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Jan M. Swart* Réka Szabó�� Cristina Toninelli†§

March 3, 2022

Abstract

We review and extend Toom’s classical result about stability of trajectories of cellular
automata, with the aim of deriving explicit bounds for monotone Markov processes, both
in discrete and continuous time. This leads, among other things, to rigorous bounds for a
two-dimensional interacting particle system with cooperative branching and deaths. Our
results can be applied to derive bounds for other monotone systems as well.
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1 Introduction

1.1 Monotone systems

We will be interested in Markov processes, both in discrete and continuous time, that take
values in the space {0, 1}Zd

of configurations x = (x(i))i∈Zd of zeros and ones on the d-

dimensional integer lattice Zd. By definition, a map ϕ : {0, 1}Zd → {0, 1} is local if ϕ depends
only on finitely many coordinates, i.e., there exists a finite set ∆ ⊂ Zd and a function ϕ′ :
{0, 1}∆ → {0, 1} such that ϕ

(
(x(i))i∈Zd

)
= ϕ′

(
(x(i))i∈∆

)
for each x ∈ {0, 1}Zd

. We say that
ϕ is monotone if x ≤ y (coordinatewise) implies ϕ(x) ≤ ϕ(y). We say that ϕ is monotonic if
it is both local and monotone.

The discrete time Markov chains (Xn)n≥0 taking values in {0, 1}Zd
that we will be inter-

ested in are uniquely characterised by a finite collection ϕ1, . . . , ϕm of monotonic maps and
a probability distribution p1, . . . , pm on {1, . . . ,m}. They evolve in such a way that indepen-
dently for each n ≥ 0 and i ∈ Zd,

Xn+1(i) = ϕk(θiXn) with probability pk (1 ≤ k ≤ m), (1.1)

where for each j ∈ Zd, we define a translation operator θi : {0, 1}Zd → {0, 1}Zd
by (θix)(j) :=

x(i + j) (i, j ∈ Zd). We call such a Markov chain (Xn)n≥0 a monotone random cellular
automaton.

The continuous time Markov chains (Xt)t≥0 taking values in {0, 1}Zd
that we will be

interested in are similarly characterised by a finite collection ϕ1, . . . , ϕm of monotonic maps
and a collection of nonnegative rates r1, . . . , rm. They evolve in such a way that independently
for each i ∈ Zd,

Xt(i) is replaced by ϕk(θiXt) at the times of a Poisson process with rate rk (1.2)

(1 ≤ k ≤ m). We call such a Markov process a monotone interacting particle system. Well-
known results [Lig85, Thm I.3.9] show that such processes are well-defined. They are usually
constructed so that t 7→ Xt(i) is piecewise constant and right-continuous at its jump times.

Let Px denote the law of the discrete time process started in X0 = x and let 0 and 1 denote
the configurations that are constantly zero or one, respectively. Well-known results imply that
there exist invariant laws ν and ν, called the lower and upper invariant law, such that

P0[Xn ∈ · ] =⇒
n→∞

ν and P1[Xn ∈ · ] =⇒
n→∞

ν, (1.3)

where⇒ denotes weak convergence of probability laws on {0, 1}Zd
with respect to the product

topology. Each invariant law ν of (Xn)n≥0 satisfies ν ≤ ν ≤ ν in the stochastic order, and one
has ν = ν if and only if ρ = ρ, where

ρ := lim
n→∞

P0[Xn(i) = 1] =

∫
ν(dx)x(i) and ρ := lim

n→∞
P1[Xn(i) = 1] =

∫
ν(dx)x(i) (1.4)

denote the intensities of the lower and upper invariant laws. Completely analogue statements
hold in the continuous-time setting [Lig85, Thm III.2.3]. We will be interested in methods to
derive lower bounds on ρ.

It will be convenient to give names to some special monotonic functions. We start with
the constant monotonic functions

ϕ0(x) := 0 and ϕ1(x) := 1 (x ∈ Zd). (1.5)

Apart from these constant functions, all other monotonic functions have the property that
ϕ(0) = 0 and ϕ(1) = 1, and therefore monotone systems that do not use the function ϕ0
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(resp. ϕ1) have the constant configuration 1 (resp. 0) as a fixed point of their evolution. We
will discuss whether this fixed point is stable when the original system is perturbed by applying
ϕ0 (resp. ϕ1) with a small probability or rate.

The next monotonic function of interest is the “identity map”

ϕid(x) := x(0)
(
x ∈ {0, 1}Zd)

. (1.6)

Monotone systems that only use ϕid do not evolve at all, of course. We can think of the
continuous-time interacting particle systems as limits of discrete-time cellular automata where
time is measured in steps of some small size ε, the maps ϕ1, . . . , ϕm are applied with proba-
bilities εr1, . . . , εrm, and with the remaining probability, the identity map ϕid is applied.

For concreteness, to have some examples at hand, we consider three further, nontrivial
examples of monotonic functions. For simplicity, we restrict ourselves to two dimensions. We
will be interested in the functions

ϕNEC(x) := round
(
(x(0, 0) + x(0, 1) + x(1, 0))/3

)
,

ϕNN(x) := round
(
(x(0, 0) + x(0, 1) + x(1, 0) + x(0,−1) + x(−1, 0))/5

)
,

ϕcoop(x) :=x(0, 0) ∨
(
x(0, 1) ∧ x(1, 0)

)
,

(1.7)

where round denotes the function that rounds off a real number to the nearest integer. The
function ϕNEC is known as North-East-Center voting or NEC voting, for short, and also as
Toom’s rule. In analogy to ϕNEC, we let ϕNWC, ϕSWC, ϕSEC denote maps that describe North-
West-Center voting, South-West-Center voting, and South-East-Center voting, respectively,
defined in the obvious way. We will call the map ϕNN from (1.7) Nearest Neigbour voting or
NN voting, for short. Another name found in the literature is the symmetric majority rule.
Figure 1 shows numerical data for random perturbations of the cellular automata defined by
ϕNEC and ϕNN. Both ϕNEC and ϕNN have obvious generalisations to higher dimensions, but
we will not need these. We call ϕcoop the cooperative branching rule. It is also known as the
sexual reproduction rule because of the interpretation that when ϕcoop is applied at a site
(i1, i2), two parents at (i1 + 1, i2) and (i1, i2 + 1) produce offspring at (i1, i2), provided the
parents’ sites are both occupied and (i1, i2) is vacant.

1.2 Toom’s stability theorem

Recall the definition of the constant monotonic map ϕ0 in (1.5). In what follows, we fix a

monotonic map ϕ : {0, 1}Zd → {0, 1} that is not constantly zero or one. For each p ∈ [0, 1],
we let (Xp

k)k≥0 denote the monotone random cellular automaton defined by the monotonic
functions ϕ0 and ϕ that are applied with probabilities p and 1 − p, respectively. We let ρ(p)
denote the density of the upper invariant law as a function of p. Since ϕ is not constant,
1 is a fixed point of the deterministic system (X0

k)k≥0, and hence ρ(0) = 1. We say that
(Xk)k≥0 = (X0

k)k≥0 is stable if ρ(p) → 1 as p → 0. Furthermore, we say that ϕ is an eroder
if for each initial state X0

0 that contains only finitely many zeros, one has X0
n = 1 for some

n ∈ N. We quote the following result from [Too80, Thm 5].

Toom’s stability theorem (Xk)k≥0 is stable if and only if ϕ is an eroder.

In words, this says that the all-one fixed point is stable under small random perturbations if
and only if ϕ is an eroder.

For general local maps that need not be monotone, it is known that there exists no algo-
rithm to decide whether a given map is an eroder, even in one dimension [Pet87]. By contrast,
for monotonic maps, there exists a simple criterion to check whether a given map is an eroder.
Each monotonic map ϕ : {0, 1}Zd → {0, 1} can uniquely be written as

ϕ(x) =
∨

A∈A(ϕ)

∧
i∈A

x(i), (1.8)
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where A(ϕ) is a finite collection of finite subsets of Zd that have the interpretation that
their indicator functions 1A (A ∈ A(ϕ)) are the minimal configurations on which ϕ gives the
outcome 1. In particular, A(ϕ0) = ∅ and A(ϕ1) = {∅}, where in (1.8) we use the convention
that the supremum (resp. infimum) over an empty set is 0 (resp. 1). We let Conv(A) denote
the convex hull of a set A, viewed as a subset of Rd. Then [Too80, Thm 6], with simplifications
due to [Pon13, Thm 1], says that a monotonic map ϕ that is not constantly zero or one is an
eroder if and only if ⋂

A∈A(ϕ)

Conv(A) = ∅. (1.9)

We note that by Helly’s theorem [Roc70, Corollary 21.3.2], if (1.9) holds, then there exists a
subset A′ ⊂ A(ϕ) of cardinality at most d+ 1 such that

⋂
A∈A′ Conv(A) = ∅. Using (1.9), it

is straightforward to check that the maps ϕNEC and ϕcoop, defined in (1.7), are eroders. On
the other hand, one can easily check that ϕNN is not an eroder. Indeed, if (X0

n)n≥0 is started
in an initial state with a zero on the sites (0, 0), (0, 1), (1, 0), (1, 1) and ones everywhere else,
then the deterministic system remains in this state forever.

p

r

0 0.1 0.2 0.3
0

0.1

0.2

0.3

p

r

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Figure 1: Density ρ of the upper invariant law of two monotone cellular automata as a function
of the parameters, shown on a scale from 0 (white) to 1 (black). On the left: a version of
Toom’s model that applies the maps ϕ0, ϕ1, and ϕNEC with probabilities p, r, and 1− p− r,
respectively. On the right: the mononotone random cellular automaton that applies the maps
ϕ0, ϕ1, and ϕNN with probabilities p, r, and 1 − p − r, respectively. Contrary to ϕNEC, the
map ϕNN is not an eroder. By the symmetry between the 0’s and the 1’s, in both models,
the density ρ of the lower invariant law equals 1 − ρ. Due to metastability effects, the area
where the upper invariant law differs from the lower invariant law is shown too large in these
numerical data. For Toom’s model with r = 0, the data shown above suggest a first order
phase transition at pc ≈ 0.057 but based on numerical data for edge speeds we believe the
true value is pc ≈ 0.053. We conjecture that the model on the right has a unique invariant
law everywhere except on the diagonal p = r for p sufficiently small.

1.3 Main results

While Toom’s stability theorem is an impressive result, it is important to realise its limitations.
As Toom already remarked [Too80, Section V], his theorem does not apply to monotone cellular
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automata whose local state space is not {0, 1}, but {0, 1, 2}, for example. Also, his theorem
only applies in discrete time and only to random perturbations of cellular automata defined
by a single non-constant monotonic map ϕ.

The most difficult part in the proof of Toom’s stability theorem is showing that if ϕ is an
eroder, then ρ(p)→ 1 as p→ 0. To give a lower bound on ρ(p) for small values of p, Toom uses
a Peierls contour argument. The main result of our article is extending this Peierls argument
to monotone cellular automata whose definition involves, apart from the constant monotonic
map ϕ0, several non-constant monotonic maps ϕ1, . . . , ϕm. We are especially interested in
the case when one of these maps is the identity map ϕid and in the closely related problem
of giving lower bounds on ρ(p) for monotone interacting particle systems, which evolve in
continuous time. Another result of our work is obtaining explicit lower bounds for ρ(p) for
concrete models, which has not been attempted very much.

In particular, we extend Toom’s definition of a contour to monotone cellular automata that
apply several non-constant monotonic maps and to monotone interacting particle systems. We
show that Xn(i) = 0 for some i ∈ Zd (or equivalently Xt(i) = 0 in continuous time) implies
the presence of a Toom contour “rooted at” (n, i) (or (t, i) respectively), which in turn can be
used to obtain lower bounds for ρ(p) via a Peierls argument. Our main results are contained
in Theorems 7, 9 and 41. At this point rather than formally stating these results, which would
require dwelling into technical details, we state the explicit bounds we obtain as a result of
our construction.

Our extension of Toom’s result allows us to establish or improve explicit lower bounds for
ρ(p) for concrete models. First we consider Toom’s set-up, that is monotone random cellular
automata that apply the maps ϕ0 and ϕ with probabilities p and 1− p, respectively, where ϕ
is an eroder. An easy coupling argument shows that the intensity ρ(p) of the upper invariant
law is a nonincreasing function of p, so we can define a critical parameter

pc := sup{p : ρ(p) > 0} ∈ [0, 1]. (1.10)

Since ϕ is an eroder, Toom’s stability theorem tells us that pc > 0. We show how to derive
explicit lower bounds on pc for any choice of the eroder ϕ, and do this for two concrete
examples. We first take for ϕ the map ϕNEC and obtain the bound pc ≥ 3−21, which does
not compare well to the estimated value pc ≈ 0.053 coming from numerical simulations.
Nevertheless, this is probably the best rigorous bound currently available. Then we take for
ϕ the map ϕcoop and, improving on Toom’s method, we get the bound pc ≥ 1/64. This is also
some way off the estimated value pc ≈ 0.105 coming from numerical simulations.

Then we consider the monotone random cellular automaton on Zd that applies the maps
ϕ0, ϕid, and ϕcoop with probabilities p, q, r, respectively with q = 1− p− r. For each p, r ≥ 0
such that p + r ≤ 1, let ρ(p, r) denote the intensity of the upper invariant law of the process
with parameters p, 1− p− r, r. Arguing as before, it is easy to see that for each 0 ≤ r < 1 we
can define a critical parameter

pc(r) := sup{p : ρ(p, r) > 0} ∈ [0, 1− r]. (1.11)

By carefully examining the structure of Toom contours for this model, we prove the bound
pc(r) > 0.00624r.

Finally, we consider the interacting particle system on Z2 that applies the monotonic maps
ϕ0 and ϕcoop with rates 1 and λ, respectively. This model was introduced by Durrett [Dur86]
as the sexual contact process, and we can think of it as the limit of the previous discrete-time
cellular automata. For each λ > 0 we let ρ(λ) denote the intensity of the upper invariant law
of the process with parameters 1, λ. Again, we define a critical parameter

λc := inf{λ ≥ 0 : ρ(λ) > 0} ∈ (0,∞). (1.12)
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Numerical simulations suggest the value λc ≈ 12.4, we show the upper bound λc ≤ 161.1985.
Durrett claimed a proof that λc ≤ 110, which he describes as ridiculous, but for which he
challenges the reader to do better. We have quite not managed to beat his bound, though we
are not far off. The proofs of all results in [Dur86] are claimed to be contained in a forthcoming
paper with Lawrence Gray [DG85] that has never appeared. In [Gra99], Gray refered to
these proofs as “unpublished” and in [BD17], Durrett cites the paper as an “unpublished
manuscript”.

Although for monotone cellular automata that apply several non-constant monotonic maps
and for monotone interacting particle systems our methods do not seem to be enough to obtain
bounds on the critical value in general, we believe that our examples are instructive of how
one can try to do it for a concrete model.

1.4 Discussion

The cellular automaton defined by the NEC voting map ϕNEC is nowadays known as Toom’s
model. In line with Stigler’s law of eponymy, Toom’s model was not invented by Toom, but
by Vasilyev, Petrovskaya, and Pyatetski-Shapiro, who simulated random perturbations of this
and other models on a computer [VPP69]. The function p 7→ ρ(p) appears to be continuous
except for a jump at pc (see Figure 1). Toom, having heard of [VPP69] during a seminar,
proved in [Too74] that there exist random cellular automata on Zd with at least d different
invariant laws. Although Toom’s model is not explicitly mentioned in the paper, his proof
method can be applied to prove that pc > 0 for his model.

In [Too80], Toom improved his methods and proved his celebrated stability theorem. His
paper is quite hard to read. One of the reasons is that Toom tries to be as general as possible.
For example, he allows for cellular automata that look back more than one step in time,
which severely complicates the statement of conditions like (1.9). He also allows for noise
that is not i.i.d. and cellular automata that are not monotone, even though all his results in
the general case can easily be obtained by comparison with the i.i.d. monotone case. Toom’s
Peierls argument in the original paper is quite hard to understand. A more accessible account
of Toom’s original argument (with pictures!) in the special case of Toom’s model can be found
in the appendix of [LMS90].1 Although in principle, Toom’s Peierls argument can be used to
derive explicit bounds on pc, Toom did not attempt to do so, no doubt in the belief that more
powerful methods would be developed in due time.

Bramson and Gray [BG91] have given another alternative proof of Toom’s stability theorem
that relies on comparison with continuum models (which describe unions of convex sets in
Rd evolving in continuous time) and renormalisation-style block arguments. They somewhat
manage to relax Toom’s conditions but the proof is very heavy and any explicit bounds derived
using this method would presumably be very bad. Gray [Gra99] proved a stability theorem
for monotone interacting particle systems. The proofs use ideas from [Too80] and [BG91] and
do not lend themselves well to the derivation of explicit bounds. Gray also derived necessary
and sufficient conditions for a monotonic map to be an eroder [Gra99, Thm 18.2.1], apparently
overlooking the fact that Toom had already proved the much simpler condition (1.9).

Motivated by abstract problems in computer science, a number of authors have given
alternative proofs of Toom’s stability theorem in a more restrictive setting [GR88, BS88,
Gac95, Gac21]. Their main interest is in a three-dimensional system which evolves in two
steps: letting e1, e2, e3 denote the basis vectors in Z3, they first replace Xn(i) by

X ′n(i) := round
(
(Xn(i) +Xn(i+ e1) +Xn(i+ e2))/3

)
,

and then set
Xn+1(i) := round

(
(X ′n(i) +X ′n(i+ e3) +X ′n(i− e3))/3

)
.

1Unfortunately, their Figure 6 contains a small mistake, in the form of an arrow that should not be there.
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They prove explicit bounds for finite systems, although for values of p that are extremely
close to zero.2 The proofs of [GR88] do not use Toom’s Peierls argument but rely on different
methods. Their bounds were improved in [BS88]. Still better bounds can be found in the
unpublished note [Gac95]. The proofs in the latter manuscript are very similar to Toom’s
argument, with some crucial improvements at the end that are hard to follow due to missing
definitions. This version of the argument seems to have inspired the incomplete note by John
Preskill [Pre07] who links it to the interesting idea of counting “minimal explanations”. His
definition of a “minimal explanation” is a bit stronger than the definition we will adopt in
Subsection 7.1 below, but sometimes, such as in the picture in Figure 3 on the right, the two
definitions coincide. Figure 3 shows that the relation between Toom contours and minimal
explanations is not so straightforward as suggested in [Gac95, Pre07]. We have not found a
good way to control the number of minimal explanations with a given number of defective
sites and we do not know how to derive the lower bounds on the density of the upper invariant
law stated in [Gac95, Pre07].

Hwa-Nien Chen [Che92, Che94], who was a PhD student of Lawrence Gray, studied the
stability of various variations of Toom’s model under perturbations of the initial state and the
birth rate. The proofs of two of his four theorems depend on results that he cites from the
as yet nonexisting paper [DG85]. Ponselet [Pon13] gave an excellent account of the existing
literature and together with her supervisor proved exponential decay of correlations for the
upper invariant law of a large class of randomly perturbed monotone cellular automata [MP11].

There exists duality theory for general monotone interacting particle systems [Gra86,
SS18]. The basic idea is that the state in the origin at time zero is a monotone function
of the state at time −t, and this monotone function evolves in a Markovian way as a function
of t. Durrett [Dur86] mentions this dual process as an important ingredient of the proofs of
the forthcoming paper [DG85] and it is also closely related to the minimal explanations of
Preskill [Pre07]. A good understanding of this dual process could potentially help solve many
open problems in the area, but its behaviour is already quite complicated in the mean-field
case [MSS20].

1.5 Outline

The paper is organized as follows. We define Toom contours and give an outline of the main
idea of the Peierls argument in Subsection 2.1. In Subsection 2.2 we prove Toom’s stability
theorem. In Susbsection 2.3 we introduce a stronger notion of Toom contours, that allows us
to improve bounds for certain models. We then present two explicit bounds in Toom’s set-up
in Subsection 2.4. In Subsection 2.5 we consider monotone random cellular automata that
apply several non-constant monotonic maps and in Subsection 2.6 we discuss continuous time
results and bounds.

The rest of the paper is devoted for proofs and technical arguments. The results stated
in Subsections 2.1 are proved in Section 3. Section 4 contains all the proofs of the results
stated in Subsections 2.2, 2.3 and 2.4. The results of Subsection 2.5 are proved in Section 5.
Section 6 gives the precise definitions and results together with their proofs in the continuous-
time setting. Finally, the relation between Toom contours and minimal explanations in the
sense of John Preskill [Pre07] is discussed in Section 7, where we also discuss the open problem
of counting minimal explanations.

2In particular, [Gac95] needs p < 2−213−8.
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Figure 2: Example of a Toom graph with three charges. Sources and sinks are indicated with
solid dots and internal vertices are indicated with open dots. Note the isolated vertex in the
lower right corner, which is a source and a sink at the same time.

2 Setting and definitions

2.1 Toom’s Peierls argument

In this subsection, we derive a lower bound on the intensity of the upper invariant law for a
class of monotone random cellular automata. We use a Peierls argument based on a special
type of contours that we will call Toom contours. In their essence, these are the contours
used in [Too80], though on the face of it our definitions will look a bit different from those of
[Too80]. This pertains especially to the “sources” and “sinks” defined below that are absent
from Toom’s formulation and that we think help elucidate the argument. We start by defining
a special sort of directed graphs, which we will call Toom graphs (see Figure 2). After that
we first give an outline of the main idea of the Peierls argument and then provide the details.

Toom graphs

Recall that a directed graph is a pair (V, ~E) where V is a set whose elements are called vertices
and ~E is a subset of V × V whose elements are called directed edges. For each directed edge
(v, w) ∈ E, we call v the starting vertex and w the endvertex of (v, w). We let

~Ein(v) :=
{

(u, v′) ∈ ~E : v′ = v
}

and ~Eout(v) :=
{

(v′, w) ∈ ~E : v′ = v
}

(2.1)

denote the sets or directed edges entering and leaving a given vertex v ∈ V , respectively.
We will need to generalise the concept of a directed graph by allowing directed edges to

have a type in some finite set {1, . . . , σ}, with the possibility that several edges of different
types connect the same two vertices. To that aim, we define an directed graph with σ types
of edges to be a pair (V, E), where E = ( ~E1, . . . , ~Eσ) is a sequence of subsets of V × V . We
interpret ~Es as the set of directed edges of type s.

Definition 1 A Toom graph with σ ≥ 2 charges is a directed graph with σ types of edges
(V, E) = (V, ~E1, . . . , ~Eσ) such that each vertex v ∈ V satisfies one of the following four condi-
tions:
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(i) | ~Es,in(v)| = 0 = | ~Es,out(v)| for all 1 ≤ s ≤ σ,

(ii) | ~Es,in(v)| = 0 and | ~Es,out(v)| = 1 for all 1 ≤ s ≤ σ,

(iii) | ~Es,in(v)| = 1 and | ~Es,out(v)| = 0 for all 1 ≤ s ≤ σ,

(iv) there exists an s ∈ {1, . . . , σ} such that | ~Es,in(v)| = 1 = | ~Es,out(v)|
and | ~El,in(v)| = 0 = | ~El,out(v)| for each l 6= s.

See Figure 2 for a picture of a Toom graph with three charges. We set

V◦ :=
{
v ∈ V : | ~Es,in(v)| = 0 ∀1 ≤ s ≤ σ

}
,

V∗ :=
{
v ∈ V : | ~Es,out(v)| = 0 ∀1 ≤ s ≤ σ

}
,

Vs :=
{
v ∈ V : | ~Es,in(v)| = 1 = | ~Es,out(v)|

}
(1 ≤ s ≤ σ).

(2.2)

Vertices in V◦, V∗, and Vs are called sources, sinks, and internal vertices with charge s, respec-
tively. Vertices in V◦ ∩ V∗ are called isolated vertices. Informally, we can imagine that at each
source there emerge σ charges, one of each type, that then travel via internal vertices of the
corresponding charge through the graph until they arrive at a sink, in such a way that at each
sink there converge precisely σ charges, one of each type. It is clear from this description that
|V◦| = |V∗|, i.e., the number of sources equals the number of sinks.

We let ~E :=
⋃σ
s=1

~Es denote the union of all directed edge sets and we let E :=
{
{v, w} :

(v, w) ∈ ~E
}

denote the corresponding set of undirected edges. We say that a Toom graph
(V, E) is connected if the associated undirected graph (V,E) is connected.

Toom contours

Our next aim is to define Toom contours, which are connected Toom graphs that are embedded
in space-time Zd+1 in a special way. Let (V, E) = (V, ~E1, . . . , ~Eσ) be a Toom graph with σ
charges. Recall that ~E =

⋃σ
s=1

~Es.

Definition 2 An embedding of (V, E) is a map

V 3 v 7→ ψ(v) =
(
~ψ(v), ψd+1(v)

)
∈ Zd × Z (2.3)

that has the following properties:

(i) ψd+1(w) = ψd+1(v)− 1 for all (v, w) ∈ ~E,

(ii) ψ(v1) 6= ψ(v2) for each v1 ∈ V∗ and v2 ∈ V with v1 6= v2,

(iii) ψ(v1) 6= ψ(v2) for each v1, v2 ∈ Vs with v1 6= v2 (1 ≤ s ≤ σ).

We interpret ~ψ(v) and ψd+1(v) as the space and time coordinates of ψ(v) respectively.
Condition (i) says that directed edges (v, w) of the Toom graph (V, ~E) point in the direction
of decreasing time. Condition (ii) says that sinks do not overlap with other vertices and
condition (iii) says that internal vertices do not overlap with other internal vertices of the
same charge. See Figure 3 for an example of an embedding of a Toom graph. Not every Toom
graph can be embedded. Indeed, it is easy to see that if (V, E) has an embedding in the sense
defined above, then

| ~E1| = · · · = | ~Eσ|, (2.4)

i.e., there is an equal number of charged edges of each charge. The Toom graph of Figure 2
can be embedded, but if we would change the number of internal vertices on one of the paths
from a source to a sink, then the resulting graph would still be a Toom graph but it would
not be possible to embed it.
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(0, 0, 0)
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(2, 2,−7)
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?
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Figure 3: On the left: a Toom graph with two charges. Middle: embedding of the Toom graph
on the left, with time running downwards. The connected component containing the root v◦
forms a Toom contour rooted at the origin (0, 0, 0). On the right: a minimal explanation for a
monotone cellular automaton Φ that applies the maps ϕ0 and ϕcoop with probabilities p and
1 − p, respectively. The origin has the value zero because the sites marked with a star are
defective. This explanation is minimal in the sense that removing any of the defective sites
results in the origin having the value one. The Toom contour in the middle picture is present
in Φ. In particular, the sinks of the Toom contour coincide with some, though not with all of
the defective sites of the minimal explanation.

Definition 3 A Toom contour is a quadruple (V, E , v◦, ψ), where (V, E) is a connected Toom
graph, v◦ ∈ V◦ is a specially designated source, and ψ is an embedding of (V, E) that has the
additional properties that:

(iv) ψd+1(v◦) > t for all (i, t) ∈ ψ(V )\{ψ(v◦)},
where ψ(V ) := {ψ(v) : v ∈ V } denotes the image of V under ψ.

We call v◦ the root of the Toom contour and we say that the Toom contour (V, E , v◦, ψ) is
rooted at the space-time point ψ(v◦) ∈ Zd+1. See Figure 3 for an example of a Toom contour
with two charges.

For any Toom contour (V, E , v◦, ψ), we write

~E∗ :=
⋃σ
s=1

~E∗s with ~E∗s :=
{

(v, w) ∈ ~Es : v ∈ Vs ∪ {v◦}
}

(1 ≤ s ≤ σ),

~E◦ :=
⋃σ
s=1

~E◦s with ~E◦s :=
{

(v, w) ∈ ~Es : v ∈ V◦\{v◦}
}

(1 ≤ s ≤ σ).
(2.5)

i.e., ~E∗ is the set of directed edges that have an internal vertex or the root as their starting
vertex, and ~E◦ are all the other directed edges, that start at a source that is not the root. The
special role played by the root will become important in the next subsection, when we define
what it means for a Toom contour to be present in a collection of i.i.d. monotonic maps.
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If (V, E , v◦, ψ) is a Toom contour, then we let

ψ(V∗) :=
{
ψ(v) : v ∈ V∗

}
, ψ( ~E∗s ) :=

{(
ψ(v), ψ(w)

)
: (v, w) ∈ ~E∗s

}
,

ψ( ~E◦s ) :=
{(
ψ(v), ψ(w)

)
: (v, w) ∈ ~E◦s

}
(1 ≤ s ≤ σ),

(2.6)

denote the images under ψ of the set of sinks V∗ and the sets of directed edges ~E∗s and ~E◦s ,
respectively. We call two Toom contours (V, E , v◦, ψ) and (V ′, E ′, v′◦, ψ′) equivalent if

ψ(v◦) = ψ′(v◦), ψ(V∗) = ψ′(V ′∗), ψ( ~E∗s ) = ψ′( ~E′∗s), ψ( ~E◦s ) = ψ′( ~E′◦s). (2.7)

The main idea of the construction

We will be interested in monotone random cellular automata that are defined by a probability
distribution p0, . . . , pm and monotonic maps ϕ0, . . . , ϕm, of which ϕ0 = ϕ0 is the constant map
that always gives the outcome zero and ϕ1, . . . , ϕm are non-constant. This generalises Toom’s
set-up, who only considered the case m = 1. We fix an i.i.d. collection Φ = (Φ(i,t))(i,t)∈Zd+1

of monotonic maps such that P[Φ(i,t) = ϕk] = pk (0 ≤ k ≤ m). A space-time point (i, t) with
Φ(i,t) = ϕ0 is called a defective site. In Lemmas 4 and 5 below, we show that Φ almost surely

determines a stationary process (Xt)t∈Z that at each time t is distributed according to the
upper invariant law ν. Our aim is to give an upper bound on the probability that X0(0) = 0,
which then translates into a lower bound on the intensity ρ of the upper invariant law.

To achieve this, we first describe a special way to draw a Toom graph inside space-time
Zd+1. Such an embedding of a Toom graph in space-time is then called a Toom contour.
Since our argument requires looking backwards in time, it will be convenient to adopt the
convention that in all our pictures (such as Figure 3), time runs downwards. Next, we define
when a Toom contour is present in the random collection of maps Φ. Theorem 7 then states
that the event X0(0) = 0 implies the presence of a Toom contour in Φ. This allows us to
bound the probability that X0(0) = 0 from above by the expected number of Toom contours
that are present in Φ. In later subsections, we will then discuss conditions under which this
expectation can be controlled and derive explicit bounds.

Before we state the remaining definitions, which are mildly complicated, we explain the
main idea of the construction. We will define presence of Toom contours in such a way that
the space-time point (0, 0) is a source and all the sinks correspond to defective sites where
the map ϕ0 is applied. Let Mn denote the number of Toom contours that have (0, 0) as a
source and that have n sinks. One would like to show that if the map ϕ0 is applied with a
sufficiently small probability p, then the expression

∑∞
n=1Mnp

n is small. This will not be
true, however, unless one imposes additional conditions on the contours. In fact, it is rather
difficult to control the number of contours with a given number of sinks. It is much easier to
count contours with a given number of edges. Letting Nn denote the number of contours with
n edges (rather than sinks), it is not hard to show that Nn grows at most exponentially as a
function of n.

To complete the argument, therefore, it suffices to impose additional conditions on the
contours that bound the number of edges in terms of the number of sinks. If at a certain
space-time point (i, t), the stationary process satisfies Xt(i) = 0, and the map Φ(i,t) that is
applied there is ϕk, then for each set A ∈ A(ϕk) (with A(ϕk) defined in (1.8)), at least one of
the sites j ∈ A must have the property that Xt−1(j) = 0. We will use this to steer edges in
a certain direction, in such a way that different charges tend to move away from each other,
except for edges that originate in a source.

Since in the end, edges of all charges must convene in each sink, this will allow us to bound
the total number of edges in terms of the “bad” edges that originate in a source. Equivalently,
this allows us to bound the total number of edges in terms of the number of sources, which is
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the same as the number of sinks. This is the main idea of the argument. We now continue to
give the precise definitions.

The contour argument

Having defined the right sort of contours, we now come to the core of the argument: the fact
that X0(0) = 0 implies the existence of a Toom contour with certain properties. We first need

a special construction of the stationary process (Xt)t∈Z. We let {0, 1}Zd+1
denote the space

of all space-time configurations x = (xt(i))(i,t)∈Zd+1 . For x ∈ {0, 1}Zd+1
and t ∈ Z, we define

xt ∈ {0, 1}Zd
by xt := (xt(i))i∈Zd . We will call a collection φ = (φ(i,t))(i,t)∈Zd+1 of monotonic

maps from {0, 1}Zd
to {0, 1} a monotonic flow. By definition, a trajectory of φ is a space-time

configuration x such that

xt(i) = φ(i,t)(θixt−1)
(
(i, t) ∈ Zd+1

)
. (2.8)

We need the following two simple lemmas.

Lemma 4 (Minimal and maximal trajectories) Let φ be a monotonic flow. Then there
exist trajectories x and x that are uniquely characterised by the property that each trajectory
x of φ satisfies x ≤ x ≤ x (pointwise).

Lemma 5 (The lower and upper invariant laws) Let ϕ0, . . . , ϕm be monotonic functions,
let p0, . . . , pm be a probability distribution, and let ν and ν denote the lower and upper invariant
laws of the corresponding monotone random cellular automaton. Let Φ =

(
Φ(i,t)

)
(i,t)∈Zd+1 be

an i.i.d. collection of monotonic maps such that P[Φ(i,t) = ϕk] = pk (0 ≤ k ≤ m), and let

X and X be the minimal and maximal trajectories of Φ. Then for each t ∈ Z, the random
variables Xt and Xt are distributed according to the laws ν and ν, respectively.

From now on, we fix a monotonic flow φ that takes values in {ϕ0, . . . , ϕm}, of which
ϕ0 = ϕ0 is the constant map that always gives the outcome zero and ϕ1, . . . , ϕm are non-
constant. Recall that A(ϕk), defined in (1.8), corresponds to the set of minimal configurations
on which ϕk gives the outcome 1. We fix an integer σ ≥ 2 and for each 1 ≤ k ≤ m and
1 ≤ s ≤ σ, we choose a set

As(ϕk) ∈ A(ϕk). (2.9)

Informally, the aim of these sets is to steer edges of different charges away from each other.
In later subsections, when we derive bounds for concrete models, we will make an explicit
choice for σ and sets As(ϕk). For the moment, we allow these to be arbitrary. The integer
σ corresponds to the number of charges. The definition of what it means for a contour to be
present will depend on the choice of the sets in (2.9).

As a concrete example, consider the case m = 1 and ϕ1 = ϕcoop, the cooperative branching
map defined in (1.7). The set A(ϕcoop) from (1.8) is given by A(ϕcoop) = {A1, A2} with
A1 := {(0, 0)} and A2 := {(0, 1), (1, 0)}. Using (1.9) we see that ϕcoop is an eroder. In this
concrete example, we will set σ := 2 and for the sets As(ϕ1) (s = 1, 2) of (2.9) we choose the
sets A1, A2 we have just defined.

Definition 6 A Toom contour (V, E , v◦, ψ) with σ charges is present in the monotonic flow
φ if:

(i) φψ(v) = ϕ0 for all v ∈ V∗,

(ii) φψ(v) ∈ {ϕ1, . . . , ϕm} for all v ∈ V \V∗,

(iii) ~ψ(w)− ~ψ(v) ∈ As(φψ(v)) for all (v, w) ∈ ~E∗s (1 ≤ s ≤ σ),
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(iv) ~ψ(w)− ~ψ(v) ∈
σ⋃
s=1

As(φψ(v)) for all (v, w) ∈ ~E◦,

where ~E∗s and ~E◦ are defined in (2.5) and ~ψ(v), defined in (2.3), denotes the spatial coordinates
of the space-time point ψ(v).

Note that the definition of what it means for a contour to be present depends on the
choice of the sets As(ϕk) in (2.9). Conditions (i) and (ii) say that sinks of (V, E) are mapped
to defective space-time points, where the constant map ϕ0 is applied, and all other vertices
are mapped to space-time points where one of the non-constant maps ϕ1, . . . , ϕm is applied.
Together with our earlier definition of an embedding, condition (iii) says that if (v, w) is an
edge with charge s that comes out of the root or an internal vertex, then (v, w) is mapped to
a pair of space-time points of the form

(
(i, t), (i+ j, t− 1)

)
with j ∈ As(φψ(v)). Condition (iv)

is similar, except that if v is a source different from the root, then we only require that
j ∈ ⋃σ

s=1As(φψ(v)). It is clear from this definition that if (V, E , v◦, ψ) and (V ′, E ′, v′◦, ψ′) are
equivalent Toom contours, then (V, E , v◦, ψ) is present in φ if and only if the same is true for
(V ′, E ′, v′◦, ψ′).

For our example of the monotone cellular automaton with ϕ1 = ϕcoop, Definition 6 is
demonstrated in Figure 3. Directed edges of charge 1 and 2 are indicated in red and blue,
respectively. Because of our choice A2(ϕ1) := {(0, 1), (1, 0)}, blue edges that start at internal
vertices or the root point in directions where one of the spatial coordinates increases by one.
Likewise, since A1(ϕ1) := {(0, 0)}, red edges that start at internal vertices or the root point
straight up, i.e., in the direction of decreasing time. Sinks of the Toom contour correspond to
defective sites, as indicated in Figure 3 on the right.

In view of Lemma 5, the following crucial theorem links the upper invariant law to Toom
contours.

Theorem 7 (Presence of a Toom contour) Let φ be a monotonic flow on {0, 1}Zd
that

take values in {ϕ0, . . . , ϕm}, where ϕ0 = ϕ0 is the constant map that always gives the outcome
zero and ϕ1, . . . , ϕm are non-constant. Let x denote the maximal trajectory of φ. Let σ ≥ 2 be
an integer and for each 1 ≤ s ≤ σ and 1 ≤ k ≤ m, let As(ϕk) ∈ A(ϕk) be fixed. If x0(0) = 0,
then, with respect to the given choice of σ and the sets As(ϕk), a Toom contour (V, E , v◦, ψ)
rooted at (0, 0) is present in φ.

We note that the converse of Theorem 7 does not hold, i.e., the presence in φ of a Toom
contour (V, E , v◦, ψ) that is rooted at (0, 0) does not imply that X0(0) = 0. This can be seen
from Figure 3. In this example, if there would be no other defective sites apart from the sinks
of the Toom contour, then the origin would have the value one. This is a difference with the
Peierls arguments used in percolation theory, where the presence of a contour is a necessary
and sufficient condition for the absence of percolation.

Let T0 denote the set of Toom contours rooted at (0, 0) (up to equivalence). We formally
denote a Toom contour by T = (V,E, v◦, ψ). Let Φ = (Φ(i,t))(i,t)∈Zd+1 be an i.i.d. collection of
monotonic maps taking values in {ϕ0, . . . , ϕm}. Then Theorem 7 implies the Peierls bound:

1− ρ = P[X0(0) = 0] ≤
∑
T∈T0

P
[
T is present in Φ

]
. (2.10)

In Section 2.2 below, we will show how (2.10) can be used to prove the most difficult part
of Toom’s stability theorem, namely, that the upper invariant law of eroders is stable under
small random perturbations.

Toom contours with two charges

Although Theorem 7 is sufficient to prove stability of eroders, when deriving explicit bounds,
it is often useful to have stronger versions of Theorem 7 at one’s disposal that establish the
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presence of Toom contours with certain additional properties that restrict the sum on the
right-hand side in (2.10) and hence lead to improved bounds. Here we formulate one such
result that holds specifically for Toom contours with two charges.

As before, we let φ be a monotonic flow taking values in {ϕ0, . . . , ϕm}, of which ϕ0 = ϕ0

is the constant map that always gives the outcome zero and ϕ1, . . . , ϕm are non-constant. We
set σ = 2 and choose sets As(ϕk) ∈ A(ϕk) (1 ≤ k ≤ m, 1 ≤ s ≤ 2) as in (2.9).

Definition 8 A Toom contour (V, E , v◦, ψ) with 2 charges is strongly present in the mono-
tonic flow φ if in addition to conditions (i)–(iv) of Definition 6, for each v ∈ V◦\{v◦} and
w1, w2 ∈ V with (v, ws) ∈ ~Es,out(v) (s = 1, 2), one has:

(v) ~ψ(w1)− ~ψ(v) ∈ A2(φψ(v)) and ~ψ(w2)− ~ψ(v) ∈ A1(φψ(v)),

(vi) ~ψ(w1) 6= ~ψ(w2).

Condition (v) can informally be described by saying that charged edges pointing out of
any source other than the root must always point in the “wrong” direction, compared to
charged edges pointing out of an internal vertex or the root. Note that for the Toom contour
in Figure 3, this is indeed the case. With this definition, we can strengthen Theorem 7 as
follows.

Theorem 9 (Strong presence of a Toom contour) If σ = 2, then the Toom contour
(V, E , v◦, ψ) from Theorem 7 can be chosen such that it is strongly present in φ.

Our proof of Theorem 9 follows quite a different strategy from the proof of Theorem 7.
We do not know to what extent Theorem 9 can be generalised to Toom contours with three
or more charges.

In the following subsections, we will show how the results of the present subsection can
be applied in concrete situations. In Subsection 2.2, we show how Theorem 7 can be used
to prove stability of eroders, which is the difficult implication in Toom’s stability theorem.
In Subsection 2.3, building on the results of Subsection 2.2, we show how for Toom contours
with two charges, the bounds can be improved by applying Theorem 9 instead of Theorem 7.
In Subsection 2.4, we derive explicit bounds for two concrete eroders. In Subsection 2.5, we
leave the setting of Toom’s stability theorem and discuss monotone random cellular automata
whose definition involves more than one non-constant monotonic map. In Subsection 6.2 we
derive bounds for monotone interacting particle systems in continuous time.

2.2 Stability of eroders

In this subsection, we restrict ourselves to the special set-up of Toom’s stability theorem. We
fix a non-constant monotonic map ϕ that is an eroder and let Φp = (Φp

(i,t))(i,t)∈Zd be an i.i.d.

collection of monotonic maps that assume the values ϕ0 and ϕ with probabilities p and 1− p,
respectively. We let (X

p
t )t∈Z denote the maximal trajectory of Φp and let ρ(p) := P[X

p
0(0) = 1]

denote the intensity of the upper invariant law. We will show how the Peierls bound (2.10)
can be used to prove that ρ(p) → 1 as p → 0, which is the most difficult part of Toom’s
stability theorem.

To do this, first we will need another equivalent formulation of the eroder property (1.9).
By definition, a polar function is a linear function Rd 3 z 7→ L(z) = (L1(z), . . . , Lσ(z)) ∈ Rσ
such that

σ∑
s=1

Ls(z) = 0 (z ∈ Rd). (2.11)

We call σ ≥ 2 the dimension of L. The following lemma is adapted from [Pon13, Lemma 12],
with the basic idea going back to [Too80]. Recall the definition of A(ϕ) in (1.8).

15



Lemma 10 (Erosion criterion) A non-constant monotonic function ϕ : {0, 1}Zd → {0, 1}
is an eroder if and only if there exists a polar function L of dimension σ ≥ 2 such that

σ∑
s=1

sup
A∈A(ϕ)

inf
i∈A

Ls(i) > 0. (2.12)

If ϕ is an eroder, then L can moreover be chosen so that its dimension σ is at most d+ 1.

To understand why the condition (2.12) implies that ϕ is an eroder, for 1 ≤ s ≤ σ, let

δs := sup
A∈A(ϕ)

inf
i∈A

Ls(i) and rs(x) := sup
{
Ls(i) : i ∈ Zd, x(i) = 0

} (
x ∈ {0, 1}Zd)

,

(2.13)
with rs(1) := −∞, and let (X0

k)k≥0 denote the deterministic cellular automaton that applies
the map ϕ in each space-time point, started in an arbitrary initial state. In the proof of
Lemma 33 below, we will show that

rs(X
0
n) ≤ rs(X0

0 )− δsn (n ≥ 0). (2.14)

This says that δs has the interpretation of an edge speed in the direction defined by the linear
function Ls. If x is a configuration containing finitely many zeros, then we define the extent
of x by

ext(x) :=
σ∑
s=1

rs(x). (2.15)

Then ext(1) = −∞, while on the other hand, by the defining property (2.11) of a polar
function, ext(x) ≥ 0 for each x that contains at least one zero. Now (2.14) implies that if X0

0

contains finitely many zeros, then

ext(X0
n) ≤ ext(X0

0 )− nδ with δ :=

σ∑
s=1

δs. (2.16)

It follows that X0
n = 1 for all n such that ext(X0

0 )−nδ < 0. Since δ > 0 by (2.12), we conclude
that ϕ is an eroder.

We use Lemma 10 and the polar functions to choose the number of charges σ and to make
a choice for the sets As(ϕ) ∈ A(ϕ) (1 ≤ s ≤ σ) as in (2.9) when defining Toom contours. For
a given choice of a polar function L and sets As(ϕ), let us set

B(ϕ) :=

σ⋃
s=1

As(ϕ), (2.17)

and define

ε :=
σ∑
s=1

εs with εs := inf
i∈As(ϕ)

Ls(i) (1 ≤ s ≤ σ),

R :=

σ∑
s=1

Rs with Rs :=− inf
i∈B(ϕ)

Ls(i) (1 ≤ s ≤ σ).

(2.18)

Then Lemma 10 tells us that since ϕ is an eroder, we can choose the polar function L and
sets As(ϕ) in such a way that ε > 0, which we assume from now on.

Recall that in the example where ϕ = ϕcoop, we earlier made the choices σ := 2, A1(ϕ) :=
{(0, 0)}, and A2(ϕ) := {(0, 1), (1, 0)}. We will now also choose a polar function by setting

L1(z1, z2) := −z1 − z2 and L2 := −L1

(
(z1, z2) ∈ R2

)
, (2.19)
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One can check that for this choice of L the constants from (2.18) are given by

ε = 1 and R = 1. (2.20)

Returning to the setting where ϕ is a general eroder, we let T0 denote the set of Toom
contours rooted at (0, 0) (up to equivalence). Since we apply only one non-constant monotonic
map, conditions (iii) and (iv) of Definition 6 of what it means for a contour to be present in
Φp do not involve any randomness, i.e., these conditions now simplify to the deterministic
conditions:

(iii)’ ~ψ(w)− ~ψ(v) ∈ As(ϕ) for all (v, w) ∈ ~E∗s (1 ≤ s ≤ σ),

(iv)’ ~ψ(w)− ~ψ(v) ∈ B(ϕ) for all (v, w) ∈ ~E◦.

Definition 11 We let T ′0 denote the set of Toom contours rooted at (0, 0) (up to equivalence)
that satisfy conditions (iii)’ and (iv)’.

For each T = (V, E , v◦, ψ) ∈ T ′0 , let

n∗(T ) := |V◦| = |V∗| and ne(T ) := | ~E1| = · · · = | ~Eσ| (2.21)

denote its number of sinks and sources, each, and its number of directed edges of each charge.
As already explained informally, the central idea of Toom contours is that differently charged
edges move away from each other except for edges starting at a source, which allows us to
bound the number ne(T ) of edges in terms of the number n∗(T ) of sources (or equivalently
sinks). We now make this informal idea precise. It is at this point of the argument that the
eroder property is used in the form of Lemma 10 which allowed us to choose the sets As(ϕ)
and the polar function L such that the constant ε from (2.18) is positive. We also need the
following simple lemma.3

Lemma 12 (Zero sum property) Let (V, E) be a Toom graph with σ charges, let ψ : V →
Zd+1 be an embedding of (V, E), and let L : Rd → Rσ be a polar function with dimension σ.
Then

σ∑
s=1

∑
(v,w)∈ ~Es

(
Ls(~ψ(w))− Ls(~ψ(v))

)
= 0. (2.22)

Proof We can rewrite the sum in (2.22) as

∑
v∈V

{ σ∑
s=1

∑
(u,v)∈ ~Es,in(v)

Ls(~ψ(v))−
σ∑
s=1

∑
(v,w)∈ ~Es,out(v)

Ls(~ψ(v))
}
. (2.23)

At internal vertices, the term inside the brackets is zero because the number of incoming edges
of each charge equals the number of outgoing edges of that charge. At the sources and sinks,
the term inside the brackets is zero by the defining property (2.11) of a polar function, since
there is precisely one outgoing (resp. incoming) edge of each charge.

As a consequence of Lemma 12, we can estimate ne(T ) from above in terms of n∗(T ).

Lemma 13 (Upper bound on the number of edges) Let ε and R be defined in (2.18).
Then each T ∈ T ′0 satisfies ne(T ) ≤ (1 +R/ε)

(
n∗(T )− 1

)
.

3Lemmas 12 and 13 are similar to [Too80, Lemmas 1 and 2]. The main difference is that in Toom’s
construction, the number of incoming edges of each charge equals the number of outgoing edges of that charge
at all vertices of the contour, i.e., there are no sources and sinks.
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Proof Since | ~E◦s | = n∗(T )−1 and | ~E∗s | = ne(T )−n∗(T ) + 1 (1 ≤ s ≤ σ), Lemma 12 and rules
(iii)’ and (iv)’ imply that

0 =
σ∑
s=1

( ∑
(v,w)∈ ~E∗s

(
Ls(~ψ(w))− Ls(~ψ(v))

)
+

∑
(v,w)∈ ~E◦s

(
Ls(~ψ(w))− Ls(~ψ(v))

))
≥

σ∑
s=1

[(
ne(T )− n∗(T ) + 1

)
εs −

(
n∗(T )− 1

)
Rs
]

= εne(T )− (ε+R)
(
n∗(T )− 1

)
,

(2.24)

where we have used that Ls(~ψ(w))− Ls(~ψ(v)) = Ls
(
~ψ(w)− ~ψ(v)

)
by the linearity of Ls.

By condition (ii) of Definition 2 of an embedding, sinks of a Toom contour do not overlap.
By condition (i) of Definition 6 of what it means for a Toom contour to be present, each
sink corresponds to a space-time point (i, t) that is defective, meaning that Φ(i,t) = ϕ0, which
happens with probability p, independently for all space-time points. By Lemma 13, we can
then estimate the right-hand side of (2.10) from above by∑

T∈T0
P
[
T is present in Φ

]
≤
∑
T∈T ′0

pn∗(T ) = p
∑
T∈T ′0

pn∗(T )−1

≤ p
∑
T∈T ′0

pne(T )/(1+R/ε) = p
∞∑
n=0

Nnp
n/(1+R/ε),

(2.25)

where
Nn :=

∣∣{T ∈ T ′0 : ne(T ) = n}
∣∣ (n ≥ 0) (2.26)

denotes the number of (nonequivalent) contours in T ′0 that have n edges of each charge. The
following lemma gives a rough upper bound on Nn. Recall the definition of B(ϕ) in (2.17).

Lemma 14 (Exponential bound) Let M :=
∣∣B(ϕ)

∣∣ and let τ := d1
2σe denote 1

2σ rounded
up to the next integer. Then

Nn ≤ nτ−1(τ + 1)2τnMσn (n ≥ 1). (2.27)

Combining (2.25) and Lemma 14, we see that the right-hand side of (2.10) is finite for p
sufficiently small and hence (by dominated convergence) tends to zero as p→ 0. This proves
that ρ(p)→ 1 as p→ 0, which is the most difficult part of Toom’s stability theorem.

2.3 Contours with two charges

For Toom contours with two charges, the bounds derived in the previous subsection can be
improved by using Theorem 9 instead of Theorem 7. To make this precise, for Toom contours
with two charges, we define a subset T ′′0 of the set of contours T ′0 from Definition 11 as follows:

Definition 15 For Toom contours with σ = 2 charges, we let T ′′0 denote the set of Toom
contours rooted at (0, 0) (up to equivalence) that satisfy:

(iii)’ ~ψ(w)− ~ψ(v) ∈ As(ϕ) for all (v, w) ∈ ~E∗s (1 ≤ s ≤ 2),

(iv)” ~ψ(w)− ~ψ(v) ∈ A3−s(ϕ) for all (v, w) ∈ ~E◦s (1 ≤ s ≤ 2),

(v)” ~ψ(w1) 6= ~ψ(w2) for all v ∈ V◦\{v◦}, w1 ∈ ~E1,out, and w2 ∈ ~E2,out.
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Note that condition (iii)’ above is the same condition as (iii)’ of Definition 11. Condition
(iv)” strengthens condition (iv)’ of Definition 11. Conditions (iv)” and (v)” correspond to con-
ditions (v) and (vi) of Definition 8, which in our present set-up do not involve any randomness.
We will need analogues of Lemmas 13 and 14 with T ′0 replaced by T ′′0 . We define

R′′ :=
σ∑
s=1

R′′s with R′′1 := − inf
i∈A2(ϕ)

L1(i) and R′′2 := − inf
i∈A1(ϕ)

L2(i). (2.28)

The following lemma is similar to Lemma 13.

Lemma 16 (Upper bound on the number of edges for σ = 2) Let ε and R′′ be defined
in (2.18) and (2.28). Then each T ∈ T ′′0 satisfies ne(T ) ≤ (1 +R′′/ε)

(
n∗(T )− 1

)
.

Proof The proof is the same as that of Lemma 13, with the only difference that condition
(iv)” of Definition 15 allows us to use R′′s instead of Rs (s = 1, 2) as upper bounds.

Similarly to (2.26), we let

N ′′n :=
∣∣{T ∈ T ′′0 : ne(T ) = n}

∣∣ (n ≥ 0) (2.29)

denote the number of (nonequivalent) contours in T ′′0 that have n edges of each charge. Then
Theorem 9 implies the Peierls bound:

1− ρ(p) ≤
∑
T∈T0

P
[
T is strongly present in Φ

]
≤
∑
T∈T ′′0

pn∗(T ) ≤ p
∞∑
n=0

N ′′np
n/(1+R′′/ε). (2.30)

The following lemma is similar to Lemma 14.

Lemma 17 (Exponential bound for σ = 2) Let Ms :=
∣∣As(ϕ)

∣∣ (s = 1, 2). Then

N ′′n ≤ 1
2(4M1M2)n (n ≥ 1). (2.31)

2.4 Some explicit bounds

We continue to work in the set-up of the previous subsections, i.e., we consider monotone
random cellular automata that apply the maps ϕ0 and ϕ with probabilities p and 1 − p,
respectively, where ϕ is an eroder. An easy coupling argument shows that the intensity ρ(p)
of the upper invariant law is a nonincreasing function of p, so there exists a unique pc ∈ [0, 1]
such that ρ(p) > 0 for p < pc and ρ(p) = 0 for p > pc. Since ϕ is an eroder, Toom’s stability
theorem tells us that pc > 0. In this subsection, we derive explicit lower bounds on pc for two
concrete choices of the eroder ϕ.

If one wants to use (2.10) to show that ρ > 0, then one must show that the right-hand
side of (2.10) is less than one. In practice, when deriving explicit bounds, it is often easier
to show that a certain sum is finite than showing that it is less than one. We will prove a
generalisation of Theorems 7 and 9 that can in many cases be used to show that if a certain
sum is finite, then ρ > 0.

In the set-up of Theorem 7, we choose js ∈ As(ϕ1) (1 ≤ s ≤ σ). We fix an integer r ≥ 0
and we let φ(r) denote the modified monotonic flow defined by

φ
(r)
(i,t) :=

{
ϕ1 if − r < t ≤ 0,

φ(i,t) otherwise.
(2.32)

Below, we let x(r) denote the maximal trajectory of the modified monotonic flow φ(r). As
before, we let Conv(A) denote the convex hull of a set A.
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Proposition 18 (Presence of a large contour) In the set-up of Theorem 7, on the event

that x
(r)
−r(i) = 0 for all i ∈ Conv({rj1, . . . , rjσ}), there is a Toom contour (V, E , v◦, ψ) rooted

at (0, 0) present in φ(r) such that ψd+1(v) ≤ −r for all v ∈ V∗ and ψd+1(v) ≤ 1 − r for all
v ∈ V◦\{v◦}. If σ = 2, then such a Toom contour is strongly present in φ(r).

As a simple consequence of this proposition, we obtain the following lemma.

Lemma 19 (Finiteness of the Peierls sum) If
∑
T∈T ′0

pn∗(T ) <∞, then ρ(p) > 0. If σ = 2,

then similarly
∑
T∈T ′′0

pn∗(T ) <∞ implies ρ(p) > 0.

We prove Proposition 18 and Lemma 19 in Section 4.3.

Cooperative branching Generalizing the definition in (1.7), for each dimension d ≥ 1, we

define a monotonic map ϕcoop,d : {0, 1}Zd → {0, 1} by

ϕcoop,d(x) := x(0) ∨
(
x(e1) ∧ · · · ∧ x(ed)

)
, (2.33)

where 0 is the origin and ei denotes the ith unit vector in Zd. In particular, in dimension d = 2,
this is the cooperative branching rule ϕcoop defined in (1.7). We chose σ := 2, A1(ϕ) := {0},
and A2(ϕ1) := {e1, . . . , ed}, and as our polar function L we chose

L1(z1, . . . , zd) := −
d∑
i=1

zi and L2(z1, . . . , zd) :=

d∑
i=1

zi, (2.34)

which has the result that the constants from (2.18) and (2.28) are given by ε = 1, R = 1 and
R′′ = 1. Arguing as in (2.25), using Lemmas 13 and 14 with M = d+ 1, σ = 2 and τ = 1, we
obtain the Peierls bound:∑

T∈T0
P
[
T is present in Φ

]
≤
∑
T∈T ′0

pn∗(T ) ≤ p
∞∑
n=0

22n(d+ 1)2npn/2. (2.35)

This is finite when 4(d + 1)2p1/2 < 1, so using Lemma 19 we obtain the bound pc(d) ≥
16−1(d + 1)−4. This bound can be improved by using Theorem 9 and its consequences.
Applying Lemmas 16 and 17 with M1 = d, M2 = 1, we obtain the Peierls bound:

∑
T∈T0

P
[
T is strongly present in Φ

]
≤
∑
T∈T ′′0

pn∗(T ) ≤ p

2

∞∑
n=0

4ndnpn/2. (2.36)

This is finite when 4dp1/2 < 1, so using Lemma 19 we obtain the bound

pc(d) ≥ 1

16d2
. (2.37)

In particular, in two dimensions this yields pc(2) ≥ 1/64. This is still some way off the
estimated value pc(2) ≈ 0.105 coming from numerical simulations but considerably better
than the bound obtained from Lemmas 13 and 14.

Toom’s model We take for ϕ the map ϕNEC. Then the set A(ϕ) from (1.8) is given by
A(ϕ) = {A1, A2, A3} with A1 := {(0, 0), (0, 1)}, A2 := {(0, 0), (1, 0)}, and A3 := {(0, 1), (1, 0)}.
Using (1.9) we see that ϕNEC is an eroder. We set σ := 3 and for the sets As(ϕ

NEC) s = 1, 2, 3
of (2.9) we choose the sets A1, A2, A3 we have just defined. We define a polar function L with
dimension σ = 3 by

L1(z1, z2) := −z1, L2(z1, z2) := −z2, L3(z1, z2) := z1 + z2, (2.38)
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(
(z1, z2) ∈ R2

)
. One can check that for this choice of L and the sets As(ϕ

NEC) (1 ≤ s ≤ 3),
the constants from (2.18) are given by

ε = 1 and R = 2. (2.39)

Using Lemma 14 with M = 3, σ = 3, and τ = 2, we can estimate the Peierls sum in (2.25)
from above by

p
∞∑
n=0

n34n33npn/3. (2.40)

This is finite when 37p1/3 < 1, so using Lemma 19 we obtain the bound

pc ≥ 3−21, (2.41)

which does not compare well to the estimated value pc ≈ 0.053 coming from numerical simu-
lations. Nevertheless, this is probably the best rigorous bound currently available.

2.5 Cellular automata with intrinsic randomness

In this subsection we will be interested in monotone random cellular automata whose defi-
nition involves more than one non-constant monotonic map. We fix a dimension d ≥ 1, a
collection ϕ1, . . . , ϕm of non-constant monotonic maps ϕk : {0, 1}Zd → {0, 1}, and a probabil-
ity distribution p1, . . . , pm. Let (Xk)k≥0 denote the monotone random cellular automaton that
applies the maps ϕ1, . . . , ϕm with probabilities p1, . . . , pm and let ϕ0 := ϕ0 be the constant
map that always gives the outcome zero. By definition, an δ-perturbation of (Xk)k≥0 is a
monotone random cellular automaton (X ′k)k≥0 that applies the maps ϕ0, . . . , ϕm with proba-
bilities p′0, . . . , p

′
m that satisfy p′0 ≤ δ and p′k ≤ pk for all k = 1, . . . ,m. We say that (Xk)k≥0

is stable if for each ε > 0, there exists a δ > 0 such that the density ρ′ of the upper invariant
law of any δ-perturbation of (Xk)k≥0 satisfies ρ′ ≥ 1 − ε. Note that in the special case that
m = 1, which corresponds to the set-up of Toom’s stability theorem, these definitions coincide
with our earlier definition.

For deterministic monotone cellular automata, which in our set-up corresponds to the case
m = 1, we have seen in Lemma 10 and formula (2.14) that the eroder property can equivalently
be formulated in terms of edge speeds. For a random monotone cellular automaton (Xk)k≥0,
the intuition is similar, but it is not entirely clear how to define edges speeds in the random
setting and it can be more difficult to determine whether (Xk)k≥0 is an eroder. Fix a polar
function L of dimension σ ≥ 2 and let

εks := sup
A∈A(ϕk)

inf
i∈A

Ls(i) (1 ≤ k ≤ m, 1 ≤ s ≤ σ) (2.42)

denote the edge speed in the direction defined by the linear function Ls of the deterministic
automaton that only applies the map ϕk . If

σ∑
s=1

εs > 0 with εs := inf
1≤k≤m

εks , (2.43)

then (2.14) remains valid almost surely. In such a situation, it is not very hard to adapt the
arguments of Section 2.2 to see that (Xk)k≥0 is stable.

The condition (2.43) is, however, very restrictive and excludes many interesting cases. In
particular, it excludes the case when one of the maps ϕ1, . . . , ϕm is the identity map ϕid,
which, as explained below (1.6) is relevant in view of treating continuous-time interacting
particle systems. Indeed, observe that, if ϕk = ϕid, then εks = 0 for each polar function L of
dimension σ and each 1 ≤ s ≤ σ, implying

∑σ
s=1 εs ≤ 0. The following example, which is
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an adaptation of [Gra99, Example 18.3.5], shows that in such situations it can be much more
subtle whether a random monotone cellular automaton is stable.

Fix an integer n ≥ 1 and let ϕ1 : {0, 1}Z2 → {0, 1} be the monotonic map defined as in
(1.8) by the set of minimal configurations

A(ϕ1) :=
{
{(−1, 0), (0, 0)}, {(−2, 0), (0, 0)}, {(m, k) : −3 ≤ m ≤ −2, |k| ≤ n}

}
. (2.44)

Using (1.9), it is straightforward to check that ϕ1 is an eroder. Now consider the random
monotone cellular automaton (Xk)k≥0 that applies the maps ϕ1 and ϕid with probabilities p
and 1 − p, respectively, for some 0 ≤ p ≤ 1. We claim that if p < 1, then for n sufficiently
large, (Xk)k≥0 is not stable. To see this, fix l ≥ 2 and consider an initial state such that
X0(i) = 0 for i ∈ {0, . . . , l} × {0, . . . , n} and X0(i) = 1 otherwise. Set

αk := inf
0≤i2≤n

inf{i1 : Xk(i1, i2) = 0} and βjk := sup{i1 : Xk(i1, j) = 0} (0 ≤ j ≤ n).

(2.45)
As long as at each height 0 ≤ j ≤ n, there are at least two sites of type 0, the right edge
processes (βjk)k≥0 with 0 ≤ j ≤ n behave as independent random walks that make one step to
the right with probability p. Therefore, the right edge of the zeros moves with speed p to the
right. In each time step, all sites in {αk, αk + 1}×{0, . . . , n} that are of type 0 switch to type
1 with probability p. When p = 1, the effect of this is that the left edge of the zeros moves
with speed two to the right and eventually catches up with the right edge, which explains why
ϕ1 is an eroder. However, when p < 1, the left edge can move to the right only once all sites
in {αk} × {0, . . . , n} have switched to type 1. For n large enough, this slows down the speed
of the left edge with the result that in (Xk)k≥0 the initial set of zeros will never disappear. It
is not difficult to prove that this implies that (Xk)k≥0 is not stable.

To see a second example that demonstrates the complications that can arise when we
replace deterministic monotone cellular automata by random ones, recall the maps ϕNEC,
ϕNWC, ϕSWC, and ϕSEC defined in and below (1.7). For the map ϕNEC, the edge speeds
in the directions defined by the linear functions L1 and L2 from (2.38) are zero but the
edge speed corresponding to L3 is not, which we used in Subsection 2.4 to prove that the
deterministic monotone cellular automaton that always applies the map ϕNEC is stable. By
contrast, for the cellular automaton that applies the maps ϕNEC, ϕNWC, ϕSWC, and ϕSEC

with equal probabilities, by symmetry in space and since these maps treat the types 0 and
1 symmetrically, the edge speed in each direction is zero. As a result, we conjecture that,
although each map applied by this random monotone cellular automaton is an eroder, it is
not stable.

In spite of these complications, Toom contours can sometimes be used to prove stability
of random monotone cellular automata, even in situations where the simplifying assumption
(2.43) does not hold. In these cases we cannot rely on the use of polar functions, instead
we have to carefully examine the structure of the contour to be able to bound the number
of contours in terms of the number of defective sites. Furthermore, one can generally take
σ :=

∨m
k=1 |A(ϕk)|. We will demonstrate this on a cellular automaton that combines the

cooperative branching map defined in (2.33) with the identity map.

Cooperative branching with identity map We consider the monotone random cellular
automaton on Zd that applies the maps ϕ0, ϕid, and ϕcoop,d with probabilities p, q, r, respec-
tively with q = 1− p− r. For each p, r ≥ 0 such that p+ r ≤ 1, let ρ(p, r) denote the intensity
of the upper invariant law of the process with parameters p, 1 − p − r, r. A simple coupling
argument shows that for fixed 0 ≤ r < 1, the function p 7→ ρ(p, r) is nonincreasing on [0, 1−r],
so for each 0 ≤ r < 1, there exists a pc(r) ∈ [0, 1 − r] such that ρ(p, r) > 0 for 0 ≤ p < pc(r)
and ρ(p, r) = 0 for pc(r) < p ≤ 1 − r. We will derive a lower bound on pc(r). Recall that
setting p := ε and r := λε, rescaling time by a factor ε, and sending ε → 0 corresponds to
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taking the continuous-time limit, where in the limiting interacting particle system the maps
ϕ0 and ϕcoop,d are applied with rates 1 and λ, respectively. For this reason, we are especially
interested in the asymptotics of pc(r) when r is small.

In line with notation introduced in Subsection 2.4, we define A1 := {0} and A2 :=
{e1, . . . , ed}. We have

A(ϕid) =
{
A1

}
and A(ϕcoop,d) =

{
A1, A2

}
, (2.46)

thus we set σ := |A(ϕid)| ∨ |A(ϕcoop,d)| = 2, and for the sets As(ϕk) in (2.9) we make the
choices

A1(ϕid) := A1, A2(ϕid) := A1,

A1(ϕcoop,d) := A1, A2(ϕcoop,d) := A2.
(2.47)

Let Φ = (Φ(i,t))(i,t)∈Z3 be an i.i.d. collection of monotonic maps so that P[Φ(i,t) = ϕ0] = p,

P[Φ(i,t) = ϕid] = q, and P[Φ(i,t) = ϕcoop,d] = r. We let T0 denote the set of Toom contours
(V, E , 0, ψ) rooted at the origin with respect to the given choice of σ and the sets As(ϕk)
in (2.47). Theorem 7 then implies the Peierls bound

1− ρ ≤
∑
T∈T0

P
[
T is strongly present in Φ

]
. (2.48)

In Section 5, we give an upper bound on this expression by carefully examining the structure
of Toom contours for this model. We will prove the following lower bound on pc(r) for each
r ∈ [0, 1):

pc(r) >
(√

(d+ 0.5)2 + 1/(16d)− d− 0.5
)
r.

In particular for d = 2 we obtain the bound pc(r) > 0.00624r.

2.6 Continuous time

In this subsection, we consider monotone interacting particle systems of the type described in
(1.2). We briefly recall the set-up described there. We are given a finite collection ϕ1, . . . , ϕm
of non-constant monotonic maps ϕk : {0, 1}Zd → {0, 1} and a collection of nonnegative rates
r1, . . . , rm, and we are interested in interacting particle systems (Xt)t≥0 taking values in

{0, 1}Zd
that evolve in such a way that independently for each i ∈ Zd,

Xt(i) is replaced by ϕk(θiXt) at the times of a Poisson process with rate rk (2.49)

(1 ≤ k ≤ m). Without loss of generality we can assume that ϕk 6= ϕid for all 0 ≤ k ≤ m. For
each r ≥ 0, let (Xr

t )t≥0 denote the perturbed monotone interacting particle system that apart
from the non-constant monotonic maps ϕ1, . . . , ϕm, that are applied with rates r1, . . . , rm,
also applies the constant monotonic map ϕ0 := ϕ0 with rate r0 := r. We let ρ(r) denote the
density of its upper invariant law. We say that the unperturbed interacting particle system
(Xt)t≥0 is stable if ρ(r)→ 1 as r → 0.

Gray [Gra99, Theorem 18.3.1] has given (mutually non-exclusive) sufficient conditions on
the edge speeds for a monotone interacting particle system to be either stable or unstable.
Furthermore, [Gra99, Examples 18.3.5 and 6] he has shown that (Xt)t≥0 may fail to be stable
even when m = 1 and the map ϕ1 is an eroder in the sense of (1.9), and conversely, in such a
situation, (Xt)t≥0 be stable even ϕ1 is not an eroder. The reason for this is that we can think
of interacting particle systems as continuous-time limits of cellular automata that apply the
identity map ϕid most of the time, and, as we have seen in the previous subsection, combining
an eroder ϕ1 with the identity map ϕid can change the stability of a cellular automaton in
subtle ways. However, for a certain type of interacting particle system called generalized
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contact process Gray’s conditions on the edge speed turn out to be sufficient and necessary for
the stability of (Xt)t≥0. We now briefly describe this argument, as it is not present in [Gra99].

Recall that A(ϕk) defined in (1.8) denotes the set of minimal configurations on which ϕk
gives the outcome 1. We say that a monotone interacting particle system that applies the
non-constant monotonic maps ϕ1, . . . , ϕm is a generalized contact process, if {0} ∈ A(ϕk) for
each 1 ≤ k ≤ m. The perturbed system (Xr

t )t≥0 then can be seen as a model for the spread
of epidemics: vertices represent individuals that can be healthy (state 0) or infected (state
1). Each healthy vertex can get infected, if a certain set of vertices in its neighbourhood is
entirely infected, and each infected vertex can recover at rate r independently of the state of
the other vertices.

For a monotone interacting particle system that applies the non-constant monotonic maps
ϕ1, . . . , ϕm Gray defines the Toom operator ϕ(x) : {0, 1}Zd → {0, 1} as the map

ϕ(x) :=
(
1− x(0)

) m∧
k=1

ϕk(x) + x(0)

m∨
k=1

ϕk(x)
(
x ∈ {0, 1}Zd)

. (2.50)

That is, ϕ flips the state of the origin if at least one of the maps ϕ1, . . . , ϕm would flip its
state in configuration x. As each ϕk is monotonic, it is easy to see that ϕ is monotonic as
well. Recall from (2.18) that for each fixed polar function L of dimension σ we defined

ε :=
σ∑
s=1

εs, εs := inf
i∈As(ϕ)

Ls(i) (1 ≤ s ≤ σ). (2.51)

For a Toom operator ϕ with {0} ∈ A(ϕ) we have εs ≥ 0 for each s. In this case, Gray’s
condition for stability simplifies as follows. A monotone interacting particle system with
Toom operator ϕ satisfying {0} ∈ A(ϕ) is stable if and only if there exists a polar function L
for which ε > 0. It is easy to see, that finding such a polar function is equivalent to finding a
set A ∈ A(ϕ) which is entirely contained in an open halfspace in Zd. As {0} ⊂ A(ϕ), this is
further equivalent to

⋂
A∈A(ϕ) Conv(A) = ∅, which is the eroder condition in (1.9).

Let (Xt)t≥0 be a generalized contact process. As {0} ⊂ A(ϕk) for each 1 ≤ k ≤ m, we
clearly have {0} ⊂ A(ϕ) for the corresponding Toom operator ϕ in (2.50). Thus in this case
we can formulate Gray’s theorem [Gra99, Theorem 18.3.1] as follows.

The generalized contact process (Xt)t≥0 is stable if and only if the corresponding
Toom operator ϕ is an eroder.

While Gray’s results can be used to show stability of certain models, his ideas do not
lend themselves well to the derivation of explicit bounds. It is with this goal in mind that
we have extended Toom’s framework to continuous time. Toom contours in continuous time
are defined similarly as in the discrete time setting and can be thought of as the limit of the
latter. Since this is very simiar to what we have already seen in Subsection 2.1, we do not give
the precise definitions in the continuous-time setting here but refer to Section 6 instead. We
will demonstrate how Toom contours can be used to give bounds on the critical parameters
of some monotone interacting particle systems. As mentioned in the previous subsection, in
our methods we cannot rely on the use of polar functions. Again, one can generally take
σ :=

∨m
k=1 |A(ϕk)|.

Sexual contact process on Zd (d ≥ 1) We consider the interacting particle system on Zd
that applies the monotonic maps ϕ0 and ϕcoop,d defined in (1.5) and (2.33) with rates 1 and
λ, respectively. We let ρ(λ) denote the intensity of the upper invariant law as a function of λ
and we define the critical parameter as λc := inf{λ ≥ 0 : ρ(λ) > 0}.

In line with notation introduced in Subsection 2.4, we define A1 := {0} and A2 :=
{e1, . . . , ed}. We have

A(ϕcoop,d) =
{
A1, A2

}
, (2.52)
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thus we set σ := |A(ϕcoop,d)| = 2, and for the sets As(ϕk) in (2.9) we make the choices

A1(ϕcoop,d) := A1, A2(ϕcoop,d) := A2. (2.53)

In Section 6 we will show that Xt(i) = 0 implies the presence of a continuous Toom contour
rooted at (i, t) with respect to the given choice of σ and sets As(ϕ

coop,d), and use these contours
to carry out a similar Peierls argument as in the discrete time case.

In one dimension, this process is called the one-sided contact process, and our computation
yields the bound

λc(1) ≤ 49.3242 . . . . (2.54)

There are already better estimates in the literature: in [TIK97] the authors prove the bound
λc(1) ≤ 3.882 and give the numerical estimate λc(1) ≈ 3.306. In two dimensions this is the
sexual contact process defined in [Dur86], and we prove the bound

λc(2) ≤ 161.1985 . . . . (2.55)

In [Dur86] Durrett claimed a proof that λc(2) ≤ 110, while numerical simulations suggest the
value λc(2) ≈ 12.4.

3 Toom contours

Outline

In this section, we develop the basic abstract theory of Toom contours. In particular, we prove
all results stated in Subsection 2.1. In Subsection 3.1, we prove the preparatory Lemmas 4 and
5. Theorems 7 and 9 about the (strong) presence of Toom contours are proved in Subsections
3.4 and 3.5, respectively. In Section 3.6, we briefly discuss “forks” which played a prominent
role in Toom’s [Too80] original formulation of Toom contours and which can be used to prove
a somewhat stronger version of Theorem 7.

3.1 The maximal trajectory

In this subsection we prove Lemmas 4 and 5.

Proof of Lemma 4 By symmetry, it suffices to show that there exists a trajectory x that is
uniquely characterised by the property that each trajectory x of φ satisfies x ≤ x. For each
s ∈ Z, we inductively define a function xs : Zd × {s, s+ 1, . . .} → {0, 1} by

xss(i) := 1 (i ∈ Zd) and xst (i) = φ(i,t)(θix
s
t−1)

(
i ∈ Zd, s < t

)
. (3.1)

Then xs−1
s (i) ≤ 1 = xss(i) and hence by induction xs−1

t (i) ≤ xst (i) for all s ≤ t, which implies
that the pointwise limit

xt(i) := lim
s→−∞

xst (i)
(
(i, t) ∈ Zd+1

)
(3.2)

exists. It is easy to see that x is a trajectory. If x is any other trajectory, then xs(i) ≤ 1 = xss(i)
and hence by induction xt(i) ≤ xst (i) for all s ≤ t, which implies that x ≤ x. Thus, x is the
maximal trajectory, and such a trajectory is obviously unique.

Proof of Lemma 5 By symmetry, it suffices to prove the claim for the upper invariant law.
We recall that two probability measures ν1, ν2 on {0, 1}Zd

are stochastically ordered, which we
denoted as ν1 ≤ ν2, if and only if random variables X1, X2 with laws ν1, ν2 can be coupled such
that X1 ≤ X2. The law µ of Xt clearly does not depend on t and hence is an invariant law.
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The proof of Lemma 4 shows that P1[Xt ∈ · ]⇒ µ as t→∞ as claimed in (1.3). Alternatively,
µ is uniquely characterised by the fact that it is maximal with respect to the stochastic order,
i.e., if ν is an arbitrary invariant law, then ν ≤ µ. Indeed, if ν is an invariant law, then for
each s ∈ Z, we can inductively define a stationary process (Xs

t )t≥s by

Xs
t (i) = φ(i,t)(θiX

s
t−1)

(
i ∈ Zd, s < t

)
, (3.3)

where Xs
s has the law ν and is independent of Φ. Since ν is an invariant law, the laws of the

processes Xs are consistent in the sense of Kolmogorov’s extension theorem and therefore we
can almost surely construct a trajectory X of Φ such that Xt has the law ν and is independent
of (Φ(i,s))i∈Zd, t<s for each t ∈ Z. By Lemma 4, X ≤ X a.s. and hence ν ≤ µ in the stochastic
order. We conclude that as claimed, µ = ν, the upper invariant law.

3.2 Explanation graphs

In this subsection we start preparing for the proof of Theorem 7. We fix a monotonic flow φ
on {0, 1}Zd

that take values in {ϕ0, . . . , ϕm}, where ϕ0 = ϕ0 is the constant map that always
gives the outcome zero and ϕ1, . . . , ϕm are non-constant. We also fix an integer σ ≥ 2 and
for each 1 ≤ s ≤ σ and 1 ≤ k ≤ m, we fix As(ϕk) ∈ A(ϕk). Letting x denote the maximal
trajectory of φ, our aim is to prove that almost surely on the event that x0(0) = 0, there is a
Toom contour (V, E , v◦, ψ) rooted at (0, 0) present in φ. As a first step towards this aim, in
the present subsection, we will show that the event that x0(0) = 0 almost surely implies the
presence of a simpler structure, which we will call an explanation graph.

Recall from Subsection 2.1 that a directed graph with σ types of edges is a pair (U,H),
where H = ( ~H1, . . . , ~Hσ) is a sequence of subsets of U × U . We interpret ~Hs as the set of
directed edges of type s. For such a directed graph with σ types of edges, we let ~Hs,in(u)

and ~Hs,out(u) denote the set of vertices with type s that end and start in a vertex u ∈ U ,

respectively. We also use the notation ~H :=
⋃σ
s=1

~Hs. Then (U, ~H) is a directed graph in the
usual sense of the word.

The following two definitions introduce the concepts we will be interested in. Although
they look a bit complicated at first sight, in the proof of Lemma 22 we will see that they
arise naturally in the problem we are interested in. Further motivation for these definitions is
provided in Section 7 below, where it is shown that explanation graphs naturally arise from
an even more elementary concept, which we will call a minimal explanation.

Definition 20 An explanation graph for (0, 0) is a directed graph with σ types of edges (U,H)
with U ⊂ Zd+1 for which there exists a subset U∗ ⊂ U such that the following properties hold:

(i) each element of ~H is of the form
(
(j, t), (i, t− 1)

)
for some i, j ∈ Zd and t ∈ Z,

(ii) (0, 0) ∈ U ⊂ Zd+1 and t < 0 for all (i, t) ∈ U\{(0, 0)},

(iii) for each (i, t) ∈ U\{(0, 0)}, there exists a (j, t+ 1) ∈ U such that
(
(j, t+ 1), (i, t)

)
∈ ~H,

(iv) if u ∈ U∗, then ~Hs,out(u) = ∅ for all 1 ≤ s ≤ σ,

(v) if u ∈ U\U∗, then
∣∣ ~Hs,out(u)

∣∣ = 1 for all 1 ≤ s ≤ σ.

Note that U∗ is uniquely determined by (U,H). We call U∗ the set of sinks of the expla-
nation graph (U,H).

Definition 21 An explanation graph (U,H) is present in φ if:

(i) xt(i) = 0 for all (i, t) ∈ U ,
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(ii) U∗ =
{
u ∈ U : φu = ϕ0

}
,

(iii) j − i ∈ As(φ(i,t)) for all
(
(i, t), (j, t− 1)

)
∈ ~Hs (1 ≤ s ≤ σ).

Lemma 22 (Presence of an explanation graph) The maximal trajectory x of a monotonic
flow φ satisfies x0(0) = 0 if and only if there is an explanation graph (U,H) for (0, 0) present
in φ.

Proof By condition (i) of Definition 21, the presence of an explanation graph clearly implies
x0(0) = 0. To prove the converse implication, let xr : Zd × {r, r + 1, . . .} → {0, 1} be defined
as in (3.1). We have seen in the proof of Lemma 4 that xrt (i) decreases to xt(i) as r → −∞.
Therefore, since x0(0) = 0, there must be an r < 0 such that xr0(0) = 0. We fix such an r
from now on.

We will inductively construct a finite explanation for (0, 0) with the desired properties. At
each point in our construction, (U,H) will be a finite explanation for (0, 0) such that:

(i) xrt (i) = 0 for all (i, t) ∈ U ,

(ii)’ φ(i,t) 6= ϕ0 for all (i, t) ∈ U\U∗,

(iii) j − i ∈ As(φ(i,t)) for all
(
(i, t), (j, t− 1)

)
∈ ~Hs (1 ≤ s ≤ σ).

The induction stops as soon as:

(ii) U∗ =
{
u ∈ U : φu = ϕ0

}
.

We start with U = {(0, 0)} and ~Hs = ∅ for all 1 ≤ s ≤ σ. In each step of the construction, we
select a vertex (i, t) ∈ U∗ such that φ(i,t) 6= ϕ0. Since xrt (i) = 0 and As(φ(i,t)) ∈ A(φ(i,t)) as
defined in (1.8), for each 1 ≤ s ≤ σ we can choose js ∈ As(φ(i,t)) such that xrt−1(js) = 0. We

now replace U by U ∪ {(js, t− 1) : 1 ≤ s ≤ σ} and we replace ~Hs by ~Hs ∪ {
(
(i, t), (js, t− 1))}

(1 ≤ s ≤ σ), and the induction step is complete.
At each step in our construction, r < t ≤ 0 for all (i, t) ∈ U , since at time r one has

xrr(i) = 1 for all i ∈ Zd. Since U can contain at most σ−t elements with time coordinate t, we
see that the inductive construction ends after a finite number of steps. It is straightforward
to check that the resulting graph is an explanation graph in the sense of Definition 20.

3.3 Toom matchings

In this subsection, we continue our preparations for the proof of Theorem 7. Most of the proof
of Theorem 7 will consist, informally speaking, of showing that to each explanation graph, it
is possible to add a suitable set of sources, such that the sources and sinks together define a
Toom contour.

It follows from the definition of an explanation graph that for each w ∈ U and 1 ≤ s ≤ σ,
there exist a unique n ≥ 0 and w0, . . . , wn such that

(i) w0 = w and (wi−1, wi) ∈ ~Hs for all 0 < i ≤ n,

(ii) wn ∈ U∗ and wi ∈ U\U∗ for all 0 ≤ i < n.

In other words, this says that starting at each w ∈ U , there is a unique directed path that uses
only directed edges from ~Hs and that ends at some vertex wn ∈ U∗. We will use the following
notation:

Ps(w) :=
{
w0, . . . , wn

}
,

πs(w) :=wn,

}
(w ∈ U, 1 ≤ s ≤ σ). (3.4)
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Then Ps(w) is the path we have just described and πs(w) ∈ U∗ is its endpoint.
By definition, we will use the word polar to describe any sequence (a1, . . . , aσ) such that

as ∈ U for all 1 ≤ s ≤ σ and the points a1 = (i1, t), . . . , aσ = (iσ, t) all have the same time
coordinate. We call t the time of the polar.

Definition 23 A Toom matching for an explanation graph (U,H) with N := |U∗| sinks is
an N × σ matrix (

ai,s
)

1≤i≤N, 1≤s≤σ (3.5)

such that

(i) (ai,1, . . . , ai,σ) is a polar for each 1 ≤ i ≤ N ,

(ii) πs : {a1,s, . . . , aN,s} → U∗ is a bijection for each 1 ≤ s ≤ σ.

We will be interested in polars that have the additional property that all their elements lie
“close together” in a certain sense. By definition, a point polar is a polar (a1, . . . , aσ) such that
a1 = · · · = aσ. We say that a polar (a1, . . . , aσ) is tight if it is either a point polar, or there
exists a v ∈ U such that (v, as) ∈ ~H for all 1 ≤ s ≤ σ, where we recall that ~H :=

⋃σ
s=1

~Hs.
The following proposition is the main result of this subsection.

Proposition 24 (Toom matchings) Let (U,H) be an explanation graph for (0, 0) with
N := |U∗| sinks. Then there exists a Toom matching for (U,H) such that in addition to the
properties (i) and (ii) above,

(iii) a1,1 = · · · = a1,σ = (0, 0),

(iv) (ai,1, . . . , ai,σ) is a tight polar for each 1 ≤ i ≤ N .

In the next subsection, we will derive Theorem 7 from Proposition 24. It is instructive to
jump a bit ahead and already explain the main idea of the construction. Let (ai,s)1≤i≤N, 1≤s≤σ
be the Toom matching from Proposition 24. For each i and s, we connect the vertices of the
path Ps(ai,s) defined in (3.4) with directed edges of type s. By property (ii) of a Toom
matching, this has the consequence that each sink u ∈ U∗ of the explanation graph is the
endvertex of precisely σ edges, one of each type. Each point polar gives rise to a source where
σ charges emerge, one of each type, that then travel through the explanation graph until they
arrive at a sink. For each polar (ai,1, . . . , ai,σ) that is not a point polar, we choose vi ∈ U

such that (vi, ai,s) ∈ ~H for all 1 ≤ s ≤ σ, and for each 1 ≤ s ≤ σ we connect vi and ai,s with
a directed edge of type s. These extra points vi then act as additional sources and, as will
be proved in detail in the next subsection, our collection of directed edges now forms a Toom
graph that is embedded in Zd+1, and the connected component of this Toom graph containing
the origin forms a Toom contour that is present in φ. This is illustrated in Figure 3. The
picture on the right shows an explanation graph (U,H), or rather the associated directed graph
(U, ~H), with sinks indicated with a star. The embedded Toom graph in the middle picture of
Figure 3 originates from a Toom matching of this explanation graph.

The proof of Proposition 24 takes up the remainder of this subsection. The proof is quite
complicated and will be split over several lemmas. We fix an explanation graph (U,H) for
(0, 0) with N := |U∗| sinks. Because of our habit of drawing time downwards in pictures, it
will be convenient to define a function h : U → N by

h(i, t) := −t
(
(i, t) ∈ U

)
. (3.6)

We call h(w) the height of a vertex w ∈ U . For u, v ∈ U , we write u  ~H v when there exist

u0, . . . , un ∈ U with n ≥ 0, u0 = u, un = v, and (uk−1, uk) ∈ ~H for all 0 < k ≤ n. By
definition, for w1, w2 ∈ U , we write w1 ≈ w2 if h(w1) = h(w2) and there exists a w3 ∈ U such
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that wi  ~H w3 for i = 1, 2. Moreover, for v, w ∈ U , we write v ∼ w if there exist m ≥ 0 and
v = v0, . . . , vm = w such that vi−1 ≈ vi for 1 ≤ i ≤ m. Then ∼ is an equivalence relation.
In fact, if we view U as a graph in which two vertices v, w are adjacent if v ≈ w, then the
equivalence classes of ∼ are just the connected components of this graph. We let C denote the
set of all (nonempty) equivalence classes.

It is easy to see that the origin (0, 0) and the sinks form equivalence classes of their own.
With this in mind, we set C∗ :=

{
{w} : w ∈ U∗

}
. Each C ∈ C has a height h(C) such that

h(v) = h(C) for all v ∈ C. For C1, C2 ∈ C, we write C1 → C2 if there exists a (v1, v2) ∈ ~H
such that vi ∈ Ci (i = 1, 2). Note that this implies that h(C2) = h(C1) + 1. The following
lemma says that C has the structure of a directed tree with the sinks as its leaves.

Lemma 25 (Tree of equivalence classes) For each C ∈ C with C 6= {(0, 0)}, there exists
a unique C ′ ∈ C such that C ′ → C. Moreover, for each C ∈ C\C∗, there exists at least one
C ′′ ∈ C such that C → C ′′. Also, C ∈ C\C∗ implies C ∩ U∗ = ∅.

Proof Since the sinks form equivalence classes of their own, C ∈ C\C∗ implies C ∩U∗ = ∅. If
C ∈ C\C∗, then condition (v) in Definition 20 of an explanation graph implies the existence
of a C ′′ ∈ C such that C → C ′′. Similarly, if C ∈ C and C 6= {(0, 0)}, then the existence of
a C ′ ∈ C such that C ′ → C follows from condition (iii) in Definition 20. It remains to show
that C ′ is unique.

Assume that, to the contrary, there exist w,w′ ∈ C and (v, w), (v′, w′) ∈ ~H so that v and v′

do not belong to the same equivalence class. Since w and w′ lie in the same equivalence class
C, there exist w0, . . . , wm ∈ C with w = w0, wm = w′, and wi−1 ≈ wi for all 0 < i ≤ m. Using
condition (iii) in Definition 20, we can find v0, . . . , vm ∈ U such that (vi, wi) ∈ ~H (0 ≤ i ≤ m).
In particular we can choose v0 = v and vm = v′. Since v and v′ do not belong to the same
equivalence class, there must exist an 0 < i ≤ m such that vi−1 and vi do not belong to the
same equivalence class. Since wi−1 ≈ wi, there exists a u ∈ U such that wi−1  ~H u and
wi  ~H u. But then also vi−1  ~H u and vi  ~H u, which contradicts the fact that vi−1 and vi
do not belong to the same equivalence class.

For C,C ′ ∈ C, we describe the relation C → C ′ in words by saying that C ′ is a direct
descendant of C. We let DC := {C ′ ∈ C : C → C ′} denote the set of all direct descendants of
C. We will view DC as an undirected graph with set of edges

EC :=
{
{C1, C2} : ∃v ∈ C, w1 ∈ C1, w2 ∈ C2 s.t. (v, wi) ∈ ~H ∀i = 1, 2

}
. (3.7)

The fact that this definition is reminiscent of the definition of a tight polar is no coincidence
and will become important in Lemma 27 below. We first prove the following lemma.

Lemma 26 (Structure of the set of direct descendants) For each C ∈ C\C∗, the graph
(DC , EC) is connected.

Proof Let D1,D2 be nonempty disjoint subsets of DC such that D1 ∪ D2 = DC and let

Di :=
{
v ∈ C : ∃C ′ ∈ Di and w ∈ C ′ s.t. (v, w) ∈ ~H

}
(i = 1, 2). (3.8)

To show that (DC , EC) is connected, we need to show that D1 ∩ D2 6= ∅ for all choices of
D1,D2. By Lemma 25, C ∩ U∗ = ∅ and hence for each v ∈ C there exists a w ∈ U such that
(v, w) ∈ ~H. Therefore, since DC contains all direct descendants of C, we have D1 ∪D2 = C.
Since D1 and D2 are nonempty, so are D1 and D2. Assume that D1 ∩D2 = ∅. Then, since C
is an equivalence class, there must exist vi ∈ Di (i = 1, 2) such that v1 ≈ v2, i.e.,

{w ∈ U : v1  ~H w} ∩ {w ∈ U : v2  ~H w} 6= ∅. (3.9)
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However, for i = 1, 2, the set {w ∈ U : vi  ~H w} is entirely contained in the equivalence
classes in Di and their descendants. Since by Lemma 25, C has the structure of a tree, this
contradicts (3.9).

We can now make the connection to the definition of tight polars. We say that a polar
(a1, . . . , aσ) lies inside a set D ⊂ U if as ∈ D for all 1 ≤ s ≤ σ.

Lemma 27 (Tight polars) Let C ∈ C\C∗, let M := |DC | be the number of its direct de-
scendants, and let DC :=

⋃
C′∈DC

C ′ be the union of all C ′ ∈ DC . Let (a1,1, . . . , a1,σ) be a
polar inside DC . Then, given that M ≥ 2, it is possible to choose tight polars (ai,1, . . . , ai,σ)
(2 ≤ i ≤M) inside DC such that:

For each C ′ ∈ DC and 1 ≤ s ≤ σ, there is a unique 1 ≤ i ≤M such that ai,s ∈ C ′. (3.10)

Proof By Lemma 26, the graph DC is connected in the sense defined there. To prove the
claim of Lemma 27 will prove a slightly more general claim. Let D′C be a connected subgraph
of DC with M ′ elements, let D′C :=

⋃
C′∈D′C C

′, and let (a1,1, . . . , a1,σ) be a polar inside D′C .

Then we claim that it is possible to choose tight polars (ai,1, . . . , ai,σ) (2 ≤ i ≤M ′) inside D′C
such that (3.10) holds with DC and M replaced by D′C and M ′ respectively.

We will prove the claim by induction on M ′. The claim is trivial for M ′ = 1. We will now
prove the claim for general M ′ ≥ 2 assuming it proved for M ′ − 1. Since D′C is connected, we
can find some C ′ ∈ D′C so that D′C\{C ′} is still connected. If none of the vertices a1,1, . . . , a1,σ

lies inside C ′, then we can add a point polar inside C ′, use the induction hypothesis, and we
are done. Likewise, if all of the vertices a1,1, . . . , a1,σ lie inside C ′, then we can add a point
polar inside D′C\C ′, use the induction hypothesis, and we are done.

We are left with the case that some, but not all of the vertices a1,1, . . . , a1,σ lie inside C ′.
Without loss of generality, we assume that a1,1, . . . , a1,m ∈ C ′ and a1,m+1, . . . , a1,σ ∈ D′C\C ′.
Since D′C is connected in the sense of Lemma 26, we can find a v ∈ C and w1 ∈ C ′, w2 ∈ D′C\C ′
such that (v, wi) ∈ ~H (i = 1, 2). Setting a2,1 = · · · = a2,m := w2 and a2,m+1 = · · · = a2,σ := w1

then defines a tight polar such that:

� For each 1 ≤ s ≤ σ, there is a unique i ∈ {1, 2} such that ai,s ∈ C ′.

� For each 1 ≤ s ≤ σ, there is a unique i ∈ {1, 2} such that ai,s ∈ D′C\C ′.

In particular, the elements of (ai,s)i∈{1,2}, 1≤s≤σ with ai,s ∈ D′C\C ′ form a polar in D′C\C ′, so
we can again use the induction hypothesis to complete the argument.

Proof of Proposition 24 We will use an inductive construction. Let L := max{h(w) : w ∈
U}. For each 0 ≤ l ≤ L, we set U≤l := {w ∈ U : h(w) ≤ l} and Cl := {C ∈ C : h(C) = l}.
We will inductively construct an increasing sequence of integers 1 = N0 ≤ N1 ≤ · · · ≤ NL

and for each 0 ≤ l ≤ L, we will construct an Nl × σ matrix
(
ai,s(l)

)
1≤i≤Nl, 1≤s≤σ such that

ai,s(l) ∈ U≤l for all 1 ≤ i ≤ Nl and 1 ≤ s ≤ σ. Our construction will be consistent in the sense
that

ai,s(l + 1) = ai,s(l) ∀1 ≤ i ≤ Nl, 1 ≤ s ≤ σ, 0 ≤ l < L, (3.11)

that is at each step of the induction we add rows to the matrix we have constructed so far.
In view of this, we can unambiguously drop the dependence on l from our notation. We will
choose the matrices (

ai,s
)

1≤i≤Nl, 1≤s≤σ (3.12)

in such a way that for each 0 ≤ l ≤ L:

(i) a1,1 = · · · = a1,σ = (0, 0),

(ii) (ai,1, . . . , ai,σ) is a tight polar for each 2 ≤ i ≤ Nl,
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(iii) For all C ∈ Cl and 1 ≤ s ≤ σ, there is a unique 1 ≤ i ≤ Nl such that Ps(ai,s) ∩ C 6= ∅,

where Ps(ai,s) is defined as in (3.4). We claim that setting N := NL then yields a Toom
matching with the additional properties described in the proposition. Property (i) of Defini-
tion 23 of a Toom matching and the additional properties (iii) and (iv) from Proposition 24
follow trivially from conditions (i) and (ii) of our inductive construction, so it remains to check
property (ii) of Definition 23, which can be reformulated by saying that for each w ∈ U∗ and
1 ≤ s ≤ σ, there exists a unique 1 ≤ i ≤ N such that w ∈ Ps(ai,s). Since {w} ∈ C for each
w ∈ U∗ (vertices in U∗ form an equivalence class of their own), this follows from condition (iii)
of our inductive construction.

We start the induction with N0 = 1 and a1,1 = · · · = a1,σ = (0, 0). Since (0, 0) is the only
vertex in U with height zero, this obviously satisfies the induction hypotheses (i)–(iii). Now
assume that (i)–(iii) are satisfied for some 0 ≤ l < L. We need to define Nl+1 and choose
polars (ai,1, . . . , ai,σ) with Nl < i ≤ Nl+1 so that (i)–(iii) are satisfied for l + 1. We note that
by Lemma 25, each C ′ ∈ Cl+1 is the direct descendent of a unique C ∈ Cl\C∗.

By the induction hypothesis (iii), for each C ∈ Cl\C∗ and 1 ≤ s ≤ σ, there exists a unique
1 ≤ is ≤ Nl such that Ps(ais,s) ∩ C 6= ∅. Let DC := {C ′ ∈ C : C → C ′} denote the set
of all direct descendants of C and let DC :=

⋃DC denote the union of its elements. Then
setting {bs} := Ps(ais,s) ∩ DC (1 ≤ s ≤ σ) defines a polar (b1, . . . , bσ) inside DC . Applying
Lemma 27 to this polar, we can add tight polars to our matrix in (3.12) so that condition (iii)
becomes satisfied for all C ′ ∈ DC . Doing this for all C ∈ Cl\C∗, using the tree structure of C
(Lemma 25), we see that we can satisfy the induction hypotheses (i)–(iii) for l + 1.

3.4 Construction of Toom contours

In this subsection, we prove Theorem 7. With Proposition 24 proved, most of the work is
already done. We will prove a slightly more precise statement. Below ψ(V ) and ψ(V∗) denote
the images of V and V∗ under ψ and ψ( ~Es) :=

{(
ψ(v), ψ(w)

)
: (v, w) ∈ ~Es

}
. Theorem 7 is an

immediate consequence of Lemma 22 and the following theorem.

Theorem 28 (Presence of a Toom contour) Under the assumptions of Theorem 7,
whenever there is an explanation graph (U,H) for (0, 0) present in φ, there is a Toom con-
tour (V, E , v◦, ψ) rooted at (0, 0) present in φ with the additional properties that ψ(V ) ⊂ U ,
ψ(V∗) ⊂ U∗, and ψ( ~Es) ⊂ ~Hs for all 1 ≤ s ≤ σ.

Proof The main idea of the proof has already been explained below Proposition 24. We
now fill in the details. Let (U,H) be an explanation graph for (0, 0) that is present in φ.
Let N := |U∗| be the number of sinks. By Proposition 24 there exists a Toom matching(
ai,s
)

1≤i≤N, 1≤s≤σ for (U,H) such that a1,1 = · · · = a1,σ = (0, 0), and (ai,1, . . . , ai,σ) is a tight
polar for each 1 ≤ i ≤ N .

Recall from (3.4) that Ps(w) denotes the unique directed path starting at w that uses only
directed edges from ~Hs and that ends at some vertex in U∗. For each 1 ≤ i ≤ N such that
(ai,1, . . . , ai,σ) is a point polar, and for each 1 ≤ s ≤ σ, we will use the notation

Ps(ai,s) =
{
a0
i,s, . . . , a

m(i,s)
i,s

}
, (3.13)

with (al−1
i,s , a

l
i,s) ∈ ~Hs for all 0 < l ≤ m(i, s). For each 1 ≤ i ≤ N such that (ai,1, . . . , ai,σ) is not

a point polar, by the definition of a tight polar, we can choose vi ∈ U such that (vi, ai,s) ∈ ~H
for all 1 ≤ s ≤ σ. In this case, we will use the notation

{vi} ∪ Ps(ai,s) =
{
a0
i,s, . . . , a

m(i,s)
i,s

}
, (3.14)

where (a0
i,s, a

1
i,s) ∈ ~H and (al−1

i,s , a
l
i,s) ∈ ~Hs for all 1 < l ≤ m(i, s).
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We can now construct a Toom graph (V, E) with a specially designated source v◦ as follows.
We set

w(i, s, l) :=


i if l = 0 < m(i, s),

(i, s, l) if 0 < l < m(i, s),

a
m(i,s)
i,s if l = m(i, s).

(1 ≤ i ≤ N, 1 ≤ s ≤ σ), (3.15)

and

V :=
{
w(i, s, l) : 1 ≤ i ≤ N, 1 ≤ s ≤ σ, 0 ≤ l ≤ m(i, s)

}
,

~Es :=
{(
w(i, s, l − 1), w(i, s, l)

)
: 1 ≤ i ≤ N, 0 < l ≤ m(i, s)

}
(1 ≤ s ≤ σ),

v◦ :=w(1, 1, 0) = · · · = w(1, σ, 0).

(3.16)

It is straightforward to check that (V, E) is a Toom graph with sets of sources, internal vertices,
and sinks given by

V◦=
{
i : 1 ≤ i ≤ N, m(i, s) > 0

}
∪ {a0

i,s : m(i, s) = 0
}
,

Vs =
{

(i, s, l) : 1 ≤ i ≤ N, 0 < l < m(i, s)
}

(1 ≤ s ≤ σ),

V∗=
{
a
m(i,s)
i,s : 1 ≤ i ≤ N, 1 ≤ s ≤ σ

}
= U∗.

(3.17)

Note that the vertices of the form a0
i,s with m(i, s) = 0 are the isolated vertices, that are both

a source and a sink. We now claim that setting

ψ
(
w(i, s, l)

)
:= ali,s (1 ≤ i ≤ N, 1 ≤ s ≤ σ, 0 ≤ l ≤ m(i, s)) (3.18)

defines an embedding of (V, E). We first need to check that this is a good definition in the sense
that the right-hand side is really a function of w(i, s, l) only. Indeed, when l = 0 < m(i, s),
we have w(i, s, l) = i and a0

i,1 = · · · = a0
i,σ by the way a0

i,s has been defined in (3.13) and
(3.14). For 0 < l < m(i, s), we have w(i, s, l) = (i, s, l), and finally, for l = m(i, s), we have
w(i, s, l) = ali,s.

We next check that ψ is an embedding, i.e.,

(i) ψd+1(w) = ψd+1(v)− 1 for all (v, w) ∈ ~E,

(ii) ψ(v1) 6= ψ(v2) for each v1 ∈ V∗ and v2 ∈ V with v1 6= v2,

(iii) ψ(v1) 6= ψ(v2) for each v1, v2 ∈ Vs with v1 6= v2 (1 ≤ s ≤ σ).

Property (i) is clear from the fact that ~E ⊂ ~H and Definition 20 of an explanation graph.
Property (ii) follows from the fact that ψ(V∗) = U∗ and ψ(V \V∗) ⊂ U\U∗. Property (iii),
finally, follows from the observation that

Ps(ai,s) ∩ Ps(aj,s) = ∅ ∀1 ≤ s ≤ σ, 1 ≤ i, j ≤ N, i 6= j. (3.19)

Indeed, Ps(ai,s)∩Ps(aj,s) 6= ∅ would imply that πs(ai,s) = πs(aj,s), as in the explanation graph
there is a unique directed path of each type from every vertex that ends at some w ∈ U∗, which
contradicts the definition of a Toom matching.

Since moreover ψ(v◦) = (0, 0) and property (ii) of Definition 20 implies that t < 0 for
all (i, t) ∈ ψ(V )\{(0, 0)}, we see that the quadruple (V, E , v◦, ψ) satisfies all the defining
properties of a Toom contour (see Definition 3), except that the Toom graph (V, E) may fail
to be connected. To fix this, we restrict ourselves to the connected component of (V,E) that
contains the root v◦.

To complete the proof, we must show that (V, E , v◦, ψ) is present in φ, i.e.,
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(i) φψ(v) = ϕ0 for all v ∈ V∗,

(ii) φψ(v) ∈ {ϕ1, . . . , ϕm} for all v ∈ V \V∗,

(iii) ~ψ(w)− ~ψ(v) ∈ As(φψ(v)) for all (v, w) ∈ ~E∗s (1 ≤ s ≤ σ),

(iv) ~ψ(w)− ~ψ(v) ∈
σ⋃
s=1

As(φψ(v)) for all (v, w) ∈ ~E◦.

We will show that these properties already hold for the original quadruple (V, E , v◦, ψ), without
the need to restrict to the connected component of (V,E) that contains the root. Since the
explanation graph (U,H) is present in φ, we have U∗ = {u ∈ U : φu = ϕ0}. Since ψ(V∗) = U∗,
this implies properties (i) and (ii). The fact that the explanation graph (U,H) is present in
φ moreover means that j − i ∈ As(φ(i,t)) for all

(
(i, t), (j, t − 1)

)
∈ ~Hs (1 ≤ s ≤ σ). Since

(a0
i,s, a

1
i,s) ∈ ~H and (al−1

i,s , a
l
i,s) ∈ ~Hs for all 1 < l ≤ m(i, s) (1 ≤ i ≤ N, 1 ≤ s ≤ σ), this implies

properties (iii) and (iv).

3.5 Construction of Toom contours with two charges

In this subsection we prove Theorem 9. As in the previous subsection, we will construct the
Toom contour “inside” an explanation graph. Theorem 9 is an immediate consequence of
Lemma 22 and the following theorem.

Theorem 29 (Strong presence of a Toom contour) If σ = 2, then Theorem 28 can be
strengthened in the sense that the Toom contour (V, E , v◦, ψ) is strongly present in φ.

Although it is a strengthening of Theorem 28, our proof of Theorem 29 will be completely
different. In particular, we will not make use of the Toom matchings of Subsection 3.3. Instead,
we will exploit the fact that if we reverse the direction of edges of one of the charges, then a
Toom contour with two charges becomes a directed cycle. This allows us to give a proof of
Theorem 29 based on the method of “loop erasion” (as explained below) that seems difficult
to generalise to Toom contours with three or more charges.

Let n ≥ 0 be an even integer and let V := {0, . . . , n− 1}, equipped with addition modulo
n. Let ψ : V → Zd+1 be a function such that∣∣ψd+1(k)− ψd+1(k − 1)

∣∣ = 1 (1 ≤ k ≤ n). (3.20)

We write ψ(k) =
(
~ψ(k), ψd+1(k)

)
(k ∈ V ) and for n ≥ 2 we define:

V1 :=
{
k ∈ V : ψd+1(k − 1) > ψd+1(k) > ψd+1(k + 1)

}
,

V2 :=
{
k ∈ V : ψd+1(k − 1) < ψd+1(k) < ψd+1(k + 1)

}
,

V∗ :=
{
k ∈ V : ψd+1(k − 1) > ψd+1(k) < ψd+1(k + 1)

}
,

V◦ :=
{
k ∈ V : ψd+1(k − 1) < ψd+1(k) > ψd+1(k + 1)

}
.

(3.21)

In the trivial case that n = 0, we set V1 = V2 := ∅ and V◦ = V∗ := {0}.

Definition 30 Let V be as above. A Toom cycle is a function ψ : V → Zd+1 such that:

(i) ψ satisfies (3.20),

(ii) ψ(k1) 6= ψ(k2) for each k1 ∈ V∗ and k2 ∈ V with k1 6= k2,

(iii) ψ(k1) 6= ψ(k2) for each k1, k2 ∈ Vs with k1 6= k2 (1 ≤ s ≤ σ),
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(iv) t < ψd+1(0) for all (i, t) ∈ ψ(V )\{ψ(0)},

where V1, V2, V∗, and V◦ are defined as in (3.21).

If ψ : V → Zd+1 is a Toom cycle of length n ≥ 2, then we set:

~E1 :=
{

(k, k + 1) : ψd+1(k) > ψd+1(k + 1), k ∈ V
}
,

←
E2 :=

{
(k, k + 1) : ψd+1(k) < ψd+1(k + 1), k ∈ V

}
,

~E2 :=
{

(k, l) : (l, k) ∈
←
E2

}
,

(3.22)

where as before we calculate modulo n. If n = 0, then ~E1 = ~E2 := ∅. We let (V, E) :=
(V, ~E1, ~E2) denote the corresponding directed graph with two types of directed edges. The
following simple observation makes precise our earlier claim that if we reverse the direction of
edges of one of the charges, then a Toom contour with two charges becomes a directed cycle.

Lemma 31 (Toom cycles) If ψ : V → Zd+1 is a Toom cycle, then (V, E , 0, ψ) is a Toom
contour with root 0, set of sources V◦, set of sinks V∗, and sets of internal vertices of charge
s given by Vs (s = 1, 2). Moreover, every Toom contour with two charges is equivalent to a
Toom contour of this form.

Proof Immediate from the definitions.

Proof of Theorem 29 We will first show that Theorem 28 can be strengthened in the
sense that the Toom contour (V, E , v◦, ψ) also satisfies condition (v) of Definition 8. As in

Theorem 28, let (U,H) be an explanation graph for (0, 0) that is present in φ. We let
←
Hs :=

{(k, l) : (l, k) ∈ ~Hs} denote the directed edges we get by reversing the direction of all edges in
~Hs (s = 1, 2).

We will use an inductive construction. At each point in our construction, (V, E , 0, ψ) will
be a Toom contour rooted at (0, 0) that is obtained from a Toom cycle ψ : V → Zd+1 as
in Lemma 31, and T := inf{ψd+1(k) : k ∈ V } is the earliest time coordinate visited by the
contour. At each point in our construction, it will be true that:

(i)’ φψ(k) = ϕ0 for all k ∈ V∗ with T + 1 < ψd+1(k),

(ii) φψ(v) ∈ {ϕ1, . . . , ϕm} for all v ∈ V \V∗,

(iiia)
(
ψ(k), ψ(k + 1)

)
∈ ~H1 for each (k, k + 1) ∈ ~E1 with k ∈ V1 ∪ {0},

(iiib)
(
ψ(k − 1), ψ(k)

)
∈
←
H2 for each (k − 1, k) ∈

←
E2 with k ∈ V2 ∪ {0},

(iva)
(
ψ(k), ψ(k + 1)

)
∈ ~H2 for each (k, k + 1) ∈ ~E1 with k ∈ V◦\{0},

(ivb)
(
ψ(k − 1), ψ(k)

)
∈
←
H1 for each (k − 1, k) ∈

←
E2 with k ∈ V◦\{0},

(vi) ψ(k − 1) 6= ψ(k + 1) for each k ∈ V◦\{0}.

We observe that condition (i)’ is a weaker version of condition (i) of Definition 6. Conditions
(ii), (iiia), and (iiib) corresponds to conditions (ii) and (iii) of Definition 6. Conditions (iva)
and (ivb) are a stronger version of condition (iv) of Definition 6, that implies also condition (v)
of Definition 8. Finally, condition (vi) corresponds to condition (vi) of Definition 8. Our
inductive construction will end as soon as condition (i) of Definition 6 is fully satisfied, i.e.,
when:

(i) φψ(k) = ϕ0 for all k ∈ V∗.
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exploration loop erasion

Figure 4: The process of exploration and loop erasion.

We start the induction with the trivial Toom cycle defined by V := {0} and ψ(0) = (0, 0).
We identify a Toom cycle ψ : {0, . . . , n− 1} → Zd+1 with the word ψ(0) · · ·ψ(n− 1). In each
step of the induction, as long as (i) is not yet satisfied, we modify our Toom cycle according
to the following two steps, which are illustrated in Figure 4.

I. Exploration. We pick k ∈ V∗ such that φψ(k) 6= ϕ0 and ψd+1(k) = T + 1, or if such

a k does not exist, with ψd+1(k) = T . We define ws by ~Hs,out(ψ(k)) := (ψ(k), ws)
(s = 1, 2). In the word ψ(0) · · ·ψ(n − 1), on the place of ψ(k), we insert the word
ψ(k)w1ψ(k)w2ψ(k).

II. Loop erasion. If as a result of the exploration, there are k1, k2 ∈ V∗ with k1 < k2

such that ψ(k1) = ψ(k2), then we remove the subword ψ(k1) · · ·ψ(k2) from the word
ψ(0) · · ·ψ(n− 1) and on its place insert ψ(k1). We repeat this step until ψ(k1) 6= ψ(k2)
for all k1, k2 ∈ V∗ with k1 6= k2.

The effect of the exploration step is that one sink is replaced by a source and two internal
vertices, one of each charge, and than two new sinks are created (see Figure 4). These new
sinks are created at height −T or −T + 1 and hence can overlap with each other or with other
preexisting sinks, but not with sources or internal vertices. If the exploration step has created
overlapping sinks or the two new internal vertices overlap, then these are removed in the loop
erasion step. After the removal of a loop, all remaining vertices are of the same type (sink,
source, or internal vertex of a given charge) as before. Using these observations, it is easy to
check that:

(C) After exploration and loop erasion, the modified word ψ is again a Toom cycle rooted at
(0, 0) (see Definition 30) and the induction hypotheses (i)’, (ii), (iiia), (iiib), (iva), (ivb)
and (vi) remain true.

Let ∆ := {ψ(k) : k ∈ V∗, φψ(k) 6= ϕ0}. In each step of the induction, we remove one element
from ∆ with a given time coordinate, say t, and possibly add one or two new elements to ∆
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with time coordinates t − 1. Since the explanation graph is finite, this cannot go on forever
so the induction terminates after a finite number of steps. This completes the proof that
Theorem 28 can be strengthened in the sense that the Toom contour (V, E , v◦, ψ) also satisfies
condition (v) of Definition 8.

3.6 Forks

We recall that for Toom contours with two charges, Theorem 9 strengthened Theorem 7 by
showing the presence of a Toom contour with certain additional properties. As we have seen
in Subsection 2.4, such additional properties reduce the number of Toom contours one has to
consider and hence lead to sharper Peierls bounds. In the present subsection, we will prove
similar (but weaker) strengthened version of Theorem 7 that holds for an arbitrary number of
charges.

Let (V, E , v◦, ψ) be a Toom contour. By definition, a fork is a source v ∈ V◦ such that:∣∣{ψ(w) : (v, w) ∈ ~E}
∣∣ = 2. (3.23)

As we will show in a moment, the proof of Theorem 28 actually yields the following somewhat
stronger statement. In the original formulation of Toom [Too80], his contours contain no
sources but they contain objects that Toom calls forks and that effectively coincide with our
usage of this term. For Toom, the fact that the number of sinks equals the number of forks
plus one was part of his definition of a contour. In our formulation, this is a consequence of
the fact that the number of sources equals the number of sinks.

Theorem 32 (Toom contour with forks only) Theorem 28 can be strengthened in the
sense that all sources v ∈ V \{v◦} are forks.

Proof Let us say that v ∈ V◦ is a point source if |{ψ(w) : (v, w) ∈ ~E}| = 1. We first show that
Theorem 28 can be strengthened in the sense that all sources v ∈ V \{v◦} are forks or point
sources. Indeed, this is a direct consequence of the fact that the tight polars (ai,1, . . . , ai,σ)
(2 ≤ i ≤M) constructed in the proof of Lemma 27 are either point polars or have the property
that the set {ai,s : 1 ≤ s ≤ σ} has precisely two elements. The latter give rise to forks while
the former give rise to point sources or isolated vertices. Since a Toom countour is connected,
sources other than the root can never be isolated vertices. This shows that Theorem 28 can
be strengthened in the sense that all sources v ∈ V \{v◦} are forks or point sources.

Now if some v ∈ V◦\{v◦} is a point source, then we can simplify the Toom contour by
removing this source from the contour and joining all elements of {w : (v, w) ∈ ~E} into a new
source, that is embedded at the space-time point z ∈ Zd+1 defined by {z} := {ψ(w) : (v, w) ∈
~E}. Repeating this process until it is no longer possible to do so we arrive at Toom contour
(V, E , v◦, ψ) with the additional property that all sources v ∈ V \{v◦} are forks.

4 Bounds for eroders

Outline

In this section, we apply the abstract theory developed in the previous section to concrete
models. In Subsection 4.1, we discuss the erosion criteria (1.9) and (2.12). In particular, we
prove Lemma 10 and show that (2.12) implies that ϕ is an eroder. In Subsection 4.2, we prove
Lemmas 14 and 17 which give an exponential upper bound on the number of Toom contours
and Toom cycles with a given number of edges. In Subsection 4.3, we prove Lemma 19 which
shows that for eroders, finiteness of the Peierls sum is sufficient to conclude that ρ(p) > 0.
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At this point, we have proved all ingredients needed for the proof of Toom’s stability theorem
described in Subsection 2.2 and also for the explicit bounds for concrete eroders stated in
Subsection 2.4.

4.1 Eroders

In this subsection we prove Lemma 10. Our proof depends on the equivalence of (1.9) and
the eroder property, which is proved in [Pon13, Thm 1]. In Lemma 33, we give an alternative
direct proof that (2.12) implies that ϕ is an eroder. Although we do not really need this
alternative proof, we have included it since it is short and instructive. In particular, it links
the eroder property to edge speeds, which we otherwise do not discuss but which are an
important motivating idea behind the definition of Toom contours.

Proof of Lemma 10 In [Pon13, Lemma 12] it is shown4 that (1.9) is equivalent to the
existence of a polar function L of dimension 2 ≤ σ ≤ d+ 1 and constants ε1, . . . , εσ such that∑σ

s=1 εs > 0 and for each 1 ≤ s ≤ σ, there exists an As ∈ A(ϕ) such that εs − Ls(i) ≤ 0 for
all i ∈ As. It follows that

σ∑
s=1

sup
A∈A(ϕ)

inf
i∈A

Ls(i) ≥
σ∑
s=1

inf
i∈As

Ls(i) ≥
σ∑
s=1

εs > 0, (4.1)

which shows that (2.12) holds. Assume, conversely, that (2.12) holds. Since A(ϕ) is finite, for
each 1 ≤ s ≤ σ we can choose As(ϕ) ∈ A(ϕ) such that

εs := inf
i∈As(ϕ)

Ls(i) = sup
A∈A(ϕ)

inf
i∈A

Ls(i). (4.2)

Then (2.12) says that
∑σ

s=1 εs > 0. Let Hs := {z ∈ Rd : Ls(z) ≥ εs}. By the definition of a
polar function,

∑σ
s=1 Ls(z) = 0 for each z ∈ Rd, and hence the condition

∑σ
s=1 εs > 0 implies

that for each z ∈ Rd, there exists an 1 ≤ s ≤ σ such that Ls(z) < εs. In other words, this
says that

⋂σ
s=1Hs = ∅. For each 1 ≤ s ≤ σ, the set As(ϕ) is contained in the half-space Hs

and hence the same is true for Conv(As(ϕ)), so we conclude that

σ⋂
s=1

Conv
(
As(ϕ)

)
= ∅, (4.3)

from which (1.9) follows.

Lemma 33 (The eroder property) If a non-constant monotonic function ϕ : {0, 1}Zd →
{0, 1} satisfies (2.12), then ϕ is an eroder.

Proof Most of the argument has already been given below Lemma 10. It only remains to
prove (2.14). It suffices to prove the claim for n = 1; the general claim then follows by
induction. Assume that i ∈ Zd satisfies Ls(i) > rs(X

0
0 )− δs. We need to show that X0

1 (i) = 1
for all such i. By the definition of δs, we can choose A ∈ A(ϕ) such that infj∈A Ls(j) = δs.
It follows that Ls(i+ j) > rs(X

0
0 ) for all j ∈ A and hence X0

0 (i+ j) = 1 for all j ∈ A, which
implies X0

1 (i) = 1 by (1.8).

4Since Ponselet discusses stability of the all-zero fixed point while we discuss stability of the all-one fixed
point, in [Pon13], the roles of zeros and ones are reversed compared to our conventions.
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4.2 Exponential bounds on the number of contours

In this subsection, we prove Lemmas 14 and 17.

Proof of Lemma 14 We first consider the case that the number of charges σ is even. Let
T = (V, E , v◦, ψ) ∈ T ′0 . Recall that (V, E) is a directed graph with σ types of edges, that are
called charges. In (V, E), all edges point in the direction from the sources to the sinks. We
modify (V, E) by reversing the direction of edges of the charges 1

2σ + 1, . . . , σ. Let (V, E ′)
denote the modified graph. In (V, E ′), the number of incoming edges at each vertex equals the
number of outgoing edges. Since moreover the undirected graph (V,E) is connected, it is not
hard to see5 that it is possible to walk through the directed graph (V, E ′) starting from the
root using an edge of charge 1, in such a way that each directed edge of E ′ is traversed exactly
once.

Let m := σne(T ) denote the total number of edges of (V, E ′) and for 0 < k ≤ m, let
(vk−1, vk) ∈ ~E′sk denote the k-th step of the walk, which has charge sk. Let δk := ~ψ(vk) −
~ψ(vk−1) denote the spatial increment of the k-th step. Note that the temporal increment is
determined by the charge sk of the k-th step. Let k0, . . . , kσ/2 denote the times when the walk
visits the root v◦. We claim that in order to specify (V, E , v◦, ψ) uniquely up to equivalence,
in the sense defined in (2.7), it suffices to know the sequences

(s1, . . . , sm), (δ1, . . . , δm), and (k0, . . . , kσ/2). (4.4)

Indeed, the sinks and sources correspond to changes in the temporal direction of the walk
which can be read off from the charges. Although the images under ψ of sources may overlap,
we can identify which edges connect to the root, and since we also know the increment of
ψ(vk) in each step, all objects in (2.7) can be identified.

The first charge s1 is 1 and after that, in each step, we have the choice to either continue
with the same charge or choose one of the other 1

2σ available charges. This means that there
are no more than (1

2σ + 1)m−1 possible ways to specify the charges (s1, . . . , sm). Setting
M :=

∣∣⋃σ
s=1As(ϕ)

∣∣, we see that there are no more than Mm possible ways to specify the
spatial increments (δ1, . . . , δm). Since k0 = 0, kσ/2 = m, we can roughly estimate the number

of ways to specify the visits to the root from above by nσ/2−1. Recalling that m = σne(T ),
this yields the bound

Nn ≤ nσ/2−1(1
2σ + 1)σn−1Mσn. (4.5)

This completes the proof when σ is even.
When σ is odd, we modify (V, E) by doubling all edges of charge σ, i.e., we define (V,F)

with
F = (~F1, . . . , ~Fσ+1) := ( ~E1, . . . , ~Eσ, ~Eσ), (4.6)

and next we modify (V,F) by reversing the direction of all edges of the charges d1
2σe+1, . . . , σ+

1. We can define a walk in the resulting graph (V,F ′) as before and record the charges and
spatial increments for each step, as well as the visits to the root. In fact, in order to specify
(V, E , v◦, ψ) uniquely up to equivalence, we do not have to distinguish the charges σ and σ+1.
Recall that edges of the charges σ and σ + 1 result from doubling the edges of charge σ and
hence always come in pairs, connecting the same vertices. Since sinks do not overlap and since
internal vertices of a given charge do not overlap, and since we traverse edges of the charges
σ and σ + 1 in the direction from the sinks towards the sources, whenever we are about to
traverse an edge that belongs to a pair of edges of the charges σ and σ + 1, we know whether
we have already traversed the other edge of the pair. In view of this, for each pair, we only
have to specify the spatial displacement at the first time that we traverse an edge of the pair.
Using these considerations, we arrive at the bound

Nn ≤ ndσ/2e−1(d1
2σe+ 1)(σ+1)n−1Mσn. (4.7)

5This is a simple variation of the “Bridges of Königsberg” problem that was solved by Euler.
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Proof of Lemma 17 The proof goes along the same lines as that of Lemma 14 for the case
σ is even. Observe that for σ = 2, the walk visits the root 0 twice: k0 = 0, k1 = m. Thus
(k0, k1) is deterministic, and we only need to specify the sequences

(s1, . . . , sm), (δ1, . . . , δm). (4.8)

The first charge s1 is 1 and after that, in each step, we have the choice to either continue
with the same charge or choose charge 2. This means that there are no more than 2m−1

possible ways to specify the charges (s1, . . . , sm). Once we have done that, by condition (v) of
Definition 8 of what it means for a cycle to be strongly present, we know for each 0 < k ≤ m
whether the spatial increment δk is in A1(ϕ) or A2(ϕ). Setting Ms := |As(ϕ)

∣∣ (s = 1, 2), using

the fact that | ~E1| = | ~E2| = 2ne(T ) = m/2, we see that there are no more than M
m/2
1 ·Mm/2

2

possible ways to specify (δ1, . . . , δm). This yields the bound

Nn ≤ 22n−1Mn
1 ·Mn

2 . (4.9)

4.3 Finiteness of the Peierls sum

In this subsection, we prove Proposition 18 about the presence of a large contour. As a direct
consequece of this proposition, we obtain Lemma 19 which says that for an eroder, finiteness
of the Peierls sum in (2.25) suffices to conclude that the intensity of the upper invariant law
is positive. We also prove a stronger version of Proposition 18, where we show the strong
presence of a Toom contour in which all sources are forks.

Proof of Proposition 18 Recall the definition of the modified collection of monotonic maps
φ(r) in (2.32). Let x(r) denote the maximal trajectory of φ(r). For each integer q ≥ 0, let
Cq := Conv({qj1, . . . , qjσ}). Then

Cq+1 =
{
i+ js : i ∈ Cq, 1 ≤ s ≤ σ

}
(q ≥ 0). (4.10)

Using this, it is easy to see by induction that our assumption that x
(r)
−r(i) = 0 for all i ∈ Cr

implies that x
(r)
−q(i) = 0 for all i ∈ Cq and 0 ≤ q ≤ r. In particular, this holds for q = 0, so

x
(r)
0 (0) = 0.

Using this, it is straightforward to adapt the proof of Lemma 22 and show that there is
an explanation graph (U,H) for (0, 0) present in φ(r) which has the additional properties:

�

{
i ∈ Zd : (i,−q) ∈ U

}
= Cq (0 ≤ q ≤ r),

�

(
(i,−q), (i+ js,−q − 1)

)
∈ ~Hs (0 ≤ q < r, i ∈ Cq).

In particular, these properties imply that

� t ≤ −r for all (i, t) ∈ U∗.

Theorem 28 tells us that there is a Toom contour (V, E , v◦, ψ) rooted at (0, 0) present in
φ(r) with the additional properties that ψ(V ) ⊂ U , ψ(V∗) ⊂ U∗, and ψ( ~Es) ⊂ ψ( ~Hs) for all
1 ≤ s ≤ σ. This immediately implies that ψd+1(v) ≤ −r for all v ∈ V∗.

To see that the Toom contour can be chosen such that moreover ψd+1(v) ≤ 1 − r for all
v ∈ V◦\{v◦}, we have to look into the proof of Theorem 28. In Subsection 3.3 we defined an
equivalence relation ∼ on the set of vertices U of an explanation graph (U,H). In Lemma 25,
we showed that the set of all equivalence classes has the structure of a directed tree. If we
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draw time downwards, then the root of this tree lies below. In the proof of Proposition 24, we
constructed a Toom matching for (U,H) with the property that except for the root, all other
polars lie at a level above the last level where the tree still consisted of a single equivalence
class. Finally, in the proof of Theorem 28, we used these polars to construct sources that lie
at most one level below the corresponding polar. The upshot of all of this is that in order
to show that ψd+1(v) ≤ 1 − r for all v ∈ V◦\{v◦}, it suffices to show that the set of vertices
{(i, t) ∈ U : t = 1− r} forms a single equivalence class as defined in Subsection 3.3.

To see that this indeed is the case, call two points i = (i1, . . . , iσ), j = (j1, . . . , jσ) ∈ Cr−1

neighbours if there exist 1 ≤ s1, s2 ≤ σ with s1 6= s2 such that is1 = js1 − 1, is2 = js2 + 1, and
is = js for all s ∈ {1, . . . , σ}\{s1, s2}. Define k ∈ Cr by ks1 = js1 , ks2 = js2 + 1, and ks = js
for all other s. Then

(
(i, 1− r), (k,−r)

)
∈ ~H and

(
(j, 1− r), (k,−r)

)
∈ ~H which proves that

(i, 1− r) ≈ (j, 1− r). Since any two points in Cr−1 are connected by a path that in each step
moves from a point to a neighbouring point, this shows that {(i, t) ∈ U : t = 1 − r} forms a
single equivalence class.

To complete the proof, we need to show that if σ = 2, then we can construct the Toom
contour so that in addition it is strongly present in φ(r). We use the same explanation graph
(U,H) for (0, 0) with properties (i)–(iii) as above. Theorem 29 now tells us that there is a Toom
contour (V, E , v◦, ψ) rooted at (0, 0) strongly present in φ(r) with the additional properties that
ψ(V ) ⊂ U , ψ(V∗) ⊂ U∗, and ψ( ~Es) ⊂ ψ( ~Hs) for all 1 ≤ s ≤ σ. This again immediately implies
that ψd+1(v) ≤ −r for all v ∈ V∗, so again it remains to show that the Toom contour can be
chosen such that moreover ψd+1(v) ≤ 1− r for all v ∈ V◦\{v◦}.

(0, 0)

(j1,−1)

(rj1,−r)

(j2,−1)

(rj2,−r)

Figure 5: The Toom cycle ψ described in the proof of Proposition 18.

To see that this is the case, we have to look into the proof of Theorem 29. Instead of
starting the inductive construction with the trivial Toom cycle of length zero, we claim that
it is possible to start with a Toom cycle ψ of length 4r for which all sources except the root
have the time coordinate 1 − r and all sinks have the time coordinate −r. Since the process
of exploration and loop erasion will then only create new sources with time coordinate −r
or lower, the claim then follows. A Toom cycle ψ with the described properties is drawn
in Figure 5. More formally, this cycle has the following description. Starting from (0, 0),
it first visits the points (−k, kj1) with k = 1, . . . , r. Next, it alternatively visits the points
(1− r, (r − k)j1 + (k − 1)j2) and (−r, (r − k)j1 + kj2) with k = 1, . . . , r. Finally, it visits the
points (k − r, (r − k)j2) with k = 1, . . . , r, ending in (0, 0), where it started.
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Proposition 34 (Large contours with forks only) Proposition 18 can be strengthened in
the sense that all sources v ∈ V \{v◦} are forks.

Proof A Toom contours with two charges that is strongly present in Φ(r) automatically has
the property that all sources v ∈ V \{v◦} are forks, because of condition (vi) of Definition 8.
Thus, it suffices to prove the claim for Toom contours with three or more charges. In this
case, as pointed out in the proof of Proposition 18, the fact that all sources v ∈ V \{v◦} are
forks is an automatic result of the construction used in the proof of Theorem 28. Since we
used this same construction in the proof of Proposition 18, the contour constructed there also
has this property.

Proof of Lemma 19 Let

T ′0,r :=
{

(V, E , v◦, ψ) ∈ T ′0 : ψd+1(v) ≤ −r for all v ∈ V∗
}
. (4.11)

By assumption,
∑
T∈T ′0

pn∗(T ) <∞, so we can choose r sufficiently large such that

ε :=
∑
T∈T ′0,r

pn∗(T ) < 1. (4.12)

Fix js ∈ As(ϕ) (1 ≤ s ≤ σ) and set ∆r := Zd ∩ Conv({rj1, . . . , rjσ}). Then Proposition 18
allows us to estimate

P
[
X−r(i) = 0 ∀i ∈ ∆r

]
≤
∑
T∈T ′0,r

P
[
T is present in Φ(r)

]
≤ ε, (4.13)

where in the last step we have used that ψd+1(v) ≤ −r for all v ∈ V∗ and hence all sinks of V

must be mapped to space-time points (i, t) where Φ
(r)
(i,t) = Φ(i,t). By translation invariance,

P
[
X−r(i) = 1 for some i ∈ ∆r

]
≤
∑
i∈∆r

P
[
X−r(i) = 1

]
= |∆r|P

[
X0(0) = 1

]
. (4.14)

Combining this with our previous formulas, we see that

ρ(p) = P
[
X0(0) = 1

]
≥ |∆r|−1(1− ε) > 0. (4.15)

For Toom contours with two charges, Proposition 18 guarantees the strong presence of a large
Toom contour, so we can argue similarly, replacing T ′0 by T ′′0 .

Remark In Peierls arguments, it is frequently extremely helpful to be able to draw conclusions
based only on the fact that that the Peierls sum is finite (but not necessarily less than one).
These sorts of arguments played an important role in [KSS14], where we took inspiration for
Lemma 19, and can be traced back at least to [Dur88, Section 6a].

5 Cooperative branching and the identity map

In this subsection, we study the monotone random cellular automaton that applies the maps
ϕ0, ϕid, and ϕcoop,d with probabilities p, q, r, respectively. For each p, r ≥ 0 such that p+r ≤ 1,
let ρ(p, r) denote the intensity of the upper invariant law of the process with parameters
p, 1 − p − r, r. For each 0 ≤ r < 1, there exists a pc(r) ∈ [0, 1 − r] such that ρ(p, r) > 0 for
0 ≤ p < pc(r) and ρ(p, r) = 0 for pc(r) < p ≤ 1− r. We give lower bounds on pc(r).
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Recall from Subsection 2.5 that we set σ = 2 and for the sets As(ϕk) in (2.9) we make the
choices

A1(ϕid) := A1, A2(ϕid) := A1,

A1(ϕcoop,d) := A1, A2(ϕcoop,d) := A2,
(5.1)

with A1 := {0} and A2 := {e1, . . . , ed}. Let Φ = (Φ(i,t))(i,t)∈Z3 be an i.i.d. collection of

monotonic maps so that P[Φ(i,t) = ϕ0] = p, P[Φ(i,t) = ϕid] = q, and P[Φ(i,t) = ϕcoop,d] = r.
We let T0 denote the set of Toom contours (V, E , 0, ψ) rooted at the origin with respect to the
given choice of σ and the sets As(ϕk) in (2.47). Theorem 7 then implies the Peierls bound

1− ρ ≤
∑
T∈T0

P
[
T is strongly present in Φ

]
. (5.2)

In the remainder of this section, we give an upper bound on this expression.
Recall from Subsection 3.5 that if we reverse the direction of edges of charge 2, then the

Toom graph becomes a directed cycle with edge set ~E1 ∪ ~E2. For any set A ⊂ Zd, let us write
−A := {−i : i ∈ A}. For any (v, w) ∈ ~E1 ∪ ~E2 we say that ψ

(
(v, w)

)
is

(i) outward, if ψ3(w) = ψ3(v)− 1 and ~ψ(w)− ~ψ(v) ∈ A2,

(ii) upward, if ψ3(w) = ψ3(v)− 1 and ~ψ(w)− ~ψ(v) ∈ A1,

(iii) inward, if ψ3(w) = ψ3(v) + 1 and ~ψ(w)− ~ψ(v) ∈ −A2,

(iv) downward, if ψ3(w) = ψ3(v) + 1 and ~ψ(w)− ~ψ(v) ∈ −A1.

The use of the words “upward” and “downward” are inspired by our habit of drawing negative
time upwards in pictures. As |A2| = d, we distinguish d types of outward and inward edges:
we say that ψ

(
(v, w)

)
is type i, if |~ψ(w) − ~ψ(v)| = ei. Our definitions in (5.1) together with

Definitions 6 and 8 imply that a Toom contour is strongly present in Φ if and only if the
following conditions are satisfied:

(i) Φψ(v) = ϕ0 for all v ∈ V∗,

(iia) Φψ(v) ∈ {ϕid, ϕcoop,d} for all v ∈ V1 ∪ V2 ∪ {v◦},

(iib) Φψ(v) = ϕcoop,d for all v ∈ V◦\{v◦},

(iiia) If (v, w) ∈ ~E∗1 , then ψ
(
(v, w)

)
is upward,

(iiib) If (v, w) ∈ ~E
∗
2, then

{
ψ
(
(v, w)

)
is downward if Φψ(w) = ϕid,

ψ
(
(v, w)

)
is inward if Φψ(w) = ϕcoop,d,

(iva)’ If (v, w) ∈ ~E◦1 , then ψ
(
(v, w)

)
is outward,

(ivb)’ If (v, w) ∈ ~E
◦
2, then ψ

(
(v, w)

)
is downward,

where ~E◦i and ~E∗i are defined in (2.5). If (V, E , v◦, ψ) is a Toom contour rooted at 0 that is

strongly present in Φ, then we can fully specify ψ by saying for each (v, w) ∈ ~E1∪ ~E2 whether
ψ
(
(v, w)

)
is upward, downward, inward or outward, and its type in the latter two cases. In

other words, we can represent the contour by a word of length n consisting of the letters from
the alphabet {o1, . . . , od, u, d, i1, . . . , id}, which represents the different kinds of steps the cycle
can take. Then we obtain a word consisting of the letters o1, . . . , od, u, d, i1, . . . , id that must
satisfy the following rules:

� Each outward step must be immediately preceded by a downward step.
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� Between two occurrences of the string do·, and also before the first occurrence of do· and
after the last occurrence, we first see a string consisting of the letter u of length ≥ 0,
followed by a string consisting of the letters d, i1, . . . , id, again of length ≥ 0.

So, for example the contour in the middle of Figure 3 is described by the following word:

uuuu︸ ︷︷ ︸ do1︸︷︷︸ do1︸︷︷︸ uu︸︷︷︸ do2︸︷︷︸ do2︸︷︷︸ di1︸︷︷︸ di1︸︷︷︸ do1︸︷︷︸ do1︸︷︷︸ di1︸︷︷︸ di1︸︷︷︸ di2︸︷︷︸ di2︸︷︷︸ . (5.3)

We call a sequence of length ≥ 0 of consecutive downward/upward steps a downward/upward
segment. We can alternatively represent ψ by a word of length n consisting of the letters
from {o1, . . . , od, U,D, i1, . . . , id, i

◦
1, . . . , i

◦
d}, where U and D represent upward and downward

segments. Let us for the moment ignore the ◦ superscripts. Then we can obtain a word
consisting of these letters that must satisfy the following rules:

� Each outward step must be immediately preceded by a downward segment of length ≥ 1
and followed by an upward segment of length ≥ 0.

� The first step is an upward segment.

� Between two occurrences of the string Do·U , and also before the first and after the last
occurrence, we see a sequence of the string Di· of length ≥ 0.

� The last step is a downward segment.

We add the superscript ◦ to each inward step whose endpoint overlaps with the image of
a source other than the root already visited by the cycle in one of the previous steps. For
any Toom contour T denote by W (T ) the corresponding word satisfying these rules. The
structure of such a representation of a contour becomes more clear if we indicate the vertices
in V1, V2, V∗, and V◦ with the symbols 1, 2, ∗, ◦, respectively. Then the contour in the middle
of Figure 3 is described by the following word:

◦
|U
∗
|D
◦
|o1

1

|U︸ ︷︷ ︸ ∗|D◦|o1

1

|U︸ ︷︷ ︸ ∗|D◦|o2

1

|U︸ ︷︷ ︸ ∗|D◦|o2

1

|U︸ ︷︷ ︸ ∗|D2

|i1︸︷︷︸ 2

|D
2

|i1︸︷︷︸ 2

|D
◦
|o1

1

|U︸ ︷︷ ︸ ∗|D◦|o1

1

|U︸ ︷︷ ︸ ∗|D2

|i◦1︸︷︷︸ 2

|D
2

|i1︸︷︷︸ 2

|D
2

|i2︸︷︷︸ 2

|D
2

|i2︸︷︷︸ 2

|D
◦
|.

(5.4)
Finally, let l+(T ), l−(T ) and l−,◦(T ) denote the vectors containing the lengths of the upward
segments, downward segments followed by o· or i· and downward segments followed by i◦·
respectively in the order we encounter them along the cycle. For the example above we have:

l+(T ) =(4, 0, 2, 0, 0, 0, 0),

l−(T ) =(1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0),

l−,◦(T ) =(0).

(5.5)

Claim 1 Let T be a Toom contour strongly present in Φ rooted at 0. Then W (T ), l+(T ) and
l−(T ) uniquely determine (V, E , 0, ψ).

Proof Knowing the word describing T together with the lengths of all upward and downward
segments uniquely determines the contour, so it is enough to show that W (T ), l+(T ) and l−(T )
determines l−,◦(T ) = (l1, . . . , lj) (j ≥ 0).

Assume we know l1, . . . , li for some 0 ≤ i < j. We then know the length and type of each
step along the cycle up to the downward segment corresponding to li+1, that is we know the
coordinates of its starting point. This downward segment ends at a charge 2 internal vertex,
and the consecutive step is inward ending at a source other than the root already visited by
the cycle. The cycle enters each such source by a downward step and leaves it by an outward
step, hence by the structure of the explanation graph the endpoints of this outward step
must coincide with the endpoints of the inward step following the downward segment with
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length li+1. As each outward step is followed by an upward segment, the starting point of the
consecutive upward segment must be the endpoint of our downward segment. The endpoint
of every upward segment is a defective site, and each site along a downward segment (except
maybe its endpoints) is an identity site, so this upward segment must contain every site of
our downward segment. Furthermore, by (iii) of Definition 2 of an embedding there cannot
be any other upward segment that overlaps with this downward segment. Therefore, given
the starting coordinates of our downward segment, we check which upward segment visited
these coordinates previously, and we let li+1 be the distance between the starting points of
this upward segment and our downward segment.

By a small abuse of notation, let us also use the letters o, i to indicate the number of
times the symbols o, i occur in our representation of the contour (regardless of the sub- and
superscripts). As our contour is a cycle starting and ending at 0, we must have the same
number of inward and outward steps, furthermore, the total lengths of upward and downward
segments must be equal as well:

o = i and ‖l+(T )‖1 = ‖l−(T )‖1 + ‖l−,◦(T )‖1. (5.6)

We observe that each source (other than the root) is followed by an outward step, thus

|V◦| = |V∗| = i+ 1. (5.7)

Finally, in the representation W (T ) of a contour the first and last step is U and D respectively,
and in between i strings of DoU alternate with i strings of Di. Thus, letting 0 ≤ j ≤ i denote
the number of inward steps with the superscript ◦ and using (5.6) we have

l+(T ) ∈
(
Z+ ∪ {0}

)i+1
, l−(T ) ∈

(
Z+ ∪ {0}

)2i−j+1
, l−,◦(T ) ∈

(
Z+ ∪ {0}

)j
. (5.8)

Let W (i, j) denote the number of different words that have i inward steps and j inward
steps with the superscript ◦ made from the alphabet {o1, . . . , od, U,D, i1, . . . , id, i

◦
1, . . . , i

◦
d}

that satisfy our rules.

Claim 2 For all 0 ≤ i, 0 ≤ j ≤ i we have

W (i, j) ≤
(

2i

i

)(
i

j

)
d2i−j . (5.9)

Proof In any W ∈ W (i, j) the first and last step is U and D respectively, and in between i
strings of DoU alternate with i strings of Di. Thus (ignoring the super- and subscripts) we
can arrange these strings in

(
2i
i

)
possible ways. We then choose j inward steps to which we

add the superscript ◦, this can be done in
(
i
j

)
ways. Finally, we can assign the o’s and i’s

subscripts 1, . . . , d one by one. As we have seen in the proof of Claim 1, an inward step with
the superscript ◦ overlaps with an outward step previously visited by the cycle, so the type of
this inward step is the same as the type of that outward step. Hence we can assign the types
of o’s and i’s in d2i−j different ways.

Claim 3 Let W ∈W (i, j) for some 0 ≤ i, 0 ≤ j ≤ i. Then∑
T∈T0:W (T )=W

P
[
T is strongly present in Φ

]
≤
(

3i− j
i

)
pi+1r2i−j

(
1

1− q

)3i−j+1

.

Using q = 1− p− r and Claim 2 we can estimate the Peierls sum in (5.2) from above by

∞∑
i=0

i∑
j=0

W (i, j)

(
3i− j
i

)
pi+1r2i−j

(
1

1− q

)3i−j+1

<
p

p+ r

∞∑
i=0

(
16dpr

(
(2d+ 1)r + p

)
(p+ r)3

)i
.

(5.10)
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For any fixed r this sum is finite as soon as p <
(√

(d+ 0.5)2 + 1/(16d) − d − 0.5
)
r. In

particular for d = 2 we obtain the following bound on the critical parameter

pc(r) > 0.00624r.

Proof Proof of Claim 3 The idea of the proof is similar to that of Lemma 9 in [GG82].
As the Toom cycle T is strongly present in Φ, each sink is mapped to a defective site, and

each inward step ends and each outward step starts at a site where the cooperative branching
map is applied. The definition of an embedding entails that sinks do not overlap, so using 5.7
they contribute to a factor pi+1. To estimate the contribution of the in- and outward steps,
we need to recall the construction of the Toom cycle in Section 3.5. We inductively add edges
to the cycle by exploring its previously unexplored sites one by one. At an exploartion step,
starting at the site we are exploring, an upward, a downward, an outward and an inward
step is added in this order. Although during the loop erasion some of these steps might be
erased, their relative order in the cycle does not change and the site is not visited again in
later iterations. Therefore, each site is the starting point of at most one outward step and
the endpoint of at most one inward step, and if both steps are present, the outward step is
always visited first by the cycle. As outward steps start at a source, there are i inward and
outward steps and j inward steps with the superscript ◦, we have that these steps contribute
to a factor r2i−j . Finally, the strong presence of T implies that every downward step, except
for the ones ending at a source other than the root, ends at a site where the identity map is
applied. 5.6 then yields that downward segments contribute to a factor q‖l

+(T )‖1−i. Let

L(W) := {(l+(T ), l−(T )) : W (T ) =W} (5.11)

Recall that by Claim 1 W (T ) = W, l+(T ) and l−(T ) uniquely specify the Toom contour T .
We then have∑

T∈T0:W (T )=W
P
[
T is strongly present in Φ

]
≤ pi+1r2i−j ∑

(l+,l−)∈L(W)

q‖l
+‖1−i. (5.12)

It remains to show that

q−i
∑

(l+,l−)∈L(W)

q‖l
+‖1 ≤

(
3i− j
i

)(
1

1− q

)3i−j+1

. (5.13)

From now on, we will omit the last coordinate of l−. As we have seen in the proof of Claim 1,
to determine the lengths in l−,◦ it is enough to know the type and length of each step along
the cycle up to the corresponding downward step. Therefore, when the cycle visits the last
downward segment, the length of every other down- and upward segment is already known.
By (5.6) we then have l−2i−j+1 = ‖l+‖1−‖l−,◦‖1− l−1 −· · ·− l−2i−j . By a small abuse of notation

we will denote l− = (l−1 , . . . , l
−
2i−j) and l+ = (l+1 , . . . , l

+
i+1).

Given l− and l+ we merge all the lengths into a single vector in a certain order, that is
we inductively construct two vectors k ∈

(
Z+ ∪ {0}

)3i−j+1
and k± ∈ {1,−1}3i−j+1 in the

following way. We let K0 = k+
0 = k−0 = 0 and for each 1 ≤ s < 3i− j + 1

� if l−s−1 − l+s−1 > Ks−1 or l−s−1 − l+s−1 = Ks−1 < 0, then

ks := l+
k+s−1+1

, k±s := 1, k+
s := k+

s−1 + 1, k−s := k−s−1,

� otherwise
ks := l−

k−s−1+1
, k±s := −1, k+

s := k+
s−1, k−s := k−s−1 + 1,
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and we let
Ks := Ks−1 + ksk

±
s .

Finally we let k := (k1, . . . , k3i−j+1) and k± := (k±1 , . . . , k
±
3i−j+1). Note that each element k±s

is 1 or -1, depending on whether ks was chosen from l+ or l− respectively, furthermore, the
vectors k and k± satisfy the property

Ks ≥ 0 iff k±s = 1 ∀s. (5.14)

Informally, this means that we rearrange the lengths such that every upward step ends at
a non-negative height and every downward step ends at a negative height. As K3i−j+1 =
‖l+‖1 − ‖l−‖1 ≥ 0, this implies that k±3i−j+1 = 1, that is the last element of k is an upward
length. Let us further denote the sum of upward and downward lengths in k up to coordinate
s by

K+
s := k11{K±1 = 1}+ · · ·+ ks1{K±s = 1},

K−s := k11{K±1 = −1}+ · · ·+ ks1{K±s = −1}. (5.15)

Clearly, K+
s ≥ K+

s−1 and K−s ≥ K−s−1 for each s. Furthermore, (5.14) implies{
K−s−1 < K−s−1 ≤ K+

s , if k±s−1 = −1, k±s = 1,

K−s−1 ≤ K+
s−1 < K−s , if k±s−1 = 1, k±s = −1.

(5.16)

Let K denote the set of all pairs of vectors (k, k±) such that k ∈
(
Z+ ∪ {0}

)3i−j+1
, k± ∈

{1,−1}3i−j+1 and that satisfy poperty (5.14), and let K± denote the set of all vectors k± that
contain 2i− j (-1)’s and i+ 1 1’s such that k±3i−j+1 = 1. We then can further bound∑

(l+,l−)∈L(W)

q‖l
+‖1 ≤

∑
k±∈K±

∑
k:(k,k±)∈K

qK
+
3i−j+1 . (5.17)

Let us fix for the moment the vector k± and consider the sum∑
k:(k,k±)∈K

qK
+
3i−j+1 =

∑
k1∈K1

· · ·
∑

k3i−j+1∈K3i−j+1

qK
+
3i−j+1 , (5.18)

where Ks(k1, . . . , ks−1) denotes the set of all the possible ks’s given the first s− 1 coordinate
of k. For any k±s = 1, we can estimate

∑
ks−1∈Ks−1

∑
ks∈Ks

qK
+
s ≤



∑
ks−1∈Ks−1

∞∑
K+

s =K+
s−1

qK
+
s =

1

1− q
∑

ks−1∈Ks−1

qK
+
s−1 if k±s−1 = 1,

∑
ks+1∈Ks+1

∞∑
K+

s =K−s−1

qK
+
s =

1

1− q
∑

ks−1∈Ks+1

qK
−
s−1 if k±s−1 = −1,

(5.19)
by a change of variable and using K+

s ≥ K+
s−1 in the first case and (5.16) in the second.

Similarly, for any k±s = −1, we can estimate

∑
ks−1∈Ks−1

∑
ks∈Ks

qK
−
s ≤



∑
ks−1∈Ks−1

∞∑
K−s =K+

s−1

qK
−
s =

1

1− q
∑

ks−1∈Ks−1

qK
+
s−1 if k±s−1 = 1,

∑
ks+1∈Ks+1

∞∑
K−s =K−s−1

qK
−
s =

1

1− q
∑

ks−1∈Ks+1

qK
−
s−1 if k±s−1 = −1.

(5.20)
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Finally, if a length ks with k±s = −1 corresponds to a downward segment ending at a source (of
which we have i in total), we have ks ≥ 1. Then we can bound K−s ≥ K−s−1 + 1 if k±s−1 = −1,
and K−s ≥ K+

s−1 + 1 if k±s−1 = 1, as we have a strict inequality in (5.16) in this case. Thus
these downward segments will each contribute to an additional factor of q.

As k±3i−j+1 = 1, we can repeatedly apply these formulas in (5.18) for all s to obtain the

upper bound qi
(

1
1−q
)3i−j+1

. Observing that |K±| =
(

3i−j
i

)
and using (5.17) we can con-

clude (5.13).

6 Continuous time

Outline

In this section, we consider monotone interacting particle systems with a finite collection
ϕ0, ϕ1, . . . , ϕm of monotonic maps such that ϕ0 = ϕ0, ϕk 6= ϕid for any 1 ≤ k ≤ m, and
a collection of nonnegative rates r0, r1, . . . , rm, evolving according to (1.2). We extend the
definition of Toom contours to continuous time, and show how to use them to obtain explicit
bounds for certain models.

6.1 Toom contours in continuous time

Recall Definition 1 of a Toom graph (V, E) = (V, ~E1, . . . , ~Eσ) with σ charges and the definition
of sources, sinks and internal vertices in (2.2). Continuous Toom contours are Toom graphs
embedded in space-time Zd × R.

Definition 35 A continuous embedding of (V, E) is a map

V 3 v 7→ ψ(v) =
(
~ψ(v), ψd+1(v)

)
∈ Zd × R (6.1)

that has the following properties:

(i) either ψd+1(w) < ψd+1(v) and ~ψ(w) = ~ψ(v), or ψd+1(w) = ψd+1(v) and ~ψ(w) 6= ~ψ(v)
for all (v, w) ∈ ~E,

(ii) ψ(v1) 6= ψ(v2) for each v1 ∈ V∗ and v2 ∈ V with v1 6= v2,

(iii) ψ(v1) 6= ψ(v2) for each v1, v2 ∈ Vs with v1 6= v2 (1 ≤ s ≤ σ),

(iv) ψd+1(v3) /∈
(
ψd+1(v2), ψd+1(v1)

)
for each (v1, v2) ∈ ~Es, v3 ∈ Vs ∪ V∗ with ~ψ(v1) =

~ψ(v2) = ~ψ(v3) (1 ≤ s ≤ σ).

We call ψ((v, w)) = (ψ(v), ψ(w)) a vertical segment, if ψd+1(w) < ψd+1(v), and a horizontal
segment, if ψd+1(w) = ψd+1(v). Then (i) implies that ψ( ~E) is the union of vertical and
horizontal segments. Property (iv) says that an internal vertex of charge s or a sink is not
mapped into a point of a vertical segment in ψ( ~Es) (1 ≤ s ≤ σ). Note that, unlike in the
discrete time case, this definition of an embedding does not imply | ~E1| = · · · = | ~Eσ|.

Definition 36 A continuous Toom contour is a quadruple (V, E , v◦, ψ), where (V, E) is a con-
nected Toom graph, v◦ ∈ V◦ is a specially designated source, and ψ is a continuous embedding
of (V, E) that has the additional property that:

(v) ψd+1(v◦) > t for each (i, t) ∈ ψ(V )\ψ({v◦}).
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We set

Vvert :=
{
v ∈ V : ψ((w, v)) is a vertical segment for some (w, v) ∈ ~E

}
,

Vhor :=
{
v ∈ V : ψ((v, w)) is a horizontal segment for some (v, w) ∈ ~E

}
,

(6.2)

that is Vvert is the set of vertices in V whose images under ψ are the endpoints of a vertical
segment, and Vhor is the set of vertices in V whose images under ψ are the starting points of
a horizontal segment.

We let Pr with r = (r0, . . . , rm) be a probability measure under which we define a family
of independent Poisson processes on R:

Pi,k for i ∈ Zd, 0 ≤ k ≤ m, each with rate rk. (6.3)

We regard each Pi,k as a random discrete subset of R. Note that Pr-a.s. these sets are pairwise
disjoint. P =

(
P(i,k)

)
i∈Zd,0≤k≤m almost surely determines a stationary process (Xt)t∈R that at

each time t is distributed according to the upper invariant law ν. As in the discrete time case,
we need a special construction of this process. Let P =

(
Pi,k

)
i∈Zd,0≤k≤m denote a realization

of the Poisson processes. We will call a point in Pi,k (i ∈ Zd) a type k arrival point, and call

type 0 arrival points defective points. Furthermore, let {0, 1}Zd×R denote the space of all space-

time configurations x = (xt(i))i∈Zd,t∈R. For x ∈ {0, 1}Zd
and t ∈ R, we define xt ∈ {0, 1}Zd

by
xt := (xt(i))i∈Zd . By definition, a trajectory of P is a space-time configuration x such that

xt(i) =

{
ϕk(θixt−) ∀ 0 ≤ k ≤ m, t ∈ Pi,k,
xt−(i) otherwise.

(
(i, t) ∈ Zd × R

)
(6.4)

We have the following continuous-time equivalents of Lemmas 4 and 5.

Lemma 37 (Minimal and maximal trajectories) Let P be a realization of the Poisson
processes defined in (6.3). Then there exist trajectories x and x that are uniquely characterised
by the property that each trajectory x of P satisfies x ≤ x ≤ x (pointwise).

Lemma 38 (The lower and upper invariant laws) Let ϕ0, . . . , ϕm be monotonic func-
tions, let r0, . . . , rm be nonnegative rates, and let ν and ν denote the lower and upper invariant
laws of the corresponding monotone interacting particle system. Let P =

(
P(i,k)

)
i∈Zd,0≤k≤m be

a family of independent Poisson processes, each with rate rk, and let X and X be the minimal
and maximal trajectories of P. Then for each t ∈ R, the random variables Xt and Xt are
distributed according to the laws ν and ν, respectively.

We omit the proofs, as they go along the same lines as that of the discrete time statements.
From now on, we fix a realization P of the Poisson processes such that the sets Pi,k are

pairwise disjoint. Recall the definition of A(ϕk) in (1.8). We fix an integer σ ≥ 2 and for each
1 ≤ k ≤ m and 1 ≤ s ≤ σ we choose a set

As(ϕk) ∈ A(ϕk). (6.5)

Definition 39 A continuous Toom contour (V, E , v◦, ψ) with σ charges is present in the
realization of the Poisson processes P =

(
Pi,k

)
i∈Zd,0≤k≤m if:

(i) ψd+1(v) ∈ P~ψ(v),0
if and only if v ∈ V∗,

(ii) ψd+1(v) ∈ ∪mk=1P~ψ(v),k
for all v ∈ Vhor ∪ (V◦\{v◦}),

(iii) ψd+1(v) ∈ P~ψ(v),k
for some 1 ≤ k ≤ m such that As(ϕk) 6= {(0, 0)} for all v ∈ Vs ∩ Vvert

(1 ≤ s ≤ σ),
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(iv) P~ψ(v),k
∩
(
ψd+1(w), ψd+1(v)

)
= ∅ for all (v, w) ∈ ~Es such that w ∈ Vvert and for all

1 ≤ k ≤ m such that (0, 0) /∈ As(ϕk) (1 ≤ s ≤ σ),

(v) ~ψ(w)− ~ψ(v) ∈ As(ϕk) if ψd+1(v) ∈ P~ψ(v),k
for some 1 ≤ k ≤ m, for all (v, w) ∈ ~E∗ with

v ∈ Vhor (1 ≤ s ≤ σ),

(vi) ~ψ(w)− ~ψ(v) ∈
σ⋃
s=1

As(ϕk) if ψd+1(v) ∈ P~ψ(v),k
for some 1 ≤ k ≤ m, for all (v, w) ∈ ~E◦,

where ~E◦ and ~E∗ are defined in (2.5).

Condition (i) says that sinks and only sinks are mapped to defective points. Together with
condition (iv) of Definition 35 of a continuous embedding this implies that we cannot encounter
any defective point along a vertical segment of the contour. Condition (ii) says that vertices in
Vhor and sources (except for the root) are mapped to type k arrival points with 1 ≤ k ≤ m. As
the other endpoint of the horizontal segment is not an arrival point, the consecutive segment
must be vertical, furthermore, together with (i) this implies that there cannot be a defective
point at either end of a horizontal segment. Condition (iii) says that internal vertices with
charge s in Vvert are mapped to type k arrival points with As(ϕk) 6= {(0, 0)}. Condition (iv)
says that we can only encounter type k arrival points with (0, 0) ∈ As(ϕk) along a vertical
segment in ψ( ~Es) (1 ≤ s ≤ σ). Condition (v) says that if ψ((v, w)) is a horizontal segment
such that v is an internal vertex with charge s or the root that is mapped into a type k
arrival point (1 ≤ k ≤ m), then (v, w) is mapped to a pair of space-time points of the form(
(i, t), (i+j, t)

)
with j ∈ As(ϕk). Condition (vi) is similar, except that if v is a source different

from the root, then we only require that j ∈ ⋃σ
s=1As(ϕk).

Again, we can strengthen this definition for the σ = 2 case.

Definition 40 A continuous Toom contour (V, E , v◦, ψ) with 2 charges is strongly present in
the realization of the Poisson processes P =

(
Pi,k

)
i∈Zd,0≤k≤m if in addition to conditions (i)–

(vi) of Definition 39, for each v ∈ V◦\{v◦} and w1, w2 ∈ V with (v, ws) ∈ ~Es,out(v) (s = 1, 2),
one has:

(vii) ~ψ(wi)− ~ψ(v) ∈ A3−i(ϕk) if ψd+1(v) ∈ P~ψ(v),k
for some 1 ≤ k ≤ m (i = 1, 2),

(viii) ~ψ(w1) 6= ~ψ(w2).

Our aim is to show that x0(0) implies the existence of a continuous Toom contour rooted
at (0, 0) present in P. To that end, we define “connected components” of space-time points
in state 0, that will play the role of explanation graphs in continuous time. We first define
oriented paths on the space-time picture of the process. For each t ∈ Pi,k (i ∈ Zd, 1 ≤ k ≤ m)
such that xt(i) = 0 place an arrow (an oriented edge) pointing from (i, t) to each (j, t) ∈ As(ϕk)
such that xt(j) = 0 (1 ≤ s ≤ σ). It is easy to see that we place at least one arrow pointing to
each set As(ϕk), otherwise site i would flip to state 1 at time t. Furthermore, for each t ∈ Pi,0
place a death mark at (i, t). A path moves in the decreasing time direction without passing
through death marks and possibly jumping along arrows in the direction of the arrow. More
precisely, it is a function γ : [t1, t2]→ Zd which is left continuous with right limits and satisfies,
for all t ∈ (t1, t2),

t /∈ Pγ(t),0 and

γ(t) 6= γ(t+) implies t ∈ Pγ(t),k, γ(t+)− γ(t) ∈ As(ϕk) and xt(γ(t+)) = 0

for some 1 ≤ k ≤ m, 1 ≤ s ≤ σ.
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We say that two points (i, t), (j, s) with t > s are connected by a path if there exists a path
γ : [s, t]→ Zd with γ(t) = i and γ(s) = j. Define

Γ(i,t) := {(j, s) : (i, t) and (j, s) are connected by a path} (6.6)

and ΓT(i,t) := Γ(i,t) ∩Zd× [t−T, t]. If x0(0) = 0, then by the definition of the paths and arrows

we have xs(j) = 0 for all (j, s) ∈ Γ(0,0).

Theorem 41 (Presence of a continuous Toom contour) Let ϕ0, . . . , ϕm be monotonic
functions where ϕ0 = ϕ0 is the constant map that always gives the outcome zero, and let
r0, . . . , rm be nonnegative rates. Let P be a realization of the Poisson processes defined in (6.3),
and denote its maximal trajectory by x. Let σ ≥ 2 be an integer and for each 1 ≤ s ≤ σ and
1 ≤ k ≤ m, let As(ϕk) ∈ A(ϕk) be fixed. Then, if ΓT(0,0) is bounded for all T > 0, x0(0) = 0

implies that with respect to the given choice of σ and the sets As(ϕk), there is a continuous
Toom contour (V, E , v◦, ψ) rooted at (0, 0) present in P for σ ≥ 2, and strongly present in P
for σ = 2.

The monotone interacting particle systems we consider here have the property that ΓT(0,0)

is bounded for all T > 0 (see for example Chapter 4 of the lecture notes [Swart17]), if

m∑
k=0

rk <∞,

m∑
k=0

rk (| ∪A∈A A| − 1) <∞.
(6.7)

Proof As ΓT(0,0) is bounded, the set ΓT(0,0) ∩
(
∪i∈Zd,0≤k≤m {i} × Pi,k

)
is finite for all T > 0,

therefore we can order the arrival points in Γ(0,0) in decreasing order. Denote by (il, tl) its

elements with 0 ≥ t1 > t2 > . . . , and let t0 := 0. We define a monotonic flow φ in Zd+1 as
follows. For all (i, t) ∈ Zd+1 we let

φ(i,t) :=

{
ϕk if (i, t) = (il,−2l) for some tl ∈ Pil,k (0 ≤ k ≤ m),

ϕid otherwise,
(6.8)

where ϕid is the identity map defined in (1.6). Denoting by x′ the maximal trajectory of this
monotonic flow, it is easy to see that x′0(0) = 0, thus Theorem 7 implies the existence of a
Toom contour (V ′, E ′, v′◦, ψ′) rooted at (0, 0) present in φ with respect to the given choice of
σ and the sets As(ϕk). We use this discrete-time contour to define the continuous-time one.
For all v′ ∈ V such that ψ′(v) = (i,−l) we let

ψ(v) :=

{
ψ(w1) if ∃w1, w2 : (w1, v), (v, w2) ∈ ~E′ and ~ψ′(w1) = ~ψ′(w2) = ~ψ′(v),

(i, tdl/2e) otherwise.
(6.9)

Recall that for v, w ∈ V ′, we write v  ~E′ w when we can reach w from v through directed

edges of ~E′. We define

W(v) := {w ∈ V ′ : v  ~E′ w and ψ(w) = ψ(v)} ∀v ∈ V ′. (6.10)

Note that W(v) = {v} for all v ∈ V ′∗ . Set V := ∪σs=1Vs ∪ V◦ ∪ V∗ with

V◦ := {W(v) : v ∈ V ′◦},
V∗ := {W(v) : v ∈ V ′∗},
Vs := {W(v) : v ∈ V ′s \ ∪w∈V ′◦W(w)} (1 ≤ s ≤ σ).

(6.11)
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For all W ∈ V we let ψ(W ) := ψ(w) for some w ∈W . We further define

~Es := {(W1,W2) ∈ V × V : ∃wi ∈Wi such that (w1, w2) ∈ ~E′s} (1 ≤ s ≤ σ). (6.12)

Letting v◦ be the set W ⊂ V containing v′◦, we claim that (V, E , v◦, ψ) is a continuous Toom
contour rooted at (0, 0) present in P for σ ≥ 2, and strongly present in P for σ = 2. (See
Figure 6 for an example of the construction.)

Figure 6: Top left: A realization of P that applies the maps ϕ0 and ϕcoop with rates r0 and
r1 respectively. The points marked with a star are defective, ensuring that the origin (0,0,0)
is in state 0. The connected component Γ(0,0,0) of the origin is marked by black. Right:
The monotone cellular automaton φ defined in (6.8) and the corresponding Toom contour
rooted at (0,0,0). The sites marked with a star and open dot apply ϕ0 and ϕcoop respectively,
every other site applies the identity map. The origin in state zero. Middle: The Toom graph
corresponding to the Toom contour on the right. The green sets correspond to the vertices of
the Toom graph of the continuous contour, defined in (6.11). Bottom left: The Toom contour
corresponding to the realization of P on the top left.

Let us start with some simple observations. By definition, in φ at each height −2l (1 ≤
l ≤ n) there is exactly one site (i,−2l) such that φ(i,−2l) 6= ϕid, every other site of Zd+1

applies identity map. By the construction of the Toom contour a site with the identity map
cannot be the image of a source, furthermore any edge in ψ′( ~E′) starting at such a site is
vertical. Any edge starting at a site with ϕk (1 ≤ k ≤ m) has the form

(
(i, t), (j, t − 1)

)
for

some t ∈ 2Z, i, j ∈ Zd. We call these edges diagonal, if i 6= j. Thus, ψ′( ~E′) is the union of
vertical and diagonal edges, such that each diagonal edge points from an even height to an
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odd height. Furthermore, as φψ′(v) = ϕ0 for all v ∈ V ′∗ , each sink is mapped to a space-time
point with even height. Together with the defining properties of an embedding in Definition 2
these observations imply that

(j, t) /∈ ψ′(V ′s ∪ V ′∗) for each
(
(i, t), (j, t− 1)

)
∈ ψ′( ~E′s) with i 6= j (1 ≤ s ≤ σ). (6.13)

As ϕ(i,t) 6= ϕid, we must have ϕ(j,t) = ϕid, furthermore, we have the identity map at every
site at height t − 1. As t − 1 is odd, clearly (j, t) /∈ ψ′(V ′∗). Assume that (j, t) = ψ′(v) for
some v ∈ V ′s , then there is a w ∈ V ′s such that (v, w) ∈ ~E′ and ψ′((v, w)) is vertical. This
means that ψ′(w) = (j, t − 1), that is a type s vertex overlaps with another type s vertex,
contradicting property (iii) of Definition 2.

Let us now examine the image of (V ′, E ′) under ψ. By definition, for each (v, w) ∈ ~E′ such
that ψ′((v, w)) is diagonal we have ψd+1(v) = ψd+1(w). Furthermore, ~ψ(v) = ~ψ′(v) for all
v ∈ V ′, implying that ψ( ~E′) is the union of horizontal and vertical segments. Observe that
for any sequence of vertices v1, . . . , vn ∈ Vs (1 ≤ s ≤ σ) such that ψ′((vi, vi+1)) is vertical for
each 1 ≤ i ≤ n− 1 the embedding ψ maps v2, . . . , vn−1 to ψ(v1). Thus the starting points of
vertical edges in ψ′( ~E′) are eventually mapped into the endpoints of horizontal segments or
sources under ψ. From the definition of V in (6.11) it is easy to see that, with the convention
that ψ((v, w)) = (ψ(v), ψ(w)) = ∅ if ψ(v) = ψ(w), we have

ψ(V◦) = ψ(V ′◦), ψ(v◦) = ψ(v′◦), ψ(V∗) = ψ(V ′∗),

ψ(Vs) = ψ(V ′s ) \ ψ(V ′◦), ψ( ~Es) = ψ( ~E′s), (1 ≤ s ≤ σ).
(6.14)

For any (v, w) ∈ ~E′ such that ψ′((v, w)) is diagonal or v ∈ V ′◦ we have φψ′(v) = ϕk (1 ≤ k ≤ m),
thus ψd+1(v) is an arrival point of P~ψ(v),k

. Finally, for each v ∈ V ′∗ we have φψ′(v) = ϕ0, thus

ψd+1(v) is a defective point.
We are now ready to show that (V, E , v◦, ψ) is a continuous Toom contour rooted at (0, 0).

As (V ′, E ′) is a Toom graph, it is straightforward to check that (V, E) is a Toom graph as well.
We have already seen that ψ satisfies condition (i) of Definition 35 of a continuous embedding.
As ψ′ satisfies Definition 2, its properties (ii) and (iii) together with (6.9) and (6.13) easily
yield conditions (ii) and (iii). Finally, assume that (iv) does not hold. By (6.11) then there
exist v1 ∈ V ′s ∪ V ′◦ , v2 ∈ V ′s , v3 ∈ V ′s ∪ V ′∗ such that ~ψ′(v1) = ~ψ′(v2) = ~ψ′(v3) and ψ′d+1(v2) <
ψ′d+1(v3) < ψ′d+1(v1) with ψ′d+1(vi) ∈ Z for each i = 1, 2, 3. As there is a type s charge
travelling through v1 and v2 in (V ′, E ′) and the difference between the time coordinates of ψ′

of two consecutive vertices of a charge is 1, there must be a w ∈ V ′s such that ψ′(w) = ψ′(v3),
that is a sink or an internal vertex of type s overlaps with another internal vertex of type s.
This contradicts conditions (ii) and (iii) of Definition 2, therefore condition (iv) must hold.

By Defintion 3 and the definition of ψ we have ψd+1(v) ≤ 0 for all v ∈ V ′ (hence for all
v ∈ V as well), and ψ(v′◦) = ψ(v◦) = (0, 0). By (6.11) any vertex v ∈ V such that ψ(v) = (0, 0)
is contained in some W ∈ V◦, thus (V, E , v◦, ψ) satisfies the defining property of Definition 36
of a continuous Toom contour rooted at v◦. We are left to show that this contour is (strongly)
present in P.

As (V ′, E ′, v′◦, ψ′) is a Toom contour rooted at (0, 0) present in φ, it satisfies Definition 6.
We now check the conditions of Definition 39. We have already seen that conditions (i) and
(ii) hold. Condition (iii) says that internal vertices with charge s in Vvert are mapped to type
k arrival points with As(ϕk) 6= {(0, 0)}. As for all w ∈ V such that ψ′(w) is the starting
point of a vertical edge in ψ′( ~E′), ψ(w) is the endpoint of a horizontal segment or a source,
we have that indeed φψ′(v) cannot be the identity map or a map ϕk with As(ϕk) = {(0, 0)}
for any v ∈ Vvert ∩ Vs. Condition (iv) says that we can only encounter type k arrival points
with (0, 0) ∈ As(ϕk) along a vertical segment in ψ( ~Es) (1 ≤ s ≤ σ). If (0, 0) /∈ As(ϕk) for an
arrival point along the image of a charge s, then by the construction of the discrete contour
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the charge is diverted at this point in a horizontal direction, so it is necessarily the endpoint
of that vertical segment. Finally, conditions (v) and (vi) are immediate from conditions (iii)
and (iv) of Definition 6. Since moreover (V ′, E ′, v′◦, ψ′) satisfies Definition 8 for σ = 2, the
defining properties of Definition 40 hold for (V ′, E ′, v′◦, ψ′).

Remark 42 We have observed before, that in the image under ψ of a type s charge (1 ≤
s ≤ σ) horizontal segments are always followed by vertical segments. The construction of the
continuous Toom contour described above also ensures that vertical segments either end at a
defective point, or are followed by a horizontal segment. Thus, starting from the image of the
source, we have an alternating sequence of horizontal and vertical edges ending with a vertical
edge at the image of the sink. Furthermore, if (0, 0) /∈ ∪mk=0P0,k, then φ(0,0) = ϕid, so every

(v◦, w) ∈ ψ′( ~E′) is vertical. (6.9) then implies that every segment in the continuous contour
starting at ψ(v◦) is also vertical.

6.2 Explicit bounds

Sexual contact process on Zd (d ≥ 1) Recall from Subsection 2.6 that we define A1 := {0}
and A2 := {e1, . . . , ed} and we have

A(ϕcoop,d) =
{
A1, A2

}
. (6.15)

We set σ := |A(ϕcoop,d)| = 2, and for the sets As(ϕk) in (2.9) we make the choices

A1(ϕcoop,d) := A1, A2(ϕcoop,d) := A2, (6.16)

that is we have As(ϕ1) 6= A1 only for s = 2. Let P =
(
P(i,k)

)
i∈Zd,k=0,1

be a family of
independent Poisson processes such that for each i P(i,0) has rate 1 and P(i,1) has rate λ. In
line with the terminology used for contact processes, we will call type 0 arrival points death
marks and type 1 arrivel points birth marks. Then Theorem 41 implies the Peierls bound:

1− ρ = P[X0(0) = 0] ≤ P
[
a Toom contour rooted at 0 is strongly present in P

]
. (6.17)

In what follows, we give an upper bound on this probability.
Definitions 39 and 40 imply that a continuous Toom contour is strongly present in P if

and only if the following conditions are satisfied:

(i) ψ(v) is a death mark for all v ∈ V∗,

(ii) ψ(v) is a birth mark for all v ∈ Vhor,

(iii) There are no death marks along vertical segments of ψ( ~E),

(iv) There are no birth marks along vertical segments of ψ( ~E2),

(v) v ∈ V2 ∪ V◦ for all v ∈ Vhor,

(vi) Horizontal and vertical segments alternate along each path between a source and a sink,

(viia) If (v, w) ∈ ~E◦1 , then ψ
(
(v, w)

)
is a vertical segment,

(viib) If (v, w) ∈ ~E◦2 , then ψ
(
(v, w)

)
is a horizontal segment,

(viii) If (v, w) ∈ ~E with w ∈ V∗, then ψ
(
(v, w)

)
is a vertical segment,
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where ~E◦i is defined in (2.5). As horizontal segments cannot start at the image of a type 1
internal vertex and they alternate with vertical segments along each path between a source
and a sink, this implies that the image of a type 1 charge starting at a source and ending at
a sink is either a single vertical segment (that is there is no internal vertex along the path),
or a horizontal segment followed by a vertical segment (that is there is exactly one internal
vertex along the path). Furthermore, by Remark 42, P(1,λ)-a.s. the type 1 path starting at v◦
consists of a single vertical segment.

We now can argue similarly as in the discrete time case in Section 5. If we reverse the
direction of edges of charge 2, then the Toom graph becomes a directed cycle with edge set
~E1 ∪ ~E2. We then call vertical segments in ψ( ~E1) upward and in ψ( ~E2) downward, and
horizontal segments in ψ( ~E1) outward and in ψ( ~E2) inward. As |A2| = d we distinguish d
types of outward and inward segments: we say that ψ

(
(v, w)

)
is type i, if |~ψ(w)− ~ψ(v)| = ei.

If (V, E , v◦, ψ) is a continuous Toom contour rooted at 0 that is strongly present in P, then
we can fully specify ψ by saying for each (v, w) ∈ ~E1 ∪ ~E2 whether ψ

(
(v, w)

)
is an upward,

a downward, an outward or an inward segment, and its length in the former two and type
in the latter two cases. In other words, we can represent the contour by a word of length
n consisting of the letters from the alphabet {o1, . . . , od, u, d, i1, . . . , id}, which represents the
different kinds of steps the cycle can take, and a vector l that contains the length of each
vertical segment along the cycle in the order we encouner them. Then we can obtain a word
consisting of these letters that must satisfy the following rules:

� The first step is an upward segment.

� Each outward segment must be immediately preceded by a downward segment and
followed by an upward segment.

� Between two occurrences of the string Do·U , and also before the first and after the last
occurrence, we see a sequence of the string Di· of length ≥ 0.

� The last step is a downward segment.

Notice that the structure of a possible word is exactly the same as in (5.4). Then the contour
in the bootom left of Figure 6 is described by the following word:

◦
|U
∗
|D
◦
|o2

1

|U︸ ︷︷ ︸ ∗|D◦|o1

1

|U︸ ︷︷ ︸ ∗|D2

|i2︸︷︷︸ 2

|D
2

|i1︸︷︷︸ 2

|D
◦
|. (6.18)

For any continuous Toom contour T denote by W (T ) the corresponding word satisfying these
rules and by W the set of all possible words satisfying these rules. We then can bound

P[X0(0) = 0]

≤
∑
W∈W

P
[
a Toom contour T with W (T ) = W rooted at 0 is strongly present in P

]
.

(6.19)
From this point on, we can count the number of possible words and assign probabilities to
each following the same line of thought (adapted to continuous time) as in Section 5 for the
discrete-time monotone cellular automaton that applies the cooperative branching and the
identity map. We then recover the following Peierls bound:

P[X0(0) = 0] ≤ 1

1 + λ

∞∑
i=0

(
16dλ

(
(2d+ 1)λ+ 1

)
(λ+ 1)3

)i
. (6.20)

The argument is similar to that of [Gra99, Lemma 8 and 9]. Presenting it would be long and
technical, but not particularly challenging, so we will skip it.
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As we have mentioned earlier, we can think of this process as the limit of the random
cellular automaton with time steps of size ε where the maps ϕ0, ϕcoop,d and ϕid are applied
with probabilities ε, ελ, and 1 − ε(1 + λ), respectively. Observe that we recover the exact
same Peierls bound by substituting p = ε, r = ελ, and q = 1− ε(1 +λ) into (5.10) and letting
ε→ 0. In particular for d = 1 we obtain the bound

λc(1) ≤ 49.3242 . . . , (6.21)

and for d = 2 the bound
λc(2) ≤ 161.1985 . . . . (6.22)

7 Minimal explanations

Outline

Our proof of Theorem 7 started with Lemma 22, which shows that if x0(0) = 0, then there is
an explanation graph present in φ, in the sense of Definitions 20 and 21. In this section, we
explain how explanation graphs, whose definition looks somewhat complicated at first sight,
naturally arise from a more elementary concept, which we will call a minimal explanation. Our
definition of a minimal explanation will be similar to, though different from the definition of
John Preskill [Pre07]. We introduce minimal explanations in Subsection 7.1 and then discuss
their relation to explanation graphs in Subsection 7.2.

7.1 Finite explanations

For each monotonic map ϕ : {0, 1}Zd → {0, 1}, we define

A↑(ϕ) :=
{
A ⊂ Zd : ϕ(1A) = 1

}
,

Z↑(ϕ) :=
{
Z ⊂ Zd : ϕ(1− 1Z) = 0

}
,

(7.1)

where 1A denotes the indicator function of A and hence 1−1Z is the configuration that is zero
on Z and one elsewhere. Clearly, A↑(ϕ) is an increasing set in the sense that A↑(ϕ) 3 A ⊂ A′
implies A′ ∈ A(ϕ). Likewise Z↑(ϕ) is increasing. We say that an element A ∈ A↑(ϕ) is
minimal if A,A′ ∈ A↑(ϕ) and A′ ⊂ A imply A′ = A. We define minimal elements of Z↑(ϕ) in
the same way and set

A(ϕ) :=
{
A ∈ A↑(ϕ) : A is minimal

}
and Z(ϕ) :=

{
Z ∈ Z↑(ϕ) : Z is minimal

}
. (7.2)

Since monotonic maps are local (i.e., depend only on finitely many coordinates), it is not hard
to see that

A↑(ϕ) :=
{
A ⊂ Zd : A ⊃ A′ for some A′ ∈ A(ϕ)

}
,

Z↑(ϕ) :=
{
Z ⊂ Zd : Z ⊃ Z ′ for some Z ′ ∈ Z(ϕ)

}
.

(7.3)

It follows that
ϕ(x) =

∨
A∈A(ϕ)

∧
i∈A

x(i) =
∧

Z∈Z(ϕ)

∨
i∈Z

x(i). (7.4)

In particular, our present definition of A(ϕ) coincides with the one given in (1.8). We note
that A(ϕ0) = ∅ and A(ϕ1) = {∅}, and similarly Z(ϕ0) = {∅} and Z(ϕ1) = ∅. One has

A ∈ A↑(ϕ) if and only if A ∩ Z 6= ∅ ∀Z ∈ Z↑(ϕ), (7.5)

and by (7.3) the same is true with Z↑(ϕ) replaced by Z(ϕ). Similarly,

Z ∈ Z↑(ϕ) if and only if Z ∩A 6= ∅ ∀A ∈ A(ϕ). (7.6)
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For monotonic maps ϕ and ϕ′ defined on {0, 1}Zd
, we write ϕ ≤ ϕ′ if ϕ(x) ≤ ϕ′(x) ∀x ∈

{0, 1}Zd
. Moreover, we write

ϕ ≺ ϕ′ if and only if Z(ϕ) ⊂ Z(ϕ′). (7.7)

Note that ϕ ≺ ϕ′ implies that ϕ ≥ ϕ′. For monotonic flows φ and ψ, we write φ ≤ ψ (resp.
φ ≺ ψ) if φ(i,t) ≤ ψ(i,t) (resp. φ(i,t) ≺ ψ(i,t)) for all (i, t) ∈ Zd+1. We let xφ denote the maximal
trajectory of a monotonic flow φ. By definition, a finite explanation for (0, 0) is a monotonic
flow ψ such that:

(i) xψ0 (0) = 0,

(ii) ψ(i,t) 6= ϕ1 for finitely many (i, t) ∈ Zd+1.

By definition, a minimal explanation for (0, 0) is a finite explanation ψ that is minimal with
respect to the partial order ≺, i.e., ψ has the property that if ψ′ is a finite explanation for
(0, 0) such that ψ′ ≺ ψ, then ψ′ = ψ.

Lemma 43 (Existence of a minimal explanation) Let φ be a monotonic flow. Then

xφ0 (0) = 0 if and only if there exists a minimal explanation ψ for (0, 0) such that ψ ≺ φ.

Proof Assume that there exists a minimal explanation ψ for (0, 0) such that ψ ≺ φ. Then

ψ ≥ φ and hence 0 = xψ0 (0) ≥ xφ0 (0). To complete the proof, we must show that conversely,

xφ0 (0) = 0 implies the existence of a minimal explanation ψ for (0, 0) such that ψ ≺ φ.
We first prove the existence of a finite explanation ψ for (0, 0) such that ψ ≺ φ. For each

s ∈ Z, we define xs as in (3.1). Then (3.2) implies that x−n0 (0) = 0 for some 0 ≤ n <∞. For
each (i, t) ∈ Zd+1, let

U(i, t) :=
{

(j, t− 1) : j ∈ A for some A ∈ A(φ(i,t))
}

(7.8)

denote the set of “ancestors” of (i, t). For any Z ⊂ Zd+1, we set U(Z) := {U(z) : z ∈ Z} and
we define inductively U0(Z) := Z and Uk+1(Z) := U(Uk(Z)) (k ≥ 0). Then

⋃n
k=0 U

k(0, 0) is
a finite set. Since x−n0 (0) = 0, it follows that setting

ψ(i,t) :=

{
φ(i,t) if (i, t) ∈ ⋃n

k=0 U
k(0, 0),

ϕ1 otherwise
(7.9)

defines a finite explanation ψ for (0, 0) such that ψ ≺ φ.
We observe that for a given monotonic map ϕ, there are only finitely many monotonic

maps ϕ′ such that ϕ′ ≺ ϕ. Also, since Z(ϕ1) = ∅, the only monotonic map ϕ such that
ϕ ≺ ϕ1 is ϕ = ϕ1. Therefore, since ψ(i,t) 6= ϕ1 for finitely many (i, t) ∈ Zd+1, there exist
ony finitely many monotonic flows ψ′ such that ψ′ ≺ ψ. It follows that the set of all finite
explanations ψ′ for (0, 0) that satisfy ψ′ ≺ ψ must contain at least one minimal element,
which is a minimal explanation for (0, 0) such that ψ ≺ φ.

The following lemma gives a more explicit description of minimal explanations. In Figure 3
on the right, a minimal explanation ψ for (0, 0) is drawn with ψ ≺ φ, where φ is a monotonic
flow that takes values in {ϕ0, ϕcoop}. For each (i, t) ∈ Zd+1 such that ψ(i,t) 6= ϕ1, thick black
lines join (i, t) to the points (j, t− 1) with j ∈ Z(i,t), where Z(i,t) is the set defined in point (v)
below. Orange stars indicate points (i, t) where ψ(i,t) = ϕ0. The minimal explanation drawn
in Figure 3 has the special property that even if we replace ψ(i,t) by φ(i,t) in all points except
for the defective points of φ, then it is still true that removing any of the defective points of ψ
results in the origin having the value one. This means that the set of defective points drawn
in Figure 3 corresponds to a “minimal explanation” in the sense defined by John Preskill in
[Pre07], which is a bit stronger than our definition.
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Lemma 44 (Minimal explanations) Let ψ be a finite explanation for (0, 0). Then ψ is a
minimal explanation for (0, 0) if and only if in addition to conditions (i)–(iii) of the definition
of a finite explanation, one has:

(iv) ψ(i,t) = ϕ1 for all (i, t) ∈ Zd+1\{(0, 0)} such that t ≥ 0,

(v) for each (i, t) ∈ Zd+1 such that ψ(i,t) 6= ϕ1, there exists a finite Z(i,t) ⊂ Zd such that
Z(ψ(i,t)) = {Z(i,t)},

(vi) for each (i, t) ∈ Zd+1\{(0, 0)} such that ψ(i,t) 6= ϕ1, there exists a j ∈ Zd such that
ψ(j,t+1) 6= ϕ1 and i ∈ Z(j,t+1).

Moreover, each minimal explanation ψ for (0, 0) satisfies:

(vii) xψt (i) = 0 for each (i, t) ∈ Zd+1 such that ψ(i,t) 6= ϕ1,

Proof We first show that a finite explanation ψ for (0, 0) satisfying (iv)–(vi) is minimal. By
our definition of minimal explanations, we must check that if ψ′ is a finite explanation such
that ψ′ ≺ ψ, then ψ′ = ψ. Imagine that conversely, ψ′(i,t) 6= ψ(i,t) for some (i, t) ∈ Zd+1. Then

by (v) and the fact that ψ′(i,t) ≺ ψ(i,t), we must have that Z(ψ′(i,t)) = ∅ and hence ψ′(i,t) = ϕ1.

Since ψ′(i,t) 6= ψ(i,t), it follows that ψ(i,t) 6= ϕ1. By (iv), this implies that either (i, t) = (0, 0) or

t < 0. Let n := −t. Using (vi), we see that there exist i = i0, . . . , in such that ψ(ik,t+k) 6= ϕ1

(0 ≤ k ≤ n) and ik−1 ∈ Z(ik,t+k) (0 < k ≤ n). By (iv), we must have in = 0. Since ψ′(i,t) = ϕ1

we have xψ
′

t (i) = 1. Using the fact that ψ′ ≺ ψ and ik−1 ∈ Z(ik,t+k) (0 < k ≤ n), it follows

that xψ
′

t+k(ik) = 1 for all 0 ≤ k ≤ n. In particular, this shows that xψ
′

0 (0) = 1, contradicting
the fact that ψ′ is a finite explanation for (0, 0).

We next show that each minimal explanation ψ for (0, 0) satisfies (iv)–(vii). Property (iv)
follows from the fact that if ψ(i,t) 6= ϕ1 for some (i, t) ∈ Zd+1\{(0, 0)} such that t ≥ 0, then
setting ψ′(i,t) := ϕ1 and ψ′(j,s) := ψ(j,s) for all (j, s) 6= (i, s) defines a finite explanation ψ′ ≺ ψ.

Property (vii) follows in the same way: if xψt (i) = 1 for some (i, t) ∈ Zd+1 such that ψ(i,t) 6= ϕ1,
then we can replace ψ(i,t) by ϕ1 without changing the fact that ψ is a finite explanation. To

prove (v), we first observe that if ψ(i,t) 6= ϕ1 for some (i, t) ∈ Zd+1, then xψt (i) = 0 by (vii).

It follows that there exists some Z ∈ Z(ψ(i,t)) such that xψt−1(j) = 0 for all j ∈ Z. (Note that
this in particular includes the case that ψ(i,t) = ϕ0 and Z(ψ(i,t)) = {∅}.) If Z(ψ(i,t)) contains
any other elements except for Z, then we can remove these without changing the fact that
ψ is a finite explanation. Therefore, by minimality, we must have Z(ψ(i,t)) = {Z}, proving

(v). To prove (vi), finally, assume that (i, t) ∈ Zd+1\{(0, 0)} and ψ(i,t) 6= ϕ1, but there does

not exist a j ∈ Zd such that ψ(j,t+1) 6= ϕ1 and i ∈ Z(j,t+1). Then we can replace ψ(i,t) by ϕ1

without changing the fact that ψ is a finite explanation, which contradicts minimality. This
completes the proof.

7.2 Explanation graphs revisited

We claim that in the proof of many of our results, such as Theorems 7 and 9, we can without
loss of generality assume that

A(ϕk) =
{
As(ϕk) : 1 ≤ s ≤ σ

}
(1 ≤ k ≤ m). (7.10)

To see this, let φ be a monotonic flow on {0, 1}Zd
taking values in {ϕ0, . . . , ϕm}, where ϕ0 = ϕ0

is the constant map that always gives the outcome zero and ϕ1, . . . , ϕm are non-constant. Let
σ ≥ 2 be an integer and for each 1 ≤ k ≤ m and 1 ≤ s ≤ σ, fix As(ϕk) ∈ A(ϕk). We let
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φ∗ = (φ∗(i,t))(i,t)∈Zd+1 denote the image of φ under the map from {ϕ0, . . . , ϕm} to {ϕ∗0, . . . , ϕ∗m}
defined by setting ϕ∗0 := ϕ0 and

ϕ∗k(x) :=

σ∨
s=1

∧
i∈As(ϕk)

x(i)
(
1 ≤ k ≤ m, x ∈ {0, 1}Zd)

. (7.11)

We set As(ϕ
∗
k) := As(ϕk) (1 ≤ k ≤ m, 1 ≤ s ≤ σ). We make the following simple observations.

Lemma 45 (Modified monotonic flow) The modified monotonic flow φ∗ has the following
properties:

(i) φ∗ satisfies (7.10),

(ii) φ∗ ≥ φ,

(iii) xφ
∗ ≥ xφ,

(iv) an explanation graph is present in φ∗ if and only if it is present such that ψ ≺ φ,

(v) a Toom contour is (strongly) present in φ∗ if and only if it is present such that ψ ≺ φ.

Proof Property (iii) is a direct consequence of (ii) and all other properties follow directly
from the definitions.

Because of Lemma 45, in the proof of results such as Theorems 7 and 9 about the (strong)
presence of Toom contours or Lemma 22 about the presence of an explanation graph, we
can without loss of generality assume that (7.10) holds. Indeed, by part (iii) of the lemma,

xφ0 (0) = 0 implies xφ
∗

0 (0) = 0 so replacing φ by φ∗, in view of parts (iv) and (v), it suffices to
prove the presence of an explanation graph or the (strong) presence of a Toom contour in φ∗.

We now come to the main subject of this subsection, which is to link minimal explanations
to explanation graphs. We start with a useful observation.

Lemma 46 (Presence of an explanation graph) Assume that φ satisfies (7.10). Then
properties (ii) and (iii) of Definition 21 imply property (i).

Proof Property (ii) of Definition 21 implies that

xt(i) = 0 ∀(i, t) ∈ U∗. (7.12)

We next claim that for (i, t) ∈ U\U∗,

xt−1(j) = 0 ∀
(
(i, t), (j, t− 1)

)
∈ ~H implies xt(i) = 0. (7.13)

Indeed, if xt−1(j) = 0 for all
(
(i, t), (j, t− 1)

)
∈ ~H, then by property (iii) of Definition 21, for

each 1 ≤ s ≤ σ, there is a k ∈ As(φ(i,t)) such that xt−1(i + k) = 0, which by (7.10) implies

that xt(i) = 0. Define inductively U0 := U∗ and Un+1 := {u ∈ U : v ∈ Un ∀(u, v) ∈ ~H}. Then
(7.12) and (7.13) imply that xt(i) = 0 for all (i, t) ∈ ⋃∞n=0 Un = U .

We now make the link between minimal explanations and the presence of explanation
graphs as defined in Definitions 20 and 21. As before, φ is a monotonic flow on {0, 1}Zd

taking values in {ϕ0, . . . , ϕm}, where ϕ0 = ϕ0 and ϕ1, . . . , ϕm are non-constant. Moreover,
we have fixed an integer σ ≥ 2 and for each 1 ≤ k ≤ m and 1 ≤ s ≤ σ, we have fixed
As(ϕk) ∈ A(ϕk).
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Lemma 47 (Minimal explanations and explanation graphs) Assume that φ satisfies
(7.10) and that ψ is a minimal explanation for (0, 0) such that ψ ≺ φ. For each (i, t) ∈ Zd+1

such that ψ(i,t) 6= ϕ1, let Z(i,t) be as in point (v) of Lemma 44. Then there is an explanation
graph (U,H) for (0, 0) present in φ such that:

U =
{

(i, t) ∈ Zd+1 : ψ(i,t) 6= ϕ1
}
, U∗ =

{
(i, t) ∈ U : ψ(i,t) = ϕ0

}
,

and ~H =
{(

(i, t), (j, t− 1)
)

: (i, t) ∈ U, j ∈ Z(i,t)

}
.

(7.14)

Proof Let U and U∗ be defined by (7.14). Let (i, t) ∈ U\U∗. Since ψ ≺ φ we have Z(ψ(i,t)) ⊂
Z(φ(i,t)) and hence Z(i,t) ∈ Z(φ(i,t)), so by (7.6), for each 1 ≤ s ≤ σ, we can choose some
js(i, t) ∈ Z(i,t) ∩ As(φ(i,t)). We claim that Z(i,t) = {j1(i, t), . . . , jσ(i, t)}. To see this, set
Z ′(i,t) := {j1(i, t), . . . , jσ(i, t)}. Then Z ′(i,t) ⊂ Z(i,t) and (7.10) implies that Z ′(i,t) ∩ A 6= ∅ for

all A ∈ A(φ(i,t)), which by (7.6) implies that Z ′(i,t) ∈ Z↑(φ(i,t)). By (7.2), Z(i,t) is a minimal

element of Z↑(φ(i,t)), so we conclude that Z ′(i,t) = Z(i,t).
We claim that setting

~Hs :=
{(

(i, t), (js(i, t), t− 1)
)

: (i, t) ∈ U\U∗
}

(1 ≤ s ≤ σ) (7.15)

now defines an explanation graph that is present in φ. Properties (i), (ii), (iv) and (v) of
Definition 20 follow immediately from our definitions and the fact that ψ(0,0) 6= ϕ1 since ψ is
a mininal explanation for (0, 0). Property (iii) follows from Lemma 44 (vi). This proves that
(U,H) is an explanation graph. To see that (U,H) is present in φ, we must check conditions
(i)–(iii) of Definition 21. Condition (i) follows from Lemma 44 (vii) and conditions (ii) and
(iii) are immediate from our definitions.

7.3 Discussion

As before, let φ be a monotonic flow on {0, 1}Zd
taking values in {ϕ0, . . . , ϕm}, where ϕ0 = ϕ0

and ϕ1, . . . , ϕm are non-constant. Let σ ≥ 2 and for each 1 ≤ k ≤ m and 1 ≤ s ≤ σ, let
As(ϕk) ∈ A(ϕk) be fixed. Consider the following conditions:

(i) xφ0 (0) = 0,

(ii) there exists a minimal explanation ψ for (0, 0) such that ψ ≺ φ,

(iii) there is an explanation graph (U,H) for (0, 0) present in φ,

(iv) there is a Toom contour (V, E , v◦, ψ) rooted at (0, 0) present in φ.

Theorem 7 and Lemmas 22 and 43 say that conditions (i)–(iii) are equivalent and imply (iv).
As the example in Figure 3 showed, (iv) is strictly weaker than the other three conditions.
This raises the question whether it is possible to prove Toom’s stability theorem using a Peierls
argument based on minimal explanations, as suggested in [Pre07].

Let us say that (i, t) is a defective site for a finite explanation ψ if ψ(i,t) = ϕ0. Let ϕ
be an eroder and let Mn denote the number of minimal explanations ψ for (0, 0) with n
defective sites that satisfy ψ(i,t) ≺ ϕ whenever (i, t) is not defective. We pose the following
open problem:

Do there exist finite constants C,N such that Mn ≤ CNn (n ≥ 0)?

If the answer to this question is affirmative, then it should be possible to set up a Peierls
argument based on minimal explanations, rather than Toom contours. In principle, such an
argument has the potential to be simpler and more powerful than the Peierls arguments used
in this article, but as we have seen the relation between minimal explanations and Toom
contours is not straightforward and finding a good upper bound on the number of minimal
explanations with a given number of defective sites seems even harder than in the case of
Toom contours.
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[Gac21] P. Gács. A new version of Toom’s proof. Preprint (2021), arXiv:2105.05968.

[GG82] L. Gray and D. Griffeath. A stability criterion for attractive nearest-neighbor spin
systems on Z. Ann. Probab. 10 (1982), 67–85.
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