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The Brownian Web, the Brownian Net,
and their Universality

EMMANUEL SCHERTZER, RONGFENG SUN
AND JAN M. SWART

6.1 Introduction

The Brownian web originated from the work of Arratia’s Ph.D. thesis [1], where
he studied diffusive scaling limits of coalescing random walk paths starting from
everywhere on Z, which can be seen as the spatial genealogies of the population
in the dual voter model on Z. Arratia showed that the collection of coalescing
random walks converge to a collection of coalescing Brownian motions on R,
starting from every point on R at time 0. Subsequently, Arratia [2] attempted to
generalize his result by constructing a system of coalescing Brownian motions
starting from everywhere in the space-time plane R2, which would be the scaling
limit of coalescing random walk paths starting from everywhere on Z at every
time t ∈ R. However, the manuscript [2] was never completed, even though
fundamental ideas have been laid down. This topic remained dormant until Tóth
and Werner [99] discovered a surprising connection between the one-dimensional
space-time coalescing Brownian motions that Arratia tried to construct, and an
unusual process called the true self-repelling motion, which is repelled by its
own local time profile. Building on ideas from [2], Tóth and Werner [99] gave
a construction of the system of space-time coalescing Brownian motions, and then
used it to construct the true self-repelling motion.

On the other hand, Fontes, Isopi, Newman and Stein [37] discovered that this
system of space-time coalescing Brownian motions also arises in the study of aging
and scaling limits of one-dimensional spin systems. To establish weak convergence
of discrete models to the system of coalescing Brownian motions, Fontes et al. [38,
40] introduced a topology that the system of coalescing Brownian motions starting
from every space-time point can be realized as a random variable taking values
in a Polish space, and they named this random variable the Brownian web. An
extension to the Brownian web was later introduced by the authors in [86], and
independently by Newman, Ravishankar and Schertzer in [73]. This object was
named the Brownian net in [86], where the coalescing paths in the Brownian web
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The Brownian Web and the Brownian Net 271

are also allowed to branch. To counter the effect of instantaneous coalescence, the
branching occurs at an effectively “infinite” rate.

The Brownian web and net have very interesting properties. Their construction
is nontrivial due to the uncountable number of starting points in space-time.
Coalescence allows one to reduce the system to a countable number of starting
points. In fact, the collection of coalescing paths starting from every point on R
at time 0 immediately becomes locally finite when time becomes positive, similar
to the phenomenon of coming down from infinity in Kingman’s coalescent (see
e.g., [10]). In fact, the Brownian web can be regarded as the spatial analogue
of Kingman’s coalescent, with the former arising as the limit of genealogies of
the voter model on Z, and the latter arising as the limit of genealogies of the
voter model on the complete graph. The key tool in the analysis of the Brownian
web, as well as the Brownian net, is its self-duality, similar to the self-duality of
critical bond percolation on Z2. Duality allows one to show that there exist random
space-time points where multiple paths originate, and one can give a complete
classification of these points. The Brownian web and net also admit a coupling,
where the web can be constructed by sampling paths in the net, and conversely,
the net can be constructed from the web by Poisson marking a set of “pivotal”
points in the web and turning these into points where paths can branch. The latter
construction is similar to the construction of scaling limits of near-critical planar
percolation from that of critical percolation [19, 48, 49].

The Brownian web and net give rise to a new universality class. In particular,
they are expected to arise as the universal scaling limits of one-dimensional
interacting particle systems with coalescence, respectively branching-coalescence.
One such class of models are population genetic models with resampling
and selection, whose spatial genealogies undergo branching and coalescence.
Establishing weak convergence to the Brownian web or net can also help in
the study of the discrete particle systems themselves. Related models which
have been shown to converge to the Brownian web include coalescing random
walks [72], succession lines in Poisson trees [36, 23, 46] and drainage network
type models [17, 22, 80]. Interesting connections with the Brownian web and
net have also emerged from many unexpected sources, including supercritical
oriented percolation on Z1+1 [6], planar aggregation models [76, 77], true
self-avoiding random walks on Z [94, 99], random matrix theory [101, 100], and
also one-dimensional random walks in i.i.d. space-time random environments [92].
There are also close parallels between the Brownian web and the scaling limit of
critical planar percolation, which are the only known examples of two-dimensional
black noise [95, 96, 87, 33].

The goal of this article is to give an introduction to the Brownian web and net,
their basic properties, and how they arise in the scaling limits of one-dimensional
interacting particle systems with branching and coalescence. We will focus on the
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272 E. Schertzer et al.

key ideas, while referring many details to the literature. Our emphasis is naturally
biased toward our own research. However, we will also briefly survey related work,
including the many interesting connections mentioned above. We have left out
many other closely related studies, including diffusion-limited reactions [28, 8]
where a dynamic phase transition is observed for branching-coalescing random
walks, the propagation of cracks in a sheet [27], rill erosion [31] and the directed
Abelian Sandpile Model [25], quantum spin chains [60], etc., which all lie within
the general framework of non-equilibrium critical phenomena discussed in the
physics surveys [79, 53].

The rest of this article is organized as follows. In Section 6.2, we will construct
and give a characterization of the Brownian web and study its properties. In
Section 6.3, we do the same for the Brownian net. In Section 6.4, we introduce a
coupling between the Brownian web and net and show how one can be constructed
from the other. In Section 6.5, we will explain how the Brownian web and net
can be used to construct the scaling limits of one-dimensional random walks in
i.i.d. space-time random environments. In Section 6.6, we formulate convergence
criteria for the Brownian web, which are then applied to coalescing random walks.
We will also discuss strategies for proving convergence to the Brownian net.
In Section 6.7, we survey other interesting models and results connected to the
Brownian web and net. Lastly, in Section 6.8, we conclude with some interesting
open questions.

6.2 The Brownian Web

The Brownian web is best motivated by its discrete analogue, the collection
of discrete time coalescing simple symmetric random walks on Z, with one
walker starting from every site in the space-time lattice Z2

even := {(x,n) ∈ Z2 :
x+ n is even}. The restriction to the sublattice Z2

even is necessary due to parity.
Figure 6.1 illustrates a graphical construction, where from each (x,n) ∈ Z2

even an
independent arrow is drawn from (x,n) to either (x−1,n+1) or (x+1,n+1) with
probability 1/2 each, determining whether the walk starting at x at time n should
move to x−1 or x+1 at time n+1. The objects of interest for us are the collection
of upward random walk paths (obtained by following the arrows) starting from
every space-time lattice point. The question is:

Q.1 What is the diffusive scaling limit of this collection of coalescing random
walk paths if space and time are scaled by 1/

√
n and 1/n respectively?

Intuitively, it is not difficult to see that the limit should be a collection of coalescing
Brownian motions, starting from everywhere in the space-time plane R2. This
is what we will call the Brownian web. However, a conceptual difficulty arises,
namely that we need to construct the joint realization of uncountably many
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The Brownian Web and the Brownian Net 273

Figure 6.1. Discrete space-time coalescing random walks on Z2
even, and its dual

on Z2
odd.

Brownian motions. Fortunately it turns out that coalescence allows us to reduce
the construction to only a countable collection of coalescing Brownian motions.

Note that in Figure 6.1, we have also drawn a collection of downward arrows
connecting points in the odd space-time lattice Z2

odd := {(x,n) ∈ Z2 : x+ n is odd},
which are dual to the upward arrows by the constraint that the upward and
backward arrows do not cross each other. This is the same duality as that for planar
bond percolation, and the collection of upward arrows uniquely determines the
downward arrows, and vice versa. The collection of downward arrows determines
a collection of coalescing random walk paths running backward in time, with
one walker starting from each site in Z2

odd. We may thus strengthen Q.1 to the
following:

Q.2 What is the diffusive scaling limit of the joint realization of the collection of
forward and backward coalescing random walk paths?

Observe that the collection of backward coalescing random walk paths has the
same distribution as the forward collection, except for a rotation in space-time
by 180o and a lattice shift. Therefore, the natural answer to Q.2 is that the
limit consists of two collections of coalescing Brownian motions starting from
everywhere in space-time – one running forward in time and the other backward –
and the two collections are equally distributed except for a time-reversal. This
is what we will call the (forward) Brownian web and the dual (backward)
Brownian web.

In the discrete system, we observe that the collection of forward and the
collection of backward coalescing random walk paths uniquely determine each
other by the constraint that forward and backward paths cannot cross. It is natural
to expect the same for their continuum limits, namely that the Brownian web
and the dual Brownian web almost surely uniquely determine each other by the
constraint that their paths cannot cross.
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274 E. Schertzer et al.

The heuristic considerations above, based on discrete approximations, outline
the key properties that we expect the Brownian web to satisfy and provide a guide
for our analysis.

Before proceeding to a proper construction of the Brownian web and estab-
lishing its basic properties, we first define a suitable Polish space in which the
Brownian web takes its value. This will be essential to prove weak convergence to
the Brownian web.

6.2.1 The Space of Compact Sets of Paths

Following Fontes et al. [40], we regard the collection of colaescing Brownian
motions as a set of space-time paths, which can be shown to be almost surely
relatively compact if space and time are suitably compactified. It is known that
given a Polish space E (the space of paths in our case), the space of compact
subsets of E, equipped with the induced Hausdorff topology, is a Polish space
itself. Therefore a natural space for the Brownian web is the space of compact sets
of paths (after compactifying space and time), with the Brownian web taken to
be the almost sure closure of the set of colaescing Brownian motions. This paths
topology was inspired by a similar topology proposed by Aizenman [3] to study
two-dimensional percolation configurations as closed sets of curves, called the
percolation web, which was then studied rigorously by Aizenman and Burchard
in [4]. We now give the details.

We first compactify R2. Let R2
c denote the completion of the space-time plane

R2 w.r.t. the metric

ρ((x1, t1), (x2, t2))= |tanh(t1)− tanh(t2)| ∨
∣∣∣∣ tanh(x1)

1+|t1| −
tanh(x2)

1+|t2|
∣∣∣∣ . (6.1)

Note that R2
c can be identified with the continuous image of [−∞,∞]2 under a

map that identifies the line [−∞,∞]× {∞} with a single point (∗,∞), and the
line [−∞,∞]×{−∞} with the point (∗,−∞) (see Figure 6.2).

�

(∗,−∞)

(∗, +∞)

(0, 0)

(+∞, 2)

(−∞, −1)

Figure 6.2. The compactification R2
c of R2.
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The Brownian Web and the Brownian Net 275

A path π in R2
c, whose starting time we denote by σπ ∈ [−∞,∞], is a mapping

π : [σπ ,∞]→ [−∞,∞]∪ {∗} such that π (∞)= ∗, π (σπ )= ∗ if σπ =−∞, and
t→ (π (t), t) is a continuous map from [σπ ,∞] to (R2

c,ρ). We then define � to be
the space of all paths in R2

c with all possible starting times in [−∞,∞]. Endowed
with the metric

d(π1,π2)= ∣∣tanh(σπ1)− tanh(σπ2)
∣∣

∨ sup
t≥σπ1∧σπ2

∣∣∣∣ tanh(π1(t∨σπ1))

1+|t| − tanh(π2(t∨σπ2))

1+|t|
∣∣∣∣ , (6.2)

(�,d) is a complete separable metric space. Note that convergence in the metric
d can be described as locally uniform convergence of paths plus convergence of
starting times. (The metric d differs slightly from the original choice in [40], which
is somewhat less natural, as explained in the appendix of [86].)

Let H denote the space of compact subsets of (�,d), equipped with the
Hausdorff metric

dH(K1,K2)= sup
π1∈K1

inf
π2∈K2

d(π1,π2) ∨ sup
π2∈K2

inf
π1∈K1

d(π1,π2), (6.3)

and let BH be the Borel σ -algebra associated with dH.

Exercise 6.2.1 Show that (H,dH) is a complete separable metric space.

Exercise 6.2.2 Let K ⊂� be compact. Show that K := {Ā : A⊂ K} is a compact
subset of H.

For further properties of (H,dH), such as textcolorreda criterion for the conver-
gence of a sequence of elements in H, or necessary and sufficient conditions for
the precompactness of a subset of H, see e.g., [92, Appendix B].

We will construct the Brownian web W as an (H,BH)-valued random variable.
The following notational convention will be adopted in the rest of this article:

• For K ∈H and A⊂R2
c, K(A) will denote the set of paths in K with starting points

in A.
• When A= {z} for z ∈ R2

c, we also write K(z) instead of K({z}).

6.2.2 Construction and Characterization of the Brownian Web

The basic ideas in constructing the Brownian web are the following. First we can
construct coalescing Brownian motions starting from a deterministic countable
dense subset D of the space-time plane R2. It is easily seen that coalescence forces
paths started at typical points outside D to be squeezed between coalescing paths
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276 E. Schertzer et al.

started from D. Therefore, to construct paths starting from outside D, we only
need to take the closure of the set of paths starting from D. Lastly one shows
that the law of the random set of paths constructed does not depend on the choice
of D. This construction procedure is effectively contained in the following result
from [40, Theorem 2.1], which gives a characterization of the Brownian web W
as an (H,BH)-valued random variable, i.e., a random compact set of paths.

Theorem 6.2.3 (Characterization of the Brownian web) There exists an (H,
BH)-valued random variable W , called the standard Brownian web, whose
distribution is uniquely determined by the following properties:

(a) For each deterministic z ∈R2, almost surely there is a unique path πz ∈W(z).
(b) For any finite deterministic set of points z1, . . . ,zk ∈ R2, the collection

(πz1 , . . . ,πzk ) is distributed as coalescing Brownian motions.
(c) For any deterministic countable dense subset D ⊂R2, almost surely, W is the

closure of {πz : z ∈D} in (�,d).

Proof Sketch. We will sketch the main ideas and ingredients and refer the details
to [39, 40]. The main steps are:

(1) Let D = {(x, t) : x, t ∈Q} and construct the collection of coalescing Brownian
motions W(D) := {πz}z∈D, where πz is the Brownian motion starting at z.

(2) Show that W(D) is almost surely a precompact set in the space of paths (�,d),
and hence W :=W(D) defines a random compact set, i.e., an (H,BH)-valued
random variable.

(3) Show that properties (a) and (b) hold for W , which can be easily seen to imply
that property (c) also holds for W .

The above steps construct a random variable W satisfying properties (a)–(c). Its
law is uniquely determined, since if W̃ is another random variable satisfying the
same properties, then both W(D) and W̃(D) are coalescing Brownian motions
starting from D, and hence can be coupled to equal almost surely. Property (c)
then implies that W = W̃ almost surely under this coupling.

Step (1) Fix an order for points in D, so that D= {zk}k∈N. Coalescing Brownian
motions (πk)k∈N starting respectively from (zk)k∈N can be constructed inductively
from independent Brownian motions (π̃k)k∈N starting from (zk)k∈N. First let π1 :=
π̃1. Assuming that π1, . . . ,πk have already been constructed from π̃1, . . . , π̃k, then
we define the path πk+1 to coincide with the independent Brownian motion π̃k+1

until the first time τ when it meets one of the already constructed coalescing paths,
say πj, for some 1 ≤ j ≤ k. From time τ onward, we just set πk+1 to coincide
with πj. It is not difficult to see that for any k ∈ N, (πi)1≤i≤k is a collection of
coalescing Brownian motions characterized by the property that different paths
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The Brownian Web and the Brownian Net 277

evolve as independent Brownian motions when they are apart, and evolve as the
same Brownian motion from the time when they first meet. Furthermore, any
subset of a collection of coalescing Brownian motions is also a collection of
coalescing Brownian motions.

Step (2) The main idea is the following. The compactification of space-time
as shown in Figure 6.2 allows us to approximate R2 by a large space-time box
�L,T := [−L,L]× [−T ,T], and proving precompactness of W(D) can be reduced
to proving the equicontinuity of paths in W(D) restricted to �L,T (for further
details, see [40, Appendix B]). More precisely, it suffices to show that for any
ε > 0, almost surely we can choose δ > 0 such that the modulus of continuity

ψW(D),L,T (δ) := sup{ |πz(t)−πz(s)| : z ∈D, (πz(s),s) ∈�L,T , t ∈ [s,s+ δ]} ≤ ε.

(6.4)

Assuming w.l.o.g. that ε,δ ∈ Q, we will control ψW(D),L,T (δ) > ε in terms of the
modulus of continuity of coalescing Brownian motions starting from the grid

Gε,δ := {(mε/4,nδ) : m,n ∈N}∩ [−L− ε,L+ ε]× [−T− δ,T] ⊂D.

Indeed, ψW(D),L,T (δ) > ε means that |πz(t) − πz(s)| > ε for some z ∈ D with
(πz(s),s) ∈�L,T and t ∈ [s,s+ δ]. Then there exists a point in the grid z̃= (x̃, t̃) ∈
Gε,δ with s ∈ [t̃, t̃+ δ) and x̃ ∈ (π (s)∧π (t)+ ε/4,π (s)∧π (t)− ε/4). Since πz and
πz̃ are coalescing Brownian motions, either πz̃ coalesces with πz before time t, or
πz̃ avoids πz up to time t. Either way, we must have

sup
h∈[0,2δ]

|πz̃(t̃+ h)−πz̃(t̃)| ≥ ε/4.

Denote this event by Eε,δ
z . Then

P(ψW(D),L,T (δ) > ε)≤ P
( ⋃

z∈Gε,δ

Eε,δ
z

)≤ ∑
z∈Gε,δ

P(Eε,δ
z )= |Gε,δ|P( sup

h∈[0,2δ]
|Bh| ≥ ε/4)

≤ CL,Tε
−1δ−1e−cε2/δ ,

where c,CL,T > 0, B is a standard Brownian motion, and we have used the
reflection principle to bound the tail probability for sup |B|. Since P(ψW(D),L,T (δ)>
ε) → 0 as δ ↓ 0, this implies (6.4). Therefore W(D) is a.s. precompact, and
W :=W(D) defines an (H,BH)-valued random variable.

Step (3) We first show that for each z = (x, t) ∈ R2, almost surely W(z), the
paths in W starting at z, contains a unique path. Let z−n = (x− εn, t − δn) ∈ D,
z+n = (x+ εn, t− δn) ∈D, with εn,δn ↓ 0, and let τn be the time when πz−n and πz+n
coalesce. Note that on the event

En :=
{
πz−n (t) < x <πz+n (t),τn ≤ t+ 1

n

}
,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316403877.007
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 23 Apr 2018 at 02:40:07, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316403877.007
https://www.cambridge.org/core


278 E. Schertzer et al.

every path in W(z) must be enclosed between πz−n and πz+n , and hence is uniquely

determined from time τn ≤ t + 1
n onward. It is easy to see that we can choose

εn ↓ 0 sufficiently fast, and δn ↓ 0 much faster than ε2
n , such that P(En) →

1 as n → ∞. In particular, almost surely, En occurs infinitely often, which
implies that the paths in W(z) all coincide on (t,∞) and hence W(z) contains a
unique path.

To show that W satisfies property (b), let us fix z1, . . . ,zk ∈R2. For each 1≤ i≤ k,
let zn,i ∈ D with zn,i → zi as n→∞. By the a.s. compactness of W , and the fact
that W(zi) a.s. contains a unique path πzi by property (a) that we just verified, we
must have πzn,i → πzi in (�,d) for each 1 ≤ i ≤ k. In particular, as a sequence of
�k-valued random variables, (πzn,i)1≤i≤k converges in distribution to (πzi)1≤i≤k.
On the other hand, as a subset of W(D), (πzn,i)1≤i≤k is a collection of coalescing
Brownian motions, and it is easy to show that as their starting points converge, they
converge in distribution to a collection of coalescing Brownian motions starting
from (zi)1≤i≤k. Therefore (πzi)1≤i≤k is distributed as a collection of coalescing
Brownian motions.

Lastly, to show that W satisfies property (c), let D′ be another countable dense
subset of R2. Clearly W(D′)⊂W . To show the converse, W ⊂W(D′), it suffices
to show that for each z ∈ D, πz ∈W(D′). This can be seen by taking a sequence
z′n ∈D′ with z′n→ z, for which we must have πz′n →πz ∈W(D′) by the compactness
of W(D′)⊂W and the fact that W(z)= {πz}. �

6.2.3 The Brownian Web and its Dual

As discussed at the beginning of Section 6.2, similar to the duality between
forward and backward coalescing random walks shown in Figure 6.1, we expect
the Brownian web W also to have a dual Ŵ . Such a duality provides a powerful
tool for analyzing properties of the Brownian web. Since the dual Brownian web
Ŵ should be a collection of coalescing paths running backward in time, we first
define the space in which Ŵ takes its values.

Given z = (x, t) ∈ R2
c , which is identified with [−∞,∞]2 where [−∞,∞]×

{±∞} is contracted to a single point (∗,±∞), let −z denote (−x,−t). Given a set
A ⊂ R2

c , let −A denote {−z : z ∈ A}. Identifying each path π ∈ � with its graph
as a subset of R2

c , π̂ :=−π defines a path running backward in time, with starting
time σ̂π̂ =−σπ . Let �̂ :=−� denote the set of all such backward paths, equipped
with a metric d̂ that is inherited from (�,d) under the mapping −. Let Ĥ be the
space of compact subsets of (�̂, d̂), equipped with the Hausdorff metric dĤ and
Borel σ -algebra BĤ. For any K ∈ H, we will let −K denote the set {−π : π ∈
K} ∈ Ĥ.
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The Brownian Web and the Brownian Net 279

The following result characterizes the joint law of the Brownian web W and its
dual Ŵ as a random variable taking values in H× Ĥ, equipped with the product
σ -algebra.

Theorem 6.2.4 (Characterization of the double Brownian web) There exists an
H×Ĥ-valued random variable (W ,Ŵ), called the double Brownian web (with Ŵ
called the dual Brownian web), whose distribution is uniquely determined by the
following properties:

(a) W and −Ŵ are both distributed as the standard Brownian web.
(b) Almost surely, no path πz ∈ W crosses any path π̂ẑ ∈ Ŵ in the sense that,

z= (x, t) and ẑ= (x̂, t̂) with t < t̂, and (πz(s1)− π̂ẑ(s1))(πz(s2)− π̂ẑ(s2))< 0 for
some t < s1 < s2 < t̂.

Furthermore, for each z ∈ R2, Ŵ(z) a.s. consists of a single path π̂z which is the
unique path in �̂ that does not cross any path in W , and thus Ŵ is a.s. determined
by W and vice versa.

Proof Sketch. The existence of a double Brownian web (W ,Ŵ) satisfying
properties (a)–(b) is most easily derived as scaling limits of forward and backward
coalescing random walks. We defer this to Section 6.6, after we introduce general
criteria for convergence to the Brownian web.

Let us first prove that if (W ,Ŵ) satisfies properties (a)–(b), then almost surely
W uniquely determines Ŵ . Indeed, fix a deterministic z = (x, t) ∈ R2. By the
characterization of the Brownian web W , W(Q2) is a collection of colaescing
Brownian motions, with a.s. one Brownian motion starting from each point in Q2.
Since Brownian motion has zero probability of hitting a deterministic space-time
point, there is zero probability that z lies on πz′ for any z′ ∈ Q2. Therefore for
any s ∈ Q with s < t, property (b) implies that for any path π̂ ∈ Ŵ(z), we must
have

π̂ (s)= sup{y ∈Q : π(y,s)(t) < x} = inf{y ∈Q : π(y,s)(t) > x}.
In other words, π̂ is uniquely determined at rational times and hence at all times,
and Ŵ(z) contains a unique path. It follows that Ŵ(Q2) is a.s. uniquely determined

by W , and hence so is Ŵ = Ŵ(Q2).
Lastly we show that the distribution of (W ,Ŵ) is uniquely determined by

properties (a) and (b). Indeed, if (W ′,Ŵ ′) is another double Brownian web, then
W and W ′ can be coupled so that they equal a.s. As we have just shown, W
a.s. uniquely determines Ŵ , and W ′ determines Ŵ ′. Therefore Ŵ = Ŵ ′ a.s., and
(W ′,Ŵ ′) has the same distribution as (W ,Ŵ). �

Remark 6.2.5 One can characterize the joint law of paths in (W ,Ŵ) starting
from a finite deterministic set of points. Similar to the construction of coalescing
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Brownian motions, we can construct one path at a time. To add a new forward
path to an existing collection, we follow an independent Brownian motion until it
either meets an existing forward Brownian motion, in which case they coalesce,
or it meets an existing dual Brownian motion, in which case it is Skorohod
reflected by the dual Brownian motion (for further details, see [93]). Extending
this pathwise construction to a countable dense set of starting points D and then
taking closure, this gives a direct construction of (W ,Ŵ), which is formulated
in [41, Theorem 3.7].

Remark 6.2.6 In light of Theorem 6.2.4, one may wonder whether W a.s. consists
of all paths in � which do not cross any path in Ŵ , and vice versa. The answer
is no, and W is actually the minimal compact set of paths that do not cross any
path in Ŵ while still containing paths starting from every point in R2. More
non-crossing paths can be added to W by extending paths in W backward in
time, following paths in Ŵ (see [44]). Such paths can be excluded if we impose
the further restriction that no path can enter from outside any open region that is
enclosed by a pair of paths in Ŵ . This is called the wedge characterization of the
Brownian web, to be discussed in more detail in Remark 6.3.10.

6.2.4 The Coalescing Point Set

The coupling between the Brownian web and its dual given in Theorem 6.2.4
allows one to deduce interesting properties for the Brownian web. The first result
is on the density of paths in the Brownian web W started at time 0.

Given the Brownian web W , and a closed set A⊂R, define the coalescing point
set by

ξA
t := {y ∈R : y= π (t) for some π ∈W(A×{0})}, t≥ 0. (6.5)

In words, ξA
t is the set of points in R that lie on some path in W that starts from

A at time 0. Note that this process is monotone in the sense that if A ⊂ B, then
ξA

t ⊂ ξB
t a.s. for all t≥ 0.

It turns out that even if started from the whole line, ξR
t becomes a.s. locally finite

as soon as t > 0, as the following density result shows. Such a coming down from
infinity phenomenon also appears in Kingman’s coalescent, see e.g., [10].

Proposition 6.2.7 (Density of the coalescing point set) Let ξR· be the coalescing
point set defined from the Brownian web W as in (6.5). Then for all t > 0 and
a < b,

E[|ξR
t ∩ [a,b]|]= b− a√

π t
. (6.6)
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Proof. Let Ŵ be the dual Brownian web determined a.s. by W , as in
Theorem 6.2.4. Observe that by the non-crossing property between paths in W
and Ŵ , ξR

t ∩ (a,b) �= ∅ implies that the paths π̂a, π̂b ∈ Ŵ , starting respectively at
(a, t) and (b, t), do not coalesce in the time interval (0, t) (i.e., τ̂ ≤ 0 if τ̂ denotes the
time when π̂a and π̂b coalesce). Conversely, if τ̂ ≤ 0, then any path in W started
from [π̂a(0), π̂b(0)] at time 0 will hit [a,b] at time t, i.e., ξR

t ∩ [a,b] �= ∅. Thus,

P(ξR
t ∩ (a,b) �= ∅)≤ P(τ̂ ≤ 0)≤ P(ξR

t ∩ [a,b] �= ∅), (6.7)

where we observe that

P(τ̂ ≤ 0)= P
(

sup
s∈(0,t)

(B2(s)−B1(s))≤ b− a
)= P

(
sup

s∈(0,t)
B(s)≤ b− a√

2

)
= 1√

2π t

∫ b−a√
2

− b−a√
2

e−
x2
2t dx∼ b− a√

π t
as b− a ↓ 0.

By (6.7), this implies that

P(x ∈ ξR
t )= 0 for all x ∈R,

and the inequalities in (6.7) are in fact all equalities.
We can then apply the monotone convergence theorem to obtain

E[|ξR
t ∩ [a,b]|]= lim

n→∞E
[∣∣∣{1≤ i < (b− a)2n : ξR

t ∩
(

a+ i− 1

2n
,a+ i

2n

)
�= ∅

}∣∣∣]
= lim

n→∞ (b− a)2nP(ξR
t ∩ (0,2−n) �= ∅)= lim

n→∞ (b− a)2n 2−n

√
π t

= b− a√
π t

.

This concludes the proof of the proposition. �

As a corollary of Proposition 6.2.7, we show that when paths in the Brownian
web converge, they converge in a strong sense (see e.g., [86, Lemma 3.4]).

Corollary 6.2.8 (Strong convergence of paths in W) Let W be the standard
Brownian web. Almost surely, for any sequence πn ∈W with πn → π ∈W , the
time of coalescence τn between πn and π must tend to σπ as n→∞.

Exercise 6.2.9 Deduce Corollary 6.2.8 from Proposition 6.2.7.

Remark 6.2.10 Apart from its density, we actually know quite a bit more about
the coalescing point set ξR

t . It has been shown by Tribe et al. [101, 100] that ξR
t
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is in fact a Pfaffian point process, whose kernel also appears in the real Ginibre
random matrix ensemble. Furthermore, ξR

t (and more generally ξA
t for any A⊂R)

can be shown (see e.g., [52, Appendix C] and [69]) to be negatively associated in
the sense that for any n ∈N and any disjoint open intervals O1, · · · ,On, we have

P(∩n
i=1 {ξR

t ∩Oi �= ∅})≤
n∏

i=1

P(ξR
t ∩Oi �= ∅). (6.8)

For any B⊂R with positive Lebesgue measure, we also have

P(|ξR
t ∩B| ≥m+ n)≤ P(|ξR

t ∩B| ≥m)P(|ξR
t ∩B| ≥ n) ∀m,n ∈N. (6.9)

On a side note, we remark that when A⊂R is a finite set, determinantal formulas
have also been derived for the distribution of ξA

t in [103, Proposition. 9].

6.2.5 Special Points of the Brownian Web

We have seen in Theorem 6.2.3 that for each deterministic z∈R2, almost surely the
Brownian web W contains a unique path starting from z. However, it is easily seen
that there must exist random points z ∈ R2 where W(z) contains multiple paths.
Indeed, consider paths in W starting from R at time 0. Proposition 6.2.7 shows that
these paths coalesce into a locally finite set of points ξR

t at any time t > 0. Each
point xi ∈ ξR

t (with xi < xi+1 for all i∈Z) can be traced back to an interval (ui,ui+1)
at time 0, where all paths starting there pass through the space-time point (xi, t). At
the boundary ui between two such intervals, we note however that W((ui,0)) must
contain at least two paths, which are limits of paths in W starting from (ui−1,ui),
respectively (ui,ui+1), at time 0. Are there random space-time points where more
than two paths originate? It turns out that we can give a complete classification of
the type of multiplicity we see almost surely in a Brownian web. The main tool to
accomplish this is the self-duality of the Brownian web discussed in Section 6.2.3.

First we give a classification scheme for z ∈ R2 according to the multiplicity of
paths in W entering and leaving z. We say a path π enters z= (x, t) if σπ < t and
π (t)= x, and π leaves z if σπ ≤ t and π (t)= x. Two paths π and π ′ leaving z are
defined to be equivalent, denoted by π ∼z

out π
′, if π = π ′ on [t,∞). Two paths π

and π ′ entering z are defined to be equivalent, denoted by π ∼z
in π

′, if π = π ′ on
[t− ε,∞) for some ε > 0. Note that ∼z

in and ∼z
out are equivalence relations.

Let min(z), respectively mout(z), denote the number of equivalence classes of
paths in W entering, respectively leaving, z, and let m̂in(z) and m̂out(z) be defined
similarly for the dual Brownian web Ŵ . Given a realization of the Brownian web
W , points z ∈ R2 are classified according to the value of (min(z),mout(z)). We
divide points of type (1,2) further into types (1,2)l and (1,2)r, where the subscript
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1),(2/3),(01),(1/2),(03),(0/1),(22),(0/1),(1 r2),(1/r2),(1l2),(1/l2),(11),(0/1),(0

Figure 6.3. Special points of the Brownian web.

l (resp. r) indicates that the left (resp. right) of the two outgoing paths is the
continuation of the (up to equivalence) unique incoming path. Points in the dual
Brownian web Ŵ are labeled according to their type in the Brownian web obtained
by rotating the graph of Ŵ in R2 by 180o.

We are now ready to state the following classification result (see also [99,
Proposition 2.4] and [41, Theorems 3.11–3.14]), illustrated in Figure 6.3.

Theorem 6.2.11 (Special points of the Brownian web) Let (W ,Ŵ) be the stan-
dard Brownian web and its dual. Then almost surely, each z ∈R2 satisfies

mout(z)= m̂in(z)+ 1 and m̂out(z)=min(z)+ 1, (6.10)

and z is of one of the following seven types according to (min(z),mout(z))/(m̂in(z),
m̂out(z)):

(0,1)/(0,1), (1,1)/(0,2), (0,2)/(1,1), (2,1)/(0,3), (0,3)/(2,1), (1,2)l/(1,2)l,

(1,2)r/(1,2)r.

Almost surely,

(i) the set of points of type (0,1)/(0,1) has full Lebesgue measure in R2;
(ii) points of type (1,1)/(0,2) are points in the set

⋃
π∈W{(π (t), t) : t > σπ },

excluding points of type (1,2)/(1,2) and (2,1)/(0,3);
(iii) the set of points of type (2,1)/(0,3) consists of points at which two paths in

W coalesce and is countable;
(iv) points of type (1,2)l/(1,2)l are points of intersection between some π ∈W

and π̂ ∈ Ŵ , with σπ < t<σ̂π̂ , π (s)≤ π̂ (s) for all s∈ [σπ , σ̂π̂ ], and π intersects
π̂ at (π (t), t)= (π̂ (t), t).

Similar statements hold for the remaining three types by symmetry.

Proof. First we will prove relation (6.10). Let z= (x, t), and assume that m̂in(z)= k
for some k ∈N0 := {0}∪N. Then there exist ε > 0 and k ordered paths π̂1, . . . , π̂k ∈
Ŵ starting at time t+ ε, such that these paths are disjoint on (t, t+ ε] and coalesce
together at time t at position x. Note that the ordered paths (π̂i)1≤i≤k divide the
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space-time strip R× (t, t+ ε) into k+ 1 regions (Ii)1≤i≤k+1, where I1 is the region
to the left of π̂1, Ii is the region between π̂i−1 and π̂i for each 2 ≤ i ≤ k, and Ik+1

is the region to the right of π̂k. From the interior of each region Ii, we can pick a
sequence of starting points (zn

i )n∈N with zn
i → z. Since paths in W and Ŵ do not

cross, as formulated in Theorem 6.2.4, each path πn
i ∈W(zn

i ) must stay confined
in Ii in the time interval [t, t+ ε], and so must any subsequential limit of (πn

i )n∈N.
Such subsequential limits must exist by the almost sure compactness of W , and
each subsequential limit is a path πi ∈W(z). Therefore W(z) must contain at least
k+1 distinct paths, one contained in Ii for each 1≤ i≤ k+1. Furthermore, each Ii

cannot contain more than one path in W(z). Indeed, if Ii contains two distinct paths
π ,π ′ ∈W(z), then any path π̂ ∈ Ŵ started strictly between π and π ′ on the time
interval (t, t+ ε) must enter z, and π̂ is distinct from (π̂i)1≤i≤k, which contradicts
the assumption that m̂in(z) = k. Therefore we must have mout(z) = k + 1 = m̂in

(z)+ 1.
Similar considerations as above show that if z is of type (1,2)l in W , then it must

be of the same type in Ŵ . The same holds for type (1,2)r.
We now show that the seven types of points listed are all there is. Note that it

suffices to show that almost surely min(z)+mout(z)≤ 3 for each z ∈R2. There are
four possible cases of min(z)+mout(z) > 3, which we rule out one by one:

(a) For some z ∈R2, min(z)≥ 3 and mout(z)≥ 1. Note that Corollary 6.2.8 implies
that every path π ∈W coincides with some path in W(Q2) on [σπ + ε,∞),
for any given ε > 0. Therefore the event that min(z) ≥ 3 for some z ∈ R2 is
contained in the event that three distinct Brownian motions among W(Q2)
coalesce at the same time. Such an event has probability zero, because there are
countably many ways of choosing three Brownian motions from W(Q2), and
conditioned on two Brownian motions coalescing at a given space-time point,
there is zero probability that a third independent Brownian motion (which
evolves independently before coalescing) would visit the same space-time
point.

(b) For some z ∈ R2, min(z) ≥ 2 and mout(z) ≥ 2. In this case, m̂in(z) ≥ 1, and,
again by Corollary 6.2.8, the event we consider is contained in the event that
there exist two paths π1,π2 ∈ W(Q2) and a path π̂ ∈ Ŵ(Q2), such that π̂
passes through the point of coalescence between π1 and π2. Such an event
has probability 0, since conditioned on π1 and π2 up to the time of their
coalescence, π̂ is an independent Brownian motion with zero probability of
hitting a given space-time point – the point of coalescence between π1 and π2.

(c) For some z ∈ R2, min(z) ≥ 1 and mout(z) ≥ 3. In this case, m̂out(z) ≥ 2 and
m̂in(z) ≥ 2, which is equivalent to Case (b) by the symmetry between W
and Ŵ .
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(d) For some z ∈ R2, mout(z) ≥ 4. In this case, m̂in(z) ≥ 3, which is equivalent to
Case (a).

We leave the verification of statements (i)–(iv) as an exercise. �

Exercise 6.2.12 Verify statements (i)–(iv) in Theorem 6.2.11.

6.3 The Brownian Net

The Brownian net generalizes the Brownian web by allowing paths to branch.
The existence of such an object is again motivated by its discrete analogue, the
collection of discrete time branching-coalescing simple symmetric random walks
on Z. Figure 6.4 gives an illustration: from each (x,n) ∈ Z2

even, an arrow is drawn
from (x,n) to either (x− 1,n+ 1) or (x+ 1,n+ 1) with probability (1− ε)/2 each,
representing whether the walk starting at x at time n should move to x−1 or x+1 at
time n+1; and with probability ε, arrows are drawn from (x,n) to both (x−1,n+1)
and (x+ 1,n+ 1), so that the walk starting at (x,n) branches into two walks, with
one moving to x− 1 and the other to x+ 1 at time n+ 1.

If we consider the collection of all upward random walk paths obtained by
following the arrows, then the natural question is: when space-time is scaled
diffusively, could this random collection of paths have a nontrivial limit? To have
an affirmative answer to this question, it is necessary to choose the branching
probability ε to depend suitably on the diffusive scaling parameter. More precisely:

Q.1 If space-time is rescaled by Sε(x, t) := (εx,ε2t), and the branching probability
is chosen to be bε for some b > 0, then what is the scaling limit of the
collection of branching-coalescing random walk paths as ε ↓ 0?

Figure 6.4. Discrete space-time branching-coalescing random walks on Z2
even,

and its dual on Z2
odd.
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The limit will be what we call the Brownian net Nb with branching parameter
b. For simplicity, we will focus on the case b = 1, with the limit called the
standard Brownian net N . The fact that a nontrivial scaling limit exists with the
above choice of the branching probability is hinted by the following observation.
Instead of considering the collection of all random walk paths, let us first restrict
our attention to two special subsets: the set of leftmost, respectively rightmost,
random walk paths where the random walk always follows the arrow to the left,
respectively right, whenever it encounters a branching point (see Figure 6.4).
Note that the collection of leftmost paths is a collection of coalescing random
walks with drift −ε, which ensures that each path under the diffusive scaling
Sε(x, t) = (εx,ε2t) converges to a Brownian motion with drift −1. Therefore we
expect the collection of leftmost paths to converge to a variant of the Brownian
web, W l, which consists of coalescing Brownian motions with drift−1. Similarly,
we expect the collection of rightmost paths to converge to a limit W r, which
consists of coalescing Brownian motions with drift +1. Of course, W l and W r

are coupled in a nontrivial way.
The above observation explains the choice of the branching probability, and we

see that any limit of the branching-coalescing random walk paths must contain the
two coupled Brownian webs (W l,W r). The questions that remain are:

(A) How to characterize the joint law of (W l,W r)?
(B) Can we construct the scaling limit of branching-coalescing random walks

from (W l,W r)?

To answer (A), it suffices to characterize the joint distribution lz1 ∈W l(z1), . . . ,
lzk ∈W l(zk) and rz′1 ∈W r(z′1), . . . ,rz′

k′
∈W r(z′k′) for a finite collection of (zi)1≤i≤k

and (z′i)1≤i≤k′ in R2. An examination of their discrete analogue suggests that:

• the paths (lz1 , . . . , lzk ,rz′1 , . . . ,rz′
k′

) evolve independently when they are apart;
• the leftmost paths (lz1 , . . . , lzk ) coalesce when they meet, and the same is true for

the rightmost paths (rz′1 , . . . ,rz′
k′

);
• a pair of leftmost and rightmost paths (lzi ,rz′j) solves the following pair of

stochastic differential equations (SDEs):

dLt=1{Lt �=Rt}dBl
t+ 1{Lt=Rt}dBs

t − dt,

dRt=1{Lt �=Rt}dBr
t + 1{Lt=Rt}dBs

t + dt,
(6.11)

where the leftmost path L and the rightmost path R are driven by independent
Brownian motions Bl and Br when they are apart, and driven by the same Brow-
nian motion Bs (independent of Bl and Br) when they coincide; furthermore, L
and R are subject to the constraint that Lt ≤ Rt for all t ≥ T := inf{u≥ σL ∨ σR :
Lu ≤ Ru}, with σL and σR being the starting times of L and R.
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It turns out that the SDE (6.11) has a unique weak solution, and the above
properties uniquely determine the joint law of (lz1 , . . . , lzk ,rz′1 , . . . ,rz′

k′
), which we

will call left-right coalescing Brownian motions. Extending the starting points to a
countable dense set in R2, and then taking closure of the resulting set of leftmost,
respectively rightmost, paths, a.s. determines (W l,W r), which we will call the
left-right Brownian web.

To answer (B), observe that in the discrete case, all random walk paths can
be constructed by hopping back and forth between leftmost and rightmost random
walk paths. This suggests a similar approach to construct the scaling limit of the set
of all branching-coalescing random walk paths, which we will call the Brownian
net N . More precisely, to construct N from (W l,W r), we simply consider the set
of all paths that can be obtained by hopping a finite number of times between paths
in W l and W r, and then take its closure.

The above considerations led to the original construction of the Brownian net
N in [86], called the hopping construction.

From Figure 6.4, it is easily seen that the branching-coalescing random walks
on Z2

even a.s. uniquely determine a dual collection of branching-coalescing random
walks on Z2

odd, running backward in time. Furthermore, the two systems are
equally distributed apart from a rotation in space-time by 180o and a lattice shift.
Therefore in the scaling limit, we expect the left-right Brownian web (W l,W r)
to have a dual (Ŵ l,Ŵ r), which determines a dual Brownain net N̂ . As for the
Brownian web, such a duality provides a powerful tool. In particular, it leads
to a second construction of the Brownian net, called the wedge construction
in [86].

Besides the hopping and wedge constructions of the Brownian net, there are
two more constructions, called the mesh construction, also developed in [86],
and the marking construction developed by Newman, Ravishankar and Schertzer
in [73], where the Brownian net was conceived independently from [86]. The mesh
construction is based on the observation that, given the left-right Brownian web
(W l,W r), there exist space-time regions (called meshes) with their left boundaries
being rightmost paths, and their right boundaries being leftmost paths. Such
unusual configurations make these meshes forbidden regions, where no paths can
enter. The mesh construction asserts that the Brownian net consists of all paths
which do not enter meshes.

In contrast to the hopping construction, which is an outside-in approach where
the Brownian net is constructed from its outermost paths – the leftmost and
rightmost paths – the marking construction developed in [73] is an inside-out
approach, where one starts from a Brownian web and then constructs the Brownian
net by adding branching points. In the discrete setting, this amounts to turning
coalescing random walks into branching-coalescing random walks by changing
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each lattice point independently into a branching point with probability ε. In the
continuum setting, this turns out to require Poisson marking the set of (1,2) points
of the Brownian web (cf. Theorem 6.2.11) and turning them into branching points,
so that the incoming Brownian web path can continue along either of the two
outgoing Brownian web paths. We will introduce the marking construction in
detail in Section 6.4, where we will study couplings between the Brownian web
and net.

In the rest of this section, we will define the left-right Brownian web (W l,W r),
give the hopping, wedge and mesh constructions of the Brownian net, and study
various properties of the Brownian net, including the branching-coalescing point
set, the backbone of the Brownian net, and special points of the Brownian net.

6.3.1 The Left-right Brownian Web and its Dual

The discussions above show that the key object in the construction of the Brownian
net N is the left-right Brownian web (W l,W r), which should be the diffusive
scaling limit of the collections of leftmost and rightmost branching-coalescing
random walk paths with branching probability ε. In turn, the key ingredient in
the construction of (W l,W r) is the pair of left-right SDEs in (6.11), which can be
shown to be well-posed.

Proposition 6.3.1 (The left-right SDE) For each initial state (L0,R0) ∈R2, there
exists a unique weak solution to the SDE (6.11) subject to the constraint that Lt ≤
Rt for all t ≥ T := inf{s≥ 0 : Ls = Rs}. Furthermore, almost surely, if I := {t ≥ T :
Lt = Rt} �= ∅, then I is nowhere dense perfect set with positive Lebesgue measure.

Proof Sketch. We sketch the basic idea and refer to [86, Proposition 2.1 and 3.1]
for details. Assume w.l.o.g. that L0 = R0 = 0. Define

Tt :=
∫ t

0
1{Ls<Rs}ds, St :=

∫ t

0
1{Ls=Rs}ds,

and

B̃l
Tt

:=
∫ t

0
1{Ls<Rs}dBl

s, B̃r
Tt

:=
∫ t

0
1{Ls<Rs}dBr

s, B̃s
St

:=
∫ t

0
1{Ls=Rs}dBs

s.

Then (Lt,Rt) solves

Lt = B̃l
Tt
+ B̃s

St
− t,

Rt = B̃r
Tt
+ B̃s

St
+ t,

(6.12)
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and the difference Dt := Rt−Lt satisfies

Dt = (B̃r− B̃r)Tt + 2t=
√

2B̃Tt + 2Tt+ 2St (6.13)

with the constraint that D is nonnegative, where B̃ := 1√
2
(B̃r− B̃l) is also a standard

Brownian motion.
Since Tt =

∫ t
0 1{Ls<Rs}ds = ∫ t

0 1{Ds>0}ds, it is easily seen that Tt must be
continuous and strictly increasing in t. Therefore τ := Tt admits an inverse
T−1τ = t. Rewriting the equation (6.13) for D with respect to the variable τ , the
time D spent at the origin, we obtain

D̃τ := 1√
2

DT−1τ = B̃τ +
√

2τ +
√

2ST−1τ , (6.14)

where D̃τ can be regarded as a transformation of B̃τ+
√

2τ by adding an increasing
function S̃τ := √2ST−1τ , which increases only when D̃τ = 0 such that D̃τ stays
nonnegative. Such an equation is known as a Skorohod equation, with D̃t being the
Skorohod reflection of B̃τ +

√
2τ at the origin. Such a Skorohod equation admits

a pathwise unique solution [59, Section 3.6.C], with

S̃τ :=
√

2ST−1τ =− inf
0≤s≤τ

(B̃τ +
√

2τ ),

which is in fact also the local time at the origin for the drifted Brownian motion
B̃τ +

√
2τ reflected at the origin.

Having determined ST−1τ and DT−1τ almost surely from B̃ = 1√
2
(B̃r − B̃l), to

recover Dt, we only need to make a time change from τ back to t := Tt + St =
τ + ST−1τ . Note that this time change has no effect when D is away from 0,
but adds positive Lebesgue time when D is at 0. Therefore in contrast to DT−1τ ,
which is a drifted Brownian motion reflected instantaneously at the origin, Dt

is the same Brownian motion sticky reflected at the origin (see e.g., [102] and
the references therein for further details on sticky reflected Brownian motions).
Similarly, from Tt = τ and St = ST−1τ , we can construct (Lt,Rt) in (6.12). From the
same arguments, it is also easily seen that I := {t ≥ 0 : Lt = Rt} is almost surely a
nowhere dense perfect set with positive Lebesgue measure. �

Having characterized the interaction of a single pair of leftmost and rightmost
paths, we can now construct a collection of left-right coalescing Brownian motions
(lz1 , . . . , lzk ,rz′1 , . . . ,rz′

k′
) with the properties that: (1) the paths evolve independently

when they do not coincide; (2) (lz1 , . . . , lzk ), respectively (rz′1 , . . . ,rz′
k′

), is distributed
as a collection of coalescing Brownian motions with drift −1, respectively +1;
(3) every pair (lzi ,rzj) is a weak solution to the left-right SDE (6.11). The
construction can be carried out inductively. Assume w.l.o.g. that the paths all start
at the same time. Then
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• Let the paths evolve independently until the first time two paths meet.
• If this pair of paths are of the same type, then let them coalesce and iterate the

construction with one path less than before.
• If this pair of paths are of different types, then let them evolve as a left-right pair

solving the SDE (6.11), and let all other paths evolve independently, until the
first time two paths (other than paths in the same left-right pair) meet.

• If the two meeting paths are of the same type, then let them coalesce and iterate
the construction.

• If the two meeting paths are of different types, then let them form a left-right
pair (breaking whatever pair relations they were in), and iterate the construction.

It is easily seen that this iterative construction terminates after a finite number of
steps, when either a single path, or a single pair of leftmost and rightmost paths
remains.

We are now ready to characterize the left-right Brownian web (W l,W r).

Theorem 6.3.2 (The left-right Brownian web and its dual) There exists an
H2-valued random variable (W l,W r), called the (standard) left-right Brownian
web, whose distribution is uniquely determined by the following properties:

(i) The left Brownian web W l (resp. right Brownian web W r) is distributed as
a Brownian web W tilted with drift −1 (resp. +1), i.e., W l (resp. W r) has
the same distribution as the image of W under the space-time transformation
(x, t)→ (x− t, t) (resp. (x, t)→ (x+ t, t)).

(ii) For any finite deterministic set of points z1, . . . ,zk,z′1, . . . ,z′k′ ∈ R2, the
collection of paths (lz1 , · · · , lzk ;rz′1 , · · · ,rz′

k′
) is distributed as a family of

left-right coalescing Brownian motions.

Furthermore, almost surely there exists a dual left-right Brownian web (Ŵ l,Ŵ r)∈
Ĥ2, such that (W l,Ŵ l) (resp. (W r,Ŵ r)) is distributed as (W ,Ŵ) tilted with drift
−1 (resp. +1), and (−Ŵ l,−Ŵ r) has the same distribution as (W l,W r).

Proof Sketch. The existence and uniqueness of a left-right Brownian web sat-
isfying properties (i)–(ii) follow the same argument as for the Brownian web
in Theorem 6.2.3. The almost sure existence of a dual left-right Brownian web
follows from the duality of the Brownian web. The fact that (Ŵ l,Ŵ r) has the
same distribution as (W l,W r), except for rotation around the origin in space-time
by 180o, can be derived by taking the diffusive scaling limits of their discrete
counterparts, where such an equality in distribution is trivial (see [86, Theorem 5.3]
for further details). �
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Exercise 6.3.3 Show that almost surely, no path in W l can cross any path in W r

or Ŵ r from left to right, where π1 is said to cross π2 from left to right if there exist
s< t such that π1(s)<π2(s) and π1(t)>π2(t). Similarly, paths in W r cannot cross
paths in W l or Ŵ l from right to left.

6.3.2 The Hopping Construction of the Brownian Net

We are now ready to construct the Brownian net N by allowing paths to hop back
and forth between paths in the left-right Brownian web (W l,W r), where a path
π obtained by hopping from π1 to π2 at time t, with π1(t) = π2(t), is defined by
π := π1 on [σπ1 , t] and π := π2 on [t,∞).

Given π1 and π2 with π1(t) = π2(t), which are in the scaling limit N of
branching-coalescing random walk paths, it is not guaranteed that π obtained by
hopping from π1 to π2 at time t is also in N . Indeed, even though π1(t) = π2(t),
π1 and π2 may still arise as limits of random walk paths which do not meet, for
which hopping is not possible. Therefore π has no approximating analogue among
the branching-coalescing random walk paths, and hence π may not be in N . One
remedy is to allow hopping from π1 to π2 at time t only if the two paths cross at
time t, i.e., σπ1 ,σπ2 < t, there exist times t− < t+ with (π1(t−)−π2(t−))(π1(t+)−
π2(t+))< 0, and t= inf{s∈ (t−, t+) : (π1(t−)−π2(t−))(π1(s)−π2(s))< 0}. We call
t the crossing time between π1 and π2. If π1,π2 ∈N and they cross at time t, then
it is easily seen by discrete approximations that the path π obtained by hopping
from π1 to π2 at time t must also be in N .

Given a set of paths K, let Hcross(K) denote the set of paths obtained by hopping
a finite number of times among paths in K at crossing times. The Brownian net
N can then be constructed by setting N :=Hcross(W l ∪W r). Here is the hopping
characterization of the Brownian net from [86, Theorem 1.3].

Theorem 6.3.4 (Hopping characterization of the Brownian net) There exists an
(H,BH)-valued random variable N , called the standard Brownian net, whose
distribution is uniquely determined by the following properties:

(i) For each z ∈R2, N (z) a.s. contains a unique left-most path lz and right-most
path rz.

(ii) For any finite deterministic set of points z1, . . . ,zk,z′1, . . . ,z′k′ ∈ R2, the
collection of paths (lz1 , . . . , lzk ,rz′1 , . . . ,rz′

k′
) is distributed as a family of

left-right coalescing Brownian motions.
(iii) For any deterministic countable dense sets Dl,Dr ⊂R2,

N =Hcross({lz : z ∈Dl}∪ {rz : z ∈Dr}) a. s. (6.15)
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Proof. The uniqueness in law of a random variable N satisfying the above
properties is easily verified by the same argument as that for the Brownian web
in Theorem 6.2.3. For existence, we can just define N :=Hcross(W l ∪W r), where
(W l,W r) is the standard left-right Brownian web.

To show that N satisfies properties (i)–(iii), first note that Hcross(W l ∪W r)
satisfies properties (i)–(ii), where for each deterministic z, Hcross(W l ∪ W r)
contains a leftmost element and a rightmost element, which are just lz ∈W l(z)
and rz ∈W r(z). We claim that taking closure of Hcross(W l ∪W r) does not change
the leftmost and rightmost element starting from any given z= (x, t).

Indeed, if N (z) contains any path π with π (t′) < lz(t′)− ε for some t′ > t and
ε > 0, then there exists a sequence πn ∈ Hcross(W l ∪W r) starting from zn, such
that πn→ π and πn(t′)≤ lz(t′)−ε for all n large. Since lzn ∈W l(zn) is the leftmost
path in Hcross(W l∪W r) starting from zn, we have lzn ≤πn, and hence also lzn(t′)≤
lz(t′)− ε for all n large. However, this is impossible because lzn → lz, and hence
the time of coalescence between lzn and lz tends to t as n→∞ by Corollary 6.2.8.

We can therefore conclude that N :=Hcross(W l ∪W r) also satisfies properties
(i)–(ii). Since any path in W l ∪W r can be approximated by paths in W l(Dl) ∪
W r(Dr) in the strong sense as in Corollary 6.2.8, it is easily seen that Hcross(W l∪
W r)⊂Hcross(W l(Dl)∪W r(Dr)), and hence N also satisfies property (iii).

What we have left out in the proof is the a.s. precompactness of Hcross(W l∪W r),
which is needed for N to qualify as an (H,BH)-valued random variable. We leave
this as an exercise. �

Exercise 6.3.5 Show that almost surely, Hcross(W l ∪W r) is precompact.

Exercise 6.3.6 Show that a.s., no path in N can cross any path in W r or Ŵ r from
left to right, or cross any path in W l or Ŵ l from right to left, where the definition
of crossing is, as in Exercise 6.3.3.

Remark 6.3.7 Of course, we need to justify that the Brownian net characterized in
Theorem 6.3.4 is indeed the scaling limit of branching-coalescing random walks,
as motivated at the start of Section 6.3. Such a convergence result was established
in [86, Section 5.3].

6.3.3 The Wedge Construction of the Brownian Net

The wedge and mesh constructions of the Brownian net N are both based on the
observation that there are certain forbidden regions in space-time where Brownian
net paths cannot enter. It turns out that the Brownian net can also be characterized
as the set of paths that do not enter these forbidden regions. In the wedge
construction, these forbidden regions, called wedges, are defined from the dual
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Figure 6.5. A wedge W(r̂, l̂) with bottom point z.

left-right Brownian web (Ŵ l,Ŵ r), while in the mesh construction, these forbidden
regions, called meshes, are defined from the left-right Brownian web (W l,W r).

Definition 6.3.8 (Wedges) Let (W l,W r,Ŵ l,Ŵ r) be the standard left-right Brow-
nian web and its dual. For any r̂ ∈ Ŵ r and l̂ ∈ Ŵ l that are ordered with r̂(s)< l̂(s)
at the time s := σ̂r̂∧ σ̂l̂, let T := sup{t < s : r̂(t)= l̂(t)} (possibly equals−∞) be the

first hitting time of r̂ and l̂. We call the open set (see Figure 6.5)

W =W(r̂, l̂) := {(x,u) ∈R2 : T < u < s, r̂(u) < x < l̂(u)} (6.16)

a wedge of (Ŵ l,Ŵ r) with left and right boundary r̂ and l̂ and bottom point z :=
(r̂(T),T) = (l̂(T),T). A path π is said to enter W from outside if there exist σπ ≤
s < t such that (π (s),s) �∈W and (π (t), t) ∈W.

Theorem 6.3.9 (Wedge characterization of the Brownian net) Let
(W l,W r,Ŵ l,Ŵ r) be the standard left-right Brownian web and its dual. Then
almost surely,

N = {π ∈� : π does not enter any wedge of (Ŵ l,Ŵ r) from outside} (6.17)

is the standard Brownian net associated with (W l,W r), i.e., N =Hcross(W l ∪W r).

Remark 6.3.10 The wedge characterization can also be applied to the Brownian
web W with both Ŵ l and Ŵ r replaced by the dual Brownian web Ŵ . Indeed,
W can be seen as a degenerate Brownian net Nb with branching parameter b= 0,
where Nb can be constructed in the same way as the standard Brownian net N with
b= 1, except that the left-right coalescing Brownian motions in (W l,W r) now have
drift∓b respectively. For W , the wedge characterization is stronger than requiring
paths not to cross any path in Ŵ (cf. Remark 6.2.6), because it also prevents paths
from entering a wedge from outside through its bottom point.
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l1̂
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l2̂
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t2
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r̂1

r̂

r2

π

Figure 6.6. Steering a hopping path in the ‘fish-trap’ (r̂, l̂).

Proof of Theorem 6.3.9. First we show that no path in Hcross(W l ∪W r) can enter
any wedge of (Ŵ l,Ŵ r) from outside. If this is false, then there must be some path
π ∈ Hcross(W l ∪W r) which enters a wedge W(r̂, l̂) from outside. There are two
possibilities: either π enters W from outside by crossing one of its two boundaries,
which is impossible by Exercise 6.3.6; or π enters W from outside through its
bottom point z. However, by the same argument as why a point of coalescence
between two dual Brownian web paths cannot be hit by a forward Brownian web
path (cf. Theorem 6.2.11), no path in W l ∪W r can enter the bottom point of a
wedge W, and hence neither can any path in Hcross(W l ∪W r). This verifies the
desired inclusion.

We now show the converse inclusion that any path not entering wedges from
outside must be in Hcross(W l ∪W r). Let π be such a path. The strategy to
approximate π by hopping paths is illustrated in Figure 6.6.

To approximate π in a given time interval, say [s, t], we first partition [s, t]
into sub-intervals of equal length, [ti−1, ti], for 1 ≤ i ≤ N. Fix an ε > 0. From
the top time tN , we consider the wedge formed by r̂1 ∈ Ŵ r and l̂1 ∈ Ŵ l starting
respectively at π (tN)− ε and π (tN)+ ε at time tN . Note that r̂1 and l̂1 cannot meet
during the interval [tN−1, tN], otherwise π would be entering the wedge W(r̂1, l̂1)
from outside. At time tN−1, we check whether r̂1 < π (tN−1)− ε, and if it is the
case, then we start r̂2 at π (tN−1)− ε at time tN−1. Similarly we check whether
l̂1 > π (tN−1)+ ε, and if it is the case, then start l̂2 at π (tN−1)+ ε at time tN−1.
In any event, we still have a pair of dual left-right paths which enclose π on the
interval [tN−2, tN−1], which are within ε distance of π at the top time tN−1. This
procedure is iterated until the time interval [t0, t1], and it constructs a ‘fish-trap’ of
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dual left-right paths, which can now be used to construct a forward hopping path
that stays inside the ‘fish-trap’.

Indeed, a forward path l ∈W l cannot cross dual paths l̂i ∈ Ŵ l, which form the
right boundary of the ‘fish-trap’. When l hits the left-boundary of the ‘fish-trap’,
we can then hop to a path r ∈W r until it hits the right-boundary of the ‘fish-trap’.
Iterating this procedure then constructs a hopping path that stays inside the
‘fish-trap’. The almost sure equicontinuity of paths in W l∪W r∪Ŵ l∪Ŵ r ensures
that only a finite number of hoppings is needed to reach time tN , and the supnorm
distance on the interval [s, t] between π and any path inside the ‘fish-trap’ can
be made arbitrarily small by choosing N large and ε small. Therefore π can be
approximated arbitrarily well by paths in Hcross(W l ∪W r). For further details,
see [86, Lemma 4.7]. �

6.3.4 The Mesh Construction of the Brownian Net

Definition 6.3.11 (Meshes) Let (W l,W r) be the standard left-right Brownian
web. If for a given z = (x, t) ∈ R2, there exist l ∈W l(z) and r ∈W r(z) such that
r(s)< l(s) on (t, t+ε) for some ε > 0, then denoting T := inf{s> t : r(s)= l(s)}, we
call the open set (see Figure 6.7)

M =M(r, l) := {(y,s) ∈R2 : t < s < T , r(s) < y < l(s)} (6.18)

a mesh of (W l,W r) with left and right boundaries r and l and bottom point z.
A path π is said to enter M if there exist σπ < s < t such that (π (s),s) �∈ M and
(π (t), t) ∈M.

Theorem 6.3.12 (Mesh characterization of the Brownian net) Let (W l,W r) be
the standard left-right Brownian web. Then almost surely,

N = {π ∈� : π does not enter any mesh of (W l,W r)} (6.19)

is the standard Brownian net associated with (W l,W r), i.e., N =Hcross(W l ∪W r).

Remark 6.3.13 The mesh characterization can also be applied to the Brownian
web W , where the bottom point of the mesh must be of either type (0,2), (1,2), or
(0,3) in Theorem 6.2.11.

We note that there is a subtle difference between a path entering a mesh M
from outside, vs a path entering a mesh M. In particular, a path entering M (but
not entering M from outside) could start inside M, hit the boundary of M at a
later time, and then move inside M. The heart of the proof of Theorem 6.3.12
consists in ruling out such scenarios for Brownian net paths, for which meshes
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Mesh M(r,l)

r

z
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Figure 6.7. A mesh M(r, l) with bottom point z.

play an essential role. As a by-product, one can show the following result (see [86,
Proposition 1.8]), which is stronger than the assertions of Exercise 6.3.6.

Proposition 6.3.14 (Containment by left-most and right-most paths) Let (W l,
W r) be the standard left-right Brownian web, and let N be the Brownian net
associated with it. Then almost surely, there exist no π ∈N and l ∈W l such that
l(s)≤ π (s) and π (t) < l(t) for some σπ ∨ σl < s < t. An analogue statement holds
for right-most paths.

The proofs of Proposition 6.3.14 and Theorem 6.3.12 are fairly involved and we
refer the details to [86, Theorem 1.7 and Proposition 1.8].

The wedge and mesh characterizations of the Brownian net have the following
interesting corollary.

Proposition 6.3.15 (Brownian net is closed under hopping) Let N be the stan-
dard Brownian net. Then:

(i) Almost surely for any π1,π2 ∈N with π1(t)= π2(t) and σπ1 ,σπ2 < t for some
t, the path π defined by π := π1 on [σπ1 , t] and π := π2 on [t,∞) is in N .

(ii) For any deterministic t, almost surely for any π1,π2 ∈ N with π1(t) = π2(t)
and σπ1 ,σπ2 ≤ t, the path π defined by π := π1 on [σπ1 , t] and π := π2 on
[t,∞) is in N .

Exercise 6.3.16 Use the mesh characterization to prove Proposition 6.3.15 (i),
and the use then wedge characterization together with Proposition 6.3.18 below to
prove Proposition 6.3.15 (ii).
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Here is an even more striking corollary of the mesh characterization [86,
Proposition 1.13].

Proposition 6.3.17 (Image set property) Let N be the Brownian net. For T ∈
[−∞,∞), let NT := {π ∈ N : σπ = T} and NT := {(π (t), t) ∈ R2 : π ∈ NT , t ∈
(T ,∞)}. Then almost surely for any T ∈ [−∞,∞), any path π ∈� with σπ = T
and {(π (t), t) : t > T} ⊂ NT is a path in N .

Note that for the Brownian web, this property is easily seen to hold.

6.3.5 The Branching-coalescing Point Set

Similar to the definition of the coalescing point set from the Brownian web in
Section 6.2.4, we can define the so-called branching-coalescing point set from the
Brownian net N as follows.

Given the Brownian net N , and a closed set A ⊂ R, define the branching-
coalescing point set by

ξA
t := {y ∈R : y= π (t) for some π ∈N (A×{0})}, t≥ 0. (6.20)

In other words, ξA
t is the set of points in R that lie on some path in N that start

from A at time 0.
Using the wedge characterization of the Brownian net, we can compute the

density of ξR
t . As t ↓ 0, we see in Proposition 6.3.18 below that the density

diverges at the same rate 1/
√
π t as for the coalescing point set in Proposition 6.2.7,

which indicates that coalescence plays the dominant role for small times, while
the density converges to the constant 2 as t ↑ ∞, which results from the balance
between branching and coalescence for large times.

Proposition 6.3.18 (Density of branching-coalescing point set) Let ξR· be the
branching-coalescing point set defined from the Brownian net N as in (6.20). Then
for all t > 0 and a < b,

E[|ξR
t ∩ [a,b]|]= (b− a)

( e−t

√
π t
+ 2�(

√
2t)
)
, (6.21)

where �(x)= 1√
2π

∫ x
−∞ e−

y2

2 dy.

Exercise 6.3.19 Prove Proposition 6.3.18 by adapting the proof of Proposi-
tion 6.2.7 and showing that, almost surely, ξR

t ∩ (a,b) �= ∅ if and only if r̂ ∈ Ŵ r

starting at (a, t), and l̂ ∈ Ŵ l starting at (b, t), do not meet above time 0.

Remark 6.3.20 Surprisingly, we can even identify the law of ξR
t as t ↑∞, which

is a Poisson point process on R with intensity 2. Furthermore, ξ· is reversible with
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respect to the law of the Poisson point process on R with intensity 2. Formulated
in terms of the Brownian net, this amounts to the statement that N (∗,−∞), the
collection of Brownian net paths started at time −∞ and called the backbone of
the Brownian net in [86], has the same distribution as −N (∗,−∞), the set of
paths obtained by reflecting the graph of each path in N (∗,−∞) across the origin
in space-time. These results were established in [86, Section 9] by first observing
their analogues for a discrete system of branching-coalescing random walks, and
then passing to the continuum limit.

Remark 6.3.21 Proposition 6.3.18 implies that for each t > 0, almost surely ξR
t is

a locally finite point set. However, almost surely there exists a dense set of random
times at which ξR

t contains no isolated point, and is in particular uncountable
(see [91, Proposition 3.14]).

Remark 6.3.22 As noted in Remark 6.2.10, started from the whole real line, the
coalescing point set forms a Pfaffian point process at each time t > 0. It will
be interesting to investigate whether the branching-coalescing point set ξR

t also
admits an explicit characterization as a Pfaffian point process.

6.3.6 Special Points of the Brownian Net

Similar to the classification of special points for the Brownian web formulated
in Theorem 6.2.11, we can give an almost sure classification of all points in R2

according to the configuration of paths in the Brownian net entering and leaving
the point. Such an analysis was carried out in [91], where it was shown that a.s.
there are 20 types of points, in contrast to the 7 types for the Brownian web.

Since Brownian net paths must be contained between paths in the left Brownian
web and right Brownian web, as stated in Proposition 6.3.14, the classification of
special points is in fact carried out mainly for (W l,W r). First we introduce a notion
of equivalence between paths entering and leaving a point, which is weaker than
that introduced for the Brownian web in Section 6.2.5.

Definition 6.3.23 (Equivalence of paths entering and leaving a point) We say
π1,π2 ∈� are equivalent paths entering z = (x, t) ∈ R2, denoted by π1 ∼z

in π2, if
π1 and π2 enter z and π1(t− εn)= π2(t− εn) for a sequence εn ↓ 0. We say π1,π2

are equivalent paths leaving z, denoted by π1 ∼z
out π2, if π1 and π2 leave z and

π1(t+ εn)= π2(t+ εn) for a sequence εn ↓ 0.

When applied to paths in the Brownian web, the above notion of equivalence
implies the equivalence introduced in Section 6.2.5, which is why we have abused
the notation and used the same symbols ∼z

in and ∼z
out. Although ∼z

in and ∼z
out are

not equivalence relations on the space of all paths �, they are easily seen to be
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equivalence relations on W l ∪W r. This allows us to classify z according to the
equivalence classes of paths entering and leaving z, which are necessarily ordered.

To denote the type of a point, we first list the incoming equivalence classes of
paths from left to right, and then, separated by a comma, the outgoing equivalence
classes of paths from left to right. If an equivalence class contains only paths
in W l, resp. W r, we will label it by l, resp. r, while if it contains both paths in
W l and in W r, we will label it by p, standing for pair. For points with (up to
equivalence) one incoming and two outgoing paths, a subscript l, resp. r, means
that all incoming paths belong to the left one, resp. right one, of the two outgoing
equivalence classes; a subscript s indicates that incoming paths in W l belong to
the left outgoing equivalence class, while incoming paths in W r belong to the right
outgoing equivalence class. If at a point there are no incoming paths in W l ∪W r,
then we denote this by o or n, where o indicates that there are no incoming paths
in the Brownian net N , while n indicates that there are incoming paths in N (but
none in W l ∪W r).

For example, a point is of type (p, lp)r if at this point there is one equivalence
class of incoming paths in W l∪W r and there are two outgoing equivalence classes.
The incoming equivalence class is of type p while the outgoing equivalence classes
are of type l and p, from left to right. All incoming paths in W l ∪W r continue as
paths in the outgoing equivalence class of type p.

Since the dual left-right Brownian web (Ŵ l,Ŵ r) can be used to define a dual
Brownian net N̂ , the type of z w.r.t. (Ŵ l,Ŵ r) and N̂ can be defined in the same
way, after rotating their graphs in R2 by 180o around the origin.

We now state the classification result from [91, Theorem 1.7], while omitting its
proof.

Theorem 6.3.24 (Special points of the Brownian net) Let (W l,W r) be the stan-
dard left-right Brownian web, let (Ŵ l,Ŵ r) be its dual, and let N and N̂ be the
associated Brownian net and its dual. Then almost surely, each point in R2 is of
one of the following 20 types in N /N̂ :

(1) (o,p)/(o,p), (o,pp)/(p,p), (p,p)/(o,pp), (o,ppp)/(pp,p), (pp,p)/(o,ppp), (p,pp)l/

(p,pp)l, (p,pp)r/(p,pp)r;
(2) (p,pp)s/(p,pp)s, called separation points;
(3) (l,p)/(o, lp), (o, lp)/(l,p), (r,p)/(o,pr), (o,pr)/(r,p);
(4) (l,pp)r/(p, lp)r, (p, lp)r/(l,pp)r, (r,pp)l/(p,pr)l, (p,pr)l/(r,pp)l;
(5) (l, lp)r/(l, lp)r, (r,pr)l/(r,pr)l;
(6) (n,p)/(o, lr), (o, lr)/(n,p);

and all of these types occur. For each deterministic time t ∈R, almost surely, each
point in R× {t} is of either type (o,p)/(o,p), (o,pp)/(p,p), or (p,p)/(o,pp), and
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(l,lp)r/(l,lp)r  (n,p)/(o,lr)(l,pp)r/(p,lp)r (l,p)/(o,lp)(p,pp)s/(p,pp)s

(p,pp)l/(p,pp)l (o,ppp)/(pp,p) (o,pp)/(p,p) (o,p)/(o,p)

Figure 6.8. Special points of the Brownian net, modulo symmetry.

all of these types occur. A deterministic point (x, t) ∈ R2 is almost surely of type
(o,p)/(o,p).

Remark 6.3.25 Note that the points listed in item (1) are analogues of the seven
types of points of the Brownian web in Figure 6.3, where a path of the Brownian
web is replaced by a pair of paths in (W l,W r). Modulo symmetry, this gives rise
to four distinct types of points. The types of points listed within each item from
(2)–(6) are related to each other by symmetry. Therefore modulo symmetry, there
are nine types of special points for the Brownian net, as illustrated in Figure 6.8.

Remark 6.3.26 A basic ingredient in the proof of Theorem 6.3.24 is the
characterization of the interaction between paths in (W l,W r) and paths in
(Ŵ l,Ŵ r). The interaction between paths in W l and Ŵ l, and similar between paths
in W r and Ŵ r, is given by Skorohod reflection, as mentioned in Remark 6.2.5. It
turns out that paths in W r interact with paths in Ŵ l also via Skorohod reflection,
except that given l̂∈ Ŵ l, if r ∈W r initially starts on the left of l̂, then it is Skorohod
reflected to the left of l̂ until the collision local time between r and l̂ exceeds
an independent exponential random variable, at which time r crosses over to the
right of l̂ and is Skorohod reflected to the right of l̂ from that time on (see [91,
Lemma 2.1]).

Remark 6.3.27 Although Theorem 6.3.24 classifies points in R2 mostly accord-
ing to the configuration of paths in the left-right Brownian web, it can be used to
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deduce the configuration of paths in the Brownian net entering and leaving each
type of point. It turns out that ∼z

in is in fact an equivalence relation among paths
in N , and the same holds for ∼z

out for z of any type other than (o, lr). In particular,
when z is not of type (o,lr), each equivalence class of paths in W l∪W r entering or
leaving z can be enlarged to an equivalence class of paths in N . In particular, by
Proposition 6.3.14, all Brownian net paths in an equivalence class of type p, which
contains a pair of equivalent paths (l,r) ∈ (W l,W r), must be bounded between
l and r when sufficiently close to z. This applies in particular to points of type
(p,pp)s, the separation points, as well as points of type (pp,p), which we call the
meeting points. See [91, Section 1.4] for further details.

Exercise 6.3.28 Show that the set of separation points of N is a.s. countable and
dense in R2.

6.4 Coupling the Brownian Web and Net

We now introduce a coupling between the Brownian web W and the Brownian net
N , which is again best motivated from their discrete analogues, the coalescing
and branching-coalescing random walks. In particular, this gives the fourth
construction of the Brownian net, the marking construction mentioned before
Section 6.3.1, which was developed by Newman, Ravishankar and Schertzer
in [73].

Given a realization of branching-coalescing random walks as illustrated in
Figure 6.9 (a), where each lattice point in Z2

even is a branching point with
probability ε, we can construct a collection of coalescing random walks by simply
forcing the random walk to go either left or right with probability 1/2 each,
independently at each branching point. Interestingly, these branching points have
analogues in the continuum limit N , which are the separation points, i.e., points
of type (p,pp)s in Theorem 6.3.24. Therefore, given a realization of the Brownian
net N , we can sample a Brownian web W by forcing the Brownian web paths to
go either left or right with probability 1/2 each, independently at each separation
point. The complication is that each path in the Brownian net will encounter
infinitely many separation points on any finite time interval. But fortunately, the
number of separation points that is relevant for determining the path’s position at
a given time t is almost surely locally finite.

Conversely, given a realization of coalescing random walks as illustrated in
Figure 6.9 (b), we can construct a collection of branching-coalescing random
walks by turning each lattice point in Z2

even independently into a branching point
with probability ε. The key observation by Newman et al. in [73] is that each lattice
point in Z2

even is a point where a random walk path and some dual random walk
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(a) (b)

Figure 6.9. (a) Sampling coalescing random walks from branching-coalescing
random walks. (b) Turning coalescing random walks into branching-coalescing
random walks.

path are 1 unit of distance apart, and turning that lattice point into a branching
point adds a new random walk path that crosses the dual random walk path (see
Figure 6.9 (b), where the dotted lines are the dual paths, and the branching points
are circled). In the diffusive scaling limit, most of the added branching points have
no effect because they lead to small excursions from the coalescing random walk
paths that vanish in the limit. The branching points that have an effect in the
limit are points at which a forward random walk path and a dual random walk
path – started macroscopically apart – come within 1 unit of distance from each
other. In the scaling limit, these become precisely the (1,2) points of the Brownian
web in Theorem 6.2.11, where a Brownian web path meets a dual Brownian web
path. In the discrete setting, these points of close encounter between forward and
backward random walk paths are turned independently into branching points with
probability ε. In the continuum limit, this leads to Poisson marking of the points
of collision between Brownian web paths and dual Brownian web paths, with
the intensity measure given by the intersection local time measure between the
forward and dual paths. The Brownian net can then be constructed by allowing
the Brownian web paths to branch at these Poisson marked (1,2) points, which are
precisely the separation points in the resulting Brownian net.

To formulate precisely the coupling between the Brownian web and net
motivated by the above heuristic discussions, we first introduce the necessary
background. By Exercise 6.3.28, the set of separation points S is a.s. a countable
set, and it was pointed out in Remark 6.3.27 that any path π ∈ N entering
a separation point z = (x, t) must do so bounded between a pair of equivalent
paths (l,r) ∈ (W l,W r) entering z, and similarly when leaving z, it must also be
enclosed by one of the two pairs of outgoing equivalent paths (l1,r1), (l2,r2) ∈
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(W l(z),W r(z)), ordered from left to right. We can then define

sgnπ (z) :=
{−1 if l1 ≤ π ≤ r1 on [t,∞),

+1 if l2 ≤ π ≤ r2 on [t,∞).
(6.23)

For points of type (1,2) in the Brownian web W , we can similarly define

sgnW (z) :=
{−1 if z is of type (1,2)l in W ,

+1 if z is of type (1,2)r in W .
(6.24)

By setting the sign of paths entering each separation point independently to be
±1 with probability 1/2, we will recover the Brownian web as a subset of the
Brownian net.

To construct the Brownian net from the Brownian web, a key object is the local
time measure on points of intersection between paths in W and paths in Ŵ ., i.e.,
points of type (1,2) in W . Its existence was proved in [73, Proposition 3.1], which
we quote below (see also [92, Proposition 3.4]).

Proposition 6.4.1 (Intersection local time) Let (W ,Ŵ) be the Brownian web and
its dual. Then a.s. there exists a unique measure 
, concentrated on the set of points
of type (1,2) in W , such that for each π ∈W and π̂ ∈ Ŵ ,


({z= (x, t) ∈R2 : σπ < t < σ̂π̂ , π (t)= x= π̂(t)})
= lim

ε↓0
ε−1|{t ∈R : σπ < t < σ̂π̂ , |π (t)− π̂ (t)| ≤ ε}|. (6.25)

The measure 
 is a.s. non-atomic and σ -finite. We let 
l and 
r denote the
restrictions of 
 to the sets of points of type (1,2)l and (1,2)r, respectively.

By Poisson marking (1,2) points of W with intensity measure 
= 
l+
r, we obtain
a countable set of (1,2) points. Allowing paths in W to branch at these points then
leads to the Brownian net.

We can now formulate the coupling between the Brownian web and net (see [92,
Theorems 4.4 and 4.6]).

Theorem 6.4.2 (Coupling between the Brownian web and net) Let W be the
standard Brownian web, and N the standard Brownian net. Let S denote the set
of separation points of N . Then there exists a coupling between W and N such
that:

(i) Almost surely W ⊂N , and each separation point z ∈ S in N is of type (1,2)
in W .
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(ii) Conditional on N , the random variables (sgnW (z))z∈S are i.i.d. with
P[sgnW (z)=±1 |N ]= 1/2, and a.s.,

W = {π ∈N : sgnπ (z)= sgnW (z) ∀z ∈ S s.t. π enters z}. (6.26)

(iii) Conditional on W , the sets Sl := {z ∈ S : sgnW (z) = −1} and Sr := {z ∈ S :
sgnW (z)=+1} are independent Poisson point sets with intensities 
l and 
r,
respectively, and a.s.,

N = lim
�n↑S

hop�n
(W) (6.27)

for any sequence of finite sets �n increasing to S= Sl ∪ Sr, where hop�n
(W)

is the set of paths obtained from W by allowing paths entering any (1,2) point
z ∈�n to continue along either of the two outgoing paths at z.

Remark 6.4.3 Theorem 6.4.2 can be generalized to the case where W l, W , and
W r may be tilted with different drifts, as long as the drifts remain ordered (see
[92, Theorem 6.15]). We only need to modify the probability P(sgnW (z)=±1|N )
in (ii), while the intensity measures 
l and 
r in (iii) need to be multiplied by
constants depending on the drifts of W l, W and W r.

Remark 6.4.4 Theorem 6.4.2 (ii) shows how to sample a Brownian web W from a
Brownian net N by forcing the paths to continue either left or right independently
at each separation point. What if we sample independently another Brownian
web W ′, conditioned on N ? How can we characterize the joint distribution of
W and W ′? It turns out that (W ,W ′) forms a pair of so-called sticky Brownian
webs, where Brownian motions in W and W ′ undergo sticky interaction. Such an
object was first introduced in [56]. For further details, see [92, Section 3.3 and
Lemma 6.16].

Proof Sketch. Theorem 6.4.2 is proved in [92, Section 6] via discrete approxima-
tion, using the fact that a similar coupling to that in Theorem 6.4.2 (ii) and (iii)
holds in the discrete system. The proof is too complex and lengthy to be included
here. Instead, we outline below some key ingredients.

The fact that a coupling exists between the Brownian web and net follows
by taking the scaling limit of the coupled coalescing and branching-coalescing
random walks, where i.i.d. signs are assigned to each branching point to determine
the path of the coalescing walks.

To show that such a coupling satisfies Theorem 6.4.2 (ii), the key is to show
that the branching-coalescing random walks, together with the branching points,
converge to the Brownian net together with its separation points. Furthermore,
under such a convergence, we can match the branching points with the separation
points and assign them the same i.i.d. signs, such that coalescing random walk
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paths converge to paths in the Brownian net as long as the discrete and continuum
paths follow the same signs at the respective branching and separation points.

The main difficulty with the above approach is that the set of separation points
of N is dense in R2, so it is unclear in what sense the branching points should
converge to the separation points. The solution rests on the observation that, for
Brownian net paths starting at some time S, their positions at a later time U depend
a.s. only on the signs of these paths at a locally finite set of separation points in
the time interval (S,U) (called (S,U)-relevant separation points). As we refine our
knowledge of the paths at more times in the interval (S,U), more separation points
become relevant. Furthermore, the relevant separation points form a locally finite
directed graph, called the finite graph representation of the Brownian net, which
determines a coarse-grained structure of the Brownian net. Therefore a natural
notion of convergence is to show that for any S <U, the (S,U)-relevant separation
points and the associated finite graph representation arise as limits of similar
structures in the branching-coalescing random walks. Once such a convergence
is verified, Theorem 6.4.2 can then be easily verified.

To show that the coupling between the Brownian web and net satisfies the first
statement in Theorem 6.4.2 (iii), the key is to show that when restricted to the set of
intersection points between a pair of forward and dual Brownian web paths (π , π̂ ),
the set of separation points is distributed as a Poisson point process with intensity
measure given by the intersection local time measure between π and π̂ . These
separation points are in fact relevant separation points with respect to the starting
times of π and π̂ , and hence must arise as the limit of relevant branching points
in the discrete system. On the other hand, the corresponding relevant branching
points form a Bernoulli point process with the intensity measure given by the
counting measure on the set of space-time points where a pair of forward and
dual coalescing random walk paths approximating (π , π̂ ) come within distance 1.
With space-time scaled by (ε,ε2), this counting measure can be shown to converge
to the intersection local time measure between π and π̂ , and hence the limit of
the branching points (i.e., the set of separation points restricted to the intersections
between π and π̂) must be a Poisson point process with intensity measure given
by the intersection local time measure.

To prove the second part of Theorem 6.4.2 (iii), i.e., (6.27), note that under the
coupling between the Brownian web and net, the Brownian web is embedded in
the Brownian net and the Poisson marked (1,2) points of the web are exactly the
separation points of the net. Using the coarse-grained structures of the Brownian
net given by the finite graph representations, it can then be shown that turning
the separation points into branching points for the Brownian web gives the
Brownian net. �
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The proof sketch above shows that the key ingredient in the proof of
Theorem 6.4.2 is the notion of relevant separation points and the associated
finite graph representation of the Brownian net. Since they shed new light on the
structure of the Brownian net, we will discuss these notions in detail in the rest of
this section.

6.4.1 Relevant Separation Points of the Brownian Net

As noted in Exercise 6.3.28, the set of separation points (i.e., points of type (p,pp)s

in Theorem 6.3.24) is almost surely countable and dense in R2. In fact almost
surely each path in the Brownian net encounters infinitely many separation points
in any open time interval. However, for given deterministic times S < U, there is
only a locally finite set of separation points which are relevant for deciding where
paths in the Brownian net started at time S end up at time U. More precisely, as
illustrated in Figure 6.10, we define (cf. [91, Section 2.3]):

Definition 6.4.5 (Relevant separation points) A separation point z= (x, t) of the
Brownian net N is called (S,U)-relevant for some −∞≤ S < t < U ≤∞, if there
exists π ∈N such that σπ = S and π (t)= x, and there exist l∈W l(z) and r ∈W r(z)
such that l < r on (t,U).

Note that because z is a separation point, l and r are continuations of incoming
paths at z. By Proposition 6.3.15, the paths obtained by hopping from π to either l
or r at z are both paths in the Brownian net, which are distinct on the time interval
(t,U). We do not require l(U) < r(U) because an (S,U)-relevant separation point
defined as above also turns out to be a relevant separation point w.r.t. the dual
Brownian net N̂ .

U

S

l π̂ r

z

r̂ π l̂

Figure 6.10. An (S,U)-relevant separation point.
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Exercise 6.4.6 Use the wedge characterization of the Brownian net and the
steering argument illustrated in Figure 6.6 to show that almost surely, for each
−∞≤ S < U ≤∞, a separation point z= (x, t) with S < t < U is (S,U)-relevant
in N if and only if −z is (−U,−S)-relevant in the dual Brownian net −N̂ rotated
180o around the origin in R2.

A crucial property of the (S,U)-relevant separation points is that they are almost
surely locally finite, which follows from the following density calculation (cf. [91,
Proposition 2.9]).

Proposition 6.4.7 (Density of relevant separation points) Let N be a standard
Brownian net. Then for each deterministic −∞≤ S < U ≤∞, if RS,U denotes the
set of (S,U)-relevant separation points, then

E[|RS,U ∩A|]= 2
∫

A
�(t− S)�(U− t)dxdt

for all Borel-measurable A⊂R× (S,U), (6.28)

where

�(t) := e−t

√
π t
+ 2�(

√
2t), 0 < t≤∞, and �(x) := 1√

2π

∫ x

−∞
e−y2/2dy.

(6.29)
In particular, if −∞ < S, U <∞, then RS,U is a.s. a locally finite subset of R×
[S,U].

Proof Sketch. For S < s < u < U, let

Es := {π (s) : π ∈N ,σπ = S} and Fu := {π̂(s) : π̂ ∈ N̂ , σ̂π̂ =U}.

Observe that a.s., each (S,U)-relevant separation point z in the strip R × [s,u]
can be traced back along some Brownian net path π ∈ N to a position x ∈ Es.
Furthermore, if (l,r) ∈ (W l,W r) is the pair of left-right Brownian web paths
starting at (x,s), then we must have Fu∩ (l(u),r(u)) �= ∅, and z is bounded between
l and r on the time interval [s,u]. Therefore each (S,U)-relevant separation point
in R× [s,u] can be approximated by some (x,s) with x in

Qs,u := {x ∈ Es : Fu ∩ (l(u),r(u)) �= ∅, where (l,r) ∈ (W l(x,s),W r(x,s))}.

The density of the set Qs,u can be easily computed. As we partition (S,U) into
disjoint intervals [ti, ti+1) of size 1/n with n ↑∞, each (S,U)-relevant separation
point z can be approximated by some (xn, tin) with xn ∈ Qtin ,tin+1 for some in, such
that (xn, tin)→ z as n→∞. The upper bound on the density of RS,U then follows
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by Fatou’s Lemma. For the lower bound, it suffices to consider points in Qti,ti+1

which are separated from each other by some δ > 0 which is sent to zero after
taking the limit n→∞. �

Exercise 6.4.8 Prove Proposition 6.4.7 by rigorously implementing the strategy
outlined above.

6.4.2 Finite Graph Representation of the Brownian Net

Having defined (S,U)-relevant separation points and established their local
finiteness, we are now ready to introduce the finite graph representation, which
is a directed graph with the interior vertices given by the (S,U)-relevant separation
points, and the directed edges determined by how Brownian net paths go from one
relevant separation point to the next. Such a directed graph gives a coarse-grained
representation of the Brownian net, and plays a key role in studying the coupling
between the Brownian web and net in Theorem 6.4.2.

Let −∞ < S < U < ∞ be deterministic times, let RS,U be the set of
(S,U)-relevant separation points of N and set

RS :=R×{S},
RU :={(x,U) : x ∈R, ∃π ∈N with σπ = S s.t. π (U)= x}. (6.30)

We will make the set R := RS ∪RS,U ∪RU into a directed graph, with the directed
edges representing the Brownian net paths.

First we identify the directed edges leading out from each z = (x, t) ∈ RS,U .
By Remark 6.3.27 and Proposition 6.3.14, any π ∈ N with σπ = S that enters
an (S,U)-relevant separation point z must leave z enclosed by one of the two
outgoing pairs of equivalent left-right paths (l1,r1), (l2,r2) ∈ (W l(z),W r(z)), with
l1 ∼z

out r1 and l2 ∼z
out r2. Take the pair (l1,r1) for instance. If l1(U) �= r1(U),

then there must be a last separation point z′ along the pair (l1,r1), which is
also an (S,U)-relevant separation point because hopping from π to either l1 or
r1 at time t still gives a Brownian net path. If l1(U) = r1(U), then we just set
z′ = (l1(U),U)= (r1(U),U) ∈ RU . In either case, we note that all paths that leave z
bounded between l1 and r1 must continue to do so until they reach z′. Therefore we
draw a directed edge from z to z′, denoted by z→l1,r1 z′, representing all Brownian
net paths that go from z to z′ while bounded between l1 and r1. Similarly, paths
that leave z while bounded between l2 and r2 must all lead to some z′′ ∈ RS,U ∪RU ,
which is represented by a directed edge z→l2,r2 z′′.

Next we identify the directed edges leading out from z = (x,S) ∈ RS. By
Theorem 6.3.24, at a deterministic time S, almost surely each z ∈ RS is of type
(o, p), (p, p), or (o, pp). If z is of type (o, p) or (p, p), then a single equivalent
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pair l ∼z
out r starts from z, and all Brownian net paths leaving z must be bounded

between l and r, and leads to some z′ ∈RS,U∪RU , which we represent by a directed
edge z→l,r z′. Similarly when z is of type (o, pp), two directed edges start from z.

Given the above directed graph with vertex set RS ∪RS,U ∪RU , it is not difficult
to see that each Brownian net path from time S to U corresponds to a directed path
from RS to RU , and conversely, each directed path from RS to RU can be associated
with a family of Brownian net paths from time S to U. We summarize the basic
properties below (see [92, Proposition 6.5]).

Proposition 6.4.9 (Finite graph representation) Let N be a Brownian net with
associated left-right Brownian web (W l,W r), and let −∞ < S < U < ∞ be
deterministic times. Let R := RS∪RS,U ∪RU and directed edges→l,r be defined as
above. Then, a.s. (see Figure 6.11):

(a) For each z∈RS that is not of type (o,pp), there exist unique l∈W l(z), r∈W r(z)
and z′ ∈ R such that z→l,r z′.

(b) For each z = (x, t) such that either z ∈ RS,U or z ∈ RS is of type (o,pp), there
exist unique l, l′ ∈W l(z), r,r′ ∈W r(z) and z′,z′′ ∈ R such that l≤ r′ < l′ ≤ r on
(t, t+ ε) for some ε > 0, z→l,r′ z′ and z→l′,r z′′. For z ∈ RS,U one has z′ �= z′′.
For z ∈ RS of type (o,pp), one has z′ �= z′′ if and only if there exists π̂ ∈ N̂ with
σ̂π̂ =U such that π̂ enters z.

(c) For each π ∈ N with σπ = S, there exist zi = (xi, ti) ∈ R (i = 0, . . . ,n) and
li ∈W l(zi), ri ∈W l(zi) (i= 0, . . . ,n−1) such that z0 ∈RS, zn ∈RU, zi→li,ri zi+1

and li ≤ π ≤ ri on [ti, ti+1] (i= 0, . . . ,n− 1).
(d) If zi = (xi, ti) ∈ R (i = 0, . . . ,n) and li ∈W l(zi), ri ∈W l(zi) (i = 0, . . . ,n− 1)

satisfy z0 ∈ RS, zn ∈ RU, and zi →li,ri zi+1 (i= 0, . . . ,n− 1), then there exists a
π ∈N with σπ = S such that li ≤ π ≤ ri on [ti, ti+1].

S

U

Figure 6.11. Finite graph representation.
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Exercise 6.4.10 Use the finite graph representation to show that: conditioned on
the Brownian net N with the set of separation points S, almost surely for any
(αz)z∈S ∈ {±1}S,

W = {π ∈N : sgnπ (z)= αz∀z ∈ S s.t. π enters z}

(cf. (6.26)) is a closed subset of N , containing at least one path starting from each
(x, t) ∈R2.

6.5 Scaling Limits of Random Walks in i.i.d. Space-time Environment

We will now show how the Brownian web and net can be used to construct the
continuum limits of one-dimensional random walks in i.i.d. random space-time
environments.

A random walk X in an i.i.d. random space-time environment is defined
as follows. Let ω := (ωz)z∈Z2

even
be i.i.d. [0,1]-valued random variables with

common distribution μ. We view ω as a random space-time environment, such
that conditioned on ω, if the random walk is at position x at time t, then in the next
time step the walk jumps to x+ 1 with probability ω(x,t) and jumps to x− 1 with
probability 1−ω(x,t) (see Figure 6.12). Let Pω

(x,s) denote probability for the walk
starting at x at time s in the environment ω, and let P denote probability for ω.

The question is: if we scale space and time by ε and ε2 respectively, is it possible
to choose a law με for an environment ωε := (ωε

z )z∈Z2
even

such that the walk in the
environment ωε converges as ε ↓ 0 to a limiting random motion in a continuum
space-time random environment? Different ways of looking at the random walk in
random environment suggest that the answer is yes.

One alternative way of characterizing the law of random walk in random
environment is to consider the law of the family of random transition probability
kernels

Kω
s,t(x,y) := Pω

(x,s)(X(t)= y), (x,s), (y, t) ∈ Z2
even, s≤ t. (6.31)

Still another way is to specify the n-point motions, i.e., the law of n random
walks 1X := (X1(t), . . . ,Xn(t))t≥0 sampled independently from the same environment
ω, and then averaged with respect to the law of ω. Note that 1X is a Markov chain
with transition probability kernel

K(n)
0,t (1x,1y)=

∫ n∏
i=1

Kω
0,t(xi,yi)P(dω), (xi,0), (yi, t) ∈ Z2

even for 1≤ i≤ n. (6.32)

Furthermore, the n-point motions are consistent in the sense that the law of any
k-element subset of (X1( · ), . . . ,Xn( · )) is governed by that of the k-point motion.
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(x,t)

0.96 1 1 0.81

0.74 0.01 0 0.99

0.68 0.56 0.01 0

0 0 0.58

0.94 ω(x,t) 0.95 0.85

1

0.99

0.86

0.93

0.02

0.99

Figure 6.12. Random walk on Z2
even in a random environment ω.

Note that the moments of ω(0,0) are determined by (K(n))n∈N, since

E[ωn
(0,0)]= K(n)

0,1(10,11).

Therefore the law of ω(0,0), as well as that of ω and Kω, are uniquely determined
by the law of the n-point motions (K(n))n∈N.

Evidence for the existence of a continuum limit for random walks in i.i.d.
space-time random environments came from the convergence of the n-point
motions, which was first established by Le Jan and Lemaire [62] for i.i.d.
Beta-distributed random environments, and subsequently extended to general
environments by Howitt and Warren [55]. By the theory of stochastic flow of
kernels developed by Le Jan and Raimond [63], this implies that the family of
random probability kernels Kω in (6.32) also converges in a suitable sense to a
continuum limit. Motivated by these results, it was then shown in [92] that under
the same convergence criterion as in [55], not only the n-point motions converge,
but also the random environments themselves converge to a continuum space-time
limit which can be constructed explicitly from the Brownian web and net.

In Section 6.5.1 below, we will first briefly recall the theory of stochastic flows
of kernels from [63], and then review Howitt and Warren’s convergence result [55]
for the n-point motions of random walks in i.i.d. space-time random environments.
In Section 6.5.2, we will then show how to construct the limiting continuum
space-time environment from the Brownian web and net, which arises naturally if
one looks at the discrete environments in the right way. Lastly in Section 6.5.3,
we will discuss some properties of the continuum random motion in random
environment.
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6.5.1 Stochastic Flows of Kernels and the Howitt-Warren Flows

In (6.31) and (6.32), we saw that the family of random transition probability
kernels Kω

s,t(x, ·) and the family of consistent n-point motions provide alternative
characterizations of a random walk in i.i.d. space-time random environment. It
turns out that in general, without knowing the existence of any underlying random
environment, there is a correspondence between a consistent family of n-point
motions on a Polish space, and a family of random probability kernels called a
stochastic flow of kernels. This was the main result of Le Jan and Raimond in
[63, Theorem 2.1], which motivated the study of concrete examples of consistent
n-point motions in [64, 62, 55]. We now recall the notion of a stochastic flow of
kernels.

For any Polish space E, let B(E) denote the Borel σ -field on E and let
M1(E) denote the space of probability measures on E, equipped with the weak
topology and Borel σ -algebra. A random probability kernel, defined on some
probability space (�,F ,P), is a measurable function K : � × E → M1(E).
Two random probability kernels K,K′ are said to equal in finite-dimensional
distributions if for each x1, . . . ,xn ∈ E, the n-tuple of random probability measures
(K(x1, · ), . . . ,K(xn, · )) is equally distributed with (K′(x1, · ), . . . ,K′(xn, · )). Two or
more random probability kernels are called independent if their finite-dimensional
distributions are independent.

Definition 6.5.1 (Stochastic flow of kernels) A stochastic flow of kernels on a
Polish space E is a collection (Ks,t)s≤t of random probability kernels on E such
that

(i) For all s≤ t≤ u and x∈E, a.s. Ks,s(x,A)= δx(A) and
∫

E
Ks,t(x,dy)Kt,u(y,A)=

Ks,u(x,A) for all A ∈ B(E).
(ii) For each t0 < · · · < tn, the random probability kernels (Kti−1,ti)i=1,...,n are

independent.
(iii) Ks,t and Ks+u,t+u are equal in finite-dimensional distributions for each real

s≤ t and u.

We have omitted two weak continuity conditions on (Ks,t(x, ·)s≤t,x∈E from [63,
Definition 2.3], which are automatically satisfied by a version of K if the n-point
motions defined via (6.32) are a family of Feller processes.

Remark 6.5.2 Although we motivated the notion of stochastic flow of kernels
from random walks in i.i.d. space-time random environments, the kernels K in
Definition 6.5.1 cannot be associated with an underlying random environment
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unless there exists a version of K such that Definition 6.5.1 (i) is strengthened to:

(i′) A.s. , ∀s≤ t≤ u and x ∈ E, Ks,s(x, ·)= δx( · ) and
∫

E
Ks,t(x,dy)Kt,u(y, ·)

= Ks,u(x, ·).

In general, it is not known whether such a version always exists.

Le Jan and Raimond showed in [63, Theorem 2.1] that every consistent family
of Feller n-point motions corresponds to a stochastic flow of kernels. Using
Dirichlet form construction of Markov processes, they then constructed as an
example in [64] a consistent family of n-point motions on the circle which are
a special type of sticky Brownian motions. Subsequently, Le Jan and Lemaire
showed in [62] that the n-point motions of random walks in i.i.d. Beta-distributed
space-time random environments converge to the n-point motions constructed in
[64]. Howitt and Warren [55] then found the general condition for the convergence
of n-point motions of random walks in i.i.d. space-time random environments, and
they characterized the limiting n-point motions, which are also sticky Brownian
motions, in terms of well-posed martingale problems.

We next recall Howitt and Warren’s result [55], or rather, a different formulation
of their result as presented in [92, Appendix A] with discrete instead of
continuous time random walks, and with a reformulation of the martingale problem
characterizing the limiting sticky Brownian motions.

Theorem 6.5.3 (Convergence of n-point motions to sticky Brownian motions)
For ε > 0, let με be the common law of an i.i.d. space-time random environment
(ωε

z )z∈Z2
even

, such that

(i) ε−1
∫

(2q− 1)με(dq) −→
ε→0

β,

(ii) ε−1q(1− q)με(dq) 2⇒
ε→0

ν(dq),
(6.33)

for some β ∈R and finite measure ν on [0,1], where⇒ denotes weak convergence.
Let 1Xε := (Xε

1, . . . ,Xε
n) be n independent random walks in ωε with ε1Xε(0) →

1X(0) = (X1(0), . . . ,Xn(0)) ∈ Rn as ε ↓ 0. Then (ε1Xε(ε2t))t≥0 converges weakly to
a family of sticky Brownian motions (1X(t))t≥0 = (X1(t), . . . ,Xn(t))t≥0, whose law is
the unique solution of the following Howitt-Warren martingale problem with drift
β and characteristic measure ν:

(i) 1X is a continuous, square-integrable semi-martingale with initial condition
1X(0);
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(ii) The covariance process between Xi and Xj is given by

〈Xi,Xj〉(t)=
∫ t

0
1{Xi(s)=Xj(s)}ds, t≥ 0, i, j= 1, . . . ,n; (6.34)

(iii) For each non-empty �⊂ {1, . . . ,n}, let

f�(1x) :=max
i∈�

xi and g�(1x) := |{i ∈� : xi = f�(1x)}| (1x ∈Rn).

(6.35)
Then

f�(1X(t))−
∫ t

0
β+(g�(1X(s)))ds (6.36)

is a martingale with respect to the filtration generated by 1X, where

β+(1) := β and β+(m) := β+2
∫
ν(dq)

m−2∑
k=0

(1−q)k for m≥ 2. (6.37)

Remark 6.5.4 The Howitt-Warren sticky Brownian motions evolve independently
when they are apart, and experience sticky interaction when they meet. In
particular, when n = 2, X1(t)− X2(t) is a Brownian motion with stickiness at the
origin, which is just a time changed Brownian motion such that its local time at the
origin has been turned into real time, modulo a constant multiple that determines
the stickiness. More generally, for Howitt-Warren sticky Brownian motions started
at X1(0) = ·· · = Xn(0), the set of times with X1(t) = X2(t) = ·· · = Xn(t) is a
nowhere dense set with positive Lebesgue measure. The measure ν determines
a two-parameter family of constants θk,l =

∫
qk(1− q)l ν(dq)

q(1−q) , k, l ≥ 1, which can
be regarded as the rate (in a certain excursion theoretic sense) at which (X1, · · · ,Xn)
split into two groups, (X1, · · · ,Xk) and (Xk+1, · · · ,Xk+l), with k+ l= n.

It is easily seen that the n-point motions defined by the Howitt-Warren
martingale problem in Theorem 6.5.3 form a consistent family, and it is Feller
by [55, Proposition 8.1]. Therefore by the aforementioned result of Le Jan and
Raimond [63, Theorem 2.1], there exists a stochastic flow of kernels (Ks,t)s≤t on R,
unique in finite-dimensional distributions, such that the n-point motions of (Ks,t)s≤t

in the sense of (6.32) are given by the unique solutions of the Howitt-Warren
martingale problem. Therefore we define as follows:

Definition 6.5.5 (Howitt-Warren flow) We call the stochastic flow of kernels,
whose n-point motions solve the Howitt-Warren martingale problem in Theo-
rem 6.5.3 for some β ∈ R and finite measure ν on [0,1], the Howitt-Warren flow
with drift β and characteristic measure ν.
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Remark 6.5.6 We single out three special classes of Howitt-Warren flows: (1) ν=
0, for which the n-point motions are coalescing Brownian motions, and the flow
is known as the Arratia flow; (2) ν(dx) = adx for some a > 0, which we will
call the Le Jan-Raimond flow since it was first constructed in [64] via Dirichlet
forms and subsequently shown in [62] to arise as limits of random walks in i.i.d.
Beta-distributed environments; (3) ν = aδ0+bδ1 for some a,b≥ 0 with a+b> 0,
called the erosion flow, which was studied in [56].

As noted in Remark 6.5.2, it is not known a priori whether there exists a version
of the Howitt-Warren flow K such that almost surely, (Ks,t(x, ·))s<t,x∈R are truly
transition probability kernels of a random motion in a random environment. It
is then natural to ask whether such an underlying random environment indeed
exists for the Howitt-Warren flows, and if yes, whether the environment can be
explicitly characterized as in the discrete case. This is where the Brownian web
and Brownian net enter the picture.

6.5.2 The Space-time Random Environment for the Howitt-Warren Flows

How can we construct a continuum space-time random environment such that the
Howitt-Warren flow with drift β and characteristic measure ν is indeed the family
of transition probability kernels of a random motion in this random environment?
The answer again lies in discrete approximation.

Special case: ν satisfies
∫

q−1(1− q)−1ν(dq) <∞. In this case, the continuum
random environment can be constructed from the Brownian net. For ε > 0, define
a probability measure με on [0,1] by

με := bεν̄+ 1
2 (1− (b+ c)ε)δ0+ 1

2 (1− (b− c)ε)δ1

where b :=
∫

ν(dq)

q(1− q)
, c := β−

∫
(2q− 1)

ν(dq)

q(1− q)
, ν̄(dq) := ν(dq)

bq(1− q)
.

(6.38)

When ε is sufficiently small, such that 1 − (b + |c|)ε ≥ 0, με is a probability
measure on [0,1] and is easily seen to satisfy (6.33) as ε ↓ 0. Therefore
by Theorem 6.5.3, με determines the law of an i.i.d. random environment
ωε := (ωε

z )z∈Z2
even

, whose associated n-point motions converge to that of the
Howitt-Warren flow with drift β and characteristic measure ν.

Note that for small ε, most of the ωε
z are either zero or one. We can thus encode

ωε in two steps. First we identify a collection of branching-coalescing random
walks determined by ωε, where at each z= (x, t) ∈ Z2

even, the walk moves to (x+
1, t + 1) if ωε

z = 1, moves to (x− 1, t + 1) if ωε
z = 0, and is a branching point
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Figure 6.13. Representation of the random environment (ωε
z )z∈Z2

even
in terms of:

(a) a marked discrete net (Nε, ω̄ε); (b) a marked discrete web (Wε,ηε).

if ωε
z ∈ (0,1) since the walk has strictly positive probability of moving to either

(x+ 1, t+ 1) or (x− 1, t+ 1). Given the set of branching-coalescing random walk
paths, which we denote by Nε and call a discrete net, we can then specify the
value of ωε

z at each branching point by sampling i.i.d. random variables ω̄ε
z with

common law ν̄ (see Figure 6.13(a)). The pair (Nε, ω̄ε) then gives an alternative
representation of the random environment ω, wherein a walk must navigate along
Nε, and when it encounters a branching point z, it jumps either left or right with
probability 1− ω̄ε

z , respectively ω̄ε
z .

The above setup is essentially the same as the coupling between branching-
coalescing random walks and coalescing random walks discussed in Section 6.4,
which corresponds to taking (ω̄ε

z )z∈Z2
even

to be i.i.d. {0,1}-valued random variables

in the current setting. As we rescale space and time by ε and ε2 respectively, we
note that Nε converges to a variant of the Brownian net Nβ−,β+ , constructed from
a pair of left-right Brownian webs as in Section 6.3 with respective drifts

β− = β− 2
∫
ν(dq)(1− q)−1, β+ = β+ 2

∫
ν(dq)q−1. (6.39)

The branching points of Nε converge to the set of separation points of Nβ−,β+ ,
denoted by S. Since the law of ω̄ε

z at the branching points is ν̄, independent of ε, we
should then assign i.i.d. random variablesωz with the same law ν̄ to each separation
point z∈ S. The pair (Nβ−,β+ , (ωz)z∈S) then gives the desired continuum space-time
random environment, wherein a random motion π must navigate along Nβ−,β+ ,
and independently at each separation point z it encounters, it chooses sgnπ (z) (see
(6.23)) to be +1 with probability ωz and −1 with probability 1−ωz.

We next give a precise formulation of how the subclass of Howitt-Warren flows
with

∫
q−1(1− q)−1ν(dq) < ∞ can be obtained from the random environment

(Nβ−,β+ , (ωz)z∈S) (cf. [92, Theorem 4.7]). For its proof, see [92]. To construct a
version of the Howitt-Warren flow which a.s. satisfies the Chapman-Kolmogorov
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equation (condition (i′) in Remark 6.5.2), we will sample a collection of coalescing
paths W given the environment (Nβ−,β+ , (ωz)z∈S).

Theorem 6.5.7 (Constructing Howitt-Warren flows in a Brownian net) Let β ∈
R and let ν be a finite measure on [0,1] with

∫
q−1(1 − q)−1ν(dq) < ∞. Let

Nβ−,β+ be a Brownian net with drifts β−,β+ defined as in (6.39), and let S be
its set of separation points. Conditional on Nβ−,β+ , let ω := (ωz)z∈S be i.i.d.
[0,1]-valued random variables with law ν̄ defined as in (6.38). Conditional on
(Nβ−,β+ ,ω), let (αz)z∈S be independent {−1,+1}-valued random variables such
that P[αz = 1 | (Nβ−,β+ ,ω)]= ωz. Then

W := {π ∈Nβ−,β+ : sgnπ (z)= αz ∀z ∈ S s.t. π enters z} (6.40)

is distributed as a Brownian web with drift β. For any z = (x, t) ∈ R2, if z is of
type (1,2), then let π↑z ∈W(z) be any path in W entering z restricted to the time
interval [t,∞); otherwise let π↑z be the rightmost path in W(z). Then

K↑s,t(x, ·) := P[π↑(x,s)(t) ∈ · | (Nβ−,β+ ,ω)], s≤ t, x ∈R (6.41)

defines a version of the Howitt-Warren flow with drift β and characteristic measure
ν, which satisfies condition (i′) in Remark 6.5.2.

General case: ν is any finite measure on [0,1]. Let (με)ε>0 satisfy (6.33)
and let ωε := (ωε

z )z∈Z2
even

be an i.i.d. random environment with common law με.

Without assuming
∫

q−1(1 − q)−1ν(dq) < ∞, it may no longer be possible to
capture the continuum random environment by a Brownian net, because either
β− or β+ in (6.39) or both can be infinity. Instead, we follow the alternative view
on the coupling between branching-coalescing and coalescing random walks in
Section 6.4, where we first sample the coalescing walks and then introduce the
branching points. The same approach can be applied here to encode the random
environment ω in two steps.

First we construct a collection of coalescing random walks by sampling
coalescing walks in the same environment ω and then average over the law of ωε.
More precisely, from each z= (x, t) ∈ Z2

even, the walk moves to either (x+ 1, t+ 1)
or (x− 1, t+ 1), represented by αεz := 1 or αεz = −1, with respective probability∫ 1

0 qμε(dq) and
∫ 1

0 (1 − q)με(dq). Let Wε denote this collection of coalescing
random walks, which we call a discrete web and which has a natural dual Ŵε

as illustrated in Figure 6.1. Next, we identify the law of ωε conditioned on Wε.
Note that conditioned on Wε, (ωε

z )z∈Z2
even

are independent with conditional
distribution

μl
ε := (1− q)με(dq)∫

(1− q)με(dq)
if αεz =−1; μr

ε := qμε(dq)∫
qμε(dq)

if αεz = 1. (6.42)
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Therefore conditioned on Wε, if we sample i.i.d. random variables (ηεz ){z:αεz=−1}
with common law μl

ε and i.i.d. random variables (1− ηεz ){z:αεz=1} with common
law μr

ε, then (Wε,ηε) provides an alternative representation for the environment
ωε, where at each z ∈ Z2

even, a walk in the random environment follows the same
jump as in Wε with probability 1− ηεz , and jumps in the opposite direction with
probability ηεz (see Figure 6.13(b)).

The above setup is an extension of the coupling between coalescing and
branching-coalescing random walks discussed in Section 6.4, which corresponds
to taking (ηεz )z∈Z2

even
to be i.i.d. {0,1}-valued random variables with mean ε. As we

rescale space and time by ε and ε2 respectively, we note that Wε converges to a
Brownian web W0 with drift β. On the other hand, ηε can be seen to converge to
a marked Poisson point process on the set of intersection points between paths in
W0 and paths in its dual Ŵ0, i.e., the (1,2) points of W0. Indeed, we can regard
(ηεz ){z:αεz=−1} as a marked point process on the set of space-time points in Z2

even
where a random walk path in Wε is exactly one unit of distance to the left of
a dual random walk path in Ŵε. As noted in Section 6.4, when space-time is
rescaled by (ε,ε2) and measure is rescaled by ε, the counting measure on these
points of collision between forward and dual random walk paths converges to the
intersection local time measure 
l on points of type (1,2)l in the Brownian web.
Since for every u ∈ (0,1), by (6.33), the mark ηεz at each z ∈ Z2

even with αεz = −1
satisfies

P(ηεz ∈ (u,1])=
∫ 1

u (1− q)με(dq)∫ 1
0 (1− q)με(dq)

= ε
∫ 1

u q−1ε−1q(1− q)με(dq)∫ 1
0 (1− q)με(dq)

∼ ε

∫ 1

u

2

q
ν(dq) as ε ↓ 0,

it follows that (ηεz ){z:αεz=−1} converges to a marked Poisson point process

Ml ⊂ R2 × [0,1] with intensity measure 
l(dz)⊗ 2
q1{q>0}ν(dq). Similarly, (1−

ηεz ){z:αεz=+1} converges to a marked Poisson point process Mr ⊂ R2× [0,1] with

intensity measure 
r(dz)⊗ 2
1−q1{q<1}ν(dq).

The triple (W0,Ml,Mr) then gives the desired continuum space-time random
environment, wherein a random motion π must navigate along paths in W0,
and independently at each marked (1,2)l point (z,ηz) ∈ Ml or marked (1,2)r

point (z,1− ηz) ∈Mr it encounters, with probability ηz, π chooses orientation
−sgnW0

(z), i.e., π switches to the second outgoing path in W0(z) instead of
continuing along the incoming path. This description is correct when ν({0}) =
ν({1}) = 0. However when ν({0}) > 0, we have excluded 
l(dz)⊗ 2

q1{q=0}ν(dq)
from the intensity measure of Ml, which has a non-negligible effect on paths
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sampled in the random environment. To understand this effect, we can approximate
ν({0})δ0(dq) by ν({0})δh(dq) with h ↓ 0. This leads to Poisson marking (1,2)l

points of W0 with intensity measure 2
hν({0})
l(dz), and whenever a random motion

π in this environment encounters such a Poisson point z, it chooses its orientation
at z to be −sgnW0

(z) with probability h. The net effect is that, at each point z
of a Poisson point process Bl with intensity measure 2ν({0})
l(dz), π chooses its
orientation at z to be−sgnW0

(z) with probability 1. As h ↓ 0, the resulting effect is
that, when we sample an independent motion π ′ in the same random environment,
then an independent copy of Bl – call it B′l – must be sampled such that whenever
π ′ encounters some z ∈ B′l, it chooses its orientation at z to be −sgnW0

(z) with
probability 1.

We will now give a precise formulation of how the Howitt-Warren flow can be
obtained from a random environment (W0,Ml,Mr) (cf. [92, Theorem 3.7]). As
in Theorem 6.5.7, we will sample a collection of coalescing Brownian motions W
given the environment (W0,Ml,Mr).

Theorem 6.5.8 (Construction of Howitt-Warren flows) Let β ∈ R and let ν be
a finite measure on [0,1]. Let W0 be a Brownian web with drift β. Let M be a
marked Poisson point process on R2× [0,1] with intensity measure


l(dz)⊗ 2

q
1{q>0}ν(dq)+ 
r(dz)⊗ 2

1− q
1{q<1}ν(dq).

Conditional (W0,M), let αz be independent {−1,+1}-valued random variables
with P[αz =+1|(W0,M)]= ωz for each (z,ωz) ∈M, and let

A := {z : (z,ωz) ∈M,αz �= sgnW0
(z)}.

Let B be an independent Poisson point set with intensity 2νl({0})
l + 2νr({1})
r.
Define

W := lim
�n↑A∪B

switch�n(W0) (6.43)

for any sequence of finite sets �n ↑ A∪B, where switch�n(W0) is the set of paths
obtained from W0 by redirecting all paths in W entering any z ∈�n in such a way
that z of type (1,2)l in W becomes type (1,2)r in W0 and vice versa. Then W is
equally distributed with W0, and with π↑z defined as in Theorem 6.5.7,

K↑s,t(x, ·) := P[π↑(x,s)(t) ∈ · | (W0,M)] s≤ t, x ∈R, (6.44)

defines a version of the Howitt-Warren flow with drift β and characteristic measure
ν, which satisfies condition (i′) in Remark 6.5.2.

Exercise 6.5.9 Use Theorem 6.4.2 to show that W as defined in (6.43) does not
depend on the choice of �n ↑ A∪B, and W is equally distributed with W0.
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6.5.3 Properties of the Howitt-Warren Flow

The construction of the continuum space-time random environment underlying the
Howitt-Warren flows allows the study of almost sure properties of the flow K↑ :=
(K↑s,t(x, ·))s<t,x∈R (cf. [92, Section 2]). In particular, we can study almost sure path
properties of the following measure-valued process induced by the Howitt-Warren
flow, called the Howitt-Warren process:

ρt(dy)=
∫

K↑0,t(x,dy)ρ0(dx), (6.45)

where ρ0 can be taken to be any locally finite measure on R in the class

Mg(R) := {ρ :
∫

e−cx2
ρ(dx) <∞ for all c > 0

}
, (6.46)

where ρn ∈ Mg(R) is defined to converge to ρ ∈ Mg(R) if
∫

f (x)ρn(dx) →∫
f (x)ρ(dx) for all f ∈ Cc(R), which is just convergence in the vague topology,

plus
∫

e−cx2
ρn(dx)→ ∫

e−cx2
ρ(dx) for all c > 0.

A first consequence is that (ρt)t≥0 is a Markov process with continuous sample
path, and continuous dependence on the initial condition and starting time, which
makes it a Feller process.

Theorem 6.5.10 (Howitt-Warren process) Let (K↑s,t(x, ·))s≤t,x∈R be the version
of Howitt-Warren flow with drift β and characteristic measure ν, defined in
Theorem 6.5.7 or 6.5.8. Let (ρt)t≥0 be the Howitt-Warren process defined from
K↑ as in (6.45) with ρ0 ∈Mg. Then

(i) (ρt)t≥0 is an Mg(R)-valued Markov process with almost sure continuous
sample paths;

(ii) If (ρ〈n〉t )t≥sn are Howitt-Warren processes defined from K↑ with deterministic

initial condition ρ〈n〉sn at time sn, with sn → 0, then for any t > 0 and tn → t,

ρ〈n〉sn
2⇒
n→∞ ρ0 implies ρ

〈n〉
tn 2⇒

n→∞ ρt a.s. , (6.47)

where⇒ denotes convergence in Mg(R).

If
∫

q−1(1−q)−1ν(dq)<∞, then the above statements hold with Mg(R) replaced
by Mloc(R), the space of locally finite measures on R equipped with the vague
topology.

We can also identify almost surely the support of ρt for all t≥ 0.

Theorem 6.5.11 (Support of Howitt-Warren process) Let (ρt)t≥0 be a Howitt-
Warren process with drift β and characteristic measure, and the initial condition
ρ0 has compact support. Let β−,β+ be defined as in (6.39).
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(a) If −∞< β− < β+ <∞, then a.s. for all t > 0, the support of ρt satisfies

supp(ρt)= {π (t) : π ∈Nβ−,β+ ,π (0) ∈ supp(ρ0)}, (6.48)

where Nβ−,β+ is the Brownian net with drift parameters β−,β+ as in
Theorem 6.5.7.

(b) If β− = −∞ and β+ <∞, then a.s. supp(ρt) = (−∞,rt] ∩R for all t > 0,
where rt := sup(supp(ρt)). An analogue statement holds when β− >−∞ and
β+ =∞.

(c) If β− =−∞ and β+ =∞, then a.s. supp(ρt)=R for all t > 0.

Theorem 6.5.11 (a) shows that when the Howitt-Warren flow can be constructed
from a Brownian net, then at deterministic times, ρt is almost surely atomic. This
result can be extended to general Howitt-Warren flows. However, almost surely
there exist random times when ρt contains no atoms, and the only exceptions
are the Arratia flow with ν = 0, and the erosion flows, which have characteristic
measures of the form ν = aδ0+ bδ1 with a,b≥ 0 and a+ b > 0.

Theorem 6.5.12 (Atomicness vs non-atomicness) Let (ρt)t≥0 be a Howitt-Warren
process with drift β and characteristic measure ν.

(a) For each t > 0, ρt is a.s. purely atomic.
(b) If

∫
(0,1) ν(dq)> 0, then a.s. there exists a dense set of random times t > 0 when

ρt contains no atoms.
(c) If

∫
(0,1) ν(dq)= 0, then a.s. ρt is purely atomic at all t > 0.

We can also study ergodic properties of the Howitt-Warren process. In particular,
for any Howitt-Warren process other than the measure-valued process generated
by the coalescing Arratia flow, there is a unique spatially ergodic stationary law
for (ρt)t≥0, which is also the weak limit of ρt as t →∞ if the law of the initial
condition ρ0 is spatially ergodic with finite mean density.

Theorem 6.5.13 (Ergodic properties) Let (ρt)t≥0 be a Howitt-Warren process
with drift β ∈R, characteristic measure ν �= 0, and initial law L(ρ0).

(i) If L(ρ0) is ergodic w.r.t. Taρ0( ·)=ρ0(a+·) for all a∈R, and E[ρ0([0,1])]= 1,
then as t→∞, L(ρt) converges weakly to a limit�1 which is also ergodic with
respect to Ta for all a ∈R. Furthermore, if L(ρ0)=�1, then E[ρ0([0,1])]= 1
and L(ρt)=�1 for all t > 0.

(ii) If L(ρ0) is ergodic w.r.t. Ta for all a ∈ R and E[ρ0([0,1])] =∞, then as t→
∞, L(ρt) has no subsequential weak limits supported on Mloc(R), the set of
locally finite measures on R.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316403877.007
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 23 Apr 2018 at 02:40:07, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316403877.007
https://www.cambridge.org/core


322 E. Schertzer et al.

Remark 6.5.14 When ν(dx)= 1[0,1](x)dx, it is known from [64, Proposition 9(b)]
that �1 is the law of a random measure ρ∗ =∑(x,u)∈P uδx for a Poisson point
process P on R× [0,∞) with intensity measure dx× u−1e−udu.

The proof of the above results can be found in [92].

Remark 6.5.15 Howitt-Warren flows are the continuum analogues of discrete
random walks in i.i.d. space-time random environments, and they share the same
fluctuations on large space-time scales. In particular, for any Howitt-Warren
process (ρt)t≥0 (assuming drift β = 0 and ρ0(dx)= dx for simplicity), the rescaled
current process (I(nt,

√
nx)/n1/4)t>0,x∈R, where

I(t,x) :=
∫

R

∫
R

1{u<0}1{v>x}K↑0,t(u,dv)ρ0(du)−
∫

R

∫
R

1{u>0}1{v<x}K↑0,t(u,dv)ρ0(du),

converges to a universal Gaussian process as n→∞. This was shown in [106], and
the same universal (Edwards-Wilkinson) fluctuations have been established earlier
for random walks in i.i.d. space-time random environments (see e.g., [85]). In a
different direction, the transition probabilities of a random walk in i.i.d. space-time
random environments are believed to have the same universal (Tracy-Widom
GUE) fluctuations as the point-to-point partition functions of a directed polymer.
This was verified recently in [12] for special Beta-distributed random envi-
ronments, and one expects similar results to hold for the Howitt-Warren flow
K↑0,t(0,dx).

6.6 Convergence to the Brownian Web and Net

In this section, we give general convergence criteria for the Brownian web that
were originally formulated in [40, 72], and simplified criteria when paths do not
cross each other. We will discuss strategies for verifying these criteria and focus in
particular on the convergence of coalescing random walks to the Brownian web.
Lastly we will formulate a set of convergence criteria for the Brownian net and
verify them for branching-coalescing simple random walks.

6.6.1 General Convergence Criteria for the Brownian Web

We give here general convergence criteria for a sequence of random variables
(Xn)n∈N, taking values in the space of compact sets of paths H, to converge in
distribution to the Brownian web W . When Xn consists of non-crossing paths,
these criteria can be greatly simplified, which will be discussed in the next
subsection.
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First we formulate a criterion which ensures tightness for the laws of (Xn)n∈N.
We then formulate criteria which ensure that any subsequential limit of (Xn)n∈N

contains a copy of the Brownian web (lower bound), but nothing more (upper
bound).

Tightness: To understand the tightness criterion we will formulate, let us first
see what should be the tightness criterion for a sequence of path-valued random
variables (Yn)n∈N, i.e., Yn ∈�with the space of paths� defined as in Section 6.2.1.
Due to the compactification of R2 in Section 6.2.1, it suffices to show that when
restricted to any finite space-time window �L,T = [−L,L]× [−T ,T], the law of
the random paths (Yn)n∈N are tight in the sense that for any ε > 0, there exists a
modulus of continuity φ : [0,1]→ R, which is increasing with φ(δ) ↓ 0 as δ ↓ 0,
such that uniformly in n ∈N,

P(∀s with (Yn(s),s) ∈�L,T and t ∈ [s,s+ 1], |Yn(t)−Yn(s)| ≤ φ(t− s))≥ 1− ε.
(6.49)

The modulus of continuity φ allows the construction of an equicontinuous, and
hence compact, set of paths. To construct a φ that satisfies (6.49), it suffices to
show that for any η > 0,

lim
δ↓0

limsup
n→∞

P(∃s < t < s+ δ with (Yn(s),s) ∈�L,T , s. t. |Yn(t)−Yn(s)|> η)= 0.

(6.50)
Indeed, fix a sequence ηm ↓ 0. Then for each m ∈N, by (6.50), we can find δm > 0
sufficiently small such that uniformly in n∈N, the probability in (6.50) is bounded
by ε/2m. We can then define φ(h) := ηm for h ∈ (δm−1,δm], which is easily seen to
satisfy (6.49).

When we consider a sequence of random compact sets of paths (Xn)n∈N, the
tightness criterion is similar, except that we need to control the modulus of
continuity uniformly for all paths in Xn (cf. Exercise 6.2.2). Therefore condition
(6.50) should be modified to show that for any finite �L,T and any η > 0,

lim
δ↓0

limsup
n→∞

P(∃π ∈ Xn and s < t < s+ δ with (π (s),s)

∈�L,T , s. t. |π (t)−π (s)|> η)= 0. (6.51)

To control the modulus of continuity of all paths in Xn simultaneously, it is
convenient to divide �L,T into 16LT/δη sub-rectangles of dimension η/2× δ/2,
and bound the event in (6.51) by the union of events where �L,T in (6.51) is
replaced by one of the 16LT/δη sub-rectangles of �L,T . This leads to the following
tightness criterion as formulated in [40, Proposition B1].
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(x,t)

δ/2

δ
η/2

η

Figure 6.14. A path causing the event Aδ,η(x, t) to occur.

Proposition 6.6.1 (Tightness criterion) The law of a sequence of (H,BH)-valued
random variables (Xn)n∈N is tight if

(T) ∀L,T ∈ (0,∞), lim
δ↓0

δ−1 limsup
n→∞

sup
(x,t)∈[−L,L]×[−T ,T]

P(Xn ∈Aδ,η(x, t))= 0,

where Aδ,η(x, t)∈BH consists of compact sets of paths K ∈H, such that K contains
some path which intersects the rectangle [x− η/4,x+ η/4]× [t, t+ δ/2], and at a
later time, intersects the left or right boundary of the bigger rectangle [x−η/2,x+
η/2]× [t, t+ δ] (see Figure 6.14).

Lower bound: Assuming that (Xn)n∈N is a tight sequence of H-valued random
variables, we then need a criterion to ensure that any subsequential weak limit of
(Xn)n∈N contains almost surely a random subset which is distributed as the standard
Brownian web. The following criterion serves this purpose, which is a form of
convergence in finite-dimensional distributions.

(I) There exists πn,z ∈ Xn for each z ∈ R2, such that for any deterministic
z1, . . . ,zk ∈ R2, (πn,zi)1≤i≤k converge in distribution to coalescing Brownian
motions starting at (zi)1≤i≤k.

If (Xn)n∈N is a tight sequence that satisfies condition (I), then for any deterministic
countable dense set D ⊂ R2, we note that by going to a further subsequence if
necessary, any subsequential limit X of (Xn)n∈N contains a collection of coalescing
Brownian motions {πz}z∈D starting from each z ∈D. Since W := {πz : z ∈D} is a
standard Brownian web by Theorem 6.2.3, we obtain the desired lower bound that
a.s. W ⊂X .
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Upper bound: Assuming that (Xn)n∈N is a tight sequence of H-valued random
variables that satisfies condition (I), then it only remains to formulate a criterion to
ensure that any subsequential weak limit X of (Xn)n∈N a.s. contains no more paths
than the Brownian web W ⊂ X . There are several approaches to this problem,
depending partly on whether paths in Xn can cross each other or not.

One way is to control the expectation of the following family of counting
random variables

ηX (t,h;a,b)= |{π (t+ h) : π ∈X ,π (t) ∈ [a,b]}|, t ∈R,h > 0,a < b, (6.52)

which considers all paths in X that intersect [a,b] at time t and counts the number
of distinct positions these paths occupy at time t + h. Thanks to the image set
property of the Brownian web W , which is a special case of Proposition 6.3.17 for
the Brownian net, it is easily seen that if X contains strictly more paths than W ,
than we must have ηX (t,h;a,b)>ηW (t,h;a,b) for some rational t,h,a,b. Therefore
to show X =W a.s., it suffices to show that

E[ηX (t,h;a,b)]= E[ηW (t,h;a,b)] for all t ∈R,h > 0,a < b. (6.53)

The following sufficient criteria have been formulated in [40] to ensure that
(6.53) holds for any subsequential limit X of a sequence of H-valued random
variables (Xn)n∈N:

(B1′) ∀h0 > 0, limsup
n→∞

sup
h>h0

sup
a,t∈R

P[ηXn(t,h;a,a+ ε)≥ 2]−→
ε→0

0,

(B2′) ∀h0 > 0,
1

ε
limsup

n→∞
sup
h>h0

sup
a,t∈R

P[Xn(t,h;a,ε) �= X−n (t,h;a,ε)∪X+n (t,h;a,ε)]

−→
ε→0

0,

where Xn(t,h;a,ε) ⊂ R is the set of positions occupied at time t + h by paths
in Xn which intersect the interval [a,a + ε] at time t, while X−n (t,h;a,ε) (resp.
X+n (t,h;a,ε)) is the subset of Xn(t,h;a,ε) induced by paths in Xn which occupy
the leftmost (resp. rightmost) position at time t among all paths in Xn that intersect
[a,a+ε] at time t. Condition (B1′) ensures that for each deterministic point z∈R2,
any subsequential limit X contains a.s. at most one path starting from z. Condition
(B2′) ensures that ηX (t,h;a,b) can be approximated by partitioning [a,b] into
equal-sized intervals and considering only paths in X starting at the boundaries of
these intervals. Condition (B1′) and (I) together ensure that paths in X starting at
these boundary points are distributed as coalescing Brownian motions. Condition
(6.53) then follows.

We thus have the following convergence criteria for the Brownian web
[40, Theorem 5.1].
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Theorem 6.6.2 (Convergence criteria A) Let (Xn)n∈N be a sequence of (H,BH)-
valued random variables satisfying conditions (T), (I), (B1′), (B2′). Then Xn

converges in distribution to the standard Brownian web W .

Condition (B2′) turns out to be difficult to verify when paths in Xn can cross each
other. This is in particular the case for non-nearest neighbor coalescing random
walks on Z, which led to the formulation in [72] of an alternative criterion in
place of (B2′). The observation is that instead of ηX (t,h;a,b), we can consider the
alternative family of counting random variables

η̂X (t,h;a,b)=|{π (t+h)∩(a,b) :π ∈X ,π (t)∈R}|, t∈R,h> 0,a< b, (6.54)

which considers all paths in X starting before or at time t and counts the number
of distinct positions these paths occupy in the interval (a,b) at time t+ h. Given
X ⊃W , to show that X =W a.s., it suffices to show that

E[η̂X (t,h;a,b)]= E[η̂W (t,h;a,b)] for all t ∈R,h > 0,a < b. (6.55)

This leads to the following alternative convergence criteria in [72, Theorem 1.4].

Theorem 6.6.3 (Convergence criteria B) Let (Xn)n∈N be a sequence of (H,BH)-
valued random variables satisfying conditions (T), (I), (B1′) and the following
condition:

(E) For any subsequential weak limit X , E[η̂X (t,h;a,b)]= E[η̂W (t,h;a,b)]

∀ t ∈R,h > 0,a < b.

Then Xn converges in distribution to the standard Brownian web W as n→∞.

Condition (E) is actually much easier to verify than it appears. It turns out to be
enough to establish the density bound

limsup
n→∞

E[η̂Xn(t,h;a,b)] <∞ ∀ t ∈R,h > 0,a < b, (6.56)

which by Fatou’s Lemma implies that any subsequential weak limit X satisfies
E[η̂X (t,ε;a,b)] <∞ for all t ∈R, ε > 0 and a < b. In particular,

X t−(t+ ε) := {π (t+ ε) : π ∈X t−} with X t− := {π ∈X : σπ ≤ t}, (6.57)

the set of positions at time t + ε generated by paths in X starting before or
at time t, is almost surely a locally finite subset of R. As a random subset of
R, X t−(t + ε) arises as the limit of Xt−

n (t + ε),1 and we can use Skorohod’s

1 In practice, X t−(t+ ε) may contain positions which arise from limits of paths in Xn that start at times tn ↓ t.

Therefore we should consider instead X(t+δ)−
n (t+ ε) for some δ > 0, so that its limit contains X t−(t+ ε).
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representation theorem [9] to couple them such that almost surely, Xt−
n (t + ε)

converges to X t−(t+ ε) w.r.t. the Hausdorff metric on subsets of R. For Markov
processes such as coalescing random walks, we expect that the law of paths in Xt−

n
restricted to the time interval [t+ ε,∞) depends only on their positions Xt−

n (t+ ε)
at time t + ε, and furthermore, conditions (B1′) and (I) can be applied to these
restricted paths conditioned on Xt−

n (t+ε). Therefore given Xt−
n (t+ε) converging to

X t−(t+ε), we can apply conditions (B1′) and (I) to conclude that X t− restricted to
the time interval [t+ε,∞) is a collection of coalescing Brownian motions starting
from the locally finite set X t−(t+ ε) at time t+ ε, and hence

E[η̂X (t,h;a,b)]≤ E[η̂W (t+ ε,h− ε;a,b)]= b− a√
π (h− ε)

.

Sending ε ↓ 0 then establishes condition (E). For non-nearest neighbor coalescing
random walks, the above strategy was carried out in [72].

6.6.2 Convergence Criteria for Non-crossing Paths

When (Xn)n∈N almost surely consists of paths that do not cross each other, i.e.,
Xn contains no paths π1,π2 with (π1(s)−π2(s))(π1(t)−π2(t)) < 0 for some s < t,
tightness in fact follows from condition (I) [40, Proposition B2].

Proposition 6.6.4 (Tightness criterion for non-crossing paths) If for each n ∈
N, Xn is an H-valued random variable consisting almost surely of paths that do
not cross each other, and (Xn)n∈N satisfies condition (I), then (Xn)n∈N is a tight
family.

This result holds because when paths do not cross, the modulus of continuity
of all paths in Xn can be controlled by the modulus of continuity of paths in Xn

starting at a grid of space-time points, similar to Step (2) in the proof sketch for
Theorem 6.2.3.

When Xn consists of non-crossing paths, conditions (B1′) and (B2′) can also be
simplified to

(B1) ∀h > 0, limsup
n→∞

sup
a,t∈R

P[ηXn(t,h;a,a+ ε)≥ 2]−→
ε→0

0,

(B2) ∀h > 0,
1

ε
limsup

n→∞
sup

a,t∈R
P[ηXn(t,h;a,a+ ε)≥ 3]−→

ε→0
0.

Recall from the discussions before Theorem 6.6.2 that condition (B1) is to ensure
that for each deterministic z ∈ R2, any subsequential limit X of (Xn)n∈N almost
surely contains at most one path starting from z. This property is easily seen to
be implied by condition (I) (by the same argument as for Theorem 6.2.3 (a))
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when Xn consists of non-crossing paths, which implies that X also consists of
non-crossing paths. Therefore condition (B1) also becomes redundant, which leads
to the following simplification of Theorems 6.6.2 (cf. [40, Theorem 2.2]) and 6.6.3.

Theorem 6.6.5 (Convergence criteria C) Let (Xn)n∈N be a sequence of (H,BH)-
valued random variables which a.s. consist of non-crossing paths. If (Xn)n∈N

satisfies conditions (I), and either (B2) or (E), then Xn converges in distribution
to the standard Brownian web.

Condition (B2) is often verified by applying the FKG positive correlation
inequality [42], together with a bound on the distribution of the time of coalescence
between two paths (see e.g., Section 6.6.3 below). However, FKG is a strong
property that is not satisfied by most models. In such cases, verifying condition
(B2) can be difficult. Besides checking condition (E), another alternative is to
use the dual (a.k.a. wedge) characterization of the Brownian web, as noted in
Remark 6.3.10, to upper bound any subsequential weak limit of (Xn)n∈N.2

Indeed, if (Xn)n∈N consists of non-crossing paths and satisfies condition (I), then
we can construct a collection of dual paths X̂n which almost surely do not cross
paths in Xn, and the starting points of paths in X̂n become dense in R2 as n→∞.
The tightness of (Xn)n∈N is easily seen to imply the tightness of (X̂n)n∈N, and any
subsequential weak limit (X , X̂ ) of (Xn, X̂n) must satisfy the property that: for any
deterministic countable dense set D ⊂ R2, X (D) is distributed as a collection of
coalescing Brownian motions, which by the non-crossing property a.s. uniquely
determines X̂ (D), which is distributed as a collection of dual coalescing Brownian
motions. By the wedge characterization of the Brownian web in Remark 6.3.10,
X equals X (D), a standard Brownian web, if no path in X enters any wedge
W(π̂1, π̂2) of X̂ (D) from outside (defined as in (6.16) with X̂ (D) replacing both
Ŵ l and Ŵ r). This leads to

(U) For each n ∈N, there exists X̂n ∈ Ĥ whose paths a.s. do not cross those of Xn

and whose starting points are dense in R2 as n→∞, s.t. for any subsequential
weak limit (X , X̂ ) of(Xn, X̂n) and any deterministic countable dense D ⊂ R2,
a.s. paths in X do not enter any wedge of X̂ (D) from outside.

We then have the following convergence result.

Theorem 6.6.6 (Convergence criteria D) Let (Xn)n∈N be a sequence of (H,BH)-
valued random variables consisting of non-crossing paths and which satisfy

2 Recently a new approach to verify condition (B2) was proposed in [90], using a Lyapunov function type
criterion on the gaps between three non-crossing paths, assuming that the gaps evolve jointly as a Markov
process.
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conditions (I) and (U). Then Xn converges in distribution to the standard
Brownian web.

Remark 6.6.7 To verify condition (U), it suffices to show that paths in Xn do not
enter wedges of X̂n from outside, and for any deterministic z1,z2 ∈ R2, not only
do there exist paths π̂n,1, π̂n,2 ∈ X̂n which converge to dual coalescing Brownian
motions starting at z1 and z2 (which follows from condition (I) for (Xn)n∈N and
the non-crossing between paths in Xn and X̂n), but also the time of coalescence
between π̂n,1 and π̂n,2 converges to that of the coalescing Brownian motions.
This ensures that the wedge W(π̂n,1, π̂n,2) converges and no path in the limit can
enter the wedge through its bottom point. The latter can also be accomplished by
showing that no limiting forward and dual paths can spend positive Lebesgue time
together, as carried out in [81].

6.6.3 Convergence of Coalescing Simple Random Walks
to the Brownian Web

We now illustrate how the convergence criteria in Theorems 6.6.5 and 6.6.6 for
non-crossing paths can be verified for the discrete time coalescing simple random
walks on Z (cf. [40, Theorem 6.1]).

Let X denote the collection of discrete time coalescing simple random walk
paths on Z, with one walk starting from every space-time lattice site z ∈ Z2

even. It
is an easy exercise to show that X is a.s. precompact in the space of paths �, and
with a slight abuse of notation, we will henceforth denote the closure of X in (�,d)
also by X.

For each ε ∈ (0,1), let Sε : R2 →R2 denote the diffusive scaling map

Sε(x, t)= (εx,ε2t). (6.58)

For a path π ∈�, let Sεπ denote the path whose graph is the image of the graph
of π under Sε. For a set of paths K, define SεK := {Sεπ : π ∈ K}.
Theorem 6.6.8 Let X be the collection of coalescing simple random walk paths
on Z defined as above. Then as ε ↓ 0, Xε := SεX converges in distribution to the
standard Brownian web W .

Proof sketch. We show how the various conditions in Theorems 6.6.5 and 6.6.6
can be verified.

(I): This condition follows by Donsker’s invariance principle. Indeed, coalescing
random walks can be constructed from independent random walks by the same
procedure as the inductive construction of coalescing Brownian motions from
independent Brownian motions in the proof for Theorem 6.2.3. Furthermore, this
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construction is a.s. continuous w.r.t. the independent Brownian motions. Therefore
(I) follows from Donsker’s invariance principle for independent random walks and
the Continuous Mapping Theorem.

(B2): We will verify this condition by applying the FKG inequality [42]. By
translation invariance in space-time, it suffices to show that for any t > 0,

lim
δ↓0

δ−1 limsup
ε↓0

P(ηXε (0, t;0,δ)≥ 3)= 0.

Assume w.l.o.g. that t = 1. Formulated in terms of X, and letting A := δ−1 and√
n= δε−1, it is equivalent to showing that

lim
A→∞

A limsup
n→∞

P(ηX(0,A2n;0,
√

n)≥ 3)= 0. (6.59)

For i ∈ Z, let πi denote the random walk starting at 2i at time 0, and let τi,j denote
the first meeting (coalescence) time between πi and πj. Then by a decomposition
according to the first index k ∈N with τk−1,k > A2n, we have

P(|{πi(A
2n) : 0≤ i≤√n}| ≥ 3)=

√
n−1∑

k=1

P(τ0,k−1 ≤ A2n,

τk−1,k > A2n,τk,
√

n > A2n).

Let us restrict to the event Ek := {τ0,k−1 ≤ A2n,τk−1,
√

n > A2n} and condition on

πk−1 and π√n. Note that the event {τk−1,k >A2n} is increasing (while {τk,
√

n >A2n}
is decreasing) w.r.t. the increments of πk, (πk(i)− πk(i− 1))1≤i≤A2n ∈ {±1}A2n,

where the product space {±1}A2n is equipped with the partial order ≺ such
that (ai)1≤i≤A2n ≺ (bi)1≤i≤A2n if ai ≤ bi for all i. Furthermore, on the event
{τk−1,k,τk,

√
n > A2n}, πk is distributed as an independent random walk with i.i.d.

increments, whose law on {±1}A2n satisfies the FKG inequality [42]. This implies
that the events {τk−1,k >A2n} and {τk,

√
n >A2n} are negatively correlated under the

law of πk with i.i.d. increments. Denoting Pk for probability for πk, we then have

√
n−1∑

k=1

P(τ0,k−1 ≤ A2n,τk−1,k > A2n,τk,
√

n > A2n)

=
√

n−1∑
k=1

E[1EkPk(τk−1,k > A2n,τk,
√

n > A2n)]
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≤
√

n−1∑
k=1

E[1EkPk(τk−1,k > A2n) ·Pk(τk,
√

n > A2n)]

≤
√

n−1∑
k=1

P(τk−1,k > A2n)P(τk,
√

n > A2n)

≤√n
C√
A2n

· C
√

n√
A2n

≤ C2

A2 ,

where for the second inequality, we used the fact that Pk(τk−1,k > A2n) and
Pk(τk,

√
n > A2n) are respectively functions of πk−1 and π√n, which are distributed

as independent random walks on the event Ek, and in the last line, we used that

P(τ0,1 > A2n)≤ C

A
√

n
, (6.60)

P(τk,
√

n > A2n)≤ P(∃k < i≤√n : τi−1,i ≥ A2n) ≤ C
√

n

A
√

n
= C

A
, (6.61)

which hold for any random walk on Z with finite variance [82, Proposition 32.4].
Condition (6.59) then follows.

(U): Recall from Figure 6.1 that the collection of coalescing simple random walk
paths X uniquely determines a collection of dual coalescing simple random walk
paths, which we denote by X̂. Clearly no path in X can enter any wedge of X̂ from
outside. Furthermore, for any z1,z2 ∈ R2 and any choice of paths π̂ε,1, π̂ε,2 ∈ SεX̂
which converge to dual coalescing Brownian motions starting at z1,z2, it is easily
seen that the time of coalescence between π̂ε,1 and π̂ε,2 also converges to that
between the limiting Brownian motions. Condition (U) then follows.

We will show how condition (E) is verified for general random walks in the next
section. �

6.6.4 Convergence of General Coalescing Random Walks
to the Brownian Web

Let X denote the collection of coalescing random walk paths on Z2 with one walk
starting from each site in Z2, where the increments are i.i.d. with distribution μ

with zero mean and finite variance σ 2 :=∑x∈Z x2μ(x), such that the walks are
irreducible and aperiodic. Let Sσε : R2 →R2 be the diffusive scaling map

Sσε (x, t)= (εσ−1x,ε2t), (6.62)

and the action of Sσε on paths and sets of paths is defined as Sε in (6.58).
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We have the following convergence result for general coalescing random walks
on Z, where paths may cross (see [72, Theorem 1.5] and [16, Theorem 1.2]).

Theorem 6.6.9 Let X be the collection of coalescing random walk paths on Z
defined as above. If the random walk increment distribution μ has zero mean,
variance σ 2, and finite r-th moment

∑
x∈Z |x|rμ(x) <∞ for some r > 3, then as

ε ↓ 0, Sσε X converges in distribution to a standard Brownian web W .

Remark 6.6.10 It was pointed out in [72, Remark 4.1] that if
∑

x∈Z |x|rμ(x)=∞
for some r < 3, then tightness of the collection of coalescing random walks is lost
due to the presence of arbitrarily large jumps originating from every space-time
window on the diffusive scale.

Proof Sketch. For X consisting of random walk paths that can cross each other,
it is not known how to verify condition (B2′) in Theorem 6.6.2. We will instead
apply Theorem 6.6.3 and sketch how the conditions therein can be verified. Further
details can be found in [72].

To verify condition (T), by translation invariance and reformulation in terms
of the set of unscaled random walk paths X, it suffices to show that for
any η > 0,

lim
δ↓0

δ−1 limsup
ε↓0

P(X ∈ A2δε−2,20ηε−1(0,0))= 0, (6.63)

where the event E := {X ∈ A2δε−2,20ηε−1(0,0)} (see Figure 6.14) is the event that X

contains some path which intersects the rectangle R1 := [−ηε−1,ηε−1]×[0,δε−2],
and at a later time, intersects the left or right boundary of the bigger rectangle
R2 := [−10ηε−1,10ηε−1] × [0,2δε−2]. The event E can occur either due to a
random walk which starts outside the rectangle R1 and has a jump that crosses
R1 horizontally, the probability of which can be easily shown to be negligible;
or due to a random walk which starts from some z ∈ R1 ∩ Z2 and crosses the
left, respectively the right, side of R2, which events we denote respectively by E−z
and E+z .

We can bound P(∪z∈R1∩Z2 E+z ) as follows. Let (πi)1≤i≤4 be four random walks
in X, starting respectively at 2.5ηε−1, 4.5ηε−1, 6.5ηε−1 and 8.5ηε−1 at time 0.
Let B denote the event that each of these walks stays confined in a centered interval
of size ηε−1 up to time 2δε−2 (see Figure 6.15). For 1 ≤ i ≤ 4, let τi denote the
first time n ∈N when πz(n)≥ πi(n), let τ5 denote the first time πz crosses the right
side of R2, and let Ci denote the event that πz does not meet πi before time τ5. We
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(0, 0)

πz

π1 π2 π3 π4

−2

2 −2

−1 2 −1 4 −13 −1 5 −1 6 −1 7 −1 8 −1 9 −1 10 −1

Figure 6.15. The random walks π1,π2,π3,π4 start respectively at 2.5ηε−1,
4.5ηε−1, 6.5ηε−1 and 8.5ηε−1 at time 0 and each stays within an interval
of size ηε−1 up to time 2δε−2. The walk πz starts from z inside the
rectangle [−ηε−1,ηε−1]× [0,δε−2] and crosses the right side of the rectangle
[−10ηε−1,10ηε−1]× [0,2δε−2] before time 2δε−2 without meeting (πi)1≤i≤4.

can then bound

lim
δ↓0

δ−1 limsup
ε↓0

P(∪z∈R1∩Z2 E+z )= lim
δ↓0

δ−1 limsup
ε↓0

P(Bc)+ lim
δ↓0

δ−1

limsup
ε↓0

P(B∩∪z∈R1∩Z2E+z )

= lim
δ↓0

δ−1 limsup
ε↓0

P(B∩∪z∈R1∩Z2E+z )

≤ lim
δ↓0

δ−1 limsup
ε↓0

2ηδε−3 max
z∈R1∩Z2

P(B∩E+z ),

where in the second line we used Donsker’s invariance principle and properties
of Brownian motion. When the random walk increments are bounded by some
K <∞, it is easy to see that P(B∩ E+z ) ≤ Cε4 uniformly in z ∈ R1 ∩ E+z , so that
the limit above equals zero.

Indeed, by successively conditioning on πz and (πi)1≤i≤4 up to the stopping
times τ4, τ3, τ2 and τ1, we note that πz comes within distance 2K of πi at time
τi for each 1 ≤ i ≤ 4, and πz and πi must separate by a distance of at least ηε−1

before time τi+1 without meeting. By the strong Markov property, these events
are conditionally independent, and each event has a probability of order ε by [72,
Lemma 2.4]. It then follows that P(B∩E+z )≤ Cε4. When the random walks have
unbounded increments, it is necessary to control the overshoot πz(τi)− πi(τi), so
that the probability of πz overshooting more than one πi in one jump is negligible
when taken union over all starting positions z ∈ R1 ∩Z2. This can be done when
the random walk increments have finite 5th moment [72]. To relax to finite r-th
moment for some r > 3, a multiscale argument is needed to take advantage of the
coalescence and reduction of the random walks instead of the crude union bound
as above. This was carried out in [16].
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Condition (I) can be verified by a similar argument to that for coalescing simple
random walks in Theorem 6.6.8. The complication is that random walk paths can
cross without coalescing. However, for random walks with finite second moments,
at the time when their paths cross, the distance between the two walks is of order
one uniformly w.r.t. their starting positions, and hence it takes another time interval
of order one for the two walks to coalesce. Therefore the crossing time and the
coalescence time between any pair of walks are indistinguishable in the diffusive
scaling limit, and forcing coalescence of the random walks at crossing times gives a
good approximation, for which Donsker’s invariance principle and the Continuous
Mapping Theorem can be applied.

Condition (B1′) amounts to showing that

lim
η↓0

P(ηX(0,n;0,η
√

n)≥ 2)= 0, (6.64)

which follows from the same bounds as in (6.60)–(6.61), since on the event
{ηX(0,n;0,η

√
n)≥ 2}, we must have τi−1,i ≥ n for some 1≤ i≤ η

√
n, where τi−1,i

is the first meeting time between the two walks in X starting respectively at i− 1
and i at time 0.

The key to verifying condition (E) is the density bound (6.56), which formulated
in terms of the set of unscaled random walks X becomes

P(0 ∈ ξZ(n))≤ C√
n

uniformly in n ∈N, (6.65)

where ξA(n) := {π (n) : π ∈ X,π (0) ∈ A} for A⊂ Z. By translation invariance, for
any L ∈N,

P(0 ∈ ξZ(n))= 1

L
E[ |ξZ(n)∩ [0,L)| ]

≤ 1

L

∑
k∈Z

E[ |ξZ∩[kL,(k+1)L)(n)∩ [0,L)| ]

= 1

L

∑
k∈Z

E[ |ξZ∩[0,L)(n)∩ [kL, (k+ 1)L)| ]

= 1

L
E[ |ξZ∩[0,L)(n)| ]≤ 1

L
E

[
1+

L−1∑
i=1

1{τi−1,i>n}

]
≤ 1

L
+ C√

n
,

where in the last inequality, we applied (6.60). Letting L→∞ then gives (6.65).
The rest of the proof of condition (E) then follows the line of argument sketched
after Theorem 6.6.3. �
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6.6.5 Convergence to the Brownian Net

Convergence to the Brownian net so far has only been established by Sun and
Swart [86] for branching-coalescing simple random walk paths with asymptoti-
cally vanishing branching probability (see Figure 6.4), and recently by Etheridge,
Freeman and Straulino [34] for the genealogies of a spatial Lambda-Fleming-Viot
process. We identify below the key conditions and formulate them as convergence
criteria for the Brownian net, which can be applied to random sets of paths
with certain non-crossing properties. Finding effective and verifiable convergence
criteria for random sets of paths which do not satisfy the non-crossing condition
(C) below remains a major challenge.

Given a sequence of (H,BH)-valued random variables (Xn)n∈N, we first impose
a non-crossing condition.

(C) There exist subsets of non-crossing paths W l
n,Wr

n ⊂ Xn, such that no path π ∈
Xn crosses any l ∈ W l

n from right to left, i.e., π (s) > l(s) and π (t) < l(t) for
some s < t, and no path π ∈ Xn crosses any r ∈Wr

n from left to right.

The second condition is an analogue of condition (I), which ensures that
(W l

n,Wr
n)n∈N is a tight family by Proposition 6.6.4, and any subsequential weak

limit contains a copy of the left-right Brownian web (W l,W r) defined as in
Theorem 6.3.2.

(IN ) There exist ln,z ∈ W l
n and rn,z ∈ Wr

n for each z ∈ R2, such that for
any deterministic z1, . . . ,zk ∈ R2, (ln,z1 , . . . , ln,zk ,rn,z1 , . . . ,rn,zk ) converge in
distribution to a collection of left-right coalescing Brownian motions starting
at (zi)1≤i≤k, as in Theorem 6.3.2.

The tightness of (W l
n,Wr

n)n∈N and condition (C) imply that (Xn)n∈N is also a tight
family, since (C) implies that almost surely, the modulus of continuity of paths in
Xn (cf. (6.51)) can be bounded by the modulus of continuity of paths in W l

n ∪Wr
n,

whose starting points become dense in R2 as n→∞ by condition (IN ).
The next condition is

(H) A.s., Xn contains all paths obtained by hopping among paths in W l
n ∪Wr

n at
crossing times, defined as in the hopping construction of the Brownian net in
Theorem 6.3.4.

Condition (H) ensures that any subsequential weak limit of (Xn)n∈N contains not
only a copy of the left-right Brownian web (W l,W r), but also a copy of the
Brownian net N constructed by hopping among paths in W l ∪W r at crossing
times.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316403877.007
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 23 Apr 2018 at 02:40:07, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316403877.007
https://www.cambridge.org/core


336 E. Schertzer et al.

Lastly, we formulate the analogue of condition (U) in Theorem 6.6.6, which
gives an upper bound on any subsequential weak limit of (Xn)n∈N via the dual
wedge characterization of the Brownian net given in Theorem 6.3.9.

(UN ) There exist Ŵ l
n,Ŵr

n ∈ Ĥ, whose starting points are dense in R2 as n →
∞, such that a.s. paths in W l

n and Ŵ l
n (resp. paths in Wr

n and Ŵr
n) do

not cross, and for any subsequential weak limit (X ,W l,Wr,Ŵ l,Ŵr) of
(Xn,W l

n,Wr
n,Ŵ l

n,Ŵr
n) and any deterministic countable dense D ⊂ R2, a.s.

paths in X do not enter any wedge of (Ŵ l(D),Ŵr(D)) from outside.

Condition (H) implies that (W l,Wr) contains a copy of the left-right Brownian web
(W l,W r), and the non-crossing property implies that (Ŵ l(D),Ŵr(D)) coincides
with (Ŵ l(D),Ŵ r(D) for the dual left-right Brownian web. By Theorem 6.3.9, the
assumption that no path in X enters any wedge of (Ŵ l(D),Ŵ r(D) from outside
then implies that X is contained in the Brownian net constructed from (W l,W r),
which is the desired upper bound on X .

We thus have the following convergence result.

Theorem 6.6.11 (Convergence criteria for the Brownian net) Let (Xn)n∈N be a
sequence of (H,BH)-valued random variables which satisfy conditions (C), (IN ),
(H) and (UN ) above. Then Xn converges in distribution to the standard Brownian
net N .

Remark 6.6.12 To verify condition (UN ), it suffices to show that paths in Xn do
not enter wedges of (Ŵ l

n,Ŵr
n) from outside, and when a sequence of pairs of paths

in (Ŵ l
n,Ŵr

n) converge to a pair of dual left-right coalescing Brownian motions, the
associated first meeting times between the pair also converge, so that the associated
wedges converge.

The list of conditions in Theorem 6.6.11 can be verified for the collection of
branching-coalescing simple random walks on Z, which answers Q.1 at the start
of Section 6.3.

Theorem 6.6.13 For ε ∈ (0,1), let Xε be the collection of branching-coalescing
simple random walk paths on Z2

even with branching probability ε, with walks
starting from every site of Z2

even (see Figure 6.4). Let Sε be defined as in (6.58).
Then SεXε converges in distribution to the standard Brownian net N as ε ↓ 0.

Proof sketch. Conditions (C) and (H) hold trivially for the branching-coalescing
simple random walks. Condition (IN ) was verified in [86, Section 5] using the fact
that a single pair of leftmost and rightmost random walk paths solve a discrete
analogue of the SDE (6.11) for a pair of left-right coalescing Brownian motions,
and furthermore, the time when the pair of discrete paths meet converges to the
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continuum analogue. By Remark 6.6.12, it is then easily seen that condition (UN )
also holds, and hence Theorem 6.6.11 can be applied. �

6.7 Survey on Related Results

In this section, we survey interesting results connected to the Brownian web and
net that have not been discussed so far, including alternative topologies, models
whose scaling limits are connected to the Brownian web and net (including
population genetic models, true self-avoiding walks, planar aggregation, drainage
networks, supercritical oriented percolation), and the relation between the
Brownian web and net, critical planar percolation and Tsirelson’s theory of
noise [95, 96].

6.7.1 Alternative Topologies

We review here several alternative choices of state spaces and topologies for the
Brownian web, and compare them with the paths topology of Fontes et al. [40], as
introduced in Section 6.2.1. In particular, we will review the weak flow topology
of Norris and Turner [77], the tube topology of Berestycki, Garban and Sen [14]
and the marked metric measure spaces used by Greven, Sun and Winter [52].

Another natural extension of the paths topology is to consider the space of
compact sets of càdlàg paths equipped with the Hausdorff topology, where the
space of càdlàg paths is equipped with the Skorohod metric after compactification
of space-time as done in Figure 6.2. Such an extension has been carried out by
Etheridge, Freeman and Straulino [34] in the study of scaling limits of spatial
Lambda-Fleming-Viot processes.

6.7.1.1 Weak Flow Topology
In [77], Norris and Turner formulated a topology for stochastic flows, which
includes the Arratia flow generated by coalescing Brownian motions.

Recall that a flow on a space E is a two-parameter family of functions (φs,t)s≤t

from E to E, which satisfies the flow condition φt,u ◦φs,t = φs,u for any s ≤ t ≤ u.
It is easily seen that the Brownian web almost surely defines a flow on R. Indeed,
if (x,s) ∈ R2 is a (1,2) point in the Brownian web with one incoming and two
outgoing paths, then (φs,t(x))t≥s should be defined as the continuation of the
incoming Brownian path so that the flow condition is satisfied, and otherwise,
(φs,t(x))t≥s can be defined to be any of the Brownian paths starting at (x,s). Note
that there is no unique definition of this flow. Furthermore, it is not clear how to
define a suitable topology on the space of flows in order to prove convergence of
flows, as well as weak convergence of stochastic flows.
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Norris and Turner addressed these issues by introducing the notion of a weak
flow, which on R, is a family (φs,t)s≤t with the properties that

(i) For all s ≤ t, φs,t ∈D, the space of non-decreasing functions, so that the flow
lines (φs,t(x))t≥s, for (x,s) ∈R2, do not cross.

(ii) If φ+s,t (resp. φ−s,t) is the right (resp. left)-continuous version of φs,t, then

φ−t,u ◦φ−s,t ≤ φ−s,u ≤ φ+s,u ≤ φ+t,u ◦φ+s,t for all s < t < u.

One can endow the space D with a metric dD such that if f ,g ∈ D, and f×,g×
denote the graphs of f and g rotated clockwise by π/4 around the origin, then

dD(f ,g)=
∞∑

n=1

2−n(1∧ sup
|x|<n

|f×(x)− g×(x)|). (6.66)

Note that when f and g are distribution functions, |f× − g×|∞ is just the Lévy
metric on probability measures. The space of continuous weak flows C◦(R,D) then
consists of continuous maps φ : {(s, t)∈R2 : s≤ t}→D with φs,s= id for all s∈R,
and it is endowed with the topology of uniform convergence on bounded subsets
of {(s, t) ∈R2 : s < t}.

To allow for non-continuous weak flows, Norris and Turner also introduced the
space of cádlág weak flows D◦(R,D), which consists of maps φ from the space of
bounded intervals to D, such that φ∅ = id, φ(s,t) → φ∅ as t ↓ s and φ(t,u) → φ∅ as
t ↑ u, while φ{t} captures the jump discontinuity of the flow at time t. One can then
equip D◦(R,D) with a Skorohod-type topology.

It was shown in [77] that C◦(R,D) and D◦(R,D) are Polish spaces, the Arratia
flow is a continuous weak flow, and a family of Poisson local disturbance flows
converge in distribution to the Arratia flow. Actually [77] considered only weak
flows on the circle S. To have non-decreasing maps, a map f : S→ S is lifted to a
map from R to R by identifying S with [0,2π ) and extending f outside [0,2π ) by
setting f (x+2π )= f (x)+2π . The extension to weak flows on R has subsequently
been carried out by Ellis in [32].

Compared with the paths topology introduced in Section 6.2.1, the advantage
of the weak flow topology is that it is more natural for studying stochastic flows,
and it allows for discontinuity in the flow lines (paths). The limitation is that it
is restricted to flows with non-crossing paths. Proving weak convergence to the
Arratia flow is very simple: it suffices to verify condition (I) in Section 6.6.1, which
ensures that every weak limit point contains the coalescing Brownian motions.
There is no need to upper bound the limiting set of paths, unlike the paths topology
of Section 6.2.1, because the weak flow topology effectively discards all paths
starting from the same space-time point other than the leftmost and rightmost
paths, because of the metric dD on D.
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6.7.1.2 Tube Topology
Just as the paths topology of Fontes et al. [40] was inspired by a similar topology
introduced by Aizenman et al. [3, 4] for two-dimensional percolation, Berestycki,
Garban and Sen took inspiration from another topology for two-dimensional
percolation, the quad topology of Schramm and Smirnov [87], and introduced
in [14] the tube topology for sets of continuous paths in Rd. The basic idea is
that the configuration of a set of paths is captured by the set of space-time tubes
these paths cross.

Let T∗ := ([T∗],∂0T∗,∂1T∗) := ([0,1]d× [0,1], [0,1]d×{0}, [0,1]d×{1}) be the
unit tube in Rd+1, with ∂0T∗ and ∂1T∗ being the lower and upper faces of the tube.
A tube T = ([T],∂0T ,∂1T) in Rd+1 is then defined to be the image of T∗ under
a homeomorphism φ : Rd+1 → Rd+1 with the property that ∂0T ⊂ Rd × {t0} and
∂1T ⊂ Rd × {t1} for some t0 < t1, and [T] ⊂ Rd × [t0, t1]. We call t0 the bottom
time of T , and t1 the top time. The space of all tubes, denoted by T , can then be
equipped with the Hausdorff metric dT , with

dT (T1,T2) := dHaus([T1], [T2])+ dHaus(∂0T1,∂0T2)+ dHaus(∂1T1,∂1T2), (6.67)

where dHaus is the Hausdorff distance between subsets of Rd+1. The metric space
(T ,dT ) is then separable.

Given a continuous path π : [t,∞) → Rd starting at time t, it is said to cross
a tube T with lower face ∂0T ⊂ Rd × {t0} and upper face ∂1T ⊂ Rd × {t1} for
some t0 < t1, if t ≤ t0, (π (t0), t0) ∈ ∂0T , (π (t1), t1) ∈ ∂1T), and (π (s),s) ∈ [T] for
all s ∈ [t0, t1]. Given a set K of continuous paths in Rd, one can then identify the
set of all tubes Cr(K) ⊂ T which are crossed by some path in K. Furthermore, if
K is a compact set of continuous paths w.r.t. a metric on path space defined in the
same way as in Section 6.2.1, then Cr(K) is in fact a closed subset of T . Therefore
a random compact set of paths can be identified with a random closed subset of T .
The state space of closed subsets of the metric space T can then be equipped with
the Fell topology, which makes it compact (see e.g., [66, Appendix B]).

One can actually narrow down the state space further. Observe that we can define
a partial order≤ on T , where we denote T1≤T2 if whenever T2 is crossed by some
path π , T1 is also crossed by π . We denote T1 <T2 if there are open neighborhoods
Ui ⊂ T around Ti, i = 1,2, such that T ′1 ≤ T ′2 for all T ′1 ∈ U1 and T ′2 ∈ U2. A set
of tubes S⊂ T is then called hereditary if T ∈ S implies that T ′ ∈ S for all T ′ < T .
Note that the set of tubes Cr(K) induced by a set of paths K is always hereditary.
Therefore the state space for random compact sets of paths can be taken to be
the space of closed hereditary subsets of T , denoted by H, equipped with the
Fell topology. It can be shown that H is closed under the Fell topology, and hence
compact. This gives the tube topology defined in [14, Section 2], and the Brownian
web can be realized as a random variable taking values in H.
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The main advantages of the tube topology are: (i) tightness for a family of
H-valued random variables comes for free because the state space H is compact.
For instance, under the tube topology, Theorem 6.6.9 on the convergence of
general coalescing random walks to the Brownian web can be established under the
optimal finite second moment assumption, since the higher moment assumption is
only used to establish tightness under the path topology; (ii) the tube topology,
being actually a weaker topology than the path topology of Fontes et al. [40]
introduced in Section 6.2.1, makes it much easier to construct coalescing flows
which do not satisfy the non-crossing property of the Arratia flow. In particular,
the coalescing Brownian flow on the Sierpinski gasket was constructed in [14]
using the tube topology, and an invariance principle was established.

To characterize a probability measure on H, it turns out to be sufficient to
determine the probability of the joint crossing of any finite collection of tubes
chosen from a deterministic countable dense subset of T . To prove the weak
convergence of a sequence of probability measures on H, it is sufficient to find a
large enough set of tubes T̂ ⊂ T such that the the probability of the joint crossing
of any finite subset of T̂ converges to a limit (see [14, Proposition 2.12]). The
strategy for verifying this convergence criterion for coalescing flows is similar to
the proof of condition (E) in Theorem 6.6.3. First one approximates a given tube T
with bottom time t0 by tubes Tδ with bottom time t0+δ for δ > 0, then one applies
a coming down from infinity result to show that among paths which intersect the
lower face of T , only finitely many remain in the lower face of Tδ at time t0+ δ,
and lastly one uses condition (I) to control the joint distribution of the remaining
finite collection of coalescing paths.

The tube topology is weaker than the paths topology introduced in Section 6.2.1,
because the mapping from the space of compact sets of continuous paths (with the
paths topology) to the space of closed hereditary sets of tubes H (with the Fell
topology) is continuous as shown in [14, Lemma A.2]. In particular, given a set
of paths K, restricting a path π ∈ K to a later starting time and adding it to K has
no effect under the tube topology. In a sense, the tube topology is also insensitive
toward the behavior of the paths near their starting times. In particular, a sequence
of paths πn, which start at time 0 and converge to a path π uniformly on [δ,∞)
for any δ > 0, will converge to π under the tube topology. But πn may have wild
oscillations in the interval [0,1/n) which prevent it from converging in the paths
topology.

6.7.1.3 Marked Metric Measure Spaces
In [52], Greven, Sun and Winter treat the (dual) Brownian web as a stochastic
process taking values in the space of spatially-marked metric measure spaces.
The notion of a V-marked metric probability measure space was introduced
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by Depperschmidt, Greven and Pfaelhuber in [30], which is simply a complete
separable metric space (X,d), together with a Borel probability measure μ on the
product space X× V for some complete separable metric space of marks V . The
probability measure μ can be regarded as a sampling measure, and each V-marked
metric measure (V-mmm) space can be uniquely determined (up to isomorphism)
by the joint distribution of (vi)i∈N and the distance matrix (d(xi,xj))i,j∈N, where
(xi,vi)i∈N are i.i.d. samples drawn from X × V with common distribution μ.
A sequence of V-mmm spaces is then said to converge if the associated random
vector of marks (vi)i∈N and the random distance matrix (d(xi,xj))i,j∈N converge
in finite-dimensional distribution. By truncations in the mark space V , one can
also extend the notion of V-mmm spaces to the case where μ is only required
to be finite on bounded sets when projected from X × V to V , which was done
in [52].

To see how the Brownian web fits in the framework of V-mmm spaces, note
that the coalescing Brownian motions in the (dual) Brownian web can be regarded
as the space-time genealogies of a family of individuals. More precisely, if Ŵ is
the dual Brownian web introduced in Section 6.2.3, then for each z = (x, t) ∈ R2,
interpreted as an individual at position x at time t, π̂z ∈ Ŵ determines its spatial
genealogy, with π̂z(s) (for s ≤ t) being the spatial location of its ancestor at time
s. Coalescence of two paths π̂z1 and π̂z2 then signifies the merging of the two
genealogy lines. If we consider all individuals indexed by R at a given time t, then
we can measure the genealogical distance between individuals, i.e.,

d((x, t), (y, t)) := 2(t− τ̂(x,t),(y,t)), (6.68)

where τ̂(x,t),(y,t) is the time of coalescence between π̂(x,t) and π̂(y,t) ∈ Ŵ . It is easily
seen that d is in fact an ultra-metric, i.e.,

d((x1, t), (x2, t))≤ d((x1, t), (x3, t))∨ d((x2, t), (x3, t)) for all x1,x2,x3 ∈R.

The collection of individuals indexed by R at time t then forms a metric space with
metric d. The mark of an individual is just its spatial index, so that we can identify
the metric space with the mark space V :=R, and a natural sampling measure is the
Lebesgue measure on R. There is one complication, namely that a.s. there exists
x ∈ R such that multiple paths in Ŵ start from (x, t). The correct interpretation is
that each such path encodes the genealogy of a distinct individual, which happens
to occupy the same location. Therefore the space of population should be enriched
from R to take into account these individuals. Such an enrichment does not affect
the Lebesgue sampling measure, since it follows from Theorem 6.2.11 that a.s.
there are only countably many points of multiplicity in Ŵ at a given time t. If we
let (Xt,dt,μt) denote the R-mmm space induced by Ŵ on R at time t, then Ŵ a.s.
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determines the stochastic process (Xt,dt,μt)t∈R, and conversely, it can be seen that
(Xt,dt,μt)t∈R a.s. determines Ŵ , and hence the two can be identified.

We can also identify Ŵ with a single R2-mmm space instead of the R-mmm
space-valued process (Xt,dt,μt)t∈R. Namely, we can consider all points in R2 and
extend the genealogical distance in (6.68) between individuals at the same time to
individuals at different times:

d((x1, t1), (x2, t2)) := t1+ t2− 2τ̂(x1,t1),(x2,t2), (6.69)

where τ̂(x1,t1),(x2,t2) is the time of coalescence between π̂(x1,t1) and π̂(x2,t2) ∈ Ŵ . We
then obtain a metric space whose elements can be identified with the mark space
V :=R2 (with suitable enrichment of R2 to take into account points of multiplicity
in Ŵ), on which we equip as a sampling measure the Lebesgue measure on R2.
We remark that one can also enlarge the mark space and let the whole genealogy
line π̂z ∈ Ŵ be the mark for a point z ∈R2.

For models arising from population genetics, V-mmm space is a natural space
for the spatial genealogies, and the dual Brownian web determines the genealogies
of the so-called continuum-sites stepping-stone model. Because V-mmm spaces
are characterized via sampling, proving convergence essentially reduces to
condition (I) formulated in Section 6.6.1. However, proving tightness for V-mmm
space-valued random variables is a nontrivial task and can be quite involved (see
e.g., [52]). Also the Brownian net cannot be characterized using V-mmm spaces,
since there is no natural analogue of the metric d in (6.69) when paths can branch.

6.7.2 Other Models which Converge to the Brownian Web and Net

We review here various models which have scaling limits that are connected
to the Brownian web and net. These include population genetic models such as
the voter model and the spatial Fleming-Viot processes, stochastic Potts models,
the true self-avoiding walks, planar aggregation models, drainage networks, and
supercritical oriented percolation in dimension 1+ 1.

6.7.2.1 Voter Model and Spatial Fleming-Viot Processes
Voter model and spatial Fleming-Viot processes are prototypical population
genetic models where the spatial genealogies of the population are coalescing
random walks, which converge to the Brownian web under diffusive scaling.

Arratia [1, 2] first conceived the Brownian web in studying the scaling limit
of the voter model on Z, which is an interacting particle system (ηt)t≥0 with
ηt ∈� := {0,1}Z, modeling the opinions of a collection of individuals indexed by
Z. Independently for each x ∈ Z, at exponential rate 1, a resampling event occurs
where the voter at x picks one of its two neighbors with equal probability and
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changes its opinion ηt(x) to that of the chosen neighbor. The resampling events
can be represented by a Poisson point process of arrows along the edges over
time, with each arrow from x to y at time t signifying the voter at x changing
its opinion at time t to that of y (see Figure 6.16(a)). This is known as Harris’
graphical construction. To identify ηt(x), one just needs to trace the genealogy
of where the opinion ηt(x) comes from backward in time, i.e., follow the arrows
backward in time, until an ancestor y is reached at time 0 so that ηt(x) = η0(y).
The genealogy line π̂(x,t) for ηt(x) is then a continuous time random walk running
backward in time. Furthermore, for multiple space-time points ((xi, ti))1≤i≤k, their
joint genealogy lines (π̂(xi,ti))1≤i≤k are a collection of coalescing random walks.
This is known as the duality between the voter model and coalescing random
walks (see [54, 61] for more details). Taking the diffusive scaling limit of the joint
genealogies of all voter opinions at all possible times then leads to what we now
call the (dual) Brownian web.

The spatial Fleming-Viot process (ξt)t≥0 is a measure-valued process which
extends the voter model by allowing a continuum of individuals at each site
x ∈Z, represented by a probability measure on the type space [0,1]. Individuals in
the population migrate on Z as independent random walks, and resampling (one
individual changes its type to that of another) takes place between every pair of
individuals at the same site with exponential rate 1. This model has recently been
studied in [52], and the joint spatial genealogies are a collection of coalescing
random walks running backward in time, where each pair of walks at the same site
coalesce with exponential rate 1. It is not difficult to see that the diffusive scaling
limit of these genealogies also gives the (dual) Brownian web.

It is natural to ask whether the (dual) Brownian web also determines the
genealogies of a population genetic model on R. The answer is affirmative,
and such a continuum model has been studied before and is known as the
continuum-sites stepping-stone model (CSSM) (see e.g., Donnelly et al [29]). The
Brownian web effectively gives a Harris’ graphical construction of the CSSM.

0 1 1 0 01 1 1

0

1
1

(a)

0 1 1 0 01 1 1
η0

ηt

η0

ηt

1

1
1

(b)

Figure 6.16. Harris’ graphical construction of: (a) the voter model; (b) the biased
voter model.
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Convergence of the voter model as a measure-valued process on R × {0,1} to
the CSSM has been established in [6], and convergence of the genealogies of the
spatial Fleming-Viot process to that of the CSSM as stochastic processes taking
values in the space of R-mmm spaces (see Section 6.7.1.3) has been established
in [52]. In both results, the use of the sampling measure allows one to establish
convergence under the optimal finite second moment assumption on the increments
of the underlying coalescing random walks, in contrast to Theorem 6.6.9.

We remark that coalescing random walks on Z also model the evolution of
boundaries between domains of different spins in the 0-temperature limit of the
stochastic Potts model, and the Brownian web has been used to study aging in this
model [37].

6.7.2.2 Biased Voter Model
We have seen that the voter model is dual to coalescing random walks. It turns out
that branching-coalescing random walks is dual to the biased voter-model, also
known as Williams-Bjerknes model [104, 83], which modifies the voter model
by adding a selective bias so that type 1 is favoured over type 0. More precisely,
each voter independently undergoes a second type of resampling event with rate
ε, where the voter at x changes its type to that of the chosen neighbor y only if y
is of type 1. The Harris’ graphical construction can then be modified by adding
a second independent Poisson point process of (selection) arrows along the edges
over time, where a selection arrow is used only if it points to an individual of
type 1 at that time (see Figure 6.16(b)). To determine ηt(x), we then trace its
genealogy backward in time by following the resampling arrows, and when a
selection arrow is encountered, we follow both potential genealogies (by either
ignoring or following the selection arrow). The potential genealogies then form a
collection of branching-coalescing random walks with branching rate ε. It is not
difficult to see that ηt(x)= 1 if and only if η0(y)= 1 for at least one ancestor y that
can be reached by the potential genealogies. This establishes the duality between
the biased voter model and branching-coalescing random walks. If we consider
a sequence of biased voter models with selection rate ε ↓ 0, while rescaling
space-time by (ε,ε2), then their genealogies converge to the Brownian net.

We remark that branching-coalescing random walks on Z also model evolving
boundaries between domains of different spins in the low temperature limit of the
stochastic Potts model, where a new domain of spins can nucleate at the boundary
of two existing domains [68].

6.7.2.3 True Self-avoiding Walks and True Self-repelling Motion
Arratia first conceived what we now call the Brownian web in his unfinished
manuscript [2], and the subject lay dormant until Tóth and Werner [99] discovered
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a surprising connection between the Brownian web and the true self-avoiding walk
on Z with bond repulsion [94]. A special case of the true self-avoiding walk is
defined as follows. Let l0( · ) be an integer-valued function defined on the edges
of Z, which can be regarded as the initial condition for the edge local time of the
walk, i.e., how many times each edge has been traversed. Given the walk’s position
Xn = x and the edge local time ln( · ) at time n, if ln({x− 1,x}) < ln({x,x+ 1}),
then with probability 1, Xn+1 = x− 1; if ln({x,x+ 1}) < ln({x− 1,x}), then with
probability 1, Xn+1 = x+ 1; and if ln({x− 1,x})= ln({x,x+ 1}), then Xn+1 = x± 1
with probability 1/2 each. The edge local time ln( · ) is then updated to ln+1( · )
by adding 1 to the local time at the newly traversed edge. Such a walk is called a
true self-avoiding walk because it is repelled from the more visited regions, and
the laws of (Xi)1≤i≤n are consistent as n varies, in contrast to the self-avoiding
walk.

Interestingly, if we plot the evolution of the position of the walk together
with its edge local time, then there is an almost sure coupling with a collection
of forward/backward coalescing random walks. Figure 6.17 illustrates such a
coupling, where the initial edge local time is given by l0({2x,2x+ 1}) = 1 for all
x∈N0, l0({2x−1,2x})= 0 for all x∈N, and l0({−x−1,−x})= l0({x,x+1}) for all
x ∈ Z. Such an l0 corresponds to a special boundary condition for the coalescing
random walks along the x-axis, as shown in Figure 6.17. The lattice-filling curve
between the forward and backward coalescing random walks encodes the evolution
of the position of the walk (the horizontal coordinate) and the edge local time (the
vertical coordinate), and the area filled in by the curve is just the time the walk has
spent. The collection of forward/backward coalescing random walks converge to
the forward/backward Brownian web, albeit with the boundary condition that the
path in the forward, respectively backward, web starting at (0,0) is the constant

Figure 6.17. Coupling between a true self-avoiding walk (with a special initial
edge local time) and a collection of forward/backward coalescing random
walks (with a special boundary condition). The horizontal coordinate of the
lattice-filling curve is the walk’s position and the vertical coordinate is its edge
local time.
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path, and time for the webs now runs in the horizontal direction in Figure 6.17.
It can then be shown (see [71]) that the lattice-filling curve squeezed between
the coalescing random walks also converges to a space-filling curve (Xt,Lt(Xt))t≥0

in R× [0,∞), squeezed between paths in the forward and backward Brownian
webs. Here, Xt is the position of the so-called true self-repelling motion, and
(Lt(x))x∈R is its occupation time density at time t. Comparing with the discrete
model, one sees that when a deterministic point (x,y) ∈ R × [0,∞) is first
reached by the space-filling curve (Xτ ,Lτ (Xτ )) at some random time τ , (Lτ (a))a≤x,
respectively (Lτ (a))a≥x, must equal the path in the forward, respectively backward,
Brownian web starting at (x,y). Furthermore, the area under (Lτ (a))a∈R must be
exactly equal to τ . In other words, from the realization of the forward/backward
Brownian webs, one can determine when a deterministic point (x,y) is reached
by the space-filling curve. By considering a deterministic countable dense set of
(x,y) ∈ R× [0,∞), one can then determine the entire trajectory of (Xt)t≥0. This
is how the true self-repelling motion was constructed by Tóth and Werner in
[99], which heuristically is a process with a drift given by the negative of the
gradient of its occupation time density. It has the unusual scaling invariance of

(Xat/a2/3)t≥0
dist= (Xt)t≥0 for any a > 0, and it has finite variation of order 3/2. For

further details, see [99, 26].

6.7.2.4 Planar Aggregation Models
In [76], Norris and Turner discovered an interesting connection between the
Hastings-Levitov planar aggregation model and the coalescing Brownian flow. We
briefly explain the model and the connection here. At time 0, we start with a unit
disc denoted by K0. A small particle P1, which we assume to be a disc of radius
δ > 0 for simplicity, is attached to K0 at a uniformly chosen random point on the
boundary ∂K0. This defines the new aggregate K1 = K0 ∪ P1. To define the next
aggregate K2, we apply a conformal map F1 which maps K1 back to the disc K0

(more accurately, F1 is a conformal map from Kc
1 ∪ {∞} to Kc

0 ∪ {∞}, uniquely
determined by the condition that F1(z)= Cz+O(1) for some C > 0 as |z| →∞).
A new particle P2 of radius δ is then attached randomly at the boundary of
K0=F1(K1). Reversing F1 then defines the new aggregate K2=F−1

1 (F1(K1)∪P2).
The dynamics can then be iterated as illustrated in Figure 6.18. The new particles
added to the aggregates (Kn)n∈N at each step are no longer discs due to distortion
by the conformal maps, and it was shown in [76] that new particles tend to pile
on top of each other and form protruding fingers. Interestingly, the image of ∂K0

under Fn forms a coalescing flow on the circle, where for x,y ∈ ∂K0 ⊂ ∂Kn, the
length of the arc between Fn(x) and Fn(y) on the unit circle is proportional to the
probability that a new particle will be attached to the corresponding part of ∂Kn
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Figure 6.18. Hastings-Levitov planar aggregation model.

Figure 6.19. From left to right, illustration of paths in the drainage network of
[50], the drainage network of [80], Poisson trees [43], the directed spanning forest
[11], and the radial spanning tree [11].

between x and y. In the limit that the particle radius δ ↓ 0, while time is sped up
by a factor of δ−3, this coalescing flow can be seen as a localized disturbance flow,
studied in [77], which converges to the coalescing Brownian flow on the circle
w.r.t. the weak flow topology described in Section 6.7.1.1.

6.7.2.5 Drainage Networks and Directed Forests
Drainage networks are a class of models where coalescing paths arise naturally.
First, a random subset of Zd+1 (or Rd+1) is determined, which represents the water
sources. Next, from each source (x,s), where x∈Rd and s∈R, exactly one directed
edge is drawn toward some other source (y, t) with t > s, representing the flow of
water from (x,s) to (y, t). Examples include [50, 81], where the authors study a
drainage network on Zd+1 with each vertex being a water source independently
with probability p ∈ (0,1). From each source (x,s), a directed edge is then drawn
to the closest source in the next layer Zd×{s+1}, and ties are broken by choosing
each closest source with equal probability. There are also other variants such as
in [5], where the directed edge from the source (x,s)∈Zd+1 connects to the closest
source in the 45o light cone rooted at (x,s), or as in [80] where the directed edge
from (x,s) connects to the closest source in Zd × {s,s + 1, . . .} measured in 
1

distance (see Figure 6.19).
There are also continuum space versions where the water sources form

a homogeneous Poisson point process in Rd+1. In the Poisson trees model
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considered in [43], a directed edge is drawn from each source (x,s) ∈ Rd+1 to the
source in {(y, t) : |y− x| ≤ 1, t > s} with the smallest t-coordinate. In the directed
spanning forest model considered in [11], a directed edge is drawn from each
source (x,s) to the closest source in Rd× (s,∞), measured in Euclidean distance.

Natural questions for such drainage networks include whether the directed edges
form a single component, i.e., it is a tree rather than a forest. This has been shown to
be the case for d= 1 and 2 for the drainage networks on Zd+1 described above [50,
5, 80] and for the Poisson trees [43], as well as for the directed spanning forest in
R1+1 [21].

The collection of paths in the drainage network, obtained by following the
directed edges, can be regarded as a collection of (dependent) coalescing random
walk paths. Because the dependence is in some sense local in all the models
described above, it is natural to conjecture that for d= 1, the collection of directed
paths in the drainage network (after diffusive scaling) should converge to the
Brownian web. This has indeed been verified for various drainage networks on
Z1+1 [17, 22, 80], and for the Poisson trees on R1+1 [36]. The main difficulty
in these studies lies in the dependence among the paths. The model considered in
[80] is a discrete analogue of the directed spanning forest [11], and the dependence
is handled using simultaneous regeneration times along multiple paths. Such
arguments are not directly applicable to the directed spanning forest, and its
convergence to the Brownian web remains open.

The directed spanning forest was introduced in [11] as a tool to study the radial
spanning tree, where given a homogeneous Poisson point process � ⊂ Rd, a
directed edge is drawn from each x ∈ � to the closest point y ∈ �∪ {o} that lies
in the ball with radius |x| and centered at the origin o. If one considers directed
paths in the radial spanning forest restricted to the region (in polar coordinates)
{(r,θ ) : r ∈ [an,n], |θ +π/2| ≤ n−b} for some a ∈ (0,1) and b ∈ (0,1/2), then after
proper scaling, these paths are believed to converge to the so-called Brownian
bridge web [46], which consists of coalescing Brownian bridges starting from
R × (−∞,0) and ending at (0,0) (it can also be obtained from the Brownian
web via a deterministic transformation of R2). For a couple of toy models, such a
convergence has been established in [23, 46].

6.7.2.6 Supercritical Oriented Percolation
The oriented bond percolation model on Z2

even := {(x, t) ∈ Z2 : x + t is even} is
defined by independently setting each oriented edge of the form (x, t) → (x± 1,
t+ 1) to be either open with probability p, or closed with probability 1− p, with
retention parameter p ∈ [0,1]. The set of vertices in Z2

even that can be reached
from z∈Z2

even by following open oriented edges is called the open cluster at z. It is
known that there is a critical pc ∈ (0,1) such that for p> pc, the open cluster at (0,0)
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Figure 6.20. Rightmost infinite open paths in supercritical oriented percolation
on Z2

even.

is infinite with positive probability, while for p ≤ pc, it is finite with probability
one [24]. When the open cluster at z ∈ Z2

even is infinite, z is called a percolation
point.

In the supercritical regime p > pc, the percolation points appear with a positive
density, and starting from each percolation point z= (x, t), we can find a rightmost
path rz among all the infinite open oriented paths starting from z (see Figure 6.20).
It was shown by Durrett [24] that each (rz(n))n≥t satisfies a law of large numbers
with drift α(p)> 0, and subsequently Kuczek [58] showed that rz(n)−nα satisfies
a central limit theorem with variance nσ (p)2 for some σ (p) > 0. Kuczek’s central
limit theorem can be easily extended to path level convergence to Brownian
motion. It is then natural to ask what is the joint scaling limit of rz for all
percolation points z. Wu and Zhang [105] conjectured that the scaling limit
should be the Brownian web. This may be surprising at first, because for different
percolation points z1 and z2, rz1 and rz2 both depend on the infinite future, and
hence could be strongly dependent on each other. However, it was shown by Sarkar
and Sun in [89] that each rz can be approximated by a thin percolation exploration
cluster, such that different clusters evolve independently before they meet and
quickly merge after they meet. It is then shown in [89] that after proper centering
and scaling, the collection of rightmost infinity open paths from percolation points
indeed converge to the Brownian web.

6.7.3 Brownian Web, Critical Percolation, and Noise

There are close parallels between the Brownian web and the scaling limit of critical
planar percolation, starting from the topology. Indeed, as noted in Section 6.7.1.2,
both the paths topology of [40] and the tube topology of [14] were inspired by
similar topologies for planar percolation. The Brownian web is the scaling limit of
discrete coalescing random walks on Z2

even as shown in Figure 6.1, which can be
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seen as a dependent planar percolation model and enjoys the same duality as bond
percolation on Z2

even. The scaling limit of critical planar percolation is invariant
under conformal maps, while the Brownian web is invariant under diffusive scaling
of R2, a signature of a model at criticality. The Brownian web and the scaling
limit of critical planar percolation are both (and the only known examples of)
two-dimensional black noise in the language of Tsirelson [95, 96], which is
intimately linked to the notion of noise sensitivity and the existence of near-critical
scaling limits. Indeed, the Brownian net can be regarded as a near-critical scaling
limit obtained by perturbing the Brownian web. As explained in Section 6.4, such a
perturbation can be carried out by Poisson marking the set of “pivotal” points (i.e.,
the (1,2)-points of the Brownian web) according to a natural local time measure,
and then turning these points into branching points. For planar percolation, exactly
the same procedure has been proposed in [19] to construct a near-critical scaling
limit from the critical scaling limit, and it has been rigorously carried out in [48]
and [49], where defining the natural local time measure on pivotal points alone
has been a very challenging task. The fact that changing the configuration at a
countable subset of R2, i.e., the Poisson marked pivotal points, is sufficient to
alter the scaling limit indicates noise sensitivity and that the scaling limit is a
black noise. Allowing the intensity of the Poisson marking of the pivotal points
to vary continuously leads to dynamical evolutions of the critical scaling limit,
where unusual behaviour may emerge at random “dynamical times.”

In what follows, we will briefly review Tsirelson’s theory of noise [95, 96],
and in what sense the Brownian web and the scaling limit of critical planar
percolation are both black noise. This is the key common feature that lies behind
the many parallels between the two models. Such parallels will likely extend to
other examples of two- or higher-dimensional black noise, once they are found.
We will also briefly review results on the dynamical Brownian web.

6.7.3.1 Brownian Web, Black Noise, and Noise Sensitivity
Intuitively, the Brownian web and the scaling limit of critical planar percolation
should satisfy the property that the configurations are independent when restricted
to disjoint domains in R2. This calls for the continuous analogue of the notion of
product probability spaces (or independent random variables), which led Tsirelson
to define (see [96, Definition 3c1]):

Definition 6.7.1 A (one-dimensional) continuous product of probability spaces
consists of a probability space (�,F ,P) and sub-σ -fields Fs,t ⊂ F (for all s < t)
such that F is generated by

⋃
s<tFs,t and for any r < s < t,

Fr,t =Fr,s⊗Fs,t, (6.70)
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which means that Fr,t is generated by Fr,s ∪Fs,t, and Fr,s is independent of Fs,t

(i.e., P(A∩B)= P(A)P(B) for all A ∈Fr,s and B ∈Fs,t).

We can think of Fs,t as the σ -field generated by a family of observables that only
depend on what happens in the interval (s, t).

Remark 6.7.2 In dimension two or higher, we should equip (�,F ,P) with a
family of sub-σ -fields FD, indexed by a Boolean algebra of domains D⊂R2 (take
for example the Boolean algebra of sets generated by open rectangles), while the
factorization property (6.70) becomes

FD =FD1 ⊗FD2 (6.71)

whenever D1 ∩ D2 = ∅ and D = D1 ∪D2. It turns out that (6.71) cannot hold
without some restrictions on the domains. The lack of a canonical choice of the
family of domains in dimensions two and higher is still an issue to be resolved [98,
Section 1.6].

Besides independence on disjoint domains, we also expect the Brownian web
and the scaling limit of percolation to be translation invariant. This additional
assumption leads to the notion of a noise (see [96, Definition 3d1]).

Definition 6.7.3 (Noise) A noise is a continuous product of probability spaces
(�,F ,P), equipped with a family of sub-σ -fields FD indexed by an algebra of
domains D ∈D in Rd, which is homogeneous in the following sense. There exists
a group of isomorphisms (Th)h∈Rd on (�,F ,P) such that Th+h′ = Th ◦ Th′ and Th

sends FD to FD+h for all D ∈D and h,h′ ∈Rd.

In a tour de force, the scaling limit of critical planar percolation was shown to be
a two-dimensional noise by Schramm and Smirnov in [87], where the sub-σ -field
FD (for D with piecewise smooth boundary) is generated by the indicator random
variables for open crossing of quads (homeomorphic images of the unit square)
contained in D. The Brownian web was shown to be a two-dimensional noise by
Ellis and Feldheim in [33], where FD (for open rectangles D) is generated by the
Brownian web paths restricted to D. What is remarkable is that both noises are
so-called black noise as defined by Tsirelson [95, 96], and they are the only known
examples in dimension two or higher.

The notion of a noise being black turns out to be equivalent to the notion of
a noise being sensitive, while a noise being classical (such as white noise or
Poisson noise) turns out to be equivalent to a noise being stable. A non-classical
noise is a noise that contains in some sense a sensitive part. To explain the
underlying ideas, it is instructive to first discretize and then pass to the continuum,
instead of giving directly the definition for the continuum noise.
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Let us fix �= (−1,1)2, and consider its discretization �δ :=�∩SδZ2
even, where

Sδ : (x, t)→ (δx,δ2t). To each z∈�δ , we assign an i.i.d. symmetric random variable
σz ∈ {+1,−1}, which can be defined via the coordinate map on the probability
space �δ = {+1,−1}�δ , equipped with the discrete topology and the uniform
probability measure Pδ . What noise we obtain in the continuum limit δ ↓ 0 depends
crucially on the observables we choose, which will generate the σ -field F for the
limiting noise.

If we choose our observables to be linear functions of σ := (σz)z∈�δ , i.e., fδ :=
δ3/2∑

z∈�δ
f (z)σz for continuous functions f :�→R, then their joint distributions

converge to a nontrivial limit and the limiting noise is the classical white noise,
where F is generated by the family of Gaussian random variables indexed by such
continuous f , which we interpret as the integral of f w.r.t. the underlying white
noise.

If we choose our observables to be nonlinear functions of (σz)z∈�δ , then
non-classical noise may appear in the limit. As illustrated in Figure 6.1, σ :=
(σz)z∈�δ uniquely determines the collection of coalescing random walks in �δ . If
we choose our observables to be the indicator random variables for whether there
is a random walk path crossing a prescribed tube T in � (see Section 6.7.1.2), then
their joint distributions converge to a nontrivial limit and the limiting noise is the
Brownian web, where F is generated by the tube crossing events.

Roughly speaking, whether the limiting noise is classical or not depends on
whether there are nontrivial observables that are noise sensitive as δ ↓ 0, defined
as follows.

Definition 6.7.4 (Noise sensitivity) For ε ∈ (0,1), let σε := (σεz )z∈�δ be obtained
from (σz)z∈�δ by independently replacing each σz with an independent copy
of σz with probability ε. A sequence of random variables fδ : �δ → R with
supδ E[f 2

δ (σ )] <∞ is called noise sensitive if for each ε > 0,

lim
δ↓0

(E[fδ(σ )fδ(σ
ε)]−E[fδ(σ )]2)= 0, (6.72)

and the sequence is called noise stable if

lim
ε↓0

limsup
δ↓0

|E[fδ(σ )fδ(σ
ε)]−E[f 2

δ (σ )] | = 0. (6.73)

There is a rich theory of noise sensitivity for functions on (�δ ,Pδ), and we refer to
the lecture notes by Garban and Steif [51] for a detailed exposition and applications
to percolation. For {0,1}-valued functions fδ , noise sensitivity implies that fδ(σ )
and fδ(σε) become asymptotically independent if an arbitrarily small, but fixed,
portion of σ is resampled, while noise stability implies that as ε ↓ 0, the probability
that fδ(σ ) and fδ(σε) coincide tends to 1 uniformly in δ close to 0.
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There is a simple criterion for noise sensitivity/stability using Fourier analysis
on (�δ ,Pδ). Observe that the set of functions χS := ∏i∈S σi, for all S ⊂ �δ , is
an orthonormal basis for L2(�δ ,Pδ). Therefore any fδ ∈ L2(�δ ,Pδ) admits the
orthogonal decomposition

fδ =
∑

S⊂�δ

f̂δ(S)χS = E[fδ]+
∞∑

k=1

∑
|S|=k

f̂δ(S)
∏
i∈S

σi. (6.74)

Definition 6.7.5 (Spectral measure and energy spectrum) The coefficients f̂δ(S)
in (6.74) are called the Fourier-Walsh coefficients for fδ , the measureμfδ on {S : S⊂
�δ} with μfδ (S) := f̂ 2

δ (S) is called the spectral measure of fδ , and the measure Efδ
on N0 with Efδ (k)=∑|S|=k f̂ 2

δ (S) is called the energy spectrum of fδ (see e.g., [51]).

It is easily seen that

E[fδ(σ )fδ(σ
ε)]= E[fδ]

2+
∞∑

k=1

εk
∑
|S|=k

f̂ 2
δ (S)= E[fδ]

2+
∞∑

k=1

εkEfδ (k), (6.75)

and hence a sequence fδ with supδ E[f 2
δ ] < ∞ is noise sensitive if and only if

Efδ ({1, . . . ,k}) → 0 for every k ∈ N, and fδ is stable if and only if Efδ is a tight
family of measures on N0.

As we take the continuum limit δ ↓ 0, what will happen to the spectral measure
of the observables that generate the σ -field of the limiting noise? There are several
possibilities: either all nontrivial square-integrable observables in the limit will
have a spectral measure that is supported on Cfin(�) := {S ∈ � : |S| < ∞}, in
which case the limiting noise is called classical (and noise stable); or all nontrivial
observables in the limit will have a spectral measure supported on C(�)\Cfin(�),
with C(�) being the set of closed subsets of �, in which case the noise is called
black (and noise sensitive); or there are nontrivial observables of both types,
supported either on Cfin(�) or C(�)\Cfin(�), in which case the noise is called
non-classical.

In practice, classifying a noise via discrete approximation as described above
is subtle, because such approximations are not unique, and convergence of
the spectral measure on C (equipped with Hausdorff topology) does not imply
convergence of the energy spectrum. There could be observables f for the noise
whose spectral measure is supported on Cfin, and yet the approximating fδ is noise
sensitive (see [95, Section 5c] for the notion of block sensitivity which overcomes
such issues). Instead, we can classify noise directly. The following definition
extends [95, Definition 3d2] to general dimensions (see also [98] for an abstract
formulation without associating the sub-σ -fields with domains in Rd).
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Definition 6.7.6 (Non-classical noise and black noise) Let (�,F ,P) be a noise
equipped with a family of sub-σ -fields FD indexed by an algebra of domains D∈D
in Rd. For any f ∈ L2(�,F ,P), its spectral measure μf is defined to be the unique
positive measure on C (the space of compact subsets of Rd) with the property that

μf (M ∈ C : M ⊂D)= E[E[f |FD]2], D ∈D. (6.76)

If for every f ∈ L2(�,F ,P), its spectral measure μf is supported on Cfin := {M ∈
C : |M| < ∞}, then the noise is called classical; otherwise the noise is called
non-classical. If the spectral measure of every non-constant f ∈ L2(�,F ,P) is
supported on C\Cfin, then the noise is called black.

White noise and Poisson noise are classical, which can be seen from their chaos
expansions. The scaling limit of critical planar percolation is a two-dimensional
black noise as explained in [87], while the Brownian web was first shown to
be a one-dimensional black noise in [95, Section 7] and [96, Section 7] (with
sub-σ -fields (Fs,t)s<t associated with the strips R × (s, t)), and then shown to
be a two-dimensional black noise in [33]. Interestingly, if a noise is black, then
for all non-constant f ∈ L2(�,F ,P), μf is in fact supported on Cperf := {M ∈ C :
M is a perfect set}, a collection of uncountable sets [95, Theorem 6d3].

The procedure of independently resampling each of a collection of ±1-valued
symmetric random variables with probability ε can in fact be carried out for
noise. This allows one to define directly noise sensitivity vs stability for each
f ∈ L2(�,F ,P), where conditions (6.72)–(6.73) just need to be modified to remove
the δ-dependence, and σ and σε represent the noise and its ε-resampled version.
A noise is then classical if and only if all f ∈ L2(�,F ,P) are stable, and black if
and only if all non-constant f ∈ L2(�,F ,P) are sensitive (see [96, Section 4] and
[95, Section 5] for further details). In particular, ε-resampling a black noise leads
to an independent copy of the noise. To see nontrivial dependence, a different
resampling procedure is needed, which is where dynamical evolution via Poisson
marking of pivotal points comes in.

6.7.3.2 Dynamical Brownian Web
Because the Brownian web is a black noise, the correct way to resample the
randomness underlying the Brownian web in order to see nontrivial dependence
is to resample the “pivotal” points (i.e., the (1,2)-points of the Brownian web).
This was carried out in [73] and is intimately linked to the authors’ marking
construction of the Brownian net in the same paper (see Section 6.4). Given a
Poisson point process Mλ ⊂ R2 with intensity measure given by λ(>0) times the
intersection local time measure 
(dz) on the (1,2)-points of the Brownian web (see
Proposition 6.4.1), a resampled web is obtained by simply flipping the sign of
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each (1,2) point in Mλ as defined in (6.24), instead of turning each such point into
a branching point as in the construction of the Brownian net in Theorem 6.4.2.
Since there is a natural coupling between Mλ for all λ≥ 0, we obtain a stochastic
process in the space of compact sets of paths (H,dH), which is in fact reversible
w.r.t. the law of the Brownian web. This defines the so-called dynamical Brownian
web. The dynamical Brownian web can also be constructed as the scaling limit of
the dynamical discrete web introduced in [56], where discrete web refers to the
collection of coalescing simple symmetric random walks on Z2

even illustrated in
Figure 6.1, and dynamical evolution is introduced by independently flipping at rate
one the sign of the arrow from each z ∈ Z2

even. If space-time is rescaled by (ε,ε2),
and the dynamical time is slowed down by a factor of ε, it can then be shown that
the dynamical discrete web converges to the dynamical Brownian web [73].

Similar questions have been studied for percolation models [47]. There has been
much study about dynamical percolation (see [84] for a survey). Furthermore,
dynamical critical site percolation on the triangular lattice has been shown to
converge to a continuum limit [49], the proof of which follows the same line as
in the Brownian web setting (via Poisson marking of the pivotal points), except
that the implementation in the percolation setting has been much more difficult.

Key questions in the study of dynamical percolation, dynamical Brownian web,
and “dynamical” processes in general, are the existence of exceptional times
when a given property that holds almost surely at a deterministic time fails. For
dynamical percolation, where the stationary law of the process is that of the
percolation model at criticality, one such property is the non-existence of an infinite
cluster [84]. For the dynamical discrete web, questions on exceptional times have
also been studied in [45] and [57]. In particular, it was shown in [45] that there
exists a.s. a random set of dynamical times with full Lebesgue measure, when
the random walk in the discrete web starting from the origin does not satisfy the
Law of the Iterated Logarithm (LIL); the authors also extended this result to the
dynamical Brownian web.

This is in striking contrast with the dynamical simple symmetric random
walk on Z introduced in [15], where the sign of each increment of the walk
(Xn−Xn−1)n∈N is independently flipped at rate one in dynamical time. In contrast
with the dynamical discrete web, there is no exceptional time at which the LIL fails
in this setting. The difference between the two models can be accounted for by the
effect of each individual switching. In [15], a switch affects only one increment
of the walk, which induces an order one perturbation in sup-norm. In contrast,
changing the direction of a single arrow in the discrete web can change the path of
the walk by a “macroscopic” amount. Indeed, the switching arrows encountered
by the walk are comparable to the Poisson marked (1,2)-points encountered by
a Brownian motion in the dynamical Brownian web, where each switching at a
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marked (1,2)-point leads the Brownian motion to embark on an excursion from
the original path, and the size of the excursion has a heavy-tailed distribution with
infinite mean. This is why the random walk is more sensitive to the dynamics on
the discrete web than to the dynamics on the random walk considered in [15].

6.8 Open Questions

In this section, we discuss some open questions, including how the Brownian web
and net could be useful in the study of more general one-dimensional interacting
particle systems, conjectures on the geometry of the Brownian net, and some other
miscellaneous questions.

6.8.1 Voter Model Perturbations and Brownian Net with Killing

One further direction of research is to use the Brownian web and net to study
one-dimensional interacting particle systems with migration, birth/branching,
coalescence, and death. Such a particle system often arises as the spatial
genealogies of a dual particle system. In suitable parameter regimes, such a particle
system may converge to the Brownian net, which incorporates diffusive particle
motion, branching and coalescence, and killing effect can be added by defining
the so-called Brownian net with killing, which we will explain below. Using
the convergence of the discrete particle systems to a continuum model which
is amenable to analysis, one hopes to draw conclusions for the discrete particle
systems, such as local survival vs extinction, as well as convergence to equilibrium.

In dimensions three and higher, a study in this spirit has been carried out
by Cox, Durrett and Perkins in [18], where they studied a class of interacting
particle systems on Zd whose transition rates can be written as perturbations of
the transition rates of a (possibly non-nearest neighbor) voter model. Their interest
stemmed from the observation that several models in ecology and evolution,
as well as in statistical mechanics – the spatial Lotka-Volterra model [70], the
evolution of cooperation [78], nonlinear voter models [67] – can be seen as
perturbations of the voter model in a certain range of their parameter space. In
general, these models are difficult to study either because of a lack of monotonicity
(Lotka-Volterra model) or because of the intrinsic complexity of the model (certain
models of evolution of cooperation). However, by considering them as small
perturbations of the voter model, it was shown in [18] that for d ≥ 3, the properly
rescaled local density of particles converges to the solution of a reaction diffusion
equation, and that properties of the underlying particle system (such as coexistence
of species in the Lotka-Volterra model) can be derived from the behavior of
this Partial Differential Equation (PDE). Implementing an analogous program in
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dimensions one and two is still an open problem, although in dimension two, it
is believed that the behavior of voter model perturbations should be similar to the
case d= 3.

The genealogies of the voter model are given by coalescing random walks [61,
54], and the type of perturbations of the voter model in [18] lead to branching of the
genealogies. In dimensions d ≥ 3, because of transience of the random walk, such
a collection of branching-coalescing genealogies was shown in [18] to converge
(under suitable scaling and moment assumptions on the random walk and the
branching mechanism) to a system of independent branching Brownian motions.
The branching mechanism is given explicitly in terms of the “microscopic”
descriptions of the system and also takes into account coalescence at the
mesoscopic level. In dimension one, such a collection of branching-coalescing
spatial genealogies should converge to the Brownian net under suitable scaling
of parameters and space-time. One is then hopeful that in dimension one, one
can also draw conclusions for the particle systems from such a convergence.
One model that falls in this class is the biased annihilating branching process,
introduced by Neuhauser and Sudbury in [75]. Another class is a family of
one-dimensional models of competition with selection and mutation (see e.g., [7]).
However, proving convergence of the particle systems to the Brownian net is a
serious challenge.

6.8.1.1 Brownian Net with Killing
We briefly recall here the Brownian net with killing, which allows the modeling of
the death of a particle. A discrete space analogue has been introduced in [68]. Let
b,κ >= 0 be such that b+ κ ≤ 1, corresponding respectively to the branching and
killing parameters of the system. From each point in Z2

even, an arrow is drawn from
(x, t) to either (x− 1, t+ 1) or (x+ 1, t+ 1) with equal probability 1

2 (1− b− κ);
two arrows are drawn with probability b; no arrow is drawn with probability κ .
Similar to the discrete net (see Figure 6.9), we can consider the set of all paths
starting in Z2

even by following arrows until the path terminates. This defines an
infinite collection of coalescing random walks which branch with probability b
and are killed with probability κ . This model encompasses several classical models
from statistical mechanics. For p ∈ (0,1) and b = p2, κ = (1− p)2, one recovers
the standard one-dimensional oriented percolation model. When b = κ = 0, the
trajectories are distributed as coalescing random walks.

In [74], it is shown that when the branching and killing parameters depend on
some small scaling parameter ε such that limε→0 bε/ε = b∞ and limε→0 κε/ε

2 =
κ∞, then the collection of branching-coalescing random walks with killing
introduced above converges (after proper rescaling) to a continuum object called
the Brownian net with killing with parameter (b∞,κ∞). The latter scaling of the
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parameters was motivated by the stochastic q-color Potts model on Z. Indeed,
in [74], it was conjectured that this model at large inverse temperature β, is
asymptotically dual to a system of (continuous time) branching-coalescing random
walks with killing, with branching and killing parameters

bβ = q

2
e−β and κβ = qe−2β ,

where q is the number of colors in the system. Thus the Brownian net could be used
to construct a natural scaling limit for the stochastic Potts model at low temperature
in dimension one.

The Brownian net with killing can also be directly constructed as follows. Let
Nb be a Brownian net with branching parameter b. For every realization of the
Brownian net, one can introduce a natural time-length measure on the set of points
of type (p,p) in R2 w.r.t. the Brownian net (see Theorem 6.3.24). More precisely,
for every Borel set E⊂R2, define the time-length measure as

L(E)=
∫

R
|{x : (x, t) ∈ E and is of type (p,p)}| dt. (6.77)

The Brownian net with killing with parameter (b,κ) is then obtained by killing the
Brownian net paths at the points of a Poisson point process on R2 with intensity
measure κL.

It was shown in [74] that the Brownian net with killing undergoes a phase
transition as the killing parameter κ varies, similar to the percolation transition
in oriented percolation. There is reason to believe [53] that the Brownian net with
killing belongs to the same universality class as oriented percolation in Z1+1, in
which case it may serve as a simpler model to study this universality class.

6.8.2 Fractal Structure of the Brownian Net

We explain here some open questions concerning the geometry of the Brownian
net. Recall from Remark 6.3.20 the set N (∗,−∞) of paths started at time
−∞, called the backbone of the Brownian net N . Let N := {(x, t) ∈ R2 : x =
π (t) for some π ∈ N (∗,−∞)} be the graph of the backbone. By the image set
property (Proposition 6.3.17), every continuous function π : R → R that lies
entirely inside N is a path in the backbone. In view of this, much information
can be read off from the random closed set N ⊂R2.

If we set ξt := {x ∈ R : (x, t) ∈ N}, then (ξt)t∈R is just the branching-coalescing
point set in stationarity (see Section 6.3.5), which is in fact a Markov process [86,
Section 1.9–1.10]. At each deterministic time t, ξt is distributed a Poisson point
process with intensity two, which is a reversible law for this Markov process. As
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noted in Remark 6.3.20, by reversibility, the law of N ⊂ R2 (and likewise the
collection of paths N (∗,−∞)) is symmetric under time reversal.

It is clear that N has some sort of fractal structure. The main reason for this is
the “infinite” branching rate of the Brownian particles that ξt consists of. Indeed,
in each open time interval, a path in N (∗,−∞) will split infinitely often into two
paths, which usually coalesce again after a very short time. But during the time
that there are two paths, these too will for short moments split into two further
paths, and so on, ad infinitum (see Figure 6.21).

Natural questions are: 1) is this the only way in which N has a fractal structure?
2) how can we formulate this rigorously? and 3) can we prove this? Here is an
attempt to answer question 2. Let S and M be the set of all separation points and
meeting points (i.e., points of types (p,pp)s and (pp,p), respectively, as defined
in Section 6.2.5) that lie on N. Set S∗ := S∪ {(∗,−∞)} and M∗ :=M ∪ {(∗,∞)}.
Define φ : S∗ →M∗ by

φ(z) := the first meeting point of the left-most and right-most paths starting at z,
(6.78)

where we set φ(z) := (∗,∞) if the left-most and right-most paths starting at z never
meet, and for definitiveness we also define φ(∗,−∞) := (∗,∞).

By the symmetry of the backbone with respect to time reversal, we define φ :
M∗→ S∗ analogously, following paths in N (∗,−∞) backwards in time. (Note that
this is different from our usual way of looking backwards. Instead of following
dual paths, here we follow forward paths in the backbone backwards in time.)

A lot about the structure of the backbone can be understood in terms of the map
φ. For example, separation points z such that φ(z)= (∗,∞) are (−∞,∞)-relevant
separation points as defined in Section 6.4.1. By Proposition 6.4.7, these form a
locally finite subset of R2. If we have a pair of points z ∈ S and z′ ∈M such that
φ(z)= z′ and φ(z′)= z, then this corresponds to a path that splits at z into two paths,
which meet again at z′ (see Figure 6.21). If z = (x, t) and z′ = (x′, t′) form such a
pair, then the left-most and right-most paths starting at z, up to their first meeting
point z′, enclose a compact set that we will call a bubble.

We conjecture that bubbles are the only source of the fractal structure of N. The
following two conjectures make this idea precise.

Conjecture 6.8.1 (Bubble hypothesis)

(a) Almost surely, there does not exist an infinite sequence of points (zk)k≥0 in
S∗ ∪M∗, all different from each other, such that φ(zk−1)= zk for all k≥ 1.

(b) Almost surely, there does not exist an infinite sequence of points (zk)k≥0 in
S∗ ∪M∗, all different from each other, such that φ(zk)= zk−1 for all k≥ 1.
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II.0

II.0
II.1

II.2

I.3

I.2

I.1

(∗,∞)

Figure 6.21. Left: schematic depiction of the fractal structure of the backbone.
Middle and right: illustration of the classification of separation and meeting points
on the backbone with the map φ (gray arrows). The leftmost picture contains two
separation and two meeting points of type II.1; all others are of type II.0.

If Conjecture 6.8.1 (a) is correct, then for each separation or meeting point z that
lies on the backbone, after some moment in the sequence (z,φ(z),φ2(z), . . . ), the
same points start to repeat. Simple geometric considerations show that the limiting
cycle must have length 2, i.e., there is an integer n≥ 0 such that φn+2(z)= φn(z).
Letting n denote the smallest such integer, we say that z is of class I.n if φn(z)=
(∗,∞) or (∗,−∞) and of class II.n if φn(z)∈R2. Note that separation and meeting
points of type II.0 are the bottom and top points of bubbles, as we have just defined
them. Points of type II.n all lie inside bubbles, with larger n leading to a more
complex left-right crossover pattern in the containing bubble (see Figure 6.21). The
following conjecture says that most bubbles have a very simple internal structure.

Conjecture 6.8.2 (Bubble complexity) Let CI,n, respectively CII,n, denote the set
of meeting and separation points on the backbone N which are of class I.n,
respectively II.n. Then

(a) The sets CII,0 and CII,1 are dense in N.
(b) The sets CII,n with n≥ 2 and CI,n with n≥ 1 are locally finite subsets of R2.

As motivation for these conjectures, we state a somewhat more applied problem.
Modulo a time reversal, the set W({0}×R) of all paths in the Brownian web can
be interpreted as the spatial genealogies of a population living in one-dimensional
space (see Section 6.7.2.1). Let M be the set of all meeting points of paths in
W({0}×R), i.e.,

M :={(x, t)∈R2 : t> 0,∃π ,π ′ ∈W({0}×R) s.t. π (t)= x=π ′(t), π <π ′ on (0, t)}.
(6.79)

Biologically, we can interpret a point z = (x, t) that is the first meeting point of
paths π(x,0) and π(x′,0) as the most recent common ancestor (MRCA) of x and x′,
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that lived a time t in the past. It is easy to see that M is a locally finite subset of
R× (0,∞).

Moving away from neutral evolution, one can interpret paths in the Brownian net
as potential genealogies (cf. the biased voter model in Section 6.7.2.2), where in
order to determine the true genealogy of an individual, one has to have information
about what happens at selection events, which correspond to separation points. In
this case, replacing W({0} × R) in (6.79) by N ({0} × R), we can interpret the
resulting set M as the set of potential most recent common ancestors (PMRCAs)
of individuals living at time zero.

Conjecture 6.8.3 (Potential most recent common ancestors) If we replace
W({0} ×R) in (6.79) by N ({0} ×R), then the set M is a locally finite subset of
R× (0,∞).

The definition of a potential most recent common ancestor (PMRCA) is
somewhat reminiscent of the definition of a (0,∞)-relevant separation point,
except that in order to determine whether a meeting point is a PMRCA, we have
to follow forward paths backwards in time. This is similar to the definition of the
map φ : M∗ → S∗ and indeed, Conjecture 6.8.3 seems to be closely related to
our previous two conjectures. In particular, meeting points that lie inside a bubble
(properly defined w.r.t. the finite time horizon 0) can never be PMRCAs.

6.8.3 Miscellaneous Open Questions

We collect below some other interesting questions.

(1) Is the Brownian net integrable in the sense that the branching-coalescing
point set defined in (6.20) admits an explicit characterization, similar to the
Pfaffian point process characterization of the coalescing point set discussed in
Remark 6.2.10?

(2) Find effective criteria for general branching-coalescing particle systems,
where paths can cross, to converge to the Brownian net. This would extend
Theorem 6.6.11 for the non-crossing case, and pave the way for the study of
voter model perturbations discussed in Section 6.8.1.

(3) Can one formulate a well-posed martingale problem for the branching-
coalescing point set (ξt)t≥0 defined in (6.20)? This may offer an alternative
route to prove convergence to the Brownian net, which is based on generator
convergence and avoids the paths topology.

(4) For the Howitt-Warren flow (K↑s,t(x,dy))s<t,x∈R introduced in Section 6.5.1,
which gives the transition probability kernels of a random motion in a
continuum space-time random environment constructed from the Brownian
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web and net, can one show that for any x ∈ R, − logK↑0,t(0, [tx, tx + 1])
has Tracy-Widom GUE fluctuations on the scale t1/3 as t →∞, similar to
recent results in [12] for random walks on Z in special i.i.d. Beta-distributed
space-time random environments (cf. Remark 6.5.15)?

(5) In [35], Evans, Morris and Sen showed that coalescing stable Lévy processes
on R with stable index α ∈ (1,2) come down from infinity, i.e., starting from
everywhere on R, the coalescing Lévy processes become locally finite on R
at any time t > 0. This suggests the existence of a family of Lévy webs. In
fact, using the tube topology reviewed in Section 6.7.1.2 and the property of
coming down from infinity, it should be straightforward to construct the Lévy
web w.r.t. the tube topology. For coalescing Brownian flow on the Sierpinski
gasket, this was carried out in [14]. Can one construct the Lévy web in the
paths topology, and what type of special points may arise in the spirit of
Theorem 6.2.11?

By scaling invariance, the density of the coalescing stable Lévy flow on
R with index α ∈ (1,2) should be ρt = C

t1/α
. Identifying C would allow one

to determine the sharp asymptotic rate of decay for the density of coalescing
random walks on Z in the domain of attraction of a stable Lévy process, similar
to [72, Corollary 7.1] and [88] in the Brownian case.

(6) The Brownian web has been shown by Ellis and Feldheim [33] to be a
two-dimensional black noise, equipped with a family of sub-σ -fields indexed
by finite unions of open rectangles in R2. Is there a maximal extension of
the family of sub-σ -fields, indexed by a Boolean algebra of domains in R2

that include the rectangles, such that the Brownian web remains a noise (cf.
Remark 6.7.2)? A similar question is also open for the scaling limit of critical
planar percolation [98, Section 1.6].

Recently Tsirelson [97] showed by general arguments that there exists some
continuous path f starting at time −∞, such that Ff− and Ff+ , the σ -fields
generated by Brownian web paths restricted respectively to the left or the right
of the graph of f , do not jointly generate the full σ -field F . Can we characterize
the set of f for which the factorization property F = Ff− ∨Ff+ holds? (The
case f ≡ 0 has been treated in [33]).

(7) We expect the Brownian net with killing (see Section 6.8.1.1) to belong
to the same universality class as oriented percolation (OP) on Z1+1, which
corresponds to the so-called Reggeon field theory [20, 65] (see also [53] for
an extensive survey on the OP universality class). The Brownian net without
killing belongs to a different universality class. But is there also a field theory
corresponding to the Brownian net? A positive indication is that the Brownian
net has competing effects of instantaneous coalescence vs infinite effective

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316403877.007
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 23 Apr 2018 at 02:40:07, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316403877.007
https://www.cambridge.org/core


The Brownian Web and the Brownian Net 363

rate of branching, which is very much in the spirit of renormalizations in field
theories.

(8) The Brownian web appears in the scaling limit of super-critical oriented
percolation, as discussed in Section 6.7.2.6, and the Brownian net is expected
to arise if the percolation parameter p is allowed to vary in a small interval.
However, the most interesting question is: what is the scaling limit of critical
(and near-critical) oriented percolation (OP) on Z1+1? The Brownian net with
killing provides a simpler model to study the OP universality class. We expect
that in the near-critical scaling limit, one would obtain a family of models
which interpolates between the Brownian net and the scaling limit of critical
oriented percolation. However, such a goal appears far out of reach at the
moment, because there are no conjectures at all on what the critical scaling
limit might be, and neither have critical exponents been shown to exist.
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[37] L. R. G. Fontes, M. Isopi, C. M. Newman and D. Stein, Aging in 1D discrete spin
models and equivalent systems. Physical Review Letters. 87, 110201 (2001).

[38] L. R. G. Fontes, M. Isopi, C. M. Newman and K. Ravishankar, The Brownian web.
Proc. Nat. Acad. Sciences. 99, 15888–15893 (2002).

[39] L. R. G. Fontes, M. Isopi, C. M. Newman and K. Ravishankar, The Brownian web:
characterization and convergence. (2003). math/0304119.

[40] L. R. G. Fontes, M. Isopi, C. M. Newman and K. Ravishankar, The Brownian web:
characterization and convergence. Ann. Probab. 32(4), 2857–2883 (2004).

[41] L. R. G. Fontes, M. Isopi, C. M. Newman and K. Ravishankar, Coarsening,
nucleation, and the marked Brownian web. Ann. Inst. H. Poincaré Probab. Statist.
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537–574 (2010).

[74] C. M. Newman, K. Ravishankar and E. Schertzer, The Brownian net with killing.
Stoch. Proc. and App. 125, 1148–1194 (2015).

[75] C. Neuhauser and A. Sudbury, The biased annihilating branching process. Adv.
Appl. Prob. 25, 24–38 (1993).

[76] J. Norris and A. Turner, Hastings-Levitov aggregation in the small-particle limit.
Comm. Math. Phys. 316, 809–841 (2012).

[77] J. Norris and A. Turner, Weak convergence of the localized disturbance flow to the
coalescing Brownian flow. Ann. Probab. 43, 935–970 (2015).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316403877.007
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 23 Apr 2018 at 02:40:07, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316403877.007
https://www.cambridge.org/core


The Brownian Web and the Brownian Net 367

[78] H. Ohtsuki, H. C. Hauert, E. Lieberman and M. A. Nowak, A simple rule for the
evolution of cooperation on graphs and social networks. Nature. 441, 502–505
(2006).

[79] V. Privman, Nonequilibrium statistical mechanics in one dimension. Cambridge:
Cambridge University Press, (1997).

[80] R. Roy, K. Saha and A. Sarkar. Random directed forest and the Brownian web. Ann.
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[85] T. Seppäläinen, Current fluctuations for stochastic particle systems with drift in
one spatial dimension, in Ensaios Matemáticos [Mathematical Surveys], 18. Rio de
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