d(x, K_n) \to 0$ hence there exist $K_n \ni x_n \to x$, while if $x \notin K$, then $B_{\varepsilon}(x) \cap K_n = \emptyset$ for all n large enough such that $\sup_{x' \in K} d(x', K_n) < \varepsilon$, hence x is not a cluster point of some $x_n \in K_n$.

References

- [Hen99] J. Henrikson. Completeness and total boundedness of the Hausdorff metric. *MIT Undergraduate Journal of Mathematics* 1 Number 1, 69–79, 1999.
- [Kal02] O. Kallenberg. Foundations of modern probability. 2nd ed. Springer, New York, 2002.
- [Mun00] J.R. Munkres. *Topology*, 2nd ed. Prentice Hall, Upper Saddle River, 2000.