
Rigorous results for the Stigler-Luckock model

for the evolution of an order book

Jan M. Swart

Institute of Information Theory and Automation of the ASCR (UTIA)
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Abstract

In 1964, G.J. Stigler introduced a stochastic model for the evolution of an order book on a
stock market. This model was independently rediscovered and generalized by H. Luckock
in 2003. In his formulation, traders place buy and sell limit orders of unit size according
to independent Poisson processes with possibly different intensities. Newly arriving buy
(sell) orders are either immediately matched to the best available matching sell (buy)
order or stay in the order book until a matching order arrives. Assuming stationarity,
Luckock showed that the distribution functions of the best buy and sell order in the order
book solve a differential equation, from which he was able to calculate the position of
two prices J− < J+ such that buy orders below J− and sell orders above J+ stay in the
order book forever while all other orders are eventually matched. We extend Luckock’s
model by adding market orders, i.e., with a certain rate traders arrive at the market that
take the best available buy or sell offer in the order book, if there is one, and do nothing
otherwise. We give necessary and sufficient conditions for such an extended model to be
positive recurrent and show how these conditions are related to the prices J− and J+ of
Luckock.
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1 Introduction and results

1.1 Definition of the model

We will be interested in a stochastic model for traders interacting through an order book as
is commonly used on a stock market or commodity market. In the more theoretical economic
literature, the sort of trading system we are interested in is also known as the continuous
double auction. In our specific model of interest, traders arrive according to independent
Poisson processes and place either a buy or sell limit order for exactly one item of a certain
stock or commodity. If the order book already contains a suitable offer, then the new limit
order is immediately matched with the best available offer, i.e., a new buy limit order at a
price x is cancelled against an existing sell limit order at the lowest possible price x′ ≤ x, if
such a sell limit order exists, and vice versa for new sell limit orders. Orders that are not
immediately matched stay in the order book until they are matched with a new incoming order,
or, if such an order never comes, forever. This model, in discrete time and for a specific choice
of the parameters, was invented by Stigler [Sti64] and, in its full generality, independently by
Luckock [Luc03]; a special case of the model was again independently reinvented by Plačková
in her master thesis [Pla11]. We will generalize the model by also allowing market orders, i.e.,
with a certain rate a trader arrives that takes the best available limit buy (sell) order in the
order book, if such an order exists, and does nothing otherwise.

To formulate this model in more mathematical detail, let I = (I−, I+) ⊂ R a nonempty
open interval, modelling the possible prices of limit orders, and let I := [I−, I+] ⊂ [−∞,∞]
denote its closure. Let λ± : I → [0,∞) be functions such that:

(A1) λ− is nonincreasing and left-continuous, while λ+ is nondecreasing and right-continuous.

(A2) limx↓I− λ−(x) = λ−(I−) and limx↑I+ λ+(x) = λ+(I+).

We interpret λ−(x) and λ+(x) as the demand and supply functions, which describe how many
items per time unit traders are willing to buy or sell at the price level x. More precisely, let
µ± be finite measures on I such that

µ−
(
[x, I+]

)
= λ−(x) and µ+

(
[I−, x]

)
= λ+(x) (x ∈ I). (1.1)

Then the restriction of µ− (resp. µ+) to I will be the Poisson intensity at which traders
place buy (resp. sell) limit orders at a given price, while µ−({I+}) (resp. µ+({I−})) will
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be the Poisson intensity at which traders place buy (resp. sell) market orders. Note that
µ−({I−}) = 0 = µ+({I+}) by assumption (A2).

We let τk (k ≥ 1) denote the time when the k-th trader arrives at the market, we let
σk ∈ {−,+} be a random variable that indicates whether this trader wants to buy (−) or sell
(+), and we let Uk ∈ I denote the price associated with this trader, where Uk ∈ I for limit
orders and Uk = I± for market orders. Then

Π = {(Uk, σk, τk) : k = 1, 2, . . .} with 0 < τ1 < τ2 < · · · (1.2)

is a Poisson point process on I ×{−,+}× [0,∞) with intensity µ⊗ `, where ` is the Lebesgue
measure on [0,∞) and µ is the finite measure on I ×{−,+} given by µ

(
{σ}×A

)
= µσ(A) for

all σ ∈ {−,+} and measurable A ⊂ I. We let

|µ±| := µ±(I) and |µ| := µ
(
I × {−,+}

)
= |µ−|+ |µ+| (1.3)

denote the total masses of the measures µ± and µ. To avoid trivialities, we assume that
|µ| 6= 0. Our assumption that the point process Π in (1.2) is Poisson with intensity µ ⊗ `
implies that (τk− τk−1)k≥1 are i.i.d. exponentially distributed with mean 1/|µ|. Moreover, the
random variables (Uk, σk)k≥1 are i.i.d. with law µ := |µ|−1µ and independent of (τk)k≥1.

We represent the state of the order book at a time t ≥ 0 by a signed counting measure on
I, i.e., a measure of the form

X =
∑

x∈supp(X )

nxδx, (1.4)

where supp(X ) ⊂ I is a countable set, δx denotes the delta measure at x, and nx ∈ Z\{0}
is an integer that indicates how many buy (−) or sell (+) limit orders there are in the order
book at the price x. We let Sord denote the set of all signed measures of the form (1.4) such
that moreover

(i) there are no x, y ∈ I such that x < y, X ({x}) > 0, X ({y}) < 0.

(ii) the set {x ∈ I : X ({x}) < 0} is a locally finite subset of (I−, I+],
i.e., its only possible cluster point is I−.

(iii) the set {x ∈ I : X ({x}) > 0} is a locally finite subset of [I−, I+),
i.e., its only possible cluster point is I+.

(1.5)

For any X ∈ Sord, we let

M−(X ) := max
(
{I−} ∪ {x ∈ I : X ({x}) < 0}

)
,

M+(X ) := min
(
{I+} ∪ {x ∈ I : X ({x}) > 0}

)
,

(1.6)

which can be interpreted as the highest bid and lowest ask price in the order book.
The state of our Markov process changes only at the times τ1, τ2, . . . and we denote the

corresponding embedded Markov chain by

Xk := Xτk (k ≥ 0) with τ0 := 0. (1.7)

Our previous informal description of the model then translates into the following definition.
Given the initial state X0 ∈ Sord, we inductively define (Xk)k≥1 as

Xk := LUk,σk(Xk−1) (k ≥ 1), (1.8)
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Figure 1: Simulation of the “uniform” Stigler-Luckock model with I = (0, 1), λ−(x) = 1− x,
and λ+(x) = x. On the left: the state X250 of the order book after the arrival of 250 traders,
starting from the empty initial state. On the right: the distribution function x 7→ Xk([0, x])
of the random signed measure Xk after the arrival of k = 10, 000 traders.

where for each (u, σ) ∈ I × {−,+}, we define a “Luckock map” Lu,σ : Sord → Sord by

Lu,σ(X ) :=


X − δu∧M+(X ) if σ = −, u ∧M+(X ) ∈ I,
X + δu∨M−(X ) if σ = +, u ∨M−(X ) ∈ I,
X otherwise.

(1.9)

For example, if σ = +, then this says that a new sell limit order is added at the price u, unless
the current best buy offer M−(X ) is higher than u, in which case this offer is taken, which
amounts to adding a delta measure at M−(X ). The rules for market orders are the same,
except that these are not added to the order book if no suitable buy offer exists.

It is easy to see that (Xk)k≥0 is a Markov chain; in fact, using terminology from [LPW09],
we have just given a random mapping representation for it. We call the Markov chain in
(1.8) or, more or less equivalently, the corresponding continuous-time Markov process (Xt)t≥0

the Stigler-Luckock model with parameters λ±. In the special case that there are no market
orders, this is the model introduced in [Luc03]. The authors [Sti64, Pla11] considered only
the case that µ− = µ+ is the uniform distribution on a set of 10, resp. 100 prices. As we will
see, the introduction of market orders is natural also from a mathematical point of view and
helps us understand the model without market orders.

We will sometimes need the following stronger conditions on our demand and supply
functions.

(A3) λ− is nonincreasing, λ+ is nondecreasing, and both are continuous on I.

(A4) The function λ+ − λ− is strictly increasing on I.

(A5) The functions λ− and λ+ are > 0 on I.

(A6) The rates λ+(I−) and λ−(I+) of market orders are both > 0.

(A7) The rates λ+(I−) and λ−(I+) of market orders are both = 0.

In particular, (A3) implies (A1) and (A2). As shown in Appendix A.1, (A3) and (A4) are not
really a restriction, since every Stigler-Luckock model satisfying (A1) and (A2) can be obtained
as a function of a Stigler-Luckock model satisfying (A3) and, under mild extra assumptions,
also (A4). Condition (A5) also comes basically without loss of generality, since sell orders on
the right of the first point x where λ−(x) = 0 are trivially never matched, and similarly for
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buy orders at the other end of the interval. The conditions (A6) and (A7) are restrictive,
of course. Condition (A7) corresponds to the original model as introduced by Luckock. As
we will see in Section 1.4, to understand the behavior of such a model, it is often useful to
consider “restricted” models that are obtained by restricting the functions λ± to a subinterval
J with J ⊂ I. Under the condition (A5), such restricted models naturally satisfy (A6).

1.2 Luckcock’s differential equation

The following theorem is essentially proved in [Luc03], but for completeness we will provide a
proof in the present setting. Below, if f : I → R is a continuous function of bounded variation,
then we let df denote the signed measure on I such that df

(
(x, y]

)
:= f(x)−f(y). If g : I → R

is a bounded measurable function, then g df denotes the measure df weighted with g, i.e.,
g df

(
(x, y]

)
:=
∫ y
x g df . We call any pair (f−, f+) of continuous functions of bounded variation

such that (1.11) below holds a solution to Luckock’s equation.

Theorem 1 (Luckock’s differential equation) Consider a Stigler-Luckock model with
supply and demand functions λ± : I → [0,∞) satisfying (A3). Assume that the model has an
invariant law on Sord and let (Xk)k≥0 denote the corresponding stationary process. Then the
functions f± : I → R defined by

f−(x) := P
[
M−(Xk) ≤ x

]
and f+(x) := P

[
M+(Xk) ≥ x

]
(x ∈ I) (1.10)

are continuous and solve the equations

(i) f−dλ+ + λ−df+ = 0,

(ii) f+dλ− + λ+df−= 0,

(iii) f−(I+) = 1 = f+(I−).

(1.11)

We remark that although Theorem 1 shows that the equilibrium distributions of the best
buy and sell order in the order book can more or less be solved explicitly (depending on
our ability to solve (1.11)), this does not automatically mean that Stigler-Luckock models as
a whole are “solvable”. For example, we do not know how to explicitly calculate the joint
distribution of M−(X ) and M+(X ) (as opposed to its marginals). Also, it seems to be quite
hard to get information about the equilibrium distribution of seemingly simple functions of
the process like the number of sell (or buy) limit orders in a certain interval.

Theorem 1 motivates the study of solutions to Luckock’s equation (1.11).

Proposition 2 (Solutions to Luckock’s equation) Assume (A3) and (A6). Then Luck-
ock’s equation has a unique solution (f−, f+). One has

(i) f−(I−) ≥ 0 ⇔ Λ− :=
1

λ−(I−)λ−(I+)
−
∫ I+

I−

1

λ+
d
( 1

λ−

)
≥ 0,

(ii) f+(I+) ≥ 0 ⇔ Λ+ :=
1

λ+(I−)λ+(I+)
+

∫ I+

I−

1

λ−
d
( 1

λ+

)
≥ 0.

(1.12)

Both formulas also hold with the inequality signs reversed. The functions (f−, f+) also satisfy

λ+(I+)− f−(I−)λ+(I−) = λ−(I−)− f+(I+)λ−(I+). (1.13)

If the solution (f−, f+) to Luckock’s equation satisfies f−(I−) ∧ f+(I+) ≥ 0, then we call
such a solution valid. See Figure 3 for a plot of (f−, f+) for one particular model -in this
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particular example, (f−, f+) is not valid. By Theorem 1, a necessary condition for a Stigler-
Luckock model to have an invariant law is that the solution to Luckock’s equation is valid. We
conjecture that this condition is also sufficient, but stop short of proving this. (Note however
Theorem 3 below, which goes some way in this direction.)

If a Stigler-Luckock model has an invariant law, then the quantity in (1.13) can be in-
terpreted as the volume of trade, i.e., the expected number of orders (of either type) that
are matched per unit of time. Indeed, since the process has an invariant law, buy limit or-
ders, which arrive at rate λ+(I+) − λ+(I−), are all eventually matched, while 1 − f−(I−) =
P[M−(Xt) > I−] is the fraction of buy market orders that are matched, so

(
λ+(I+)−λ+(I−)

)
+(

1− f−(I−)
)
λ+(I−) is the total rate at which buy orders are matched, which equals the left-

hand side of (1.13). The right-hand side of (1.13) has a similar interpretation in terms of sell
orders.

1.3 Positive recurrence

Let (Xk)k≥0 be a Stigler-Luckock model with discrete time (i.e., the embedded Markov chain
from (1.7)), started in the empty initial state X0 = 0, and let τ denote its first return time to
0, i.e., τ := inf{k > 0 : Xk = 0}. We say that a Stigler-Luckock model is positive recurrent
if E[τ ] < ∞, transient if P[τ = ∞] > 0, and null recurrent in the remaining case. The
main result of the present paper is the following result, that gives a more or less complete
characterization of positive recurrent Stigler-Luckock models. Below and in what follows, we
let Sfin

ord denote the set of all finite configurations X ∈ Sord, i.e., those for which X− and X+

are finite measures.

Theorem 3 (Positive recurrence) Assume (A3) and (A6). Then a Stigler-Luckock model
is positive recurrent if and only if the unique solution (f−, f+) to Luckock’s equation satisfies
f−(I−)∧ f+(I+) > 0. If a Stigler-Luckock model is positive recurrent, then it has an invariant
law ν that is concentated on Sfin

ord. Moreover, the process started in any initial law that is
concentated on Sfin

ord satisfies ∥∥P[Xk ∈ · ]− ν
∥∥ −→
k→∞

0, (1.14)

where ‖ · ‖ denotes the total variation norm.

1.4 Restricted models

Assume that the demand and supply functions λ− and λ+ satisfy (A3) and (A5). Then, for
each interval J = (J−, J+) such that J = [J−, J+] ⊂ I, the restrictions of λ− and λ+ to
J satisfy (A6). We call the corresponding Stigler-Luckock model the restricted model on J .
By Proposition 2, Luckock’s equation has a unique solution for this restricted model, and
by Theorem 3 we can read off from this solution whether the restricted model is positive
recurrent. In the present section, for fixed I and λ±, we investigate the set of all subintervals
J ⊂ I for which the restricted model is positive recurrent.

We note that if (Xk)k≥0 is a Stigler-Luckock model on I and Xk

∣∣
J

denotes the restriction
of the random signed measure Xk to a subinterval J ⊂ I, then it is in general not true that
(Xk

∣∣
J
)k≥0 is a Markov chain. In particular, this is not the same as the restricted model on

J . Nevertheless, we will see that under suitable conditions, there exists a special subinterval
J ⊂ I (below, this is called the critical window) such that in the long run, we expect the
model on I to behave basically like the model restricted to J , with all buy limit orders on the
left of J and all sell limit orders on the right of J never being matched and as a result staying
in the order book forever.
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Figure 2: Restrictions of the uniform Stigler-Luckock model with I = (0, 1), λ−(x) = 1 − x,
and λ+(x) = x to a subinterval (J−, J+). The solution (f−, f+) to Luckock’s equation for
the restricted model satisfies f+(J+) > 0 in the vertically striped area and f−(J−) > 0 in
the horizontally striped area. The intersection of these areas corresponds to the set R of
subintervals on which the restricted model is positive recurrent. The intersection of the curves
J− = φ−(J+) and J+ = φ+(J−), indicated with a dot, corresponds to the critical window.

Assume (A3) and (A5) and for I− < J− < J+ < I+, let Λ−(J−, J+) and Λ+(J−, J+) denote
the expressions in (1.12), calculated for the process restricted to the subinterval J . For fixed
J− ∈ I resp. J+ ∈ I, we define

φ−(J+) := sup
{
J− ∈ (I−, J+) : Λ−(J−, J+) ≤ 0

}
,

φ+(J−) := inf
{
J+ ∈ (J−, I+) : Λ+(J−, J+) ≤ 0

}
,

(1.15)

with the conventions sup ∅ := I− and inf ∅ := I+. Let

R :=
{

(J−, J+) ∈ I × I : J− < J+ and the restricted model on J is positive recurrent
}
.

(1.16)
The following lemma says that the set R is bounded by the graphs of the functions φ±, as
well as (trivially) the line J− = J+.

Lemma 4 (Positive recurrence of restricted models) Assume (A3) and (A5). Then
φ−(J+) < J+ and J− < φ+(J−) for all J−, J+ ∈ I. Moreover, a point (J−, J+) ∈ I× I belongs
to the set R from (1.16) if and only φ−(J+) < J−, J+ < φ+(J−), and J− < J+.

In Figure 2 we have pictured the set R and the graphs of the functions φ± for the “uniform”
model with I = [0, 1], λ−(x) = 1− x, and λ+(x) = 1. For this model, one can check that the
solution of Luckock’s equation for the restricted model on J satisfies f−(J−) = 0 if and only
if J− = φ−(J+), and likewise one has f+(J+) = 0 if and only if (J−, J+) lies on the graph
{J+ = φ+(J−)}. The graphs of the functions φ± intersect in a unique point, which in the light
of (1.13) must satisfy λ−(J−) = λ+(J+).

These observations motivate the following definition. Assume (A3), (A4), (A5) and (A7)
and let J = (J−, J+) be a subinterval such that J ⊂ I. Then we say that J is a critical window
if it satisfies the following conditions.
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(i) The solution to Luckock’s equation restricted to J satisfies f−(J−) = 0 = f+(J+).

(ii) λ− < λ−(J−) on (J−, J+] and λ+ < λ+(J+) on [J−, J+).

We will see that such critical windows exist for a large class of models, and if they exist,
they are unique. It follows from (A3)–(A5) and (A7) that there exists a unique point xW ∈ I
such that

λ−(xW) = λ+(xW). (1.17)

Classical economic theory going back to Walras [Wal74] says that in an infinitely liquid market,
the equilibrium price is xW, which is why we call xW the Walrasian price. We call

VW := λ−(xW) = λ+(xW) = sup
x∈I

λ−(x) ∧ λ+(x) (1.18)

the Walrasian volume of trade. We also define

Vmax := λ−(I−) ∧ λ+(I+), (1.19)

which is a natural upper bound on the volume of trade that is possible in any trading system.
For any V ∈ [VW, Vmax], we define

j−(V ) = sup
{
x ∈ I : λ−(x) ≥ V

}
and j+(V ) = inf

{
x ∈ I : λ+(x) ≥ V

}
. (1.20)

We define a function Ψ : [VW, Vmax]→ [−∞,∞) by

Ψ(V ) :=
1

V 2
W

+

∫ V

VW

{ 1

λ+

(
j−(W )

) +
1

λ−
(
j+(W )

)}d
( 1

W

)
. (1.21)

Note that Ψ is nonincreasing since 1/W is a nonincreasing function. We will prove in Subsec-
tion 2.5 below that

Ψ(V ) = Λ−
(
j−(V ), j+(V )

)
= Λ+

(
j−(V ), j+(V )

)
(I− < j−(V ) ≤ j+(V ) < I+). (1.22)

We call the quantity
VL := sup

{
V ∈ [VW, Vmax] : Ψ(V ) ≥ 0

}
(1.23)

Luckock’s volume of trade.

Proposition 5 (Critical window) Assume (A3)–(A5) and (A7) and set J = (J−, J+) :=(
j−(VL), j−(VL)

)
. If the Stigler-Luckock model has a critical window, then it is J . Conversely,

if Ψ(VL) = 0 and J ⊂ I, then J is a critical window.

Since VL us usually much larger than VW, the Stigler-Luckock model is highly non-liquid.
As such, it is not a realistic model of a real market, though it may be a useful first step towards
building more realistic models. The special case where buy and sell limit orders are uniformly
distributed on the unit interval is of some special interest. Numerically, the constant VL from
Lemma 6 is given by VL ≈ 0.78218829428020.

Lemma 6 (Uniform model) The Stigler-Luckock model with I = [0, 1], λ−(x) = 1−x, and
λ+(x) = x has a critical window (J−, J+) which is given by 1−J− = J+ = VL, where VL = 1/z
with z the unique solution of the equation e−z − z + 1 = 0.
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1.5 Discussion and open problems

In simulations (see Figure 1), the uniform Stigler-Luckock model of Lemma 6 shows interesting
behavior. Starting from any finite initial state, it seems that

lim inf
k→∞

M−(Xk) = J− and lim sup
k→∞

M+(Xk) = J+ a.s., (1.24)

where J = (J−, J+) is the critical window. Moreover, it seems that if Xk

∣∣
J

denotes the

restriction of Xk to J , then the law of Xk

∣∣
J

converges as k → ∞ to a limit law that is
concentrated on Sord. It seems likely that this limit law is an invariant law for the restricted
model on J . Indeed, (1.24) says that in the long run, the price of the best buy offer never
drops below J− and the price of the best sell offer never climbs above J+, which allows us to
treat limit sell orders at prices below J− and limit buy orders above J+ as market orders.

Proving the conjectures mentioned above, such as (1.24), remains an open problem. The-
orems 1 and 3 allow us to conclude, however, that for each ε > 0, the restricted model on
(J−− ε, J+ + ε) does not have an invariant law while the restricted model on (J−+ ε, J+− ε)
is positive recurrent. Further motivation for the conjectures comes from the study of similar
models. In [Swa15], a “one-sided canyon model” is studied that is in many ways similar to
the Stigler-Luckock model except that there is only one type of points as opposed to the two
types (buy and sell orders) of a Stigler-Luckock model. This “one-sided” model also has a
critical window that can be calculated explicitly and in fact the analogues of the conjectures
above have all been proved for this model, mainly due to the hugely simplifying fact that for
this model, restricting the process to a smaller interval does again yield a Markov chain.

In this context, we also mention a model for email communication due to Gabrielli and
Caldarelli [CG09]. This model is even simpler than the previous one since not only is the
restriction of the process to a subinterval Markovian, but even just counting the number of
points in a subinterval already yields a Markov chain. For this model, it has been possible to
solve subtle questions about the behavior of the stationary process near the boundary of the
critical window [FS15].

The models mentioned so far belong to a wider class of models that also includes the Bak
Sneppen model [BS93] and its modified version from [MS12], as well as the branching Brownian
motions with strong selection treated in [Mai13]. All these models implement some version of
the rule “kill the lowest particle” and seem to exhibit self-organized criticality, although this
has been rigorously proved only for some of the models.

As mentioned before, the Stigler-Luckock model describes an extremely non-liquid market,
and (mainly) for that reason is not a realistic model for a real market, although it may
perhaps be used as a first step towards more realistic models. In recent years, there has been
considerable activity in the search for simple, yet realistic models for an order book. We refer
the reader to Chapter 4 of the book [Sla13] and also to [Mas00, Kru12, Smi12, SRR16], and
references therein, for a more complete view on this topic.

1.6 Methods

The results in Sections 1.2 and 1.4 are mainly a reworking of similar results already proved by
Luckock in [Luc03], although Proposition 5 is a significant improvement over [Luc03, Prop. 4].
Nevertheless, Luckock already derived the differential equation (1.11) and showed how it could
be used to calculate the critical window for a given model. Throughout his paper, however,
he takes stationarity as a model assumption, where in fact, “stationarity” for him means the
existence of two prices J− < J+ such that buy orders on the left of J− and sell orders on the
right of J+ are never matched while the process inside (J−, J−) is stationary in law.
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From a mathematical point of view, the existence of such a stationary process requires
proof. Moreover, one would like to prove that the process started in an arbitrary finite initial
state converges, in a suitable sense, to such a stationary state. For Luckock’s original model,
these problems remain open, but for positive recurrent processes with market orders, these
questions are resolved by Theorem 3, which is the most important contribution of the present
paper.

The proof of Theorem 3 is based on a Lyapunov function. Equip the space Sord with
the topology of vague convergence and the associated Borel σ-algebra. For any bounded
measurable function F : Sord → R, write

GF (X ) :=

∫ {
F
(
Lu,σ(X )

)
− F

(
X
)}
µ
(
d(u, σ)

)
, (1.25)

where Lu,σ is the Luckock map defined in (1.9) and µ is the measure defined below (1.2). Then
G is the generator of the continuous-time Markov process (Xt)t≥0.

It turns out that there is a useful and explicit formula for GF when F is a “linear” function
of the form

F (X ) :=

∫
I
w−(x)X−(dx) +

∫
I
w+(x)X+(dx)

(
X ∈ Sfin

ord

)
, (1.26)

where w± : I → R are bounded “weight” functions such that w− is left-continuous and w+ is
right-continuous. The values of w− and w+ in the boundary points I− and I+ are irrelevant
for (1.26), but for notational convenience, we define w−(I+) and w+(I−) by left, resp. right
continuity, and use the convention that

w−(I−) := 0 and w+(I+) := 0. (1.27)

With this convention, the following lemma describes the action of the generator on linear
functions of the form (1.26).

Lemma 7 (Generator on linear functionals) Assume (A3). Then, for functions of the
form (1.26), one has

GF (X ) = q−
(
M−(X )

)
+ q+

(
M+(X )

) (
X ∈ Sfin

ord

)
, (1.28)

where q± : I → R are given by

q−(x) :=

∫ I+

x
w+dλ+ − w−(x)λ+(x),

q+(x) :=−
∫ x

I−

w−dλ− − w+(x)λ−(x).
(1.29)

If w± are supported on a compact set K ⊂ I, then (1.28) holds more generally for X ∈ Sord.

Proof We observe that
∫ I+
M−(X )w+dλ+ is the rate at which F (X ) increases due to sell limit

orders being added to the order book while w−
(
M−(X )

)
λ+

(
M−(X )

)
is the rate at which

F (X ) decreases due to buy limit orders being removed from the order book. In view of our
convention (1.27), the latter term is zero when the order book contains no buy limit orders.
The two terms in q+(M+(X ))in have similar interpretations.

Formula (1.29) tells us how to calculate the functions q± from (1.28) from the weight
functions w±. It turns out that under the assumptions (A3) and (A6), one can uniquely solve
the following inverse problem: if q± are given up to an additive constant, then find w± such
that (1.29) holds. This is shown in Theorem 10 below and more specifically for indicator
functions of the form q− = 1[I−,z] and q+ = 1[z,I+] in the following theorem, that moreover
specifies the additive constant.
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Figure 3: The solution (f−, f+) to Luckock’s equation, as well as two examples of weight
functions (w−, w+) as in Theorem 8. In this example, I = (0.3, 0.9), λ−(x) = 1 − x, and

λ+(x) = x. The lower left picture shows the weight functions w
(−)
± = w

I−,−
± while the lower

right picture shows the weight functions wz,+± for z = 0.75.

Theorem 8 (Special weight functions) Assume (A3) and (A6). Then, for each z ∈ I,
there exist a unique pair of bounded weight functions (wz,−− , wz,−+ ) = (w−, w+) such that w−
is left-continuous and w+ is right-continuous, and the linear functional F z,− = F from (1.26)
satisfies

GF (X ) = 1{M−(X ) ≤ z} − f−(z)
(
X ∈ Sfin

ord

)
, (1.30)

where (f−, f+) is the unique solution to Luckock’s equation (1.11). Likewise, there exist a
unique pair of weight functions (wz,+− , wz,++ ) = (w−, w+) such that the linear functional F z,+ =
F from (1.26) satisfies

GF (X ) = 1{M+(X ) ≥ z} − f+(z)
(
X ∈ Sfin

ord

)
, (1.31)

Figure 3 shows plots of weight functions as in Theorem 8 together with the solution of
Luckock’s equation, for one explicit example of a Stigler-Luckock model. Theorem 8 is closely
related to Luckock’s result Theorem 1. Indeed, if a Stigler-Luckock model has an invariant law
that is concentrated on Sfin

ord, then the fact that the functions in (1.10) are given by the solution
to Luckock’s equation follows from Theorem 8 and the equilibrium equation E[GF (Xt)] = 0.

Theorem 8 is more powerful that Theorem 1, however, since it gives an interpretation to
the solution to Luckock’s equation even if such a solution is not valid. Also, we have fairly
explicit expressions for the weight functions (wz,±− , wz,±+ ) (see Lemma 15 below), and their
associated linear functions F z,± are useful also in a non-stationary setting. In particular,
we will prove Theorem 3 by constructing a Lyapunov function from the functions F I−,− and
F I+,+ (see formula (3.5) below).

11



We hope that the linear functions F z,± from Theorem 8 will also prove useful in future
work aimed at resolving the open problems mentioned in Section 1.5. In Appendix A.4, we
have recorded some concrete ideas on how the functions F z,± could possible be used to attack
the conjecture (1.24).

1.7 Outline

In Section 2, we investigate two differential equations: Luckock’s equation (1.11) and a differ-
ential equation that allows one to solve the weight functions w± in terms of the functions q±
from (1.29). In particular, we prove Theorem 8 in Subsection 2.3, Proposition 2 in Subsec-
tion 2.4, and Proposition 5 and Lemmas 4 and 6 in Subsection 2.5.

After the preparatory work on the differential equations in Section 2, the analysis of the
Markov chain, which is contained in Section 3, is actually quite short. In particular, we prove
Theorem 1 in Subsection 3.1 and Theorem 3 in Subsection 3.3.

The paper concludes with four appendices. In Appendix A.1, we show that the assumptions
(A3) and (A4) can basically be made without loss of generality. Appendix A.2 collects some
facts from the general theory of Markov chains needed to translate the properties of our
Lyapunov function into properties of the Markov chain. In Appendix A.3 we have collected
(without proof) some formulas for Stigler-Luckock models that take only finitely many values,
and that are analogues to our integral formulas for continuous models but cannot easily be
deduced from them. Appendix A.4 collects some concrete open problems with some ideas on
how to approach them.

2 Analysis of the differential equations

2.1 Lebesgue-Stieltjes integrals

For any interval J ⊂ [−∞,∞] that can be either closed, open, or half open, with left and
right boundaries J− < J+, we let B(J) denote the space of bounded measurable functions
f : J → R and we let Bbv(J) denote the space of functions f ∈ B(J) that are of bounded
variation. For each f ∈ Bbv(J) and x ∈ J , we define

f(x−) := lim
y↑x

f(y) (x 6= J−) and f(x+) := lim
y↓x

f(y) (x 6= J+), (2.1)

where the limits exist by the assumption that f is of bounded variation. If J− ∈ J , then we
set f(J−−) := f(J−), and we define f(J++) similarly. We let

B±bv(J) :=
{
f ∈ Bbv(J) : f(x±) = f(x) ∀x ∈ J

}
(2.2)

denote the spaces of left (−) and right (+) continuous functions f : J → R of bounded
variation. Each f ∈ Bbv(J) defines a finite signed measure df on J through the formula

df([x, y]) := f(y+)− f(x−) (x, y ∈ J, x ≤ y). (2.3)

The set of atoms of df is the set Df := {x ∈ J : f(x−) 6= f(x+)} of points of discontinuity
of f . For each finite signed measure ρ on J we can find functions f ∈ B−bv(J) and g ∈ B+

bv(J)
such that df = ρ = dg, and these functions are unique up to an additive constant. We
equip B±bv(J) with a topology such that fn → f if and only if dfn converges weakly to df
and fn(x) → f(x) for at least one (and hence every) point x ∈ J\Df . It is known [Hoe77,

12



page 182] that if J is a closed interval, then fn → f in this topology if and only if:

(i) sup
n
‖dfn‖ <∞, where ‖ · ‖ denotes the total variation norm,

(ii) dfn(J)→ df(J),

(iii)

∫
J

∣∣fn(x)− f(x)
∣∣dx→ 0, i.e., fn → f in L1 norm w.r.t. to the Lebesgue measure.

(2.4)
In line with earlier notation, we write g df to denote the measure df weighted with a

bounded measurable function g. We will make use of the product rule which says that

d(fg) = f dg + g df
(
f, g ∈ Bbv(J), Df ∩ Dg = ∅

)
, (2.5)

and also of the chain rule which tells us that if f ∈ Bbv(J) takes values in a compact interval
K and F : K → R is continuously differentiable, then

d(F ◦ f) = (F ′ ◦ f) df
(
f ∈ Bbv(J), Df = ∅

)
, (2.6)

where (F ◦ f)(x) := F (f(x)) denotes the composition of F and f . All our integrals will be of
Lebesgue type, which coincides with the Riemann-Stieltjes integral if both functions involved
are of bounded variation and do not share points of discontinuity.

If g : [a, b] → [−∞,∞] is a function of bounded variation and ψ : [a, b] → [−∞,∞] is
nondecreasing, then we write dg � dψ if dg is absolutely continuous with respect to ψ, i.e., if
for each s ≤ t, ψ(s−) = ψ(t+) implies g(s−) = g(t+). We will sometimes use the substitution
of variables rule, which says that∫ b

a
f dg =

∫ ψ(b)

ψ(a)
(f ◦ ψ−1) d(g ◦ ψ−1)

(
f ∈ B[a, b], g ∈ Bbv[a, b]), (2.7)

and which holds provided ψ : [a, b]→ [−∞,∞] is a nondecreasing function such that dg � dψ,
and ψ−1 : [ψ(a), ψ(b)]→ [a, b] is a right inverse of ψ.

As a general reference to these rules, we refer to [CB00, Section 6.2]. In the substitution
of variables rule, the condition dg � dψ guarantees that f ◦ ψ−1 ◦ ψ differs from f only on a
set of measure zero under dg.

We will need one more result that we formulate as a lemma. The result holds in any
dimension but since we only need the two-dimensional case, for ease of notation, we restrict
to two dimensions.

Lemma 9 (Integrals along curves) Let D ⊂ R2 be a closed, convex set that is the closure
of its interior. Let F, g1, g2, f1, f2 be continuous real functions on D such that f1 and f2

are moreover Lipschitz. Assume that for all x1, x
′
1, x2, x

′
2 such that x1 ≤ x′1, x2 ≤ x′2, and

(x1, x2), (x′1, x2), (x1, x
′
2) ∈ D,

F (x′1, x2)− F (x1, x2) =

∫ x′1

x1

g1( · , x2) df1( · , x2)

F (x1, x
′
2)− F (x1, x2) =

∫ x′2

x2

g2(x1, · ) df2(x1, · ).
(2.8)

Let [t−, t+] be a closed interval and let γ : [t−, t+] → D be a continuous function of bounded
variation. Then

F
(
γ(t+)

)
− F

(
γ(t−)

)
=

∫ t+

t−

{
(g1 ◦ γ) d(f1 ◦ γ) + (g2 ◦ γ) d(f2 ◦ γ)

}
. (2.9)
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Proof (sketch) Formula (2.8) shows that (2.9) holds for any continuous function [t−, t+] 7→(
γ1(t), γ2(t)

)
∈ D of bounded variation such that moreover either γ1 or γ2 is constant. It

follows that (2.9) also holds for any finite concatination of such curves; call such curves simple.
Then it is not hard to see that any γ : [t−, t+]→ D that is continuous and of bounded variation

can be approximated by simple curves γ(n) in such a way that γ(n)(t−) → γ(t−) and dγ
(n)
i

converges weakly to dγi for i = 1, 2. In particular, this implies that γ(n) converges uniformly
to γ so by the continuity of gi (i = 1, 2), also gi ◦ γ(n) converges uniformly to gi ◦ γ. In view
of (2.4), the Lipschitz continuity of fi (i = 1, 2) moreover implies that d(fi ◦ γ(n)) converges
weakly to d(fi ◦ γ). Using this and the continuity of F , taking the limit in (2.8), which holds
for γ(n), we obtain that the formula also holds for γ.

2.2 The inverse problem

The main result of the present subsection is the following theorem.

Theorem 10 (Inverse problem) Assume (A3) and (A6). Then, for each pair of func-

tions (g−, g+) with g± ∈ B±bv(I), there exists a unique pair of functions (w
(g−,g+)
− , w

(g−,g+)
+ ) =

(w−, w+) with w± ∈ B±bv(I) and w±(I±) = 0, as well as a unique constant c(g−, g+) ∈ R, such
that the linear functional F (g−,g+) = F from (1.26) satisfies

GF (g−,g+)(X ) = g−
(
M−(X )

)
+ g+

(
M+(X )

)
− c(g−, g+). (2.10)

The proof of Theorem 10 will be split into a number of lemmas.

Lemma 11 (Differential equation) Assume (A3) and (A6), let g± ∈ B±bv(I), and let
w± ∈ B±bv(I) satisfy w±(I±) = 0. Then the linear function F (w−,w+) associated with (w−, w+)
satisfies (2.10) for some c(g−, g+) ∈ R if and only if

(i) w+dλ+ + d(λ+w−) =−dg−,

(ii) w−dλ− + d(λ−w+) =−dg+.
(2.11)

Proof Defining functions q± as in (1.29), Lemma 7 tells us that (2.10) is satisfied for some
c(g−, g+) ∈ R if and only if there exist real constants c± such that q± = g±+c±, or equivalently,
if there exist c′± ∈ R such that

g−(x) = c′− +

∫
[x,I+)

{
w+dλ+ + d(w−λ+)

} (
x ∈ [I−, I+)

)
,

g+(x) = c′+ −
∫

(I−,x]

{
w−dλ− + d(w+λ−)

} (
x ∈ (I−, I+]

)
,

(2.12)

which is equivalent to (2.11).

We can integrate the differential equation (2.11) explicitly. Let h± ∈ B±bv(I) be any pair
of functions such that

dh± = −λ±dg±, (2.13)

i.e., h−(x) = c− +
∫

[x,I+) λ−dg− and similarly for h+, where c± are some fixed, but otherwise
arbitrary constants.
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Lemma 12 (Integrated equation) Assume (A3) and (A6), let g± ∈ B±bv(I) be given and
let h± ∈ B±bv(I) be as in (2.13). Then a pair of functions w± ∈ B±bv(I) satisfies (2.11) if and
only if there exists a constant κ ∈ R such that

(i) dw−=
κ+ h+

λ−
d
( 1

λ+

)
+

1

λ−
d
(h−
λ+

)
,

(ii) dw+ =
κ+ h−
λ+

d
( 1

λ−

)
+

1

λ+
d
(h+

λ−

)
,

(iii) w− + w+ =
κ+ h− + h+

λ−λ+
.

(2.14)

Moreover, given (2.14) (iii), the equations (2.14) (i) and (ii) imply each other.

Proof Multiplying the equations (2.11) (i) and (ii) by λ− and λ+, respectively, and then
adding both equations, using the product rule (2.5) and (2.13), we obtain

d
(
λ−(λ+w−)

)
+ d
(
λ+(λ−w+)

)
= dh− + dh+, (2.15)

which shows that there exists a constant κ ∈ R such that (2.14) (iii) holds. Given (2.14) (iii),
we can rewrite (2.11) (i) as

d(λ+w−) = −w+dλ+ +
dh−
λ−

=
(
w− −

κ+ h− + h+

λ−λ+

)
dλ+ +

dh−
λ−

. (2.16)

Dividing by λ+ and reordering terms, this says that

d(λ+w−)− w−dλ+

λ+
= −(κ+ h− + h+) dλ+

λ−λ2
+

+
dh−
λ−λ+

, (2.17)

which using the product and chain rules (2.5)–(2.6) can be rewritten as (2.14) (i). In a
similar way, we see that given (2.14) (iii), (1.11) (ii) is equivalent to (2.14) (ii). Differentiating
(2.14) (iii), using the product rule, we obtain

dw− + dw+

=
κ

λ−
d
( 1

λ+

)
+

κ

λ+
d
( 1

λ−

)
+

1

λ−
d
(h−
λ+

)
+
h−
λ+

d
( 1

λ−

)
+
h+

λ−
d
( 1

λ+

)
+

1

λ+
d
(h+

λ−

)
,

(2.18)
which is the same as we would obtain adding the equations (2.14) (i) and (2.14) (ii). We
conclude that (2.14) (i) and (ii) are equivalent given (iii).

For later use, assuming (A3) and (A6), we define a constant Γ by

Γ :=
1

λ−(I+)λ+(I+)
−
∫ I+

I−

1

λ−
d
( 1

λ+

)
=

1

λ−(I−)λ+(I−)
+

∫ I+

I−

1

λ+
d
( 1

λ−

)
, (2.19)

where the equality of both formulas follows from the product rule (2.5) applied to the functions
1/λ− and 1/λ+. Note that Γ > 0 since d(1/λ−) is nonnegative while λ± are strictly positive
by (A6).

Lemma 13 (Existence and uniqueness) Assume (A3) and (A6). Then, for each pair of
functions g± ∈ B±bv(I), there exist unique functions w± ∈ B±bv(I) that solve the differential
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equation (2.11) together with the boundary conditions w±(I±) = 0. These functions are given
by

(i) w−(x) =

∫
[I−,x)

{κ+ h+

λ−
d
( 1

λ+

)
+

1

λ−
d
(h−
λ+

)}
,

(ii) w+(x) =−
∫

(x,I+]

{κ+ h−
λ+

d
( 1

λ−

)
+

1

λ+
d
(h+

λ−

)}
,

(2.20)

where h± are as in (2.13) and

κ = κ(h−, h+) := Γ−1
[ ∫

I

{h+

λ−
d
( 1

λ+

)
+

1

λ−
d
(h−
λ+

)}
− h−(I+) + h+(I+)

λ−(I+)λ+(I+)

]
, (2.21)

with Γ > 0 the constant from (2.19).

Proof By Lemma 12, w± solve the difference equation (2.11) together with the left boundary
condition w−(I−) = 0 if and only if there exists a κ ∈ R such that (2.20) (i) and (2.14) (iii)
hold. In view of the latter equation, w± also solves the right boundary condition w+(I+) = 0
if and only if

w−(I+) + 0 =
κ+ h− + h+

λ−λ+
(I+). (2.22)

In view of (2.20) (i), this says that∫
[I−,I+)

{κ+ h+

λ−
d
( 1

λ+

)
+

1

λ−
d
(h−
λ+

)}
=
κ+ h−(I+) + h+(I+)

λ−(I+)λ+(I+)
, (2.23)

or equivalently (note that since h− is left-continuous, it has no jump at I+)∫
[I−,I+]

{h+

λ−
d
( 1

λ+

)
+

1

λ−
d
(h−
λ+

)}
− h−(I+) + h+(I+)

λ−(I+)λ+(I+)

= κ
{ 1

λ−(I+)λ+(I+)
−
∫ I+

I−

1

λ−
d
( 1

λ+

)}
,

(2.24)

which by the fact that the constant Γ from (2.19) is nonzero is equivalent to (2.21).

Proof of Theorem 10 Immediate from Lemmas 11 and 13.

2.3 Luckock’s equation

In the present subsection we prove Theorem 8. We start by proving that Luckock’s equation
has a unique solution. By definition, a solution to Luckcock’s equation is a pair functions
(f−, f+) such that f± ∈ B∓bv(I) and (1.11) holds.

Lemma 14 (Luckock’s equation) Assume (A3) and (A6). Then Luckock’s equation has a
unique solution (f−, f+), which is given by

(i)
( f+

λ+

)
(x) =

1

λ+(I−)
+ κ

∫ x

I−

1

λ−
d
( 1

λ+

)
,

(ii)
( f−
λ−

)
(x) =

1

λ−(I+)
− κ

∫ I+

x

1

λ+
d
( 1

λ−

)
,

(2.25)

where κ is given by

κ = κL := Γ−1
( 1

λ−(I+)
+

1

λ+(I−)

)
, (2.26)

and Γ > 0 is the constant from (2.19).
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Proof Setting v+ := f−/λ− and v− := f+/λ+ and dividing the equations (1.11) (i) and (ii)
by λ− and λ+, respectively, we see that these equations are equivalent to v±dλ± = −d(λ±v∓),
which is equation (2.11) with w± = v± and g± = 0. Now Lemma 12 tells us that (f−, f+)
solves (1.11) (i) and (ii) if and only if there exists a constant κ ∈ R such that

(i) d
( f+

λ+

)
=

κ

λ−
d
( 1

λ+

)
,

(ii) d
( f−
λ−

)
=

κ

λ+
d
( 1

λ−

)
,

(iii)
f+

λ+
+
f−
λ−

=
κ

λ−λ+
.

(2.27)

Moreover, of these equations, the first two are equivalent given the third one.
It follows that (f−, f+) solves (1.11) (i) and (ii) together with the left boundary condition

f+(I−) = 1 if and only if (2.25) (i) and (2.27) (iii) hold. In view of the latter equation, the
right boundary condition f−(I+) = 1 is satisfied if and only if

f+

λ+
(I+) +

1

λ−(I+)
=

κ

λ−λ+
(I+). (2.28)

By (2.25) (i), this says that

1

λ+(I−)
+ κ

∫ I+

I−

1

λ−
d
( 1

λ+

)
+

1

λ−(I+)
=

κ

λ−(I+)λ+(I+)
, (2.29)

which is equivalent to (2.26).

Proof of Theorem 8 Let G be the space of all pairs (g−, g+) with g± ∈ B±bv(I) and set
W := {(w−, w+) ∈ G : w±(I±) = 0}. We equip the spaces B±bv(I) with a topology as in
Section 2.1, G with the product topology, and W with the induced topology. For any interval
J , we let M(J) denote the space of finite signed measures on J , equipped with the topology
of weak convergence, and we let R := M[I−, I+) ×M(I−, I+], equipped with the product
topology.

Let ψ : W → G be the linear function that maps a pair (w−, w+) ∈ W into the pair
(q−, q+) ∈ G defined in (1.29) and let D : G → R be the map

D(g−, g+) :=
(
dg−,dg+). (2.30)

Setting φ := D ◦ ψ, we see that

φ(w−, w+) = −
(
w+dλ+ + d(λ+w−), w−dλ− + d(λ−w+)

)
, (2.31)

so Lemma 13 tells us that φ :W → R is a bijection.
We claim that the maps ψ, D, φ, and φ−1 are continuous with respect to the topologies

on W, G, and R. The continuity of D is immediate from the definition of the topologies on
G and R and the continuity of ψ follows from (1.29). The continuity of φ is easily derived
from (2.31), while the continuity of φ−1 follows from the explicit formulas in Lemma 13 and
the continuity of the functions h± from (2.13) as a function of g±, for a given choice of the
boundary conditions.

Let ψ(W) denote the image of W under ψ and define π : G → ψ(W) by π := ψ ◦ φ−1 ◦D.
Since π ◦ ψ = ψ ◦ φ−1 ◦ (D ◦ ψ) = ψ, we see that π is the identity on ψ(W). Since D ◦ π =
(D ◦ψ)◦φ−1 ◦D = D, we see that π(g) = π(g′) if and only if D(g) = D(g′). These facts imply
that for each g ∈ G, there exists a unique q ∈ ψ(W), namely q = π(g), such that D(g) = D(q),
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i.e., for every g ∈ G there exists a unique q ∈ ψ(W) and unique constants c±(g−, g+) ∈ R such
that

(g−, g+) =
(
q− + c−(g−, g+), q+ + c+(g−, g+)

)
. (2.32)

Since ψ, φ−1 and D are continuous, so is π and hence also the maps c± : G → R are continuous.
In fact, they are the unique continuous linear forms on G such that

(i) c−(1, 0) = 1, c−(0, 1) = 0, c−
(
ψ(w−, w+)

)
= 0 ∀(w−, w+) ∈ W,

(ii) c+(1, 0) = 0, c+(0, 1) = 1, c+

(
ψ(w−, w+)

)
= 0 ∀(w−, w+) ∈ W.

(2.33)

The map (g−, g+) 7→ c(g−, g+) from Theorem 10 is given by c = c− + c+, i.e., c is the unique
continuous linear form on G such that

c(1, 0) = 1, c(0, 1) = 1, c
(
ψ(w−, w+)

)
= 0 ∀(w−, w+) ∈ W. (2.34)

Let (f−, f+) be the unique solution to Luckock’s equation, and observe from (2.25) that f±
are continuous on I. We claim that

c(g−, g+) = g−(I+)f−(I+)−
∫
I
f−dg− + g+(I−)f+(I−) +

∫
I
f+dg+. (2.35)

Clearly, (2.35) defines a continuous linear form on G. We will show that this linear form
satisfies (2.34). The boundary conditions (1.11) (iii) imply that c(1, 0) = 1 = c(0, 1). Recall
that for (w−, w+) ∈ W, ψ(w−, w+) = (q−, q+) is defined as in (1.29). Then

c
(
ψ(w−, w+)

)
=−(w−λ+)(I+)f−(I+) +

∫
I
f−
{
w+dλ+ + d(w−λ+)

}
−(w+λ−)(I−)f+(I−)−

∫
I
f+

{
w−dλ− + d(w+λ−)

}
.

(2.36)

By partial integration, using the continuity of f± and λ±, as well as the boundary condition
w−(I−) = 0, we have

− (w−λ+)(I+)f−(I+) +

∫
I
f−d(w−λ+) = −

∫
I
(w−λ+)df−, (2.37)

Inserting this into the first line of (2.36) and treating the second line similarly, we find that

c
(
ψ(w−, w+)

)
=

∫
I

{
f−w+dλ+ − (w−λ+)df−

}
+

∫
I

{
− f+w−dλ− + (w+λ−)df+

}
=

∫
I
w+

{
f−dλ+ + λ−df+

}
−
∫
I
w−
{
f+dλ− + λ+df−

}
= 0,

(2.38)

where we have used (1.11) (i) and (ii) in the last step. This completes the proof of (2.35).
In particular, formula (2.35) shows that

c(1[I−,z], 0) = f−(z) and c(0, 1[z,I+]) = f+(z) (z ∈ I), (2.39)

which together with Theorem 10 implies Theorem 8.
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2.4 Some explicit formulas and conditions

In the present section, we prove Proposition 2 as well as two lemmas (Lemmas 15 and 16
below) giving explicit formulas for the weight functions of Theorem 8.

Proof of Proposition 2 The fact that Luckock’s equation has a unique solution under the
conditions (A3) and (A6) has already been proved in Lemma 14.

In order to prove (1.12), it suffices to prove part (i); the other part then follows by sym-

metry. Let Λ+− :=
∫ I+
I−

1
λ+

d
(

1
λ−

)
. Then (2.25) (ii) says that

f−(I−) = λ−(I−)
{ 1

λ−(I+)
− κLΛ+−

}
. (2.40)

Filling in the definition of κL in (2.26), we see that f−(I−) > 0 if and only if

1

λ−(I+)
> Γ−1

( 1

λ−(I+)
+

1

λ+(I−)

)
Λ+−. (2.41)

Using also formula (2.19) and the fact that Γ > 0, this can be rewritten as( 1

λ−(I−)λ+(I−)
+ Λ+−

) 1

λ−(I+)
>
( 1

λ−(I+)
+

1

λ+(I−)

)
Λ+−, (2.42)

which can be simplified to (1.12) (i). The same argument also works with all inequality signs
reversed.

To complete the proof, we need to show (1.13). Consider the weight functions

w− := −1(I−,I+] and w+ := 1[I−,I+), (2.43)

which correspond through (1.26) to the linear function F (X ) = X (I). For these weight
functions, the functions q± from (1.29) are given by

q−(x) =λ+(I+)− λ+(I−)1{I−}(x),

q+(x) =−λ−(I−) + λ−(I+)1{I+}(x),
(2.44)

so Lemma 7 tells us that

GF (X ) = −λ+(I−)1{M−(X )=I−} + λ−(I+)1{M+(X )=I+} + λ+(I+)− λ−(I−). (2.45)

By Theorem 10, the weight functions w± are in fact uniquely characterized by the requirement
that

GF (X ) = −λ+(I−)1{M−(X )=I−} + λ−(I+)1{M+(X )=I+} + c (2.46)

for some c ∈ R. Defining weight functions w̃± by

w̃− := −λ+(I−)wI−,− + λ−(I+)wI+,+ (2.47)

and denoting the corresponding linear function by F̃ , we see from Theorem 8 that

GF̃ (X ) = −λ+(I−)1{M−(X )=I−} + λ−(I+)1{M+(X )=I+} + λ+(I−)f−(I−)− λ−(I+)f+(I+).
(2.48)

We conclude from this that w± = w̃± and the constant from (2.46) is given by

λ+(I+)− λ−(I−) = c = λ+(I−)f−(I−)− λ−(I+)f+(I+), (2.49)
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which proves (1.13).

We next set out to derive explicit formulas for the weight functions (wz,±− , wz,±+ ) from
Theorem 8. To state the result, we define functions u−+, u+− : I → R by

u−+(x) := Γ−1
{ 1

λ−(I+)λ+(I+)
−
∫ I+

x

1

λ−
d
( 1

λ+

)}
,

u+−(x) := Γ−1
{ 1

λ−(I−)λ+(I−)
+

∫ x

I−

1

λ+
d
( 1

λ−

)}
.

(2.50)

In view of (2.19), we observe that u−+(I−) = 1 = u+−(I+). Moreover, u−+ is nonincreasing
with u−+(I+) > 0 while u+− is nondecreasing with u−+(I−) > 0. By partial integration, our
formulas for u−+ and u+− can be rewritten as

u−+(x) := Γ−1
{ 1

λ−(x)λ+(x)
+

∫ I+

x

1

λ+
d
( 1

λ−

)}
,

u+−(x) := Γ−1
{ 1

λ−(x)λ+(x)
−
∫ x

I−

1

λ−
d
( 1

λ+

)}
.

(2.51)

Combining this with our previous formulas and (2.19), we see that

u−+(x) + u+−(x) =
Γ−1

λ−(x)λ+(x)
+ 1. (2.52)

Lemma 15 (Formulas for special weight functions) The weight functions from Theo-
rem 8 are given by

(i) wz,−− (x) =λ−(z)Γ
(
u+−(z)− 1{x≤z}

)(
u−+(x)− 1{x≤z}

)
(ii) wz,−+ (x) =λ−(z)Γ

[
u+−(x ∨ z)− 1

]
u+−(x ∧ z)

(iii) wz,+− (x) =λ+(z)Γ
[
u−+(x ∧ z)− 1

]
u−+(x ∨ z)

(iv) wz,++ (x) =λ+(z)Γ
(
u−+(z)− 1{x≥z}

)(
u+−(x)− 1{x≥z}

)
.

(2.53)

Proof We start with formula (2.53) (ii). Since w
I+,−
+ = 0 which agrees with the right-hand

side of (2.53) (ii), we assume from now on without loss of generality that z ∈ [I−, I+). We
apply Lemma 13 with g− = 1[I−,z] and g+ = 0. For the functions h± from (2.13) we choose
the boundary conditions h−(I+) = 0 = h+(I−), which means that

h−(x) =

∫
[x,I+)

λ−d1[I−,z] = −λ−(z)1[I−,z] and h+ = 0. (2.54)

Since h+ = 0 and h−(I+) = 0, formulas (2.20) (ii) and (2.21) now simplify to

w+(x) = −
∫

(x,I+]

κ+ h−
λ+

d
( 1

λ−

)
with κ = Γ−1

∫
I

1

λ−
d
(h−
λ+

)
. (2.55)

Here, by (2.54), ∫
I

1

λ−
d
(h−
λ+

)
=
[ h−
λ−λ+

(I+)− h−
λ−λ+

(I−)
]
−
∫
I

h−
λ+

d
( 1

λ−

)
=λ−(z)

{ 1

λ−(I−)λ+(I−)
−
∫

[I−,z]

1

λ+
d
( 1

λ−

)}
,

(2.56)
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which shows that
κ = λ−(z)u+−(z). (2.57)

Using the fact that u+−(I+) = 1, it follows that

w+(x) =−λ−(z)u+−(z)

∫
(x,I+]

1

λ+
d
( 1

λ−

)
+ λ−(z)1{x<z}

∫
(x,z]

1

λ+
d
( 1

λ−

)
=−λ−(z)Γ

{
u+−(z)

[
1− u+−(x)

]
− 1{x<z}

[
u+−(z)− u+−(x)

]}
,

(2.58)

which can be rewritten as (2.53) (ii).
We next prove (2.53) (i). By (2.14) (iii), (2.54), (2.57), and (2.53) (ii),

w+(x) =
κ+ h− + h+

λ−λ+
(x)− w−(x)

=λ−(z)
u+−(z)− 1[I−,z]

λ−λ+
− λ−(z)Γ

(
u+−(x ∨ z)− 1

)
u+−(x ∧ z).

(2.59)

For x ≤ z, using (2.52), this yields

w+(x) =λ−(z)Γ
{

Γ−1u+−(z)− 1

λ−λ+
−
(
u+−(z)− 1

)
u+−(x)

}
=λ−(z)Γ

(
u+−(z)− 1

){ Γ−1

λ−λ+
− u+−(x)

}
=λ−(z)Γ

(
u+−(z)− 1

)(
u−+(x)− 1

)
,

(2.60)

while for x > z, again with the help of (2.52), we obtain

w+(x) =λ−(z)Γ
{

Γ−1u+−(z)

λ−λ+
−
(
u+−(x)− 1

)
u+−(z)

}
=λ−(z)Γu+−(z)

{ Γ−1

λ−λ+
− u+−(x) + 1

}
=λ−(z)Γu+−(z)u−+(x).

(2.61)

Combining the previous two formulas, we arrive at (2.53) (i).
Formulas (2.53) (iii) and (2.53) (iv) can be proved in exactly the same way. Alternatively,

they can be derived from (2.53) (ii) and (2.53) (i) using the symmetry between buy and sell
orders.

Assume (A3) and (A6) and for z ∈ I, let F z,± be linear functionals defined in terms of
weight functions (wz,±− , wz,±+ ) as in Theorem 8. We will in particular be interested in the case
z = I± and introduce the shorthands

w
(±)
− := w

I±,±
− w

(±)
+ := w

I±,±
+ , and F (±) := F I±,±. (2.62)

We will prove Theorem 3 by constructing a Lyapunov function from F (−) and F (+), see formula
(3.5) and Proposition 17 below. The next lemma prepares for the proof of Proposition 17.

Lemma 16 (Extremal weight functions) Assume (A3) and (A6), let (f−, f+) denote the

solution to Luckock’s equation, and let (w
(±)
− , w

(±)
+ ) be defined as in (2.62). Then for x ∈ I,

one has

(i) w
(−)
− (x) =

u−+(x)

λ+(I−)
, (ii) w

(−)
+ (x) =−1− u+−(x)

λ+(I−)
,

(iii) w
(+)
− (x) =−1− u−+(x)

λ−(I+)
, (iv) w

(+)
+ (x) =

u+−(x)

λ−(I+)
.

(2.63)
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Moreover,

(i) f+(I+) > 0 ⇔ inf
x∈I

[
w

(−)
− (x) + w

(+)
− (x)

]
> 0,

(ii) f−(I−) > 0 ⇔ inf
x∈I

[
w

(−)
+ (x) + w

(+)
+ (x)

]
> 0.

(2.64)

Both formulas also hold with the inequality signs reversed.

Proof We only prove (2.63) (i) and (ii) and (2.64) (i); the proof of the other formulas follows
from the symmetry between buy and sell orders. By Lemma 15 and the facts that

u−+(I+) =
Γ−1

λ−(I+)λ+(I+)
and u+−(I−) =

Γ−1

λ−(I−)λ+(I−)
, (2.65)

we have

(i) w
(−)
− (x) =λ−(I−)Γ

[ Γ−1

λ−(I−)λ+(I−)
− 1{x=I−}

](
u−+(x)− 1{x=I−}

)
(ii) w

(−)
+ (x) =λ−(I−)Γ

[
u+−(x)− 1

] Γ−1

λ−(I−)λ+(I−)
.

(2.66)

For x 6= I−, these formulas simplify to (2.63) (i) and (ii).
Adding formulas (2.63) (i) and (iii) yields

w
(−)
− (x) + w

(−)
+ (x) =

[ 1

λ+(I−)
+

1

λ−(I+)

]
u−+(x)− 1

λ−(I+)
. (2.67)

Since u−+ is nonincreasing and continuous, the infimum of this function over x ∈ I is equal
to the value in x = I+, i.e.,

inf
x∈I

[
w

(−)
− (x) + w

(−)
+ (x)

]
=
[ 1

λ+(I−)
+

1

λ−(I+)

] Γ−1

λ−(I+)λ+(I+)
− 1

λ−(I+)
. (2.68)

Using the fact that Γ > 0, we see that the expression in (2.68) is positive if and only if

1

λ+(I−)λ+(I+)
+

1

λ−(I+)λ+(I+)
> Γ. (2.69)

Taking into account (2.19) and (1.12) (ii) (which also holds with the equality signs reversed),
this is equivalent to f+(I+) > 0.

2.5 Restricted models

In the present subsection, we prove Proposition 5 as well as Lemmas 4 and 6 and formula
(1.22).

Proof of Lemma 4 To prove that J− < φ+(J−) for all J− ∈ I, it suffices to show that
Λ+(J−, J− + ε) > 0 for ε > 0 sufficiently small. Here

Λ+(J−, J− + ε) =
1

λ+(J−)λ+(J− + ε)
+

∫ J−+ε

J−

1

λ−
d
( 1

λ+

)
(2.70)

By assumptions (A3) and (A5) and the fact that J− ∈ I, the first term tends to a positive
limit as ε ↓ 0 while the second term tends to zero. By the symmetry between buy and sell
orders, we see that also φ−(J+) < J+ for all J+ ∈ I.
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Using (A3), we see that for fixed J−, the function Λ+(J−, J+) is nonincreasing as a function
of J+, and hence that Λ+(J−, J+) > 0 if and only if J+ < φ+(J−). Similarly, Λ−(J−, J+) > 0
if and only if φ−(J+) < J−, so the second claim of the lemma follows from Theorem 3, where
we use that for I− < J− < J+ < I+, the restricted model on (J−, J+) satisfies (A6) since the
model on I satisfies (A5).

Proof of formula (1.22) Let D be the set of all pairs (J−, J+) ∈ R2 such that I− ≤ J− ≤
J+ ≤ I+ and let T := sup{J+ − J− : (J−, J+) ∈ D, λ−(J−) = λ+(J+)}. We define a curve
γ : [0, T ]→ D with γ(t) =

(
γ−(t), γ+(t)

)
by

γ−(t) := inf
{
J− ∈ I : λ−(t) ≤ λ+(J− + t)

}
and γ+(t) := γ−(t) + t. (2.71)

Using (A3), it is not hard to see that γ− is nonincreasing, γ+ is nondecreasing, and γ is Lip-
schitz continuous with Lipschitz constant 1. Using also (A4), we see that γ−(0) = (xW, xW),
where xW is the Walrasian price from (1.17).

Let D′ := {(J−, J+) : I− < J− ≤ J+ < I+}. For any J−, J
′
−, J+, J

′
+ with J− ≤ J ′− and

J+ ≤ J ′+, we observe that

Λ+(J ′−, J+)− Λ+(J−, J+) =

∫ J ′−

J−

{ 1

λ+(J+)
− 1

λ−

}
d
( 1

λ+

)
,

Λ+(J−, J
′
+)− Λ+(J−, J+) =

∫ J ′+

J+

{ 1

λ+(J−)
+

1

λ−

}
d
( 1

λ+

)
.

(2.72)

Applying Lemma 9, we obtain that

Λ+

(
γ(t)

)
= Λ+

(
γ(0)

)
+

∫ t

0

{ 1

λ+ ◦ γ+
− 1

λ− ◦ γ−

}
d
( 1

λ+ ◦ γ−

)
+

∫ t

0

{ 1

λ+ ◦ γ−
+

1

λ− ◦ γ+

}
d
( 1

λ+ ◦ γ+

) (2.73)

for any t ≥ 0 such that γ(t) ∈ D′. Since by construction λ−(γ−(s)) = λ+(γ+(s)) for all s ∈
[0, t], the first integral in (2.73) is zero. Set ψ := λ+◦γ+ and ψ−1(V ) := inf{t ≥ 0 : ψ(t) ≥ V },
and observe that γ(ψ−1)(V ) =

(
j−(V ), j+(V )

)
. Using the substitution of variables W = ψ(t)

(recall (2.7)) using also the fact that

Λ+

(
γ(0)

)
= Λ+(xW, xW) =

1

V 2
W

, (2.74)

we can rewrite (2.73) as

Λ+

(
j−(V ), j+(V )

)
=

1

V 2
W

+

∫ V

VW

{ 1

λ+

(
j−(W )

) +
1

λ−
(
j+(W )

)}d
( 1

W

)
, (2.75)

which holds whevener
(
j−(V ), j+(V )

)
∈ D′.

The second inequality in (1.22) follows in the same way, or alternatively, one can use the
fact that

Λ+(J−, J+)− Λ−(J−, J+) =
( 1

λ+(J+)
− 1

λ−(J−)

)( 1

λ+(J−)
+

1

λ−(J+)

)
, (2.76)

which follows from partial integration of the formulas in (1.12) and shows that Λ+(J−, J+) =
Λ−(J−, J+) whenever λ−(J−) = λ+(J+).

Proof of Proposition 5 Assume that a Stigler-Luckock model satisfying (A3)–(A5) and
(A7) has a critical window J , and let (f−, f+) denote the solution to Luckock’s equation on J .
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Since f−(J) = 0 = f+(J+), by (1.13), we must have λ−(J−) = λ+(J+). Calling this quantity
V , formulas (1.12) and (1.22) tell us that Ψ(V ) = 0. It is clear from (1.21) that Ψ is strictly
decreasing, so V must equal Luckock’s volume of trade VL as defined in (1.23). Using also
condition (ii) in the definition of a critical window, we conclude that J =

(
j−(VL), j+(VL)

)
.

Conversely, if Ψ(VL) = 0 and J :=
(
j−(VL), j+(VL)

)
satisfies J ⊂ I, then the solution to

Luckock’s equation on J satisfies f−(J) = 0 = f+(J+) by (1.12) and (1.22), while condition (ii)
in the definition of a critical window is satisfied because of the way j± are defined.

Proof of Lemma 6 For the uniform model with λ−(x) = 1− x and λ+(x) = x, we have

VW = 1
2 , Vmax = 1, j−(V ) = 1− V, and j+(V ) = W. (2.77)

It follows that the function Ψ from (1.21) is given by

Ψ(V ) = 4 + 2

∫ V

1/2

1

1−W
d
( 1

W

)
= 4− 2

∫ 2

1/V

1

1− 1
y

dy = 4− 2

∫ 2

1/V

{
1 +

1

y − 1

}
dy

= 4− 2
∣∣∣2
y=1/V

{
y + log(y − 1)

}
= 2
{
V −1 + log(V −1 − 1)

}
.

(2.78)
Setting Ψ(V ) = 0 gives

− V −1 = log
(
V −1 − 1

)
⇔ e−V

−1
= V −1 − 1, (2.79)

which tells us that VL = 1/z where z solves f(z) := e−z − z + 1 = 0. Since the function f is
continuous and strictly decreasing with f(1) = e−1 and f(z)→ −∞ for z →∞, the equation
f(z) = 0 has a unique solution z, and this solution satisfies z > 1.

3 Analysis of the Markov chain

3.1 A consequence of stationarity

In this subsection, we prove Theorem 1.

Proof of Theorem 1 Let ν be an invariant law, let X0 be an Sord-valued random variable with
law ν, and let (U1, σ1) be independent of X0 with law µ := |µ|−1µ, as defined in Section 1.1.
Then stationarity means that X1 := LU1,σ1(X0) has the same law as X0, where Lu,σ is the
Luckock map from (1.9).

Set M± := M±(X0) and let µ± be as in (1.1). We claim that

(i)

∫
A
P[M− < x]µ+(dx) =

∫
A
λ−(x)P[M+ ∈ dx],

(ii)

∫
A
P[M+ > x]µ−(dx) =

∫
A
λ+(x)P[M− ∈ dx]

(3.1)

for each measurable A ⊂ I that is contained in some compact subinterval [J−, J+] ⊂ I. Indeed,
stationarity implies (see [Swa15, Lemma 10]) that for any measurable A ⊂ I, sell limit orders
are added in A with the same frequency as they are removed, i.e.,

P
[
X+

1 (A) = X+
0 (A) + 1

]
= P

[
X+

1 (A) = X+
0 (A)− 1

]
. (3.2)

Recalling the definition of the Luckock map in (1.9), we see that this means that

P
[
σ1 = +, U1 ∈ A, M− < U1

]
= P

[
σ1 = −, M+ ∈ A, M+ ≤ U1

]
. (3.3)
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Since (U1, σ1) has law µ and is independent of M±, it follows that

|µ|−1

∫
A
µ+(dx)P[M− < x] = |µ|−1

∫
A
P[M+ ∈ dx]µ−

(
[x, I+]

)
, (3.4)

which up to the factor |µ|−1 is (3.1) (i). Similarly, equation (3.1) (ii) follows from the require-
ment that buy limit orders are added in A with the same frequency as they are removed. Re-
calling the definitions of µ± in (1.1), the integral equations (3.1) (i) and (ii) are just (1.11) (i)
and (ii). Since f−(I+) = P[M− ≤ I+] = 1 and f+(I−) = P[M+ ≥ I−] = 1, the boundary
conditions (1.11) (iii) also follow.

3.2 A Lyapunov function

It follows from Theorem 1 that if a Stigler-Luckock model is positive recurrent, then the
solution to Luckock’s equation must satisfy f−(I−) ∧ f+(I+) > 0. Theorem 3 states that this
condition is also sufficient. We will prove this by showing that

V (X ) :=
√

(F (−)(X ) ∨ 0)2 + (F (+)(X ) ∨ 0)2
(
X ∈ Sfin

ord

)
(3.5)

is a Lyapunov function. We note that this is the only place in the paper where we make use of
a function of a Stigler-Luckock process that is not linear (namely V ). In view of Theorem 10,
we have fairly good control of linear functionals, which as in Theorem 1 (which depends on
Theorem 8) allows us to more or less explicitly calculate the marginal distributions of the best
buy and sell offers M−(X ) and M+(X ) in equilibrium. Proving that a Stigler-Luckock model
is positive recurrent, however, always entails proving something about the joint distribution of
M−(X ) and M+(X ). Indeed, the following proposition can be used to give a lower bound on
the probability, in equilibrium, that the order book is empty, which corresponds to the event
that M−(X ) = I− and at the same time M+(X ) = I+, but thhis bound is not very explicit or
sharp. It seems that such information cannot be obtained from linear functionals and indeed
for no choice of weight functions (w−, w+) is a linear function of the form (1.26) a Lyapunov
function.

Recall the definition (1.25) of the generator G of a Stigler-Luckock model. We have the
following result.

Proposition 17 (Lyapunov function) Assume (A3) and (A6), and that the unique solution
(f−, f+) of Luckock’s equation (1.11) satisfies ε := f−(I−) ∧ f+(I+) > 0. Then there exists
a constant K < ∞ such that the function in (3.5) satisfies GV (X ) ≤ K for all X ∈ Sfin

ord.
Moreover, for each ε′ < ε, there exists an N <∞ such that

GV (X ) ≤ −ε′ whenever |X−|+ |X+| ≥ N. (3.6)

Proof Let us write ~F (X ) :=
(
F (−)(X ), F (+)(X )

)
and let | · | denote the euclidean norm on

R2. Let us also write V (X ) = v(~F (X )) where v : R2 → R is the function

v(z1, z2) :=
√

(z1 ∨ 0)2 + (z2 ∨ 0)2. (3.7)

Set
W := sup

x∈I

∣∣(w(−)
− (x), w

(+)
− (x)

)∣∣ ∨ sup
x∈I

∣∣(w(−)
+ (x), w

(+)
+ (x)

)∣∣, (3.8)
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which is the maximal amount by which ~F (X ) can change due to the addition or removal of a
single limit order. Since the function v is Lipschitz continuous with Lipschitz constant 1, we
can estimate

GV (X ) =

∫ {
V
(
Lu,σ(X )

)
− V

(
X
)}
µ
(
d(u, σ)

)
≤
∫ ∣∣~F (Lu,σ(X )

)
− ~F

(
X
)∣∣µ(d(u, σ)

)
≤W

(
λ−(I−) + λ+(I+)

)
=: K.

(3.9)

Let
δ := inf

x∈I

[
w

(−)
− (x) + w

(+)
− (x)

]
∧ inf
x∈I

[
w

(−)
+ (x) + w

(+)
+ (x)

]
, (3.10)

which is positive by (2.64) and our assumption that f−(I−)∧f+(I+) > 0. Since adding a limit
order to the order book always raises F (−) + F (+) by at least δ,

F (−)(X ) + F (+)(X ) ≥ δ
(
|X−|+ |X+|

)
. (3.11)

This shows that ~F (X ) takes values in the half space H := {(z1, z2) ∈ R2 : z1 + z2 > 0} as long
as X 6= 0, and moreover

∣∣~F (X )
∣∣ is large if |X−|+ |X+| is.

For any z = (z1, z2) ∈ R2 with z1 + z2 > 0, let us define

p1(z) :=
z1 ∨ 0√

(z1 ∨ 0)2 + (z2 ∨ 0)2
and p2(z) :=

z2 ∨ 0√
(z1 ∨ 0)2 + (z2 ∨ 0)2

. (3.12)

Then, for any y, z ∈ H, we can write

v(z) = v(y) + p1(y)(z1 − y1) + p2(y)(z2 − y2) +R(y, z), (3.13)

where for any y, z that differ at most by the constant W from (3.8), the error term R(x, y)
can be estimated as

R(y, z) ≤ C|y|−1
(
y, z ∈ H, |z − y| ≤W

)
(3.14)

for some constant C <∞. It follows that we can write

GV (X ) = p1(~F (X ))GF (−)(X ) + p2(~F (X ))GF (+)(X ) + E(X ), (3.15)

where the error term can be estimated as∣∣E(X )| =
∣∣∣ ∫ R

(
~F (X ), ~F (Lu,σ(X )

)
µ
(
d(u, σ)

)∣∣∣ ≤ C(λ−(I−) + λ+(I+)
)∣∣~F (X )

∣∣−1
, (3.16)

which in view of (3.11) can be made arbitrary small by choosing |X−|+ |X+| sufficiently large.

By Theorem 8 and the way we have defined the weight functions w
(−)
± and w

(+)
± , one has

GF (−)(X ) = −f−(I−) if |X−| 6= 0 and GF (+)(X ) = −f+(I+) if |X+| 6= 0. (3.17)

It follows from (2.63) and elementary properties of the functions in (2.50) that

w
(−)
− > 0, w

(−)
+ < 0, w

(+)
− < 0, and w

(+)
+ > 0 on I. (3.18)

In view of this, we have

|X−| = 0 ⇒ F (−)(X ) ≤ 0 ⇒ p1(~F (X )) = 0,

|X+| = 0 ⇒ F (+)(X ) ≤ 0 ⇒ p2(~F (X )) = 0.
(3.19)

Combining this with (3.17), we obtain that

p1(~F (X ))GF (−)(X ) + p2(~F (X ))GF (+)(X ) ≤ −ε (X 6= 0). (3.20)

Inserting this into (3.15), using our bound (3.16) on the error term, and using also (3.11), we
see that by choosing |X−| + |X+| large enough, we can make GV smaller than −ε′ for any
ε′ < ε.
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3.3 Positive recurrence

Proof of Theorem 3 If a Stigler-Luckock model is positive recurrent, then it it is possible
to construct a stationary process (Xk)k∈Z that makes i.i.d. excursions away from the empty
state 0. In particular, positive recurrence implies the existence of an invariant law ν that
is concentrated on Sfin

ord and satisfies ν({0}) > 0. By Theorem 1, it follows that Luckock’s
equation (1.11) has a solution (f−, f+) such that f−(I−) ∧ f+(I+) ≥ ν({0}) > 0.

Conversely, assume (A3) and (A6) and that the (by Proposition 2 unique) solution to
Luckock’s equation satisfies f−(I−) ∧ f+(I+) > 0. Let P denote the transition kernel of the
discrete-time process (Xk)k≥0 and for any nonnegative measurable function f : Sfin

ord → R write
Pf(x) :=

∫
P (x,dy)f(y). Write

CN := {X ∈ Sfin
ord : |X |− + |X |+ < N}. (3.21)

Multiplying the Lyapunov function V of Proposition 17 by a suitable constant, we obtain a
nonnegative function f and finite constants K,N such that

Pf − f ≤ K1CN
− 1. (3.22)

Let τ0 := inf{k > 0 : Xk = 0} denote the first return time to the empty configuration. By
assumption (A6), there exists a constant ε > 0 such that

Px[τ0 ≤ N + 1] ≥ ε (x ∈ CN ). (3.23)

Moreover, (A6) guarantees that P0[τ0 = 0], which shows that the model is aperiodic from 0.
Applying Proposition 19 from Appendix A.2 in the appendix, we conclude that the Stigler-
Luckock model under consideration is positive recurrent and (1.14) holds.

A Appendix

A.1 The model in standard form

In this appendix, we show that the assumptions (A3) and (A4) from Section 1.1 can basically
be made without loss of generality, since any Stigler-Luckock model satisfying (A1) and (A2)
can be obtained as a function of a Stigler-Luckock model satisfying (A3) and, subject to mild
additional conditions, also (A4).

Let µ be a finite nonnegative measure on R := [−∞,∞] and let supp(µ) denote its support.
Then the complement of supp(µ) is a countable union of disjoint open intervals. If for each
left endpoint x− of such an interval (x−, x+), we remove x− from supp(µ) if it carries no mass,
then we obtain

supp+(µ) =
{
x ∈ R : µ

(
[x, y)

)
> 0 ∀y > x

}
. (A.1)

The set supp+(µ) is the support of µ with respect to the topology of convergence from the
right, where a sequence xn converges to a limit x if and only if xn → x in the usual topology
on R and moreover xn ≥ x for n large enough. A basis for this topology is formed by all sets
of the form [x, y) with x < y.

Below, if I
′
= [I ′−, I

′
+] and I = [I−, I+] are closed intervals and ψ : I

′ → I is a nondecreasing
map, then we let ψ−1

± denote the left and right continuous inverses of ψ, i.e.,

ψ−1
− (y) := sup{x ∈ I ′ : ψ(x) ≤ y} and ψ−1

+ (y) := inf{x ∈ I ′ : ψ(x) ≥ y}, (A.2)
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with the conventions that sup ∅ := I+ and inf ∅ := I−. If f is a function on I
′
, then we let

f ◦ ψ−1
± denote the composition of f with ψ−1

± . If µ is a measure on I
′
, then µ ◦ ψ−1 denotes

the image of µ under ψ, which is the same as the composition of µ with the inverse image
map ψ−1.

Proposition 18 (Standard form) Let I = (I−, I+) be a nonempty open interval and let
(Xt)t≥0 be a Stigler-Luckock model with demand and supply functions λ± : I → [0,∞) satis-
fying (A1) and (A2). Then there exists an open interval I ′ = (I ′−, I

′
+) and a Stigler-Luckock

model (X ′t )t≥0 with demand and supply functions λ′± : I
′ → [0,∞) satisfying (A3), as well as

a nondecreasing function ψ : I
′ → I that maps I ′ into I and satisfies ψ(I ′±) = I±, such that

λ± = λ± ◦ ψ−1
± and Xt = X ′t ◦ ψ−1 (t ≥ 0). (A.3)

Assume that λ± are not both constant and

X0 is concentrated on supp+(dλ+ − dλ−). (A.4)

Assume also that either X0 ∈ Sfin
ord or (A5) holds. Then we can choose I ′±, λ′±, and ψ in such

a way that ψ is right-continuous on I ′ and

λ′+(x)− λ′−(x) = x (x ∈ I ′). (A.5)

Subject to these constraints, I ′±, λ′±, and ψ are unique.

If the demand and supply functions λ± of a Stigler-Luckock model satisfy (A.5), then we
say that the model is in standard form. Note that a model in standard form satisfies (A3) and
(A4). For such a model, dλ+ − dλ− = dx, the Lebesgue measure. A model in standard form
is uniquely characterized by its interval (I−, I+) and the measurable function p+ : I → [0, 1]
defined by the Radon-Nikodym derivative

p+ :=
dλ+

dλ+ − dλ−
. (A.6)

Proof of Proposition 18 Let I ′ = (I ′−, I
′
+) be a nonempty open interval and let (X ′t )t≥0 be

a Stigler-Luckock model with demand and supply functions λ′± : I → [0,∞) satisfying (A1)

and (A2). Assume that ψ : I
′ → I is nondecreasing, maps I ′ into I, and satisfies ψ(I ′±) = I±.

Assume that

ψ(x+) ≤ ψ(x−) ⇔ x+ ≤ x−
for a.e. x+ w.r.t. X ′+0 + dλ′+ and a.e. x− w.r.t. X ′−0 − dλ′−.

(A.7)

Then we claim that the process (Xt)t≥0 defined as Xt := X ′t ◦ ψ−1 is a Stigler-Luckock model
with demand and supply functions λ± : I → [0,∞) given by

λ± = λ′± ◦ ψ−1
± . (A.8)

To see this, construct the process (X ′t )t≥0 from a Poisson point process

Π′ = {(U ′k, σk, τk) : k = 1, 2, . . .} with 0 < τ1 < τ2 < · · · (A.9)

as in (1.2), set X0 := X ′0 ◦ ψ−1, and construct a Stigler-Luckock model (Xt)t≥0 with initial
state X0 from the Poisson point process

Π := {(Uk, σk, τk) : k = 1, 2, . . .} with Uk := ψ(U ′k). (A.10)
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Then (Xt)t≥0 has demand and supply functions λ± as in (A.8). Moreover, since (A.7) guar-
antees that buy and sell orders in X ′ can be matched if and only if they can be matched in
X , we see that (A.3) holds.

Clearly, a sufficient condition for (A.7) is that ψ is strictly increasing. More precisely, we
observe that (A.7) is equivalent to the condition:

If ψ(x) = ψ(z) for some x < z, then there exists an y with x ≤ y ≤ z
such that (X ′−0 − dλ′−)

(
[x, y)

)
= 0 and (X ′+0 + dλ′+)

(
(y, z]

)
= 0.

(A.11)

Assume for the moment that λ± are not both constant and that (A.4) holds, and assume
also that either X0 ∈ Sfin

ord or (A5) holds. Then the requirements that λ± = λ′± ◦ ψ−1
± and

λ+(x)− λ−(x) = x force us to take I ′± := λ+(I±)− λ−(I±) and

ψ(y) := inf{x ∈ I : λ+(x)− λ−(x) ≥ y}
(
y ∈ (I ′−, I

′
+]
)
. (A.12)

Note that I ′− < I ′+ by our assumption that λ± are not both constant. Using conditions
(A1) and (A2), we see that λ+ − λ− is continuous at I±. As a result, ψ maps I ′ into I and
ψ(I ′+) = I+. We set ψ(I ′−) := I−, which may result in ψ not being right continuous at I ′−.

By (A.4) and the fact that either X0 ∈ Sfin
ord or (A5) holds, we can choose X ′0 ∈ Sord such

that X0 = X ′0 ◦ ψ−1 and

If ψ(x) = ψ(z) for some x < z, then X−
(
[x, z)

)
= 0 and X+

(
[x, z)

)
= 0 (A.13)

In view of this, using also the fact that λ− is left-continuous and λ+ is right-continuous, (A.11)
simplifies to

If ψ(x) = ψ(z) for some x < z, then there exists an y with x ≤ y ≤ z
such that λ′−(x) = λ′−(y) and λ′+(y) = λ′+(z).

(A.14)

The condition (A.8) determines λ′± uniquely except on intervals (x, z) such that ψ(x) = ψ(z).
We claim that on each such interval, λ′± are uniquely determined by (A.14). Indeed, if (x, z)
is such an interval of maximal length and u := ψ(x) = ψ(z), then

(λ′+ − λ′−)(z)− (λ′+ − λ′−)(x) =
(
λ+(u)− λ+(u−)

)
+
(
λ−(u)− λ−(u+)

)
, (A.15)

and we need to choose the point y from (A.14) in such a way that

y − x = λ+(u)− λ+(u−) and z − y = λ−(u)− λ−(u+). (A.16)

If we drop the assumption (A.4), allow for the case that λ± are both constant, and also
drop the assumption that either X0 ∈ Sfin

ord or (A5) holds, then the argument is similar if in
(A.12) we replace λ+(x)− λ−(x) by λ+(x)− λ−(x) + x.

A.2 Ergodicity of Markov chains

Let (E, E) be a measurable space and let P be a measurable probability kernel on E. For
simplicity, we assume that the one-point sets are measurable, i.e., {x} ∈ E for all x ∈ E. It is
known1 [MT09, Thm 3.4.1] that for each probability measure µ on E there exists a Markov
chain X = (Xk)k≥0, unique in distribution, such that X0 has law µ and the conditional law
of Xk+1 given (X0, . . . , Xk) is given by P , for each k ≥ 0.

1This statement is not quite as straightforward as it may sound since for general measurable spaces, Kol-
mogorov’s extension theorem is not available.
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We let P k denote the k-th power of P . For any measurable real function f : E → [−∞,∞],
we write P kf(x) :=

∫
E P

k(x, dy)f(y), as long as the integral is well-defined for all x ∈ E. For
any probability measure µ on E we let µP k(A) :=

∫
E µ(dx)P k(x,A) (A ∈ E). Then µP k is

the law of Xk if X0 has law µ. An invariant law of X is a probability measure ν such that
νP = ν. We let ‖µ − ν‖ denote the total variation norm distance between two probability
measures µ and ν.

For any point x ∈ E, let Px denote the law of the Markov chain X started from X0 = x.
Let τx := inf{k > 0 : Xk = x} denote the first return time to x. We say that the Markov
chain X is aperiodic from x if the greatest common divisor of {k > 0 : Px[τx = k]} is one.

Markov chains satisfying the conditions (A.17) and (A.18) below behave in many ways
like positive recurrent Markov chains with countable state space. In particular, (A.17) says
that f is a Lyapunov function that guarantees that the return times to the set C have finite
expectation, while (A.18) says that once the chain enters C, there is a uniformly positive
probability of entering the atom 0 after a finite number of steps.

Proposition 19 (Ergodicity for positive point recurrent chain) Fix a point 0 ∈ E.
Assume that there exists a measurable function f : E → [0,∞), a measurable set 0 ∈ C ⊂ E,
and constants F,K <∞ such that supx∈C f(x) ≤ F and

Pf − f ≤ K1C − 1. (A.17)

Assume moreover that there exist constants ε > 0 and k ≥ 0 such that

Px[τ0 ≤ k] ≥ ε (x ∈ C). (A.18)

Then Ex[τ0] < ∞ for all x ∈ E, and the Markov chain X has a unique invariant law ν. If
moreover X is aperiodic from 0, then

‖µPn − ν‖ −→
n→∞

0 (A.19)

for each probability measure µ on E.

Proof Let τC := inf{k ≥ 1 : Xk ∈ C} denote the first entry time of C. Then [MT09,
Thm 11.3.4] tells us that Ex[τC ] ≤ f(x) + K1C(x) (x ∈ E). Since after each visit to C, by
(A.18) there is a probability of at least ε to visit 0 in the next k steps, it is not hard to
deduce that Ex[τ0] < ∞ for all x ∈ E. Again by [MT09, Thm 11.3.4] and the fact that, in
the light of (A.18), C is petite as defined in [MT09, Section 5.5.2], we have that X is positive
Harris recurrent. In particular, by [MT09, Thm 10.0.1], X has a unique invariant law ν. Since
Ex[τ0] < ∞ for all x ∈ E, it is easy to see that ν({0}) > 0. By [MT09, Thm 10.4.9], ν
is equivalent to the measure ψ from [MT09, Prop. 4.2.2], so aperiodicity from 0 as we have
defined it implies ψ-aperiodicity as defined in [MT09, Section 5.4.3]. Now (A.19) follows from
[MT09, Thm 13.3.3].

A.3 Discrete models

Often, it is natural to consider Stigler-Luckock models where the interval I is of the form
I = [0, n], with n ≥ 2 an integer, and the measures µ± that determine the rate at which
orders arrive are supported on the set of integers {0, . . . , n}. One motivation for this is that
real prices take values that differ by a minimal amount, the so called tick size. Also, the
numerical data for the uniform model shown in Figures 2 and 3 are based on approximation
with discrete models with a high value of n.
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Although, in the light of Appendix A.1, discrete Stigler-Luckock models are in principle
included in our general analysis, in practise, when doing (numerical) calculations, it is more
convenient to replace the differential equations for the general model by difference equations.
It turns out that these difference equations can be solved explicitly much in the same way as
the differential equations of the general model.

In the discrete setting, it is convenient to reparametrize the model somewhat. We replace
the set {1, 2, . . . , n} of possible prices of buy orders by {4, 6, . . . , 2n + 2} and we let 2 (in-
stead of 0) be the value of M−(X ) that signifies that the order book contains no buy limit
orders. Likewise, for sell orders or M+(X ), we replace the set of possible prices {0, 1, . . . , n}
by {1, 3, . . . , 2n + 1}. Note that in this new parametrization, a buy and sell order that were
previously both placed at the price k are now placed at the prices 2k + 2 and 2k + 1, respec-
tively, and hence still match. We let X−t (2k+ 2) (resp. X+

t (2k+ 1)) denote the number of buy
(resp. sell) limit orders in the order book at a given time and price. We define demand and
supply functions

λ− : {3, 5, . . . , 2n+ 1} → R and λ+ : {2, 4, . . . , 2n} → R (A.20)

in such a way that λ−(2k+ 1) (resp. λ+(2k)) is the total rate at which buy (resp. sell) orders
are placed at prices in {2k + 2, . . . , 2n+ 2} (resp. {1, . . . , 2k − 1}). In particular, λ−(2n+ 1)
and λ+(2) are the rates of buy and sell market orders, respectively.

For any function of the form f : {k, k + 2, . . . ,m} → R, we define a discrete derivative
df : {k + 1, k + 3, . . . ,m− 1} → R by

df(x) := f(x+ 1)− f(x− 1). (A.21)

For sums over sets of the form {k, k + 2, . . . ,m}, we use the shorthand

m∑
k

g :=
∑

x∈{k,k+2,...,m}

g(x), (A.22)

and we define
∑k−2

k g := 0. We let

f ′(x) := f(x+ 1) and f∗(x) := f(x− 1) (A.23)

denote the function f shifted by one to the left or right, respectively. It is straightforward to
prove the product rule

d(fg) = f ′dg + g∗df. (A.24)

We also have the following special case of the chain rule:

d
( 1

f

)
= − df

f ′f∗
. (A.25)

Let
w− : {2, 4, . . . , 2n} → R and w+ : {3, 5, . . . , 2n+ 1} → R (A.26)

be weight functions satisfying w−(2) := 0 and w+(2n + 1) := 0, and define a linear function
F by

F (X ) :=
2n∑
x=4

w−(x)X−(x) +
2n−1∑
x=3

w+(x)X+(x), (A.27)
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Then, in analogy with Lemma 7, one can check that

GF (X ) =
2n−1∑

M−(X )+1

w+dλ+ − w−
(
M−(X )

)
λ+

(
M−(X )

)
−
M+(X )−1∑

4

w−dλ− − w+

(
M+(X )

)
λ−
(
M+(X )

)
.

(A.28)

In analogy with Theorem 8, one can show that if the rates of market orders λ−(2n + 1)
and λ+(2n) are both positive, then, for each z ∈ {2, 4, . . . , 2n}, there exist a unique pair of
weight functions (wz,+− , wz,++ ) = (w−, w+) and a unique constant f+(z) ∈ R, such that the
linear functional F z,+ = F from (A.27) satisfies

GF (X ) = 1{M+(X ) > z} − f+(z). (A.29)

Also, for each z ∈ {3, 5, . . . , 2n+1}, there exist a unique pair of weight functions (wz,−− , wz,−+ ) =
(w−, w+) and constant f−(z) such that the linear functional F z,− = F from (A.27) satisfies

GF (X ) = 1{M−(X ) < z} − f−(z). (A.30)

It is possible to derive nice, explicit formulas for these weight functions. In analogy with
(2.19), define

Γ :=
1

λ−(2n+ 1)λ+(2n)
−

2n−1∑
3

1

λ−
d
( 1

λ+

)
=

1

λ−(3)λ+(2)
+

2n∑
4

1

λ+
d
( 1

λ−

)
, (A.31)

where the equality of both formulas follows from the product rule (A.24) applied to the
functions 1/λ′− and 1/λ+. Set Ieven := {2, 4, . . . , 2n} and Iodd := {3, 5, . . . , 2n + 1}. In
analogy with (2.50), define

u−+(x) := Γ−1
{ 1

λ−(2n+ 1)λ+(2n)
−

2n−1∑
x+1

1

λ−
d
( 1

λ+

)} (
x ∈ Ieven

)
,

u+−(x) := Γ−1
{ 1

λ−(3)λ+(2)
+
x−1∑

4

1

λ+
d
( 1

λ−

)} (
x ∈ Iodd

)
.

(A.32)

Then, in analogy with Lemma 15, one has

wz,−+ (x) =λ−(z)Γ
[
u+−(x ∨ z)− 1

]
u+−(x ∧ z)

(
x, z ∈ Iodd

)
wz,−− (x) =λ−(z)Γ

(
u+−(z)− 1{x<z}

)(
u−+(x)− 1{x<z}

) (
x ∈ Ieven, z ∈ Iodd

)
wz,+− (x) =λ+(z)Γ

[
u−+(x ∧ z)− 1

]
u−+(x ∨ z)

(
x, z ∈ Ieven

)
wz,++ (x) =λ+(z)Γ

(
u−+(z)− 1{x>z}

)(
u+−(x)− 1{x>z}

) (
x ∈ Iodd, z ∈ Ieven

)
.

(A.33)

Moreover, the functions

f− : {3, 5, . . . , 2n+ 1} → R and f+ : {2, 6, . . . , 2n} → R (A.34)

from (A.29) and (A.30) satisfy the discrete version of Luckock’s equation, which reads

(i) f−dλ+ =−λ−df+ on {3, 5, . . . , 2n− 1},
(ii) f+dλ−=−λ+df− on {4, 6, . . . , 2n},
(iii) f+(2) = 1 = f−(2n+ 1).

(A.35)
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The solution to this equation can explicitly be written as

(i)
( f+

λ+

)
(x) =

1

λ+(2)
+

x−1∑
3

κ

λ−
d
( 1

λ+

) (
x ∈ {2, 4, . . . , 2n}

)
,

(ii)
( f−
λ−

)
(x) =

1

λ−(2n+ 1)
−

2n∑
x+1

κ

λ+
d
( 1

λ−

) (
x ∈ {3, 5, . . . , 2n+ 1}

)
,

(A.36)

where κ is given by

κ = κL := Γ−1
( 1

λ−(2n+ 1)
+

1

λ+(2)

)
, (A.37)

and Γ > 0 is the constant from (A.31).

A.4 Suggestions for future work

Several problems concerning Stigler-Luckock models remain open. In particular, these include:

I. If a Stigler-Luckock model has a critical window (J−, J+), then show that in the long
run, buy orders below J− and sell orders above J+ are never matched.

II. Show that all orders inside the critical window are eventually matched.

III. If the solution to Luckock’s equation satisfies f−(I−)∧f+(I+) ≥ 0, then show that there
is an invariant law on Sord.

Let (Xk)k≥0 be a Stigler-Luckock model on an interval I and let Xk

∣∣
Z

be the restriction of Xk

to a subinterval Z = (z−, z+) ⊂ I. (Note that this is not what we have called the restricted
model on Z; in particular, the latter is a Markov chain, while Xk

∣∣
Z

is not.) To solve Problem I,
one would need to show that if Z is slightly larger than the critical window, then the process
Xk

∣∣
Z

is transient, in a suitable sense, while Problems II and III could be solved if one could

show that if Z is slightly smaller than the critical window, then the process Xk

∣∣
Z

spends a
positive time in the empty state, with some uniform bounds on the expected number of buy
and sell orders in Z.

In this context, it is natural to look at linear functions F as in (1.26) such that the weight
functions w± are supported on Z and GF (X ) depends only on the relative order of M±(X )
and z±. It appears that such weight functions exist and form a two-dimensional space. Using
notation as in Theorem 8, let us define

ŵ± := wz−,− + wz+,+ and ẇ± := wz+,− + wz−,+. (A.38)

Then it appears that there exists a unique constant c ∈ R such that

w± := ŵ± + cẇ± (A.39)

are supported on Z. Moreover, it seems that the two-dimensional space we just mentioned is
spanned by the “symmetric” weight functions (w−, w+) and the “asymmetric” weight functions
(w∗−, w

∗
+) defined as

w∗− := −1(z−,z+] and w∗+ := 1[z−,z+). (A.40)

Letting F and F ∗ denote the corresponding linear functions, a natural way to attack Problem I
is to show that if the critical window J satisfies J ⊂ Z, then there exists a function h(F , F ∗)
that is subharmonic for the generator G in (1.25) and that shows that F (Xt)→∞ a.s. in such
a way that |F ∗(Xt)| � F (Xt).
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Also, a natural way to attack Problems II and III is to find a “Lyapunov style” function
V that depends on F , F ∗, and perhaps some other functions of the process, and that solves
an inequality of the form (3.6).

To conclude the paper, we mention a few more open problems, for which we have nothing
more concrete to say.

IV. Show that the invariant law from Problem III is unique and the long-time limit law
started from any initial law.

V. Investigate existence and uniqueness of solutions to Luckock’s equation with assumption
(A6) replaced by the weaker (A5) plus perhaps some conditions involving the function
Ψ from (1.21)

VI. Investigate whether the restricted model on the critical window is null recurrent or
transient.

VII. Prove a limit theorem for the shape of the stationary process near the boundary of the
critical window, in the spirit of [FS15].

VIII. For the critical model, investigate the tail of the distribution of the time till a limit order
is matched.
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