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Abstract

In his paper from 1986 Gray developed a theory of dual processes for attractive spin
systems. Based on his work Sturm and Swart systematically investigated monotonicity-
based pathwise dualities for Markov processes in general and interacting particle systems
in particular. In this paper we only consider monotone interacting particle systems whose
state space is the Cartesian product of countably many copies of a finite set. For this class
of processes Sturm and Swart only showed the well-definedness of their dual processes if
started from finite initial states. This paper closes this gap and shows how to construct a
well-defined pathwise dual process of a monotone interacting particle system that can also
be started from an infinite initial state. This then allows us to study invariant laws of the
dual process and connect them to properties of the original interacting particle system.
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1 Introduction

1.1 Aim of the paper

Spin systems are Markov processes taking values in the space {0, 1}Λ of configurations x =
(x(i))i∈Λ of zeros and ones on a countable set Λ (often Λ = Zd) that we will call the grid.1

The value x(i) ∈ {0, 1} is called the spin at the site i ∈ Λ. In a spin system, the spins can
change their value at only one site at a time. Interacting particle systems are a generalization
of spin systems in which the local state space {0, 1} is replaced by a general finite set S. Now
x(i) is called the local state and the rule that the local state can change at only one site at a
time is relaxed so that any finite number of sites can change their state at one time.

For several concrete spin systems such as the contact process and the voter model the
existence of a dual process has been known since the early 1970ies. In the late 1970ies Harris
[Har76, Har78] and Griffeath [Gri79] showed that each additive interacting particle system
with local state space S = {0, 1} has a dual, explaining the existence of the aforementioned
dual processes.2 Later, Gray [Gra86] developed a duality theory for monotone spin systems,
a class of spin systems containing the additive ones.3 Sturm and Swart [SS18] treat both
additive and monotone duality for interacting particle systems with general local state spaces
S.

For additive interacting particle systems, duality is a symmetric relation in the sense
that the dual process is also an additive interacting particle system. To distinguish the two,
the original process is called the forward process, since one can think of the dual as running
backwards in time. Duality allows one to make a connection between the behavior of processes
started in finite and infinite initial states. Indeed, the forward process has a nontrivial upper
invariant law if and only if the dual process started from a finite initial state survives with
positive probability, and likewise with the roles of the forward and dual processes reversed
[Har76, Theorem 10.1], [Gri79, Theorem 3.1]. For monotone interacting particle systems that
are not additive, duality is no longer a symmetric relation in the sense that the state space
of the dual process is not of the form SΛ. In all work so far, the dual processes have been
constructed for finite initial states only. This allows one to prove that the forward process
has a nontrivial upper invariant law if and only if the dual process started from a finite initial
state survives with positive probability, but not the analogue statement with the roles of the
forward and dual processes reversed.

In the present paper, we fill this gap by showing that the duals of a large class of monotone
interacting particle systems can be started in infinite initial states and have an upper invariant
law that is nontrivial if and only if the forward process started from a finite initial state survives
with positive probability.

1.2 Interacting particle systems

Let E be a compact metrizable space and let M1(E) denote the space of probability measures
on E, equipped with the topology of weak convergence. We recall that a Feller semigroup on
E is a collection of probability kernels (Pt)t≥0 on E such that

(i) (x, t) 7→ Pt(x, · ) is a continuous map from E × [0,∞) to M1(E),

(ii) P0 = 1 and PsPt = Ps+t (s, t ≥ 0),

1This is often called the lattice but we reserve the latter term for its order-theoretic meaning.
2Harris called the dual process “associate” and adopted a stronger definition of “additive” than Griffeath,

who used the term “lineal additive” for the concept considered by Harris. We will stick to Harris’ stronger
definition of additivity.

3Monotone spin systems are often called attractive spin systems since for spin systems (but not for the more
general interacting particle systems), the two concepts coincide [Lig85, Theorem III.2.2].
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where PsPt denotes the concatenation of Ps and Pt and 1 denotes the identity kernel defined
as 1(x, · ) := δx, the delta measure on x, for each x ∈ E. A Feller process is a Markov process
that has a Feller semigroup as its transition kernels.

Let S be a finite set, called the local state space and let Λ be a countable set, called the
grid. Let SΛ be the set of functions x : Λ → S, equipped with the product topology. Then
SΛ is a compact metrizable space.

For each ∆ ⊂ Λ and x ∈ SΛ, we let x∆ = (x(i))i∈∆ denote the restriction of x to ∆. By
definition, a local map is a map m : SΛ → SΛ for which there exists a finite set ∆ ⊂ Λ and a
map m′ : S∆ → S∆ such that

m(x)(i) =

{
m′(x∆)(i) if i ∈ ∆,

x(i) else,
(x ∈ SΛ, i ∈ Λ). (1.1)

For each local map m, we let

D(m) :=
{
i ∈ Λ : ∃x ∈ SΛ s.t. m(x)(i) ̸= x(i)

}
,

R2(m) :=
{
(j, i) ∈ Λ2 : ∃x, y ∈ SΛ s.t. m(x)(i) ̸= m(y)(i) and xΛ\{j} = yΛ\{j}

}
,

(1.2)

denote the set of sites i where m can change the local state, respectively, the set of pairs of
sites (j, i) such that the value of x(j) is relevant for the value of m(x)(i). Let G be a countable
set of local maps and let (rm)m∈G be non-negative real constants that satisfy the summability
condition

sup
i∈Λ

∑
m∈G

rm1D(m)(i)
(
1 +

∑
j∈Λ

1R2(m)(j, i)
)
< ∞, (1.3)

where 1A denotes the indicator function of a set A. For each continuous real function f on
SΛ that depends on finitely many coordinates, we define

Gf(x) :=
∑
m∈G

rm
{
f(m(x))− f(x)

}
(x ∈ SΛ). (1.4)

Then it is known [Swa22, Theorem 4.30] that G is closable and its closure generates a Feller
semigroup (Pt)t≥0. General theory [Kal97, Theorem 17.15] then says that for each initial law
on SΛ, there exists a unique (in law) Feller process (Xt)t≥0 with values in SΛ and càdlàg
(i.e., right-continuous with left limits) sample paths such that the transition probabilities of
(Xt)t≥0 are given by (Pt)t≥0.

It is known that (Xt)t≥0 can be constructed from a graphical representation ω as follows.
Let ρ be the measure on G×R defined by ρ({m}× [s, t]) := rm(t−s) (m ∈ G, s ≤ t) and let ω
be a Poisson point set with intensity measure ρ. It is known [Swa22, Theorem 4.19] that almost
surely, for each x ∈ SΛ and s ∈ R, there exists a unique càdlàg function [s,∞) ∋ t 7→ Xt ∈ SΛ

that solves the evolution equation

Xs = x and Xt =

{
m(Xt−) if (m, t) ∈ ω,

Xt− else,
(t > s), (1.5)

where Xt− = limt′↑tXt′ denotes the state of the process just before time t. It is easy to see that
almost surely, at any given time t, there can be at most one m ∈ G such that (m, t) ∈ ω, so
(1.5) is (a.s.) well-defined. We use the solutions of (1.5) to define random mapsXs,u : SΛ → SΛ

(s ≤ u) by

Xs,u(x) := Xu, where (Xu)u≥s solves (1.5). (1.6)
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These random maps form a stochastic flow, in the sense that Xs,s is the identity map for all
s ∈ R, and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u). Moreover, by [Swa22, Theorem 4.20], if X0 is a
random variable with values in SΛ that is independent of the graphical representation ω, then
setting

Xt := Xs,s+t(X0) (t ≥ 0) (1.7)

defines a Feller process (Xt)t≥0 with càdlàg sample paths. By [Swa22, Theorem 4.30], the
semigroup of this Feller process is the Feller semigroup with generator given in (1.4). We call
this the interacting particle system with generator G.

1.3 Monotone systems duality

As in the previous subsection let S be a finite set and let Λ be countable. We assume from
now on that S is equipped with a partial order ≤ and has a least element 0, i.e. 0 ≤ a for all
a ∈ S. For x ∈ SΛ we call supp(x) := {i ∈ Λ : x(i) ̸= 0} the support of x and define

SΛ
fin :=

{
x ∈ SΛ : supp(x) is finite

}
. (1.8)

For any a ∈ S, we let a, defined as a(i) := a (i ∈ Λ), denote the configuration that is
constantly equal to a. The following lemma says that under natural assumptions, the space
SΛ
fin is preserved under the evolution of an interacting particle system.

Lemma 1 (Finite initial states) Assume that

m(0) = m(0) (m ∈ G), (1.9)

and that in addition to (1.3), the rates satisfy

sup
i∈Λ

∑
m∈G

rm
∑
j∈Λ

1D(m)(j)1R2(m)(i, j) < ∞. (1.10)

Then one has almost surely

Xs,u(x) ∈ SΛ
fin (s ≤ u, x ∈ SΛ

fin). (1.11)

We equip SΛ with the product order and we write x < y if x ≤ y and x ̸= y (x, y ∈ SΛ).
For any set A ⊂ SΛ, we call

A↑ :=
{
x ∈ SΛ : ∃y ∈ A s.t. y ≤ x

}
(1.12)

the upset of A, and we say that A is increasing if A↑ = A. We recall that a minimal element
of a set A ⊂ SΛ is a configuration x ∈ A such that there do not exist y ∈ A with y < x. We
let

A◦ :=
{
x : x is a minimal element of A

}
(1.13)

denote the set of minimal elements of A. Recall that SΛ is equipped with the product topology.
We set

I(SΛ) :=
{
A ⊂ SΛ : A is open and increasing

}
,

H(SΛ) :=
{
Y ⊂ SΛ

fin : Y ◦ = Y
}
.

(1.14)

The following proposition describes a bijection between I(SΛ) and H(SΛ).

Proposition 2 (Encoding open increasing sets) The map Y 7→ Y ↑ is a bijection from
H(SΛ) to I(SΛ) and the map A 7→ A◦ is its inverse.
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We will use the space

H−(S
Λ) := H(SΛ) \ {{0}} (1.15)

as the state space of the dual process. For that aim, we need to equip H−(S
Λ) with a

topology. We first equip I(SΛ) with a topology and then use the bijection from Proposition 2
to transfer it to H(SΛ). We will use the topology described in the following proposition.
Note that {0}↑ = SΛ so that the space I−(SΛ) defined below corresponds to H−(S

Λ) via the
bijection of Proposition 2.

Proposition 3 (Dual topology) There exists a unique metrizable topology on I(SΛ) such
that a sequence (An)n∈N ⊂ I(SΛ) converges to a limit A ∈ I(SΛ) if and only if

1An(x) → 1A(x) for all x ∈ SΛ
fin. (1.16)

The space I(SΛ) is compact in this topology, and so is I−(SΛ) := I(SΛ) \ {SΛ}.

We equip H(SΛ) with a topology so that the bijection from Proposition 2 is a homeo-
morphism. Then both H(SΛ) and H−(S

Λ) are compact metrizable spaces and a sequence
(Yn)n∈N ⊂ H(SΛ) converges to a limit Y ∈ H(SΛ) if and only if 1

Y ↑
n
(x) → 1Y ↑(x) for all

x ∈ SΛ
fin.

Let G be the generator of an interacting particle system with local state space S and grid
Λ, written in the form (1.4), and assume that all maps m ∈ G are monotone, in the sense that

x ≤ y implies m(x) ≤ m(y) (x, y ∈ SΛ). (1.17)

Let (Xs,u)s≤u be the stochastic flow defined in (1.6) in terms of the graphical representation
ω.

Lemma 4 (Dual flow) Assume that every map m ∈ G is monotone and satisfies (1.9), and
that the rates satisfy (1.3). Then, almost surely, setting

Yu,s(Y ) :=
{
y ∈ SΛ : Xs,u(y) ∈ Y ↑}◦ (Y ∈ H(SΛ), u ≥ s) (1.18)

yields a well-defined map Yu,s : H(SΛ) → H(SΛ) for all u ≥ s.

Note that Yu,s(Y ) is the collection of minimal configurations y with the property that if
we start the interacting particle system at time s in the initial state y and evolve it under the
graphical representation, then at the final time u the state of the interacting particle system
lies in Y ↑. Our first main result says that under natural assumptions, for fixed u and Y ,
setting Yt := Yu,u−t(Y ) defines a Feller process with state space H−(S

Λ). It is a consequence
of our construction that this Feller process has, somewhat unusually, càglàd sample paths, i.e.,
its sample paths are left-continuous with right limits. In the upcoming theorem P denotes the
probability measure on the probability space where the Poison point set ω lives.

Theorem 5 (Dual stochastic flow and Markov process) Assume that every map m ∈ G
is monotone and satisfies (1.9), and that the rates satisfy (1.3) and (1.10). Then, almost
surely, (1.18) defines a map Yu,s : H−(S

Λ) → H−(S
Λ) for all u ≥ s, and setting

Qt(Y, · ) := P
[
Yt,0(Y ) ∈ ·

]
(Y ∈ H−(S

Λ), t ≥ 0) (1.19)

defines a Feller semigroup on H−(S
Λ). If u ∈ R and Y0 is a random variable with values in

H−(S
Λ) that is independent of the graphical representation ω, then setting

Yt := Yu,u−t(Y0) (t ≥ 0) (1.20)

defines a Feller process (Yt)t≥0 with càglàd sample paths whose transition probabilities are
(Qt)t≥0.
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To compare this construction with earlier work, let

Hfin(S
Λ) :=

{
Y ∈ H(SΛ) : |Y | < ∞

}
(1.21)

denote the subset of H(SΛ) consisting of the finite subsets Y ⊂ SΛ with Y ◦ = Y . Note that in
this case we do not remove the element {0}, and thatHfin(S

Λ) is countable. We equipHfin(S
Λ)

with the discrete topology. The following proposition says that under weaker assumptions
than those of Theorem 5, for fixed u ∈ R and Y ∈ Hfin(S

Λ), setting Yt := Yu,u−t(Y ) defines
a continuous-time Markov chain with countable state space Hfin(S

Λ).

Proposition 6 (Finite initial states) Assume that every map m ∈ G is monotone and the
rates satisfy (1.3). Then, almost surely, (1.18) defines a map Yu,s : Hfin(S

Λ) → Hfin(S
Λ) for

all u ≥ s. If u ∈ R and Y0 is a random variable with values in Hfin(S
Λ) that is independent

of the graphical representation ω, then setting

Yt := Yu,u−t(Y0) (t ≥ 0) (1.22)

defines a continuous-time Markov chain (Yt)t≥0 in Hfin(S
Λ) with càglàd sample paths.

In previous work [Gra86, SS18], the dual process (Yt)t≥0 has only been constructed for
initial states Y0 ∈ Hfin(S

Λ). This more limited construction does not allow one to discuss the
upper invariant law of the dual process, as we will do in the next subsection.

Let ψmon : SΛ ×H(SΛ) → {0, 1} be defined as

ψmon(x, Y ) := 1Y ↑(x) (x ∈ SΛ, Y ∈ H(SΛ)). (1.23)

Then using Proposition 2 and (1.18), it is straightforward to check that

ψmon

(
Xs,u(x), Y

)
= ψmon

(
x,Yu,s(Y )

)
(s ≤ u, x ∈ SΛ, Y ∈ H(SΛ)). (1.24)

We describe this in words by saying that the stochastic flow (Xs,u)s≤u is dual to the backward
stochastic flow (Yu,s)u≥s with respect to the duality function ψmon. Fix s < u and let X0

and Y0 be random variables with values in SΛ and H−(S
Λ), respectively, independent of each

other and of the graphical representation ω. Let (Xt)t≥0 and (Yt)t≥0 be the Markov processes
defined by (1.7) and (1.20), i.e.

Xt := Xs,s+t(X0) and Yt := Yu,u−t(Y0) (t ≥ 0). (1.25)

Then setting T := u− s, (1.24) implies that

ψmon(Xt, YT−t) does not depend on t ∈ [0, T ]. (1.26)

In particular, applying this to t = 0 and t = T and taking expectations, it follows that the
interacting particle system (Xt)t≥0 with generator G in (1.4) and the Markov process (Yt)t≥0

from Theorem 5 are dual in the sense that

E[ψmon(XT , Y0)] = E[ψmon(X0, YT )] (T ≥ 0) (1.27)

whenever XT is independent of Y0 and X0 is independent of YT . Here E denotes expectation
with respect to the probability measure on the probability space where ω, X0 and Y0 live.
The relation (1.26) is called a pathwise duality relation and (1.27) means that the Markov
processes (Xt)t≥0 and (Yt)t≥0 are dual with duality function ψmon.

The definition of the dual process in terms of the stochastic flow of the forward process
as in (1.18) is somewhat indirect. In the remainder of this subsection, we will describe a
more direct construction based on the graphical representation. We say that two functions
m : SΛ → SΛ and m̂ : H(SΛ) → H(SΛ) are dual with respect to the duality function ψmon if

ψmon(m(x), Y ) = ψmon(x, m̂(Y )) (x ∈ SΛ, Y ∈ H(SΛ)). (1.28)

We need the following simple lemma.
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Lemma 7 (Duals of monotone maps) Each continuous monotone map m : SΛ → SΛ has
a unique dual map m̂ : H(SΛ) → H(SΛ) with respect to the duality function ψmon. This dual
map is given by

m̂(Y ) := m−1(Y ↑)◦ (Y ∈ H(SΛ)). (1.29)

If m satisfies (1.9), then moreover, m̂(Y ) ∈ H−(S
Λ) for all Y ∈ H−(S

Λ).

The following proposition says that the backward stochastic flow (Yu,s)u≥s from (1.18)
can be defined more directly in terms of the unique solutions of an evolution equation, similar
to the definition of the forward stochastic flow (Xs,u)s≥u in (1.5) and (1.6).

Proposition 8 (Backward evolution equation) Under the assumptions of Theorem 5,
almost surely, for each u ∈ R and Y ∈ H−(S

Λ), there exists a unique càdlàg function
(−∞, u] ∋ t 7→ Yt ∈ H−(S

Λ) that solves the evolution equation

Yu = Y and Yt− =

{
m̂(Yt) if (m, t) ∈ ω,

Yt else,
(t ≤ u). (1.30)

This function is given by Yt = Yu,t(Y ) (t ≤ u), where (Yu,s)u≥s is the backward stochastic
flow defined in (1.18).

We leave the problem of giving a generator characterization of the dual process to future
work.

1.4 The upper invariant laws

Let E be a compact metrizable space that is equipped with a partial order ≤ that is compatible
with the topology4 in the sense that the set{

(x, y) ∈ E2 : x ≤ y
}

is a closed subset of E2, (1.31)

where E2 is equipped with the product topology. Two probability measure µ, ν ∈ M1(E)
are said to be stochastically ordered, denoted µ ≤ ν, if they satisfy the following equivalent
conditions [Lig85, Theorem II.2.4]

(i)
∫
f(x) dν(x) ≤

∫
f(x) dµ(x) for all continuous monotone f : E → R.

(ii) It is possible to couple random variables X,Y with laws µ, ν such that X ≤ Y a.s.

It is known [KK78, Theorem 2] that the stochastic order is a partial order on M1(E). A Feller
process with state space E and Feller semigroup (Pt)t≥0 is said to be monotone if

Pt(x, · ) ≤ Pt(y, · ) (x, y ∈ E, x ≤ y). (1.32)

The following result is well-known. It is stated for E = {0, 1}Λ in [Lig85, Theorem III.2.3] and
[Swa22, Theorem 5.4]. Generalizing the proof to all compact metrizable spaces equipped with
a compatible topology is straightforward. The measure ν below is called the upper invariant
law.

4This notion is also used in [Lig85]. In the more classical references [Nac65] and [KK78] an order that
satisfies (1.31) is called closed.
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Proposition 9 (Upper invariant law) Let E be a compact metrizable space equipped with a
partial order that is compatible with the topology. Assume that E possesses a greatest element
⊤ ∈ E, i.e. x ≤ ⊤ for all x ∈ E. Let (Pt)t≥0 be the semigroup of a monotone Feller process
(Xt)t≥0 with state space E. Then there exists an invariant law ν of (Xt)t≥0 that is uniquely
characterized by the property that ν ≤ ν for each invariant law ν of (Xt)t≥0. Moreover, one
has

Pt(⊤, · ) =⇒
t→∞

ν, (1.33)

where ⇒ denotes weak convergence of probability measures on E.

Returning to the set-up of the previous subsection, let S be a finite partially ordered set
that has a least element 0 and let Λ be countable. Then it is easy to check that the product
order on SΛ is compatible with the topology. Let (Xt)t≥0 be an interacting particle system
with generator of the form (1.4). It follows from Lemma 21 below that if all maps m ∈ G are
monotone, then (assuming (1.3)) the maps {Xs,u}s≤u are (a.s.) monotone for all s ≤ u. This,
in turn, implies that the interacting particle system (Xt)t≥0 is monotone.5 Thus, if the local
state space S has a greatest element ⊤, then such an interacting particle system has an upper
invariant law that is the long-time limit law started from the constant configuration ⊤.

We equip the space I(SΛ) with the partial order of set inclusion, which through the
bijection of Proposition 2 defines a partial order ≤ on H(SΛ) such that

Y ≤ Z ⇔ Y ↑ ⊂ Z↑ (Y, Z ∈ H(SΛ)). (1.34)

Since {0}↑ = SΛ, it is clear that {0} is the greatest element of H(SΛ). It turns out that
H−(S

Λ) also has a greatest element, which is more interesting. If S is a partially ordered set
that has a least element 0, then we set

Ssec := (S \ {0})◦. (1.35)

Elements of Ssec are “second from below” in the order on S. We define Ysec ∈ H(SΛ) as

Ysec :=
{
δai : i ∈ Λ, a ∈ Ssec

}
(1.36)

where for any a ∈ S and i ∈ Λ, we define δai ∈ SΛ by

δai (j) :=

{
a if j = i,

0 else,
(j ∈ Λ). (1.37)

The following lemma describes some elementary properties of the partial order on H(SΛ).

Lemma 10 (Order on the dual state space) The partial order ≤ defined in (1.34) is
compatible with the topologies on H(SΛ) and H−(S

Λ), and Ysec is the greatest element of
H−(S

Λ).

It follows immediately from the definitions that the maps {Yu,s}u≥s are monotone with
respect to the partial order on H(SΛ) for all s ≤ u as long as they are well defined. Hence
the Feller process (Yt)t≥0 with state space H−(S

Λ) defined in Theorem 5 is monotone. The
abstract Proposition 9 therefore implies that this process has an upper invariant law µ and
that

Y0 = Ysec implies that P[Yt ∈ · ] =⇒
t→∞

µ. (1.38)

5Remarkably, the converse statement does not hold. Having a generator of the form (1.4) with all maps
monotone is strictly stronger than being monotone, see [FM01].
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As far as we know, this upper invariant law has never been studied before, except in the special
case when (Xt)t≥0 is additive. Compare Section 1.5.

Recall the definitions of SΛ
fin and Hfin(S

Λ) in (1.8) and (1.21). In view of Lemma 1 and
Proposition 6, under the assumptions of Theorem 5, the Markov processes (Xt)t≥0 and (Yt)t≥0,
started in initial states in SΛ

fin and Hfin(S
Λ), respectively, stay in these spaces for all times

t ≥ 0. We will relate the upper invariant laws of (Xt)t≥0 and (Yt)t≥0 to the behavior of (Yt)t≥0

and (Xt)t≥0 (in this order) started from finite initial states.
Let P again denote the probability measure on the probability space where the Poison point

set ω lives. We say that the interacting particle system (Xt)t≥0, respectively its monotone
dual (Yt)t≥0 dies out if

P
[
∃t ≥ 0 s.t. X0,t(x) = 0

]
= 1 (x ∈ SΛ

fin),

P
[
∃t ≥ 0 s.t. Yt,0(Y ) = ∅

]
= 1 (Y ∈ Hfin(S

Λ)).
(1.39)

If these probabilities are less than one for some x ∈ SΛ
fin or Y ∈ Hfin(S

Λ), then we say that
(Xt)t≥0 or (Yt)t≥0 survives. The following proposition is a simple consequence of duality.
Similar results have been exploited to great length for additive interacting particle systems.

Proposition 11 (Upper invariant law of the particle system) Assume that every map
m ∈ G is monotone, the rates satisfy (1.3), and that S has a greatest element ⊤. Let X be
a random variable whose law is ν, the upper invariant law of the interacting particle system
(Xt)t≥0. Then X = 0 a.s. if the dual process (Yt)t≥0 dies out and X ̸= 0 a.s. if the dual
process (Yt)t≥0 survives.

Thanks to the fact that we have constructed the dual process also for infinite initial states
and have shown that it has an upper invariant law, we can now formulate an analogue result
with the roles of (Xt)t≥0 and (Yt)t≥0 reversed. At this point, the proof is not hard anymore.
But, since this depends on all that has been done before, it is our second main result, and we
formulate it as a theorem.

Theorem 12 (Upper invariant law of the dual process) Assume that every map m ∈ G
is monotone and satisfies (1.9), and that the rates satisfy (1.3) and (1.10). Let Y be a random
variable whose law is µ, the upper invariant law of the dual process (Yt)t≥0. Then Y = ∅ a.s.
if the interacting particle system (Xt)t≥0 dies out and Y ̸= ∅ a.s. if the interacting particle
system (Xt)t≥0 survives.

1.5 Additive duality

Additive duality for interacting particle systems has been much studied and has found many
applications since the foundational work of Harris [Har76, Har78] and Griffeath [Gri79]. Most
work has been concerned with the local state space S = {0, 1} but in [SS18] this has been
generalized to S being a finite lattice. In fact, without using the terminology of lattice theory,
additive duality for general finite sets S was already studied in [Fox16]. We will show that
additive duality is a special case of monotone duality. We first need a few definitions.

Let S be a partially ordered set. In analogy with (1.12), the downset of a subset A ⊂ S is
defined as

A↓ =
{
b ∈ S : ∃a ∈ A s.t. b ≤ a

}
, (1.40)

and one says that A is decreasing if A↓ = A. By definition, the dual of a partially ordered set
S is a partially ordered set Ŝ together with a bijection S ∋ a 7→ â ∈ Ŝ such that

a ≤ b if and only if â ≥ b̂. (1.41)
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All duals of a partially ordered set are naturally isomorphic and S is naturally isomorphic to
the dual of Ŝ when one sets ˆ̂a := a. Note that if S has a least element 0, then 0̂ is the greatest
element of Ŝ and vice versa. If S is a finite partially ordered set, Λ is countable, and SΛ is

equipped with the product order, then we define x̂(i) := x̂(i) (x ∈ SΛ, i ∈ Λ) coordinatewise.
Then naturally ŜΛ is dual to SΛ.

A partially ordered set S is called a lattice if for every a, b ∈ S there exist (necessarily
unique) elements a ∨ b (the join) and a ∧ b (the meet) such that

{a}↑ ∩ {b}↑ = {a ∨ b}↑ and {a}↓ ∩ {b}↓ = {a ∧ b}↓. (1.42)

It is easy to see that each finite lattice S has a least element 0 and a greatest element ⊤. If
S is a lattice, then so is SΛ equipped with the product order, where x ∨ y and x ∧ y are the
coordinatewise join and meet of x and y.

We assume from now on that S is a finite lattice and Λ is a countable set. We let Ŝ denote
the dual of S and we define a function ψadd : SΛ × ŜΛ → {0, 1} by

ψadd(x, ŷ) := 1({y}↓)c(x) (x ∈ SΛ, ŷ ∈ ŜΛ), (1.43)

where Ac := SΛ \A denotes the complement of a subset A ⊂ SΛ. Put differently,

ψadd(x, ŷ) =

{
0 if x ≤ y or equivalently ŷ ≤ x̂,

1 else,
(x ∈ SΛ, ŷ ∈ ŜΛ). (1.44)

In analogy with (1.28), we say that two functions m : SΛ → SΛ and m̂ : ŜΛ → ŜΛ are dual
with respect to the duality function ψadd if

ψadd(m(x), ŷ) = ψadd(x, m̂(ŷ)) (x ∈ SΛ, ŷ ∈ ŜΛ). (1.45)

We say that a map m : SΛ → SΛ is additive if

m(0) = 0 and m(x ∨ y) = m(x) ∨m(y) (x, y ∈ SΛ). (1.46)

Clearly, each additive map m is also monotone. The following lemma combines [LS23a, Propo-
sition 2.1, Lemma 2.4 & Proposition 2.5].

Proposition 13 (Additive systems pathwise duality) Assume that every map m ∈ G is
additive and that the rates satisfy (1.3) and (1.10). Then there (a.s.) exists a stochastic flow
(Zu,s)u≥s, consisting of random maps from ŜΛ to itself, satisfying the relation

ψadd

(
Xs,u(x), ŷ

)
= ψadd

(
x,Zu,s(ŷ)

)
(s ≤ u, x ∈ SΛ, ŷ ∈ ŜΛ). (1.47)

We will show that the backward stochastic flow (Zu,s)u≥s can, in fact, be identified with
the backward stochastic flow we have already seen. A non-empty, decreasing subset I ⊂ SΛ is
called an ideal if it is closed under taking the join, i.e. if x∨ y ∈ I for all x, y ∈ I. A principal
ideal is an ideal that has a greatest element. Let

Hpi(S
Λ) :=

{
Y ∈ H(SΛ) : (Y ↑)c is a principal ideal

}
(1.48)

Note that Hpi(S
Λ) ⊂ H−(S

Λ). The following proposition identifies the partially ordered set
Hpi(S

Λ) with the dual lattice ŜΛ and shows that in this identification, the monotone duality
function from (1.23) reduces to the additive duality function from (1.43).

Proposition 14 (Isomorphism to the dual lattice) The partially ordered topological space
ŜΛ is isomorphic to Hpi(S

Λ) via the monotone homeomorphism ϕ : ŜΛ → Hpi(S
Λ) defined as

ϕ(ŷ) :=
[
({y}↓)c

]◦
(ŷ ∈ ŜΛ). (1.49)

Moreover,

ψadd(x, ŷ) = ψmon(x, ϕ(ŷ)) (x ∈ SΛ, ŷ ∈ ŜΛ). (1.50)
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The subspace Hpi(S
Λ) and the function ϕ from (1.49) are rather abstract. In Section 5

below, for the important special case of distributive lattices, we give an alternative description
of Hpi(S

Λ). Moreover, for S being a totally ordered lattice we compute ϕ explicitly.
Our final result says that for additive interacting particle systems, the backward stochastic

flow (Yu,s)u≥s defined in (1.18) preserves the space Hpi(S
Λ).

Proposition 15 (Preserved subspace) Assume (1.3) and (1.10), assume that S is a finite
lattice, and assume that all maps m ∈ G are additive. Then almost surely

Yu,s(Y ) ∈ Hpi(S
Λ) (u ≥ s, Y ∈ Hpi(S

Λ)). (1.51)

By grace of Proposition 14 and 15, we can then identify the restriction of (Yu,s)u≥s to
Hpi(S

Λ) with the backward stochastic flow (Zu,s)u≥s defined in (1.47). The duality formulas
(1.24), (1.26), and (1.27) now immediately translate into analogue formulas with ψmon replaced
by ψadd and (Yu,s)u≥s by (Zu,s)u≥s.

1.6 Outline

The rest of the paper is devoted to proofs. We recall that we cited Proposition 9 from the
literature. The space H(SΛ) is studied in Section 2, where Proposition 2, Proposition 3 and
Lemma 10 are proved. In Section 3 we first prove Lemma 4 and Lemma 1 (in this order).
Afterwards we construct the dual process and prove the main result Theorem 5. In the second
half of Section 3 we prove Lemma 7, Proposition 8 and Proposition 6 (in this order). Section 4
deals with the upper invariant laws. There we prove Proposition 11 and Theorem 12. Finally,
Section 5 considers the additive special case. There we prove Proposition 13, Proposition 14
and Proposition 15. Moreover, as advertised, we further study Hpi(S

Λ) and ϕ from (1.49).

2 The dual space

In this section we prove Proposition 2, Proposition 3 and Lemma 10. To do so we first
introduce a useful bit of notation. Let x ∈ SΛ and ∆ ⊂ Λ. Then we define x⇂∆∈ SΛ as

x⇂∆ (i) :=

{
x(i) if i ∈ I,

0 else,
(i ∈ Λ). (2.1)

The fact that, contrary to x∆ from Section 1.2, x⇂∆ is an element of SΛ will be useful in
several upcoming proofs. We can already prove Proposition 2.

Proof of Proposition 2. First note that Y ↑ is indeed open for Y ∈ H(SΛ). If Y = ∅, then also
Y ↑ = ∅. If Y = {y} for some y ∈ SΛ

fin, then

Y ↑ = {y}↑ =
{
x ∈ SΛ : y(i) ≤ x(i) for i ∈ supp(y)

}
. (2.2)

By the definitions of the product topology and of the discrete topology on S, all finite dimen-
sional cylinder sets are open and hence, since supp(y) is finite, Y ↑ is open6 in the product
topology. If Y consists of more than one element, then we can write

Y ↑ =
⋃
y∈Y

{y}↑ (2.3)

so that Y ↑ is open as a union of open sets.

6In fact, Y ↑ = {y}↑ is clopen (i.e. both closed and open).
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It then suffices to show that (Y ↑)◦ = Y for Y ∈ H(SΛ), A◦ ⊂ SΛ
fin for A ∈ I(SΛ) and

(A◦)↑ = A for A ∈ I(SΛ). The first assertion is clear. We will show the third assertion and
the arguments along the way will imply the second one as well.

Let A ∈ I(SΛ). Then A◦ ⊂ A implies that (A◦)↑ ⊂ A↑ = A. If A = ∅, then ∅ ⊂ (∅◦)↑
trivially and there is nothing left to show. Hence, assume that A ̸= ∅ and let x ∈ A. Let
(∆n)n∈N be a sequence of finite subsets of Λ with the property that ∆n ↗ Λ. Then x⇂∆n→ x
in the product topology. As A is open there exists an N ∈ N so that x⇂∆n∈ A for all n ≥ N .
As x⇂∆N

∈ SΛ
fin we can find x′ ∈ A◦ such that x′ ≤ x⇂∆N

≤ x, thus x ∈ (A◦)↑. In particular,
this shows that there cannot exist an x ∈ A◦ ∩ (SΛ

fin)
c.

Next, we construct the topology on I(SΛ) that satisfies Proposition 3. As the set Λ is
countable, we can find a bijection γ : Λ → N. Using this bijection we define

ai :=
1

3γ(i)
(i ∈ Λ) (2.4)

and define a metric d on SΛ as

d(x, y) :=
∑
i∈Λ

ai1{x(i)̸=y(i)} (x, y ∈ SΛ). (2.5)

It is well-known that the metric d generates the product topology on SΛ. Note that d(x, y) ≤
1/2 (x, y ∈ SΛ) with equality if and only if x(i) ̸= y(i) for all i ∈ Λ. Moreover, d(x, y) < 1/3n

(x, y ∈ SΛ) implies that d(x, y) ≤ 1/(2 · 3n) =
∑∞

k=n+1 1/3
k, so that the open ball

B1/3n(x) :=

{
y ∈ SΛ : d(x, y) <

1

3n

}
(x ∈ SΛ) (2.6)

is actually clopen, i.e. both closed and open.
Let K(SΛ) denote the space of all compact subsets of SΛ. On K+(S

Λ) := K(SΛ) \ {∅} one
defines the Hausdorff metric dH as

dH(A,B) := max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
(A,B ∈ K+(S

Λ)), (2.7)

where d is the metric from (2.5) and (as usual)

d(x,B) := inf
y∈B

d(x, y) (x ∈ SΛ, B ⊂ SΛ). (2.8)

The corresponding topology on (K+(S
Λ), dH) is called Hausdorff topology and it is well-known

(see for example [SSS14, Lemma B.1]) that it only depends on the topology on SΛ, i.e. the
product topology, and not on the exact definition of the underlying metric. However, using
the metric dH based on the concrete metric d form (2.5) will be useful in the following. We
extend the metric dH to K(SΛ) by setting dH(∅, A) := 1 for all A ∈ K+(S

Λ) so that ∅ is an
isolated point. By [SSS14, Lemma B.3] the space K(SΛ) is then compact since SΛ is compact.

We want to identify I(SΛ) with a subspace of K(SΛ). The assertion A
↕
n → A↕ in the

following lemma is to be understood to mean that both A↑
n → A↑ and A↓

n → A↓.

Lemma 16 (Convergence of up- and downset) Let (An)n∈N ⊂ K(SΛ) and assume that

An → A ∈ K(SΛ). Then also A
↕
n → A↕ in K(SΛ).

For the proof of Lemma 16 we will need a classical result that is a special case of [Nac65,
Proposition 4].
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Lemma 17 (Closedness of upset and downset) Let E be a compact Hausdorff space that
is equipped with a partial order ≤ that is compatible with the topology. Assume that A ⊂ E is
closed. Then A↑ and A↓ are also closed.

Proof of Lemma 16. Note that every A ∈ K(SΛ) is closed (in SΛ), so by Lemma 17 the set A↕

is closed as well. Hence indeed A↕ ∈ K(SΛ), as closed subsets of a compact topological space
are compact.

Now assume that A = ∅. As ∅ is isolated in K(SΛ), An → A implies that there exists an

N ∈ N so that An = ∅ for all n ≥ N . As ∅↑ = ∅↓ = ∅ it follows that also A
↕
n → A↕.

Let now A,B ∈ K+(S
Λ) and n ∈ N. We show that dH(A,B) < 1/3n implies that

dH(A
↑, B↑) < 1/3n. Let x ∈ B↑ and b ∈ B so that b ≤ x. Then, as dH(A,B) < 1/3n,

there exists a ∈ A such that d(a, b) < 1/3n which implies that aγ−1({1,...,n}) = bγ−1({1,...,n}).

Let now ax ∈ SΛ be defined as

ax(i) :=

{
x(i) if i ∈ γ−1({1, . . . , n}),
a(i) else,

(i ∈ Λ). (2.9)

Then b ≤ x implies that a ≤ ax and the construction of ax implies that d(x, ax) ≤ 1/(2 · 3n)
and hence d(x,A↑) ≤ 1/(2 ·3n). As x ∈ B↑ was arbitrary we conclude that supx∈B↑ d(x,A↑) ≤
1/(2 ·3n). Interchanging the roles of B and A yields that dH(B

↑, A↑) ≤ 1/(2 ·3n) < 1/3n. The
argument for ↑ replaced by ↓ works analogously.

Let A ∈ I(SΛ). Then Ac, being a closed subset of a compact topological space, is compact.
We have the following.

Lemma 18 (Closedness within compact sets) The set {Ac : A ∈ I(SΛ)} is closed in
K(SΛ).

Proof. Let (An)n∈N ⊂ {Ac : A ∈ I(SΛ)} and assume that An → A ∈ K(SΛ). As each An

(n ∈ N) is decreasing, Lemma 16 shows that also An → A↓. The Hausdorff property of K(SΛ)
then implies that A = A↓ and the proof is complete.

Now we are ready to prove Proposition 3.

Proof of Proposition 3. Using Lemma 18 we can equip I(SΛ) with the metric

dI(A,B) := dH(A
c, Bc) (A,B ∈ I(SΛ)) (2.10)

making (I(SΛ), dI) and (I−(SΛ), dI) compact metric spaces, isometric to some closed sub-
spaces of the metric space (K(SΛ), dH).

Next we prove the convergence criterion. To start we consider the case A = SΛ. As SΛ is
isolated in I(SΛ), An → SΛ implies that there exists N ∈ N such that An = SΛ for all n ≥ N
so that (1.16) is trivial. On the other hand, assuming (1.16) and taking x = 0 implies that
there has to exist an N ∈ N such that 0 ∈ An for all n ≥ N . But 0 ∈ An implies 0 ∈ A◦

n and
by minimality A◦

n = {0}. Hence, by Proposition 2, An = SΛ for all n ≥ N so that An → SΛ.
Assume now that A ∈ I−(SΛ). If x = 0 violates (1.16), then, by the arguments above,

An = SΛ for infinitely many n ∈ N and An cannot converge to A. Now assume that there
exists an x ∈ SΛ

fin \ {0} such that 1An(x) does not converge to 1A(x). This implies that for
all n ∈ N there exists an N ≥ n such that x ∈ AN △ A = (AN \ A) ∪ (A \ AN ). Let now
a∗ := min{ai : i ∈ supp(x)} and m := log1/3(a∗). We claim that x ∈ AN △A implies that
dH(A

c
N , Ac) ≥ a∗ and hence also

lim sup
n→∞

dH(A
c
n, A

c) ≥ a∗. (2.11)
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To check the claim, due to symmetry we may w.l.o.g. assume that x ∈ AN ∩Ac. Would there
now be a y ∈ Ac

N with d(x, y) < a∗ = 1/3m, then, as supp(x) ⊂ γ−1({1, . . . ,m}), we would
have y⇂supp(x)= x. But, as Ac

N is decreasing, x = y⇂supp(x)≤ y implies x ∈ Ac
N , a contradiction.

For the reverse direction let ε > 0. Choose an m ∈ N such that 1/(2 · 3m) < ε. By
assumption for all x ∈ SΛ

fin there exists an N(x) ∈ N such that 1An(x) = 1A(x) for all
n ≥ N(x). Set now

N0 := max
{
N(x) : supp(x) ⊂ γ−1({1, . . . ,m})

}
. (2.12)

We claim that this implies that dH(A
c
n, A

c) < ε for all n ≥ N0 and hence

lim sup
n→∞

dH(A
c
n, A

c) = 0, (2.13)

as ε was arbitrary. To check the claim, let n ≥ N0 and assume that there exists an x ∈ SΛ

with arbitrary support satisfying x ∈ Ac
n ∩ A. We then also have that x⇂γ−1({1,...,m})∈ Ac

n

which implies that x⇂γ−1({1,...,m})∈ Ac as n ≥ N0. Due to the construction of d this implies

that d(x,Ac) ≤ 1/(2 · 3N0). By symmetry, an arbitrary x ∈ An ∩Ac has to satisfy d(x,Ac
n) ≤

1/(2 · 3N0) and the claim follows.
The uniqueness of the metrizable topology that satisfies (1.16) follows from the fact that

convergence of sequences characterizes a topology in metrizable spaces.

We finish the section with the proof of Lemma 10.

Proof of Lemma 10. Let Y,Z ∈ H(SΛ). As

Y ≤ Z ⇔ Y ↑ ⊂ Z↑ ⇔ (Z↑)c ⊂ (Y ↑)c (2.14)

if suffices to show that K(SΛ) satisfies (1.31) if it is equipped with the partial order ⊂. Let
(An)n∈N, (Bn)n∈N ⊂ K(SΛ) be two sequences such that An ⊂ Bn for all n ∈ N and assume
that An → A ∈ K+(S

Λ) and Bn → B ∈ K+(S
Λ). If A = ∅, then trivially A ⊂ B. Hence,

assume that A ̸= ∅ and let a ∈ A. From the definition of the Hausdorff metric we can conclude
that there exist an ∈ An (n ∈ N) so that an → a in SΛ. But then an ∈ Bn (n ∈ N) and by
[SSS14, Lemma B.1] this implies that a ∈ B. From this one concludes that A ⊂ B and hence
K(SΛ) satisfies (1.31).

Finally, we consider Ysec. Clearly, 0 /∈ Ysec, so Ysec ∈ H−(S
Λ). Let Y ∈ H−(S

Λ). Since
0 /∈ Y , for every y ∈ Y there has to exist an i ∈ Λ satisfying y(i) ̸= 0. But then there also

exists an a ∈ Ssec such that a ≤ y(i). Hence also δai ≤ y and thus y ∈ Y ↑
sec. It follows that

Y ↑ ⊂ Y ↑
sec, i.e. Y ≤ Ysec.

3 The dual process

We split this section into two subsections. In Subsection 3.1 we begin by proving Lemma 4 and
Lemma 1. Afterwards we construct the dual process and prove the main result Theorem 5.
Subsection 3.2 is devoted to duality between maps, where Lemma 7 is the cornerstone. With
Lemma 7 at our disposal we also show Proposition 8 and Proposition 6 (in this order).

3.1 The Poisson construction

As outlined, we begin this subsection by proving Lemma 4. This needs some preparations.
For a function f : SΛ → S we set

R(f) :=
{
i ∈ Λ : ∃x, y ∈ SΛ s.t. f(x) ̸= f(x′) and xΛ\{i} = yΛ\{i}

}
. (3.1)
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Moreover, for m : SΛ → SΛ and i ∈ Λ we define m[i] : SΛ → S via m[i](x) := m(x)(i)
(x ∈ SΛ). Let m : SΛ → SΛ be a local map. With the newly introduced notation we can
write R2(m) from (1.2) as

R2(m) =
{
(j, i) ∈ Λ2 : i ∈ Λ, j ∈ R(m[i])

}
. (3.2)

We cite the following result [Swa22, Lemma 4.13].

Lemma 19 (Continuous maps) A map f : SΛ → S is continuous with respect to the
product topology if and only if the following two conditions hold:

(i) R(f) is finite.

(ii) If x1, x2 ∈ SΛ satisfy x1(j) = x2(j) for all j ∈ R(f), then f(x1) = f(x2).

Recall that the Poisson set ω from (1.5) is called the graphical representation. For each
s ≤ u, we set

ωs,u :=
{
(m, t) ∈ ω : s < t ≤ u

}
. (3.3)

For each finite ω̃ ⊂ ωs,u, we define

Xω̃
s,u := mn ◦ · · · ◦m1 with ω̃ =

{
(m1, t1), . . . , (mn, tn)

}
and t1 < · · · < tn, (3.4)

i.e., Xω̃
s,u is the concatenation of the maps from ω̃ in the time order in which they occur. The

following result follows from [Swa22, Lemma 4.24] and the proof of [Swa22, Theorem 4.19].

Lemma 20 (Finitely many relevant local maps) Assume (1.3). Then almost surely, for
each s ≤ u and i ∈ Λ, there exist a finite sets ωs,u(i) ⊂ ωs,u such that

Xs,u[i] = Xω̃
s,u[i] for all finite ω̃ with ωs,u(i) ⊂ ω̃ ⊂ ωs,u. (3.5)

These finite sets can be chosen such that ωt,u(i) = ωs,u(i) ∩ ωt,u for all s ≤ t ≤ u and i ∈ Λ.

With the help of the previous two lemmas, we can prove the following result.

Lemma 21 (Continuous monotone flow) Assuming (1.3) and that all maps m ∈ G are
monotone, almost surely, the maps Xs,u : SΛ → SΛ (s ≤ u), defined in (1.6), are continuous
and monotone.

Proof. By Lemma 20, Xs,u[i] is the concatenation of finitely many monotone maps and there-
fore monotone. As we equipped SΛ with the product order, the same holds for Xs,u.

Recall that we equipped SΛ with the product topology. The definition of a local map in
Section 1.2 together with Lemma 19 implies that m is continuous for all m ∈ G. Then Xs,u[i],
being the concatenation of finitely many continuous maps, is continuous. By the properties
of the product topology Xs,u is then continuous as well. This concludes the proof.

Before we continue with the proof of Lemma 4 we note the following consequence of
Lemma 20.

Corollary 22 (The trap 0) Assuming (1.3) and (1.9), almost surely Xs,u(0) = 0 for all
s ≤ u.

Proof of Lemma 4. Let u ≥ s, Y ∈ H(SΛ), and let A := {y ∈ SΛ : Xs,u(y) ∈ Y ↑} be the
preimage of Y ↑ under the map Xs,u. By Lemma 21 Xs,u is almost surely continuous and
monotone. The continuity of Xs,u implies that A is open and the montonicity of Xs,u implies
that A is increasing. By (1.18) and Proposition 2, it now follows that Yu,s(Y )↑ = A. Hence
Yu,s(Y )↑ ∈ I(SΛ) and Yu,s(Y ) ∈ H(SΛ) by Proposition 2.
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Next we prove Lemma 1. Although the result is widely applicable we were not able to find
a reference for the result. This might be due to the fact that the assertion of Lemma 1 follows
for many well-studied interacting particle systems from duality (compare [SS18, Lemma 32]).
The proof is done in parallel to the proofs of [Swa22, Lemma 4.21 & Lemma 4.22]. Recall
that supp(x) was introduced for x ∈ SΛ at the beginning of Section 1.3.

Proof of Lemma 1. Recall the definitions in (1.2) and (3.1). We start the proof with the
following observation. Let m ∈ G. If j ∈ supp(m(x)), then there are two possibilities. Either
j /∈ D(m), i.e. m(x)(j) = x(j), and hence j ∈ supp(x) has to hold as well. On the other
hand, if j ∈ D(m), then there has to exist an i ∈ R(m[i]) ∩ supp(x). Indeed, by (1.9) and
Lemma 19 (ii), x(i) = 0 for all i ∈ R(m[i]) implies m(x)(j) = m(0)(j) = 0. This observation
gives rise to the following construction. For i, j ∈ Λ and s ≤ u we write (i, s)⇝ (j, u) if there
exists a càdlàg function ξ : [s, u] → Λ with ξ(s) = i, ξ(u) = j and the property that

� if ξ(t−) ̸= ξ(t) for some t ∈ (s, u], then there exists a map m ∈ G such that (m, t) ∈ ω,
ξ(t) ∈ D(m) and ξ(t−) ∈ R(m[ξ(t)]).

We set

ζs,u(I) :=
{
j ∈ Λ : (i, s)⇝ (j, u) for some i ∈ I

}
(s ≤ u, I ⊂ Λ). (3.6)

Note that ζs,s(I) := I (s ∈ R, I ⊂ Λ). Our earlier observations and the fact that (Xs,u(x))u≥s

(s ∈ R, x ∈ SΛ) solves (1.5) then imply that

supp(Xs,u(x)) ⊂ ζs,u(supp(x)) (s ≤ u, x ∈ SΛ). (3.7)

Note that, by definition, we just require jumps of the càdàg function ξ to correspond to
instances (m, t) ∈ ω while ξ may ignore some (m, t) ∈ ω “on its way”. Hence, I ⊂ ζs,u(I) and

ζs,u(I) ⊂ ζ⌊s⌋,⌈u⌉(I) (s ≤ u, I ⊂ Λ), (3.8)

where ⌊ · ⌋ and ⌈ · ⌉ denote the floor and the ceiling of a real number, respectively. Recall that
SΛ
fin is countable. Hence, by (3.7) and (3.8), in order to show that

|supp(Xs,u(x))| (3.9)

is almost surely finite for all x ∈ SΛ
fin and s ≤ u, it suffices to show that

|ζs,u(supp(x))| (3.10)

is almost surely finite for fixed x ∈ SΛ
fin and s ≤ u with s, u ∈ Z. To do so we use a standard

generator computation. Let (∆n)n∈N be a sequence of finite subsets of Λ with ∆n ↗ Λ as
n → ∞. Let P(∆n) denote the power set of ∆n (n ∈ N). We define

ζns,u(I) :=
{
j ∈ Λ : (i, s)⇝n (j, u) for some i ∈ I

}
(n ∈ N, s ≤ u, I ⊂ ∆n), (3.11)

where (i, s)⇝n (j, u) is defined as (i, s)⇝ (j, u) above, but with the càdlàg function ξ being
required to map into ∆n instead of the whole Λ. We claim that (ζns,u(supp(x)))u≥s is a Markov
process with finite state space P(∆n) and generator Gn of the form

Gnf(I) :=
∑
m∈G

rm{f(mn(I))− f(I)} (n ∈ N, I ⊂ ∆n), (3.12)

where for all m ∈ G and n ∈ N we define mn : P(∆n) → P(∆n) by

mn(I) := I ∪
[
{j ∈ D(m) : ∃i ∈ I ∩R(m[j])} ∩∆n

]
(n ∈ N, I ⊂ ∆n). (3.13)
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Indeed, this follows from standard theory (compare [Swa22, Theorem 2.7]) and the fact that∑
m∈G:

mn(I )̸=I

rm ≤
∑
i∈∆n

∑
m∈G

rm
∑
j∈Λ

1D(m)(j)1R2(i, j) < ∞ (I ⊂ ∆n), (3.14)

which says that the total rate of Poisson events that can change the state of the process is
finite in any state I ∈ P(∆n). Choosing f to be the function computing the cardinality of a
set, i.e. f(I) := |I|, one has that

Gnf(I) ≤
∑
i∈I

∑
m∈G

rm
∑
j∈Λ

1D(m)(j)1R2(i, j) ≤ Kf(I) (n ∈ N, I ⊂ ∆n), (3.15)

where K < ∞ is the supremum in (1.10). Standard theory (compare the proof of [Swa22,
Lemma 4.21]) then implies that

E
[
|ζns,u(supp(x))|

]
≤ |supp(x)|eK(u−s) < ∞ (n ∈ N, u ∈ Z : u ≥ s). (3.16)

Letting n → ∞, using monotone convergence, it follows that |ζs,u(supp(x)))| is almost surely
finite.

Now we deal with the proof of Theorem 5. We split it into smaller pieces. We begin with
the following.

Lemma 23 (Avoiding the greatest element) Assume that every map m ∈ G is monotone
and satisfies (1.9), and that the rates satisfy (1.3). Then, almost surely,

Yu,s(Y ) ∈ H−(S
Λ) (u ≥ s, Y ∈ H−(S

Λ)). (3.17)

Proof. Let Y ∈ H−(S
Λ). Using (1.24), Corollary 22 and the definition of ψmon,

0 = ψmon(0, Y ) = ψmon

(
Xs,u(0), Y

)
= ψmon

(
0,Yu,s(Y )

)
, (3.18)

thus Yu,s(Y ) ̸= {0}, i.e. Yu,s(Y ) ∈ H−(S
Λ).

Next we replace the assumptions (1.9) and (1.10) in Theorem 5 by different ones that make
the proof easier.

Lemma 24 (Backward Feller process) Assume that every map m ∈ G is monotone, that
the rates satisfy (1.3) and ∑

m∈G:m(x)̸=x

rm < ∞ for all x ∈ SΛ
fin, (3.19)

and that (1.11) almost surely holds. Then the conclusions in Theorem 5 hold.

Proof. That the first assertion of Theorem 5 holds was shown in Lemma 23. Moreover,
by construction, the stochastic flow (Yu,s)u≥s has independent increments meaning that
Yt1,t0 ,Yt2,t1 , . . . ,Ytn,tn−1 are independent for all t0 < t1 < . . . < tn (n ∈ N) and Yu,s and
Yu+t,s+t (u ≥ s, t ∈ R) are identically distributed. These two facts imply that (Yt)t≥0 defined
by (1.20) is a Markov process with Markov semigroup (Qt)t≥0 (compare [Swa22, Proofs of
Theorem 4.20 and Proposition 2.7]).

Hence to conclude that (Yt)t≥0 is a Feller process it suffices to show that

(Y, t) 7→ Qt(Y, · ) is a continuous map from H−(S
Λ)× [0,∞) to M1(H−(S

Λ)). (3.20)
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Let ((Yn, tn))n∈N ⊂ H−(S
Λ)× [0,∞) such that (Yn, tn) → (Y, t) ∈ H−(S

Λ)× [0,∞) as n → ∞
(whereH−(S

Λ)×[0,∞) is equipped with the product topology). Since almost sure convergence
implies weak convergence in law it suffices to show that

Ytn,0(Yn) −→
n→∞

Yt,0(Y ) a.s. (3.21)

By Proposition 3 we have to show that

1(Ytn,0(Yn))↑(x) −→
n→∞

1(Yt,0(Y ))↑(x) a.s. (3.22)

for each x ∈ SΛ
fin. By (1.24) this is equivalent to

1
Y ↑
n

(
X0,tn(x)

)
−→
n→∞

1Y ↑
(
X0,t(x)

)
a.s. (3.23)

for each x ∈ SΛ
fin. Let

I(x) :=
{
u ∈ R : ∃(m,u) ∈ ω : m(x) ̸= x

}
. (3.24)

Then, due to (3.19), I(x) is a Poison point set on R with finite intensity. Let now

t− := sup{u ∈ I(x) : u ≤ t},
t+ := inf{u ∈ I(x) : u ≥ t}.

(3.25)

Since t is a deterministic time, t− < t < t+ a.s. Since X0,tn(x) = X0,t(x) for all n large enough
so that t− < tn < t+, (3.23) follows from Proposition 3 as X0,t(x) ∈ SΛ

fin a.s. by assumption.
Finally, we show that (Yt)t≥0 has (a.s.) càglàd sample paths. Fix u ∈ R. We show that

(Yt)t≥0 has (a.s.) càglàd sample paths by proving that (−∞, u] ∋ t 7→ Yu,t(Y ) ∈ H−(S
Λ) has

(a.s.) càdlàg sample paths for all Y ∈ H−(S
Λ). As indicated above, (3.19) implies that (a.s.)

Is1,s2(x) := I(x) ∩ (s1, s2] is finite for all s1 ≤ s2 and x ∈ SΛ
fin. (3.26)

For any Y ∈ H−(S
Λ) and t < u choose an arbitrary sequence (sn)n∈N ⊂ (t, u] with sn ↘ t.

We show that Yu,sn(Y ) → Yu,t(Y ) in H−(S
Λ) as n → ∞. Using Proposition 3 and the

definition of ψmon this is equivalent to showing that

ψmon

(
x,Yu,sn(Y )

)
−→
n→∞

ψmon

(
x,Yu,t(Y )

)
for all x ∈ SΛ

fin. (3.27)

By (1.24) this again is equivalent to showing

ψmon

(
Xsn,u(x), Y

)
−→
n→∞

ψmon

(
Xt,u(x), Y

)
for all x ∈ SΛ

fin. (3.28)

By (3.26) for all t ∈ R and x ∈ SΛ
fin there (a.s.) exists an ε > 0 such that It,t+ε(x) = ∅. Due to

(1.6) and (1.7), in this case Xsn,u(x) = Xt,u(x) for all sn ∈ (t, t+ ε] and (3.28) follows. Thus,
t 7→ Yu,t(Y ) is (a.s.) right-continuous.

For any Y ∈ H−(S
Λ) and t ≤ u choose an arbitrary sequence (sn)n∈N ⊂ (−∞, t) with

sn ↗ t. We show that Yu,sn(Y ) has a limit as n → ∞. With the arguments from above we
can equivalently show that ψmon(Xsn,u(x), Y ) has a limit as n → ∞. Again, due to (3.26),
for all t ∈ R and x ∈ SΛ

fin there (a.s.) exists ε > 0 such that It−ε,t(x) is either the empty set or
equal to {t}. But in the both cases there exists n0 ∈ N such that Xsn,u(x) = Xsn0 ,u

(x) for all
n ≥ n0. It follows that ψmon(Xsn,u(x), Y ) has a limit as n → ∞ and hence t 7→ Yu,t(Y ) has
(a.s.) left limits.
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Proof of Theorem 5. By Lemma 24 we are left to show that having (1.3), (1.9) and (1.10)
implies both (3.19) and that (1.11) almost surely holds. The second assertion is Lemma 1 so
we are left to prove the first one.

Let x ∈ SΛ
fin and m ∈ G. Assume that m(x) ̸= x. Then, either m changes a value on

supp(x), i.e. there exists j ∈ Λ such that j ∈ D(m) ∩ supp(x), or a value outside of supp(x),
i.e. there exists j ∈ Λ such that j ∈ D(m) ∩ supp(x)c. But in the latter case, due to the
assumption that m(0) = 0, there has to exist i ∈ R(m[j]) ∩ supp(x) (this was the first
observation in the proof of Lemma 1). In particular, (i, j) ∈ R2(m). Hence,∑

m∈G:m(x) ̸=x

rm ≤
∑

j∈supp(x)

∑
m∈G

rm1D(m)(j) +
∑

i∈supp(x)

∑
m∈G

rm
∑

j∈supp(x)c
1D(m)(j)1R2(i, j)

(3.29)

and the finiteness of supp(x) implies together with (1.3) that the first term of the right-hand
side above is finite while together with (1.10) it implies that the second term of the right-hand
side above is finite.

The proof above and the proof of Lemma 1 show that the conditions of Theorem 5 are
sufficient but indicate that they are not necessary. One particular interesting question is in
what sense one can weaken (1.9), i.e. the condition that every local map m ∈ G maps 0 to
itself. Without the condition (1.9) we lose Lemma 23 and hence have to chose the whole set
H(SΛ) as the state space of the dual process. Hence, if started in H−(S

Λ) the dual process
can jump into the trap {0}. In order for it to still be a Feller process we have to make sure
that the first entrance time of the trap {0} is almost surely positive. It is straightforward to
modify the proofs of Lemma 1 and Theorem 5 to show that having

sup
i∈Λ

∑
m∈G:

m(0)=0

rm
∑
j∈Λ

1D(m)(j)1R2(m)(i, j) < ∞ (3.30)

instead of (1.10) and ∑
j∈Λ

∑
m∈G:

m(0)̸=0

rm1D(m)(j) < ∞ (3.31)

instead of (1.9) suffices to conclude (3.19) and that (1.11) almost surely holds. Note, however,
that (3.31) implies that ∑

m∈G:
m(0)̸=0

rm < ∞, (3.32)

disallowing many natural and interesting cases. Indeed, it seems that the first entrance time
of {0} is a.s. zero in many cases where (3.31) is violated, e.g., for stochastic Ising models or
more generally for processes on infinite grids in which zero spins jump with a constant rate to
a nonzero value, independent of everything else.

3.2 Dual monotone maps

Before we prove Lemma 7 we state a small fact that will be used both in the proof of Lemma 7
and also at other points in the remainder of this paper. We say that F , a collection of function
from one space X to some other space Y, separates points if for x, x′ ∈ X with x ̸= x′ there
exists a f ∈ F such that f(x) ̸= f(x′).
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Lemma 25 (Separation of points) The collection F := {ψmon(x, · ) : x ∈ SΛ
fin} of functions

from H−(S
Λ) to R separates points.

Proof. Let Y1, Y2 ∈ H−(S
Λ) with Y1 ̸= Y2. Then, by Proposition 2, there exists an x ∈ Y ↑

1 △
Y ↑
2 . W.l.o.g. we assume x ∈ Y ↑

1 \Y
↑
2 and we choose y ∈ Y1 with y ≤ x. Then y /∈ Y ↑

2 as else

x ∈ Y ↑
2 , and y ∈ SΛ

fin as Y1 ⊂ SΛ
fin. Hence

ψmon(y, Y1) = 1
Y ↑
1
(y) ̸= 1

Y ↑
2
(y) = ψmon(y, Y2), (3.33)

yielding the claim.

We continue with the proof of Lemma 7.

Proof of Lemma 7. One has that

ψmon(m(x), Y ) = 1Y ↑(m(x)) = 1m−1(Y ↑)(x) (Y ∈ H(SΛ)). (3.34)

With the same argument as in the proof of Lemma 4 the set m−1(Y ↑) is increasing and open.
Hence, by Proposition 2, m−1(Y ↑)◦ ∈ H(SΛ) and

m−1(Y ↑) =
[
m−1(Y ↑)◦

]↑
(Y ∈ H(SΛ)). (3.35)

Thus, the map m̂, defined in (1.29), is dual to m.
To prove the uniqueness assume that also m̃ : H(SΛ) → H(SΛ) is dual to m : SΛ → SΛ

with respect to ψmon. Then

ψmon(x, m̃(Y )) = ψmon(m(x), Y ) = ψmon(x, m̂(Y )) (x ∈ SΛ, Y ∈ H(SΛ)) (3.36)

and Lemma 25 implies that m̃(Y ) = m̂(Y ) for all Y ∈ H(SΛ), i.e. m̃ = m̂.
The last assertion of the lemma follows analogously to the argument in (3.18).

Next we prove Proposition 8, the main justification for our study of dual maps.

Proof of Proposition 8. Recall that it was shown in the proof of Lemma 24 that having (1.3)
and (3.19) implies that, for fixed u ∈ R and Y ∈ H−(S

Λ), t 7→ Yu,t(Y ) is (a.s.) indeed a
càdlàg function from (−∞, u] to H−(S

Λ). Afterwards, in the proof of Theorem 5, we showed
that the assumptions of Theorem 5 imply (3.19).

Fix u ∈ R. We show that (−∞, u] ∋ t 7→ Yu,t(Y ) ∈ H−(S
Λ) (a.s.) solves (1.30). The

first part of (1.30) follows directly from the definition of Ys,s and the fact that Xs,s(y) = y
for all y ∈ SΛ (compare (1.5) and (1.6)). To show also the second part we introduce further
notation. As already mentioned in Section 1.2, due to (1.3) almost surely

∄ t ∈ R : |{m ∈ G : (m, t) ∈ ω}| ≥ 2. (3.37)

Hence, we can almost surely define random maps mω
t : SΛ → SΛ and m̂ω

t : H−(S
Λ) → H−(S

Λ)
for all t ∈ R as

mω
t :=

{
m if (m, t) ∈ ω,

id else,
and m̂ω

t :=

{
m̂ if (m, t) ∈ ω,

id else,
(3.38)

where id denotes in both cases the identity and m̂ is the dual map of m ∈ G from Lemma 7.
Using the newly introduced notation it follows from the arguments from the proof of Lemma 24
that, for any t ≤ u,

ψmon

(
x,Yu,s(Y )

)
= ψmon

(
Xs,u(x), Y

)
→ ψmon

(
Xt,u ◦mω

t (x), Y
)

as s ↗ t. (3.39)
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But, by (1.24) and (1.28),

ψmon

(
Xt,u ◦mω

t (x), Y
)
= ψmon

(
mω

t (x),Yu,t(Y )
)
= ψmon

(
x, m̂ω

t (Yu,t(Y ))
)

(3.40)

and we conclude from Proposition 3 and the definition of ψmon that Yu,s(Y ) → m̂ω
t (Yu,t(Y ))

in H−(S
Λ) as s ↑ t. As this is just another way of writing the second part of (1.30) we conclude

that (−∞, u] ∋ t 7→ Yu,t(Y ) ∈ H−(S
Λ) (a.s.) solves (1.30).

Finally, we prove the uniqueness of the solutions of (1.30). We will show that if (Yt)t≤u,
for fixed u ∈ R and Y ∈ H−(S

Λ), solves (1.30), then

ψmon(x, Ys) = ψmon(Xu, Y ) (s ≤ u, x ∈ SΛ
fin), (3.41)

where (Xt)t≥s solves (1.5) started at time s in state x. The uniqueness of the solutions of
(1.5) together with Lemma 25 then implies the uniqueness of the solutions of (1.30).

We use a strategy similar to the proof of [Swa22, Theorem 6.20]. We equip SΛ
fin ×H−(S

Λ)
with the product topology consisting of the discrete topology on SΛ

fin and of the topology
from Proposition 3 on H−(S

Λ). By Proposition 3 ψmon is then a continuous function from
SΛ
fin ×H−(S

Λ) to {0, 1}. Fix u ∈ R and Y ∈ H−(S
Λ) and assume that (Yt)t≤u solves (1.30).

Fix moreover s ≤ u and x ∈ SΛ
fin and assume that (Xt)t≥s solves (1.5). Then the fact that

(Yt)t≤u and (Xt)t≥s are càdlàg implies that

[s, u] ∋ t 7→ ψmon(Xt, Yt) ∈ {0, 1} (3.42)

is càdlàg as well. If (m, t) ∈ ω for some t ∈ (s, u], then the evolution equations and (1.28)
imply that

ψmon(Xt, Yt) = ψmon(m(Xt−), Yt) = ψmon(Xt−, m̂(Yt)) = ψmon(Xt−, Yt−). (3.43)

If there exists no m ∈ G such that (m, t) ∈ ω, then (3.43) holds trivially. The finiteness of
{0, 1} now implies that the function in (3.42) is constant. Plugging in t = u and t = s this
implies (3.41) and the proof is complete.

The final objective of this subsection is to prove Proposition 6. We first state a lemma with
an additional property of the dual map m̂ from (1.29). In fact, the result below was already
stated as part of [SS18, Lemma 29]. However, in [SS18] monotone dual maps are defined via
the dual of a partially ordered space (compare Section 1.5). For the readers’ convenience below
we present a reformulated proof that is adapted to the notation and definitions of the current
paper. For any A ⊂ SΛ, we set supp(A) :=

⋃
x∈A supp(x) and call supp(A) the support of A.

Lemma 26 (Support of the dual map) For each continuous monotone map m : SΛ → SΛ,
the map m̂ from (1.29) satisfies

supp(m̂(Y )) ⊂
⋃

i∈supp(Y )

R(m[i]) (Y ∈ H(SΛ)). (3.44)

Proof. Let Y ∈ H(SΛ). As

supp(m̂(y))= supp

([ ⋃
y∈y

m−1({y}↑)

]◦)
⊂ supp

(⋃
y∈y

m−1({y}↑)◦
)
=
⋃
y∈y

supp(m−1({y}↑)◦)

(3.45)

and supp(Y ) =
⋃

y∈Y supp(y), it suffices to show that

supp
(
m−1({y}↑)◦

)
⊂

⋃
i∈supp(y)

R(m[i]) (y ∈ SΛ
fin). (3.46)
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Hence, let y ∈ SΛ
fin and assume that k ∈ supp(m−1({y}↑)◦). By the definition of the support,

there then exists an x ∈ m−1({y}↑)◦ with x(k) ̸= 0. We define xk⇝0 ∈ SΛ via

xk⇝0(m) :=

{
0 if m = k,

x(m) else,
(m ∈ Λ). (3.47)

Then y ≰ m(xk⇝0) as otherwise the minimality of x ∈ m−1({y}↑) would be violated. Hence,
there exists an i ∈ Λ such that y(i) ≤ m(x)(i) but y(i) ≰ m(xk⇝0)(i). This shows that
m(x)(i) ̸= m(xk⇝0)(i) and hence k ∈ R(m[i]), and also that y(i) ̸= 0 so that i ∈ supp(y).
This establishes (3.46) and hence also (3.44).

Proof of Proposition 6. By Lemma 21 Xs,u is almost surely a continuous map for all s ≤ u.

Hence, by Lemma 7, the maps Xs,u possess (a.s.) dual maps that we denote by X̂s,u. Then

Lemma 26 (using also Lemma 19) implies that the maps X̂s,u (a.s.) map Hfin(S
Λ) into itself.

Finally, (1.24) and the uniqueness of the dual map in Lemma 7 imply that Yu,s = X̂s,u.
Fix u ∈ R, let Y0 be a random variable with values in Hfin(S

Λ) that is independent of ω,
and let (Yt)t≥0 be defined by (1.22). The fact that (Yt)t≥0 is a Markov process follows from
the fact that it is constructed from a stochastic flow with independent increments (compare
the proof of Lemma 24). It remains to show that (Yt)t≥0 has (a.s.) càglàd sample paths. As
Hfin(S

Λ) is equipped with the discrete topology, this amounts to showing that (−∞, u] ∋ t 7→
Yu,t(Y ) ∈ Hfin(S

Λ) is (a.s.) piecewise constant and right-continuous for all Y ∈ Hfin(S
Λ).

Generalizing the notation m[i] introduced in Subsection 3.1, for any finite set A ⊂ Λ and
map m : SΛ → SΛ, let m[A] denote the map from SΛ to SA defined by m(x)[A](i) := m(x)(i)
(i ∈ A). Recall (1.18). We observe that Xs,u(x) ∈ Y ↑ if and only if

∃y ∈ Y s.t. y(i) ≤ Xs,u(x)(i) ∀i ∈ supp(Y ). (3.48)

It follows from Lemma 20 that for fixed u ∈ R and i ∈ Λ, the function s 7→ ωs,u(i) is piecewise
constant and right-continuous and hence the same is true for s 7→ Xs,u[i]. As a consequence,
for any finite A ⊂ Λ, the map s 7→ Xs,u[i] is piecewise constant and right-continuous. Applying
this to A = supp(Y ), we see from (1.18) and (3.48) that t 7→ Yu,t(Y ) is piecewise constant
and right-continuous for all Y ∈ Hfin(S

Λ).

Before concluding this subsection we add a final small remark: Comparing with [SS18] the
reader might notice that the random maps {Yu,s}u≥s there are not defined as in (1.18), but
as limits of concatenations of finitely many dual maps of the maps appearing in the Poison
point set ω (compare [SS18, Equation (143) & Proposition 28]). However, based on the proof
above, it is not hard to see that we can prove a version of Proposition 8 with H−(S

Λ) replaced
by Hfin(S

Λ). The uniqueness in the modified version then implies that (a.s.) both approaches
yield the same random maps.

4 Upper invariant laws and survival

In this section we prove Proposition 11 and Theorem 12. To do so we prove that ν and µ can
be characterized by how they integrate the duality function ψmon in the following sense.

Proposition 27 (Characterizing ν) Assume that every map m ∈ G is monotone, the rates
satisfy (1.3), and that S has a greatest element ⊤. Then the upper invariant law ν of the
forward process is uniquely characterized by the relation∫

ψmon(x, Y ) dν(x) = P
[
Yt,0(Y ) ̸= ∅ ∀t ≥ 0

]
(Y ∈ Hfin(S

Λ)). (4.1)
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Proposition 28 (Characterizing µ) Assume that every map m ∈ G is monotone and
satisfies (1.9), and that the rates satisfy (1.3) and (1.10). Then the upper invariant law µ of
the dual process is uniquely characterized by the relation∫ n∏

k=1

ψmon(xk, Y ) dµ(Y ) = P
[
X0,t(xk) ̸= 0 ∀t ≥ 0, k = 1, . . . , n

]
(n ∈ N, x1, . . . , xn ∈ SΛ

fin).

(4.2)

The cornerstone to prove the two propositions above is next lemma. In order to state it
we introduce some notation. Throughout the rest of this subsection we denote, for a general
topological space X , by C(X ) the space of bounded continuous real functions defined on X .
We say that a collection of functions F ⊂ C(X ) is distribution determining if for probability
measures µ, ν on X ,∫

f(x) dµ(x) =

∫
f(x) dν(x) ∀f ∈ F implies µ = ν. (4.3)

We cite the following result [Swa22, Lemma 4.37].

Lemma 29 (Application of Stone-Weierstrass) Let E be a compact metrizable space. If
F ⊂ C(E) separates points and is closed under products, then F is distribution determining.

For the proof of Proposition 27 we moreover need the following lemma.

Lemma 30 (Clopen increasing subsets) Let Y ∈ H(SΛ). Then Y is finite if and only if
Y ↑ is closed.

Proof. Fist assume that Y ∈ H(SΛ) is finite, i.e. that there exist n ∈ N0 and y1, . . . , yn ∈ SΛ
fin

such that Y = {y1, . . . , yn}. Then

Y ↑ = {y1}↑ ∪ · · · ∪ {yn}↑ (4.4)

is closed as it is the union of finitely many closed sets (compare Lemma 17).
Conversely, assume that Y ↑ is closed, and hence clopen (i.e. also open) as Y ↑ ∈ I(SΛ) by

Proposition 2. This implies that 1Y ↑ : SΛ → {0, 1} is a continuous function. By Lemma 19
this implies that R(1Y ↑) from (3.1) is finite. We claim that

supp(Y ) ⊂ R(1Y ↑) (4.5)

implying the finiteness of Y . To see (4.5) let i ∈ supp(Y ). Then there exists y ∈ Y with
i ∈ supp(y). By the minimality of Y then yi⇝0 /∈ Y ↑, where yi⇝0, defined in (3.47), denotes the
configuration obtained from y by changing the i-th coordinate to 0. Hence 1Y ↑(y) ̸= 1Y ↑(yi⇝0)
and i ∈ R(1Y ↑) implying (4.5). This completes the proof.

Now we are ready to prove Proposition 27 and Proposition 28.

Proof of Proposition 27. We start by showing that

F :=
{
ψmon( · , Y ) : Y ∈ Hfin(S

Λ) \ {{0}}
}
⊂ C(SΛ) (4.6)

is closed under products. Note that F ⊂ C(SΛ) follows from Lemma 30. Let Y1, Y2 ∈ Hfin(S
Λ).

Noting that Y ↑
1 ∩ Y ↑

2 ∈ I(SΛ) and using Proposition 2 one has that

ψmon( · , Y1)ψmon( · , Y2) = 1
Y ↑
1
( · )1

Y ↑
2
( · ) = 1

Y ↑
1 ∩Y ↑

2
( · ) = ψmon( · , (Y ↑

1 ∩ Y ↑
2 )

◦). (4.7)
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By Lemma 30 (Y ↑
1 )

c and (Y ↑
1 )

c are open and

(Y ↑
1 ∩ Y ↑

2 )
c = (Y ↑

1 )
c ∪ (Y ↑

1 )
c (4.8)

is open as well. Hence, using Lemma 30 in the converse direction, (Y ↑
1 ∩ Y ↑

2 )
◦ is finite.7

Moreover, if Y1 ̸= {0} ̸= Y2, then clearly also (Y ↑
1 ∩ Y ↑

2 )
◦ ̸= {0}. Hence, F is closed under

products.
Next we show that F also separates points. Let x1, x2 ∈ SΛ and assume that x1 ̸= x2.

Then there has to exist an i ∈ Λ such that x1(i) ̸= x2(i). Then either x1(i) ≰ x2(i) or
x2(i) ≰ x1(i), so interchanging the roles of x1 and x2 if necessary, we can w.l.o.g. assume that
x1(i) ≰ x2(i). Now

ψmon

(
x2,
{
δ
x1(i)
i

})
̸= ψmon

(
x1,
{
δ
x1(i)
i

})
, (4.9)

showing that F separates points and hence F is distribution determining by Lemma 29.
Let Y ∈ Hfin(S

Λ). Since ∅ is a trap for the dual process we have that

P
[
Yt,0(Y ) ̸= ∅

]
↘ P

[
Ys,0(Y ) ̸= ∅ ∀s ≥ 0

]
as t → ∞. (4.10)

Using (1.24) we compute for t ≥ 0 that

E
[
ψmon(X0,t(⊤), Y )

]
= E

[
ψmon(⊤,Yt,0(Y ))

]
= P

[
Yt,0(Y ) ̸= ∅

]
. (4.11)

Together with (4.10) this implies (4.1). The fact that (4.1) uniquely characterizes ν follows
from the fact that F is distribution determining.

Proof of Proposition 28. The proof idea is the same as for Proposition 27. This time we want
to show that

F :=
{∏n

k=1
ψmon(xk, · ) : n ∈ N, x1, . . . , xn ∈ SΛ

fin

}
⊂ C(H(SΛ)) (4.12)

is distribution determining. Note that the continuity of the functions in F follows directly
from Proposition 3 and the definition of ψmon. The closedness of F under products follows
from its definition. The fact that F separates points follows from Lemma 25. Now Lemma 29
again implies that F is distribution determining. Let ε > 0. Since, by Corollary 22, the
random maps {Xs,u}s≤u (a.s.) map 0 to itself, we have that

P
[
X0,t(xk) ̸= 0 ∀k = 1, . . . , n

]
↘ P

[
X0,s(xk) ̸= 0 ∀s ≥ 0, k = 1, . . . , n

]
as t → ∞. (4.13)

By (1.24) for t ≥ 0 then

E
[∏n

k=1
ψmon(xk,Yt,0(Ysec))

]
= E

[∏n

k=1
ψmon(X0,t(xk), Ysec)

]
= P

[
X0,t(xk) ̸= 0 ∀k = 1, . . . , n

]
.

(4.14)

Together with (4.13) this implies (4.2). As in the previous proof, the fact that (4.2) uniquely
characterizes µ follows from the fact that F is distribution determining.

Using Proposition 27 the proof of Proposition 11 is now straightforward. The same holds
for the proof of Theorem 12 using Proposition 28.

7If S is a lattice, then one can check that (Y ↑
1 ∩Y ↑

2 )◦ = {y1∨y2 : y1 ∈ Y1, y2 ∈ Y2}◦, providing an alternative
proof that (Y ↑

1 ∩ Y ↑
2 )◦ is finite.
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Proof of Proposition 11. Let δ0 denote the Dirac measure on 0 ∈ SΛ. As∫
ψmon(x, Y ) dδ0(x) = 0 (Y ∈ Hfin(S

Λ) \ {{0}}) (4.15)

the fact that F from (4.6) is distribution determining implies that ν = δ0 if and only if∫
ψmon(x, Y ) dν(x) = 0 for all Y ∈ Hfin(S

Λ) \ {{0}}. By (4.1), the latter statement is
equivalent to survival of the dual process. Using the fact that ν is an extremal invariant
measure [Lig85, Theorem III.2.3], it is easy to see (see [Swa22, Lemma 5.10]) that if ν ̸= δ0,
then ν and δ0 are mutually singular. Together, these observations imply the statements of
Proposition 11.

Proof of Theorem 12. Let δ∅ denote the Dirac measure on ∅ ∈ H−(S
Λ). As∫ n∏

k=1

ψmon(xk, Y ) dδ∅(Y ) = 0 (x1, . . . , xn ∈ SΛ
fin) (4.16)

the fact that F from (4.12) is distribution determining implies that µ = δ∅ if and only if∫ ∏n
k=1ψmon(xk, Y ) dµ(Y ) = 0 for all x1, . . . , xn ∈ SΛ

fin. By (4.2), the latter statement is
equivalent to

P
[
X0,t(xk) ̸= 0 ∀t ≥ 0, k = 1, . . . , n

]
= 0 (n ∈ N, x1, . . . , xn ∈ SΛ

fin), (4.17)

which in turn is equivalent to

P
[
X0,t(x) ̸= 0 ∀t ≥ 0

]
= 0 (x ∈ SΛ

fin). (4.18)

The rest of the proof is now the same as the proof of Proposition 11, where one can argue
as in [Swa22, Lemma 5.8] to see that µ is an extremal invariant law and then as in [Swa22,
Lemma 5.10] to see that µ ̸= δ∅ implies that µ and δ∅ are mutually singular.

5 The additive special case

In this section we prove Proposition 13, Proposition 14, Proposition 15, and further study
Hpi(S

Λ) and ϕ from (1.49) for several examples of S. Without further preparation we prove
Proposition 13.

Proof of Proposition 13. It follows from [LS23a, Theorem 2.6] and its proof8 that the addi-
tivity of all maps m ∈ G together with (1.3) implies that there (a.s.) exists a stochastic flow
(Zu,s)u≥s, consisting of random maps from ŜΛ

fin to itself, satisfying (1.47). Hence, we are left
to show that having also (1.10) allows us to extend the stochastic flow (Zu,s)u≥s to the whole
of ŜΛ. By [SS18, Lemma 31], as G now consists of additive local maps, each m ∈ G has a
unique additive dual map with respect to ψadd that we denote by m̄. It is known (compare
[Swa22, Proposition 2.6] and its proof) that (Zu,s)u≥s can be extended to the whole of SΛ if
a version of (1.3) holds, where we replace all maps m ∈ G with their additive dual maps m̄,
i.e. if

sup
i∈Λ

∑
m∈G

rm1D(m̄)(i)
(
1 +

∑
j∈Λ

1R2(m̄)(j, i)
)
< ∞. (5.1)

8Note that [LS23a, Theorem 2.6] requires that S, seen as a monoid, is dual to Ŝ with a duality function
that is a “local version” of ψadd. These facts are implied by [LS23b, Lemma 13]. For the exact definitions see
the two cited papers.
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It follows from [LS23a, Lemma 2.4] that for any m ∈ G we can write

m(x)(j) =
∨

i∈Λ:(i,j)∈R2(m)

M j
i (x(i)) (j ∈ Λ, x ∈ SΛ), (5.2)

where M j
i : S → S (i, j ∈ Λ) are some additive maps. From [LS23a, Proposition 2.5] it then

follows that we have

m̄(ŷ)(i) =
∨

j∈Λ:(i,j)∈R2(m)

M̄ j
i (ŷ(j)) (i ∈ Λ, ŷ ∈ ŜΛ), (5.3)

where M̄ j
i : Ŝ → Ŝ (i, j ∈ Λ) are some additive maps. Hence, clearly (i, j) ∈ R2(m) if and

only if (j, i) ∈ R2(m̄). Moreover, we infer that

D(m̄)c = {i ∈ Λ : {j ∈ Λ : (i, j) ∈ R2(m)} = {i},M i
i = id} (5.4)

If follows that i ∈ D(m̄) implies that either

(i) there exists a j ̸= i such that (i, j) ∈ R2(m),

or

(ii) there exists no j ̸= i such that (i, j) ∈ R2(m), but M i
i ̸= id.

Let Λ1 denote the set of i ∈ Λ satisfying (i) and let Λ2 denote the set of i ∈ Λ satisfying (ii).
Note that in case (i) we have to have j ∈ D(m) and in case (ii) we have to have i ∈ D(m).
We compute that, for all i ∈ Λ,∑

m∈G
rm1D(m̄)(i)

(
1 +

∑
j∈Λ

1R2(m̄)(j, i)
)

≤
∑
m∈G

rm
[
1Λ1(i) + 1Λ2(i)

](
1 +

∑
j∈Λ

1R2(m)(i, j)
)

≤
∑
m∈G

rm1Λ1(i)
(
2 +

∑
j∈Λ\{i}

1R2(m)(i, j)
)
+
∑
m∈G

2rm1Λ2(i)

≤ 2
∑
m∈G

rm
∑
k∈Λ

1D(m)(k) +
∑
m∈G

rm
∑

j∈Λ\{i}

1D(m)(j)1R2(m)(i, j) + 2
∑
m∈G

rm1D(m)(i)

≤
∑
m∈G

rm
∑
j∈Λ

1D(m)(j)1R2(m)(i, j) + 4
∑
m∈G

rm1D(m)(i).

(5.5)

Using now (1.10) for the first term and (1.3) for the second term, we conclude (5.1). This
completes the proof.

We continue with the proof of Proposition 14.

Proof of Proposition 14. Let Ipi(SΛ) := {A ⊂ SΛ : Ac is a principal ideal} and note that
Ipi(SΛ) ⊂ I(SΛ) as for all y ∈ SΛ the set {y}↓ is closed by Lemma 17 and decreasing by
definition. It is obvious that the map ŷ 7→ ({y}↓)c is a bijection from ŜΛ to Ipi(SΛ) and it
follows from Proposition 2 that also ϕ : ŜΛ → Hpi(S

Λ) is a bijection.
To see that ϕ is monotone let ŷ1, ŷ2 ∈ ŜΛ with ŷ1 ≤ ŷ2. Then

y2 ≤ y1 in SΛ ⇒ {y2}↓ ⊂ {y1}↓ ⇒ ({y1}↓)c ⊂ ({y2}↓)c. (5.6)

But the last assertion above says by definition that ϕ(ŷ1) ≤ ϕ(ŷ2) in H(SΛ). Hence ϕ is
monotone.
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To prove the continuity of ϕ and ϕ−1 we argue as follows. Let y, y′ ∈ SΛ. Then, for all
x ∈ {y}↓ there exists an x′ ∈ {y′}↓ satisfying x(i) = x′(i) for all i ∈ Λ with y(i) = y′(i) which
implies d(x, x′) ≤ d(y, y′). Likewise, for all x′ ∈ {y′}↓ there exists an x ∈ {y}↓ such that
d(x, x′) ≤ d(y, y′). Hence

dH({y}↓, {y′}↓) ≤ d(y, y′) (y, y′ ∈ SΛ), (5.7)

implying the (Lipschitz) continuity of y 7→ {y}↓ and consequently also of ϕ. Here we use that
the maps

SΛ ∋ y 7→ ŷ ∈ ŜΛ and H−(S
Λ) ∋ Y 7→ (Y ↑)c ∈ K+(S

Λ) (5.8)

are, due to the definitions of the corresponding metrics, isometries. On the other hand,
d(y, y′) ≥ 1/3k implies that there exists i ∈ γ−1({1, . . . , k}) such that y(i) ̸= y′(i). Hence

{y}↓
γ−1({1,...,k}) ̸= {y′}↓

γ−1({1,...,k}), where, for A ⊂ SΛ and ∆ ⊂ Λ, A∆ := {a∆ : a ∈ A}
with a∆ being defined at the beginning of Section 1.2. It follows that there exists either an
x ∈ {y}↓ with d(x, {y′}↓) ≥ 1/3k or an x′ ∈ {y′}↓ with d(x′, {y}↓) ≥ 1/3k. It follows that
dH({y}↓, {y′}↓) ≥ 1/3k. From this one concludes the continuity of ϕ−1.

Finally, (1.50) follows directly from the definitions of ψadd and ϕ as

ψadd(x, ŷ) = 1({y}↓)c(x) = 1ϕ(ŷ)↑(x) = ψmon(x, ϕ(ŷ)) (x ∈ SΛ, ŷ ∈ ŜΛ), (5.9)

where we used Proposition 2 in the second equality.

Making use of (1.50) and the two dualities (the monotone and the additive one) the proof
of Proposition 15 is now straightforward.

Proof of Proposition 15. Let Y ∈ Hpi(S
Λ) and u ≤ s. Due to (1.3) and (1.10), Yu,s and Zu,s

are almost surely well-defined. One now computes that

ψmon

(
x,Yu,s(Y )

)
= ψmon

(
Xs,u(x), Y

)
= ψadd

(
Xs,u(x), ϕ

−1(Y )
)
= ψadd

(
x,Zu,s(ϕ

−1(Y ))
)

= ψmon

(
x, ϕ

(
Zu,s(ϕ

−1(Y ))
))

(5.10)

for all x ∈ SΛ. Here we used (1.24) in the first equality, (1.50) in the second and fourth
equality, and (1.47) in the third equality. By Lemma 25, (5.10) implies that

Yu,s(Y ) = ϕ
(
Zu,s(ϕ

−1(Y ))
)

(5.11)

and, using that ϕ is a bijection from ŜΛ to Hpi(S
Λ), we conclude that Yu,s(Y ) ∈ Hpi(S

Λ).

By now we have proved all results from Section 1.5. An unpleasant feature of Proposition 14
is that the definitions of the space Hpi(S

Λ) and the bijection ϕ are rather abstract. In the
remainder of this section, we show that in the special case that S is a distributive lattice, one
can give a much more concrete description of these objects.

Recall that a lattice S is distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (a, b, c ∈ S). (5.12)

For example, partially ordered sets of the form S = {0, . . . , N}n (equipped with the product
order) are distributive lattices (N,n ∈ N). We call an element9 a ∈ S (join-)irreducible if

a = b ∨ c implies b = a or c = a (b, c ∈ S). (5.13)

9Often one excludes 0 from the set of (join-)irreducible elements. However, for our purposes it is convenient
to include it.
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Let S be a finite lattice. We define Sir := {a ∈ S : a is irreducible} and SΛ
ir := {x ∈ SΛ :

x is irreducible}. It is easy to see that

SΛ
ir =

{
δai : i ∈ Λ, a ∈ Sir

}
. (5.14)

We define H1(S
Λ) := {Y ⊂ SΛ

ir : Y ◦ = Y }. The following result is the promised less abstract
characterization of Hpi(S

Λ) in case S is a distributive lattice.

Proposition 31 (Ideals on distributive lattices) Assume that S is a distributive lattice
and let Y ∈ H(SΛ). Then (Y ↑)c ⊂ SΛ is a principal ideal if and only if Y ∈ H1(S

Λ), i.e.
Hpi(S

Λ) = H1(S
Λ).

For the proof of Proposition 31 we need the following Lemma. Recall that an ideal of a
lattice S is a non-empty, decreasing subset I ⊂ S that is closed under taking the join.

Lemma 32 (Closed ideals) An ideal is closed in SΛ if and only if it is principal.

Proof. Let I ⊂ SΛ be an ideal. If I is a principal ideal, i.e. I = {y}↓ for some y ∈ SΛ, then I
is closed by Lemma 17.

Conversely, assume that I is closed. Recall that a net in I is an indexed collection of
elements (yα)α∈Γ of I whose index set Γ is equipped with a partial order ≤ such that for each
α, β ∈ Γ, there exists a γ ∈ Γ such that α, β ≤ γ. In particular, if we let yx := x denote the
identity map, then (yx)x∈I is a net in I. Since I is a closed subset of the compact space SΛ,
it is compact, which implies that each net in I has a convergent subnet. Let (yx)x∈I′ be a
convergent subnet of the net we have just described and let y be its limit. The definition of
a subnet means that for each x ∈ I there exists a x′ ∈ I ′ such that all I ′ ∋ x′′ ≥ x′ satisfy
x′′ ≥ x. Using this and the fact that the set {z ∈ I : z ≥ x} is closed we see that y ≥ x for all
x ∈ I. It follows that I = {y}↓, i.e., I is principal.

Proof of Proposition 31. Let Y /∈ H1(S
Λ). Then, by (5.14) there exists a y ∈ Y with either

two non-zero coordinates, i.e. there exist i, j ∈ Λ with i ̸= j and y(i) ̸= 0 ̸= y(j) or with
y(l) ∈ S \ Sir for some l ∈ Λ. In both cases the minimality of Y implies that (Y ↑)c cannot be
an ideal. More precisely, in the first case we have y = yi⇝0 ∨ yj⇝0 ∈ Y ↑, where, for k ∈ Λ,
yk⇝0 denotes the configuration obtained from y by changing the k-th coordinate to 0 defined
in (3.47), while the minimality of Y implies that yi⇝0, yj⇝0 /∈ Y ↑. In the second case we can
write y(l) = b∨ c with b ̸= y(l) ̸= c, change the value of y at l once to b and once to c and run
a similar argument as in the first case.

Let now Y ∈ H1(S
Λ). Then (Y ↑)c is non-empty and decreasing. Hence, if (Y ↑)c were not

a lattice we could find x1, x2 ∈ (Y ↑)c such that x1 ∨ x2 ∈ Y ↑, i.e. there would exist a y ∈ Y
with the property that y ≤ x1∨x2. As the distributivity of S implies the distributivity of SΛ,
we could conclude that

y = y ∧ (x1 ∨ x2) = (y ∧ x1) ∨ (y ∧ x2). (5.15)

As y is irreducible it would follow that either y∧x1 = y or y∧x2 = y. But the former implies
that that y ≤ x1 while the later implies y ≤ x2 contradicting that x1, x2 ∈ (Y ↑)c.

To close the subsection we compute the bijection ϕ from (1.49) explicitly for the important
example S = {0, . . . , N} (N ∈ N) equipped with the natural order 0 < 1 < · · · < N . We set
Ŝ = {0, . . . , N} with ŷ := N − y (defined pointwise). One has that

({y}↓)c =
{
x ∈ SΛ : ∃i ∈ Λ s.t. y(i) < x(i)

}
(y ∈ SΛ), (5.16)

and hence

ϕ(ŷ) =
{
δ
y(i)+1
i : i ∈ Λ s.t. y(i) ̸= N

}
=
{
δ
N+1−ŷ(i)
i : i ∈ supp(ŷ)

}
(ŷ ∈ ŜΛ). (5.17)

Compare also [Fox16, Example 1].
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