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Abstract

We introduce two self-reinforced point processes on the unit interval that appear to exhibit
self-organized criticality, somewhat reminiscent of the well-known Bak Sneppen model.
The first process takes values in the finite subsets of the unit interval and evolves according
to the following rules. In each time step, a particle is added at a uniformly chosen position,
independent of the particles that are already present. If there are any particles to the left
of the newly arrived particle, then the left-most of these is removed. We show that all
particles arriving to the left of pc = 1 − e−1 are a.s. eventually removed, while for large
enough time, particles arriving to the right of pc stay in the system forever. Our second
process of interest has particles of two types and models traders placing buy and sell limit
orders at a stock market. The behavior of this process appears to be similar to the previous
one, but we can prove only partial results for it.
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1 Introduction and results

1.1 A model for canyon formation

Let (Uk)k≥1 be an i.i.d. collection of uniformly distributed [0, 1]-valued random variables. For
each finite subset x of [0, 1], we inductively define a sequence Xx = (Xx

k )k≥0 of random finite
subsets of [0, 1] by Xx

0 := x, Mx
k−1 := min(Xx

k−1 ∪ {1}) and

Xx
k :=

{
Xx
k−1 ∪ {Uk} if Uk < Mx

k−1,

(Xx
k−1 ∪ {Uk})\{Mx

k−1} if Uk > Mx
k−1.

(k ≥ 1). (1)

In words, this says that Mx
k−1 is the minimal element of Xx

k−1 and that the set Xx
k is con-

structed from Xx
k−1 by adding Uk, and in case that Mx

k−1 < Uk, removing Mx
k−1 from Xx

k−1.
Since the (Uk)k≥1 are i.i.d. and Xx

k is a function of Xx
k−1 and Uk, it is clear that Xx is a

Markov chain. (In fact, we have just given a random mapping representation for it.) The
state space of Xx is the set Pfin[0, 1] of all finite subsets of [0, 1], which is naturally isomorphic
to the space of all simple counting measures on [0, 1] (i.e., N-valued measures ν such that
ν({x}) ≤ 1 for all x ∈ [0, 1]). We equip this space with the topology of weak convergence and
the associated Borel-σ-algebra.

The process Xx is an example of a Markov process with self-reinforcement (compare
[Pem07]), since the number of particles in the system can grow without bounds and influ-
ences the fate of newly arrived particles. As we will see in a moment, it also appears to
exhibit self-organized criticality in a way that is reminiscent of the well-known Bak Sneppen
model. The empirical distribution function F xk (q) :=

∣∣Xx
k ∩ [0, q]

∣∣ can loosely be interpreted
as the profile of a canyon being cut out by a river. If Uk < Mx

k−1, then the river cuts deeper
into the rock. If Uk > Mx

k−1, then the slope of the canyon between Uk and the river is eroded
one step down.

Our first result says that particles arriving on the left of the critical point pc := 1 − e−1

are eventually removed from the system, but for large enough time, particles arriving on the
right of pc stay in the system forever.

Theorem 1 (A.s. behavior of the minimum) For any finite x ⊂ [0, 1], one has

lim sup
k→∞

Mx
k = 1− e−1 a.s. (2)

To understand Theorem 1 better, note that for each 0 ≤ q ≤ 1, the restriction Xx
k ∩ [0, q]

of Xx
k to [0, q] is a Markov chain. Indeed, particles arriving on the right of q just have the

effect that in each time step, with probability 1 − q, the minimal element of Xx
k ∩ [0, q], if

there is one, is removed, while no new particles are added inside [0, q]. Theorem 1 says that
this Markov chain is recurrent for q < pc and transient for q > pc. For any q ∈ [0, 1], let

τ∅q := inf{k > 0 : X∅k ∩ [0, q] = ∅} (3)

be the first time the restricted process X∅k ∩ [0, q] returns to the empty set. Our next theorem
shows that for q < pc, the restricted chain is positively recurrent and ergodic. Below, we call
a subset of [0, pc) locally finite if its intersection with any compact subset of [0, pc) is finite.

Theorem 2 (Ergodicity of restricted process) Let pc := 1− e−1. Then

E[τ∅q ] =
(
1 + log(1− q)

)−1
(q < pc) and P[τ∅q =∞] > 0 (q > pc). (4)
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Moreover, there exists a random, locally finite subset X∞ ⊂ [0, pc) such that, regardless of the
initial state x,

P
[
Xx
k ∩ [0, q] ∈ ·

]
−→
k→∞

P
[
X∞ ∩ [0, q] ∈ ·

]
(0 < q < pc), (5)

where → denotes convergence of probability measures in total variation norm distance. The
random point set X∞ a.s. consists of infinitely many points.

Numerical simulations strongly suggest that at q = pc, the restricted chain Xx
k ∩ [0, q] is

null recurrent and, starting from a state with no particles on the left on q, the probability
that one has to wait longer than k steps before the area on the left of q is again empty decays
as k−1/2, but we have no proof for this. Note that such a proof would establish self-organized
criticality for our process. Our process is self-organized in the sense that it finds the transition
point pc by itself. In particular, one does not have to tune a parameter of the model to exactly
the right value to see the (presumed) power-law critical behavior at pc.

1.2 Plačková’s model

As mentioned in the abstract, our second process of interest models traders placing buy and
sell limit orders at a stock market. This process was developed (in a discrete-space setting) by
Jana Plačková in her master thesis [Pla11]. Its formulation is as follows. Traders arrive one
after the other at a stock market. Each trader with equal probabilities either wants to buy
or sell one item of a certain good and has a uniformly distributed price that is the maximum
price she wants to spend or the minimum price she wants to obtain for the item. If the trader
sees a suitable offer in the order book, she takes the best available order. Otherwise, she places
a buy or sell limit order at her price in the order book.

Mathematically, this translates into a Markov chain (Lk, Rk)k≥0 taking values in the space
of all pairs (L,R) of finite subsets of [0, 1] with the property that x < y for all x ∈ L and
y ∈ R. Let (Uk)k≥0 be i.i.d. and uniformly distributed on [0, 1] and let (Bk)k≥1 be i.i.d. and
uniformly distributed on {−1,+1}. Starting with an initial state (L0, R0) in the space we have
just described, the Markov chain (Lk, Rk)k≥0 is inductively defined by the following rules.

(Lk, Rk) :=



(Lk−1 ∪ {Uk}, Rk−1) if Bk = −1, Uk < MR
k ,

(Lk−1, Rk−1\{MR
k }) if Bk = −1, MR

k < Uk,

(Lk−1\{ML
k }, Rk−1) if Bk = +1, Uk < ML

k ,

(Lk−1, Rk−1 ∪ {Uk}) if Bk = +1, ML
k < Uk.

(k ≥ 1), (6)

where ML
k := sup(Lk ∪ {0}) and MR

k := inf(Rk ∪ {1}) (k ≥ 0). In the interpretation above,
Lk and Rk describe the buy and sell orders present in the order book after the k-th trader has
arrived, and ML

k and MR
k are the highest buy and lowest ask price, respectively. Note that

our rules preserve the property that no point of L lies on the right of a point of R.
Numerical simulations suggest that there exists a critical point qc ≈ 0.2177(2) such that

regardless of the initial state,

lim inf
k→∞

ML
k = lim inf

k→∞
MR
k = qc and lim sup

k→∞
ML
k = lim sup

k→∞
MR
k = 1− qc a.s., (7)

while for each qc < q < 1− qc, both ML
k and MR

k spend a positive fraction of time on either
side of q. While we cannot prove this, we can prove a theorem that features a constant qc that
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is in good numerical agreement with the constant from (7) and that we conjecture to be the
same.

To explain this, we need to introduce a cut-off process. The difficulty of Plačková’s model
compared to the canyon model from the previous section is that its restriction to a subinterval
of [0, 1] is no longer Markovian. Nevertheless, it is possible to define a cut-off process that
plays in many ways a similar role.

We fix 0 ≤ q− < q+ ≤ 1 and define a Markov chain taking values in the space of all pairs
(L,R) of subsets of [q−, q+] with the properties:

(i) q− ∈ L, (ii) L ∩ (q−, q+] is locally finite,

(iii) q+ ∈ R, (iv) R ∩ [q−, q+) is locally finite,

(iv) x < y for all x ∈ L and y ∈ R.

(8)

Starting with any (L0, R0) in this space, letting (Uk)k≥0 and (Bk)k≥1 be as before, the cut-off
Markov chain (Lk, Rk)k≥0 is inductively defined for k ≥ 1 by the following rules (compare
(6)).

(Lk, Rk) :=



(
(Lk−1 ∪ {Uk})\[0, q−), Rk−1

)
if Bk = −1, Uk < MR

k ,(
Lk−1, (Rk−1\{MR

k }) ∪ {q+}
)

if Bk = −1, MR
k < Uk,(

(Lk−1\{ML
k }) ∪ {q−}, Rk−1

)
if Bk = +1, Uk < ML

k ,(
Lk−1, (Rk−1 ∪ {Uk})\(q+, 1]

)
if Bk = +1, ML

k < Uk.

(9)

where ML
k := sup(Lk) and MR

k := inf(Rk) (k ≥ 0). Note that (Lk−1 ∪ {Uk})\[0, q−) means
that we first add {Uk} to the set Lk−1, and then subtract [0, q−); the effect of this is that if
Uk < q−, then we do nothing. Likewise, (Lk−1\{ML

k }) ∪ {q−} means that we first subtract
{ML

k } and then add {q−}; the effect of this is that if ML
k = q−, then we do nothing.

In particular, if q− = 0 and q+ = 1, then this is the same process as in (6), except that we
have added the point 0 to each Lk and the point 1 to each Rk. In general, we can think of
the points q− ∈ Lk and q+ ∈ Rk as “immortal” points that cannot be removed. Contrary to
the canyon model from the previous section, there seems to be no easy way to compare such
a cut-off process with the original process.

We observe that if (Lk, Rk)k≥0 are defined in terms of (Uk)k≥1 and (Bk)k≥1 as in (9),
then the joint process (Lk, Rk, Uk, Bk)k≥1 is in fact a Markov chain. We will be interested in
invariant laws of this Markov chain.

Theorem 3 (Stationary cut-off process) Assume that for some 0 ≤ q− < q+ ≤ 1 the
cut-off process in (9) has an invariant law, and let (Lk, Rk, Uk, Bk)k∈Z be the corresponding
stationary process. Assume moreover that for this stationary process

P[ML
k = q−] = 0 and P[MR

k = q+] = 0 (k ∈ Z). (10)

Then q− = qc and q+ = 1− qc, where qc := 1 + 1/z with z the unique solution of the equation
1 + z + ez = 0.

Numerically, the constant qc from Theorem 3 is given by qc ≈ 0.21781170571980, in good
agreement with the numerical value for the constant in (7). The conditions (10) say that
the boundaries q− and q+ are natural in the sense that the process never “tries to remove”
the immortal particles at q− and q+, i.e., the difference between the cut-off rules (9) and the
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original rules (6) never comes into play. Note that if one believes in formula (7) for some value
of qc, then it is quite natural to expect that in analogy with Theorem 2, the restriction of the
process to (qc, 1 − qc) converges to an invariant law for a cut-off process with such natural
boundaries.

1.3 Discussion

Our models, and the first one in particular, are similar to the well-known Bak Sneppen model
[BS93], which is one of the best-known models exhibiting self-organized criticality, although
this is only been fully rigorously established for a simplified version of the model [MS12]. Like
our first process, the Bak Sneppen model (and its modifications) is also based on the principle
that the particle with the lowest value is killed. This rule alone, however, is not enough to see
interesting behavior.

In our first process, we add particles one by one and also kill the particle with the lowest
value, but only if this is not the newly arrived particle. In this way, the total population is
allowed to grow and the process takes the limit of large population size by itself, so to say.
The second process is similar, except that particles heap up at both ends of the unit interval.

In the Bak Sneppen model, the total number of particles is fixed, and when a particle
is killed, not only this particle, but also some of its neighbors (according to some additional
structure) are killed, and the killed particles are replaced by new particles with uniformly
chosen values. The original Bak Sneppen model and its modifications differ in the way these
“neighbors” are chosen. In the original model, the particles are numbered 0, . . . , N − 1 and
their neighbors are those with neighboring numbers (modulo N). In the modified model from
[MS12], the neighbors are uniformly chosen from the population.

Closely related to the Bak Sneppen model is the Barabási queueing system introduced in
[Bar05], which has so far been studied only in the physics literature. Exact results for this
model have been derived in [Vaz05, Ant09]. In the original model, items in a queue have a
priority taking values in a continuous interval. In each time step, with probability p close to
one, the item with the highest priority is served, and with the remaining probability a random
item is removed from the list. At the end of each step, a new item is added so that the length
of the queue remains constant.

In [CG09], this latter assumption is dropped and the number of items added in each time
step is assumed to be larger than one, with the result that some items never get served and
the length of the queue grows without bounds, in a way that is very similar to our first model.
They show that their model can be mapped to invasion percolation on a tree. A similar
mapping also exists for Barabási’s original model [CG07]. Contrary to our models, the critical
point for the model in [CG09] is trivial since the number of items added and removed in each
step is known.

Somewhat similar in spirit to these models is also the model [GMS11], which is basically a
supercitical branching process in which fitnesses are assigned to the particles and those killed
have the lowest fitness.

We note that in the construction of all these processes and in particular also ours, only
the relative order of the points (priorities) matters, so replacing the uniformly distribution on
[0, 1] by any other atomless law on R yields the same model up to a continuous transformation
of space. Starting from the empty initial state, adding points one by one, one arrives after k
steps at a random permutation of k elements. Our quantities of interest may thus be described
as functions of such a random permutation. This is somewhat reminiscent of the way the
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authors of [AD99] use what they call Hammersley’s process to study the longest increasing
subsequence of a random permutation. There is an extensive literature on functions of random
permutations, but none of those studied so far seem relevant for our processes.

2 Main idea of the proofs

2.1 The canyon model

In the present section, we describe the main idea of the proof of Theorems 1 and 2, and in
Section 2.2 below, we explain the main idea behind Theorem 3.

As already mentioned in Section 1.3, by a simple transformation of space, we may replace
the uniformly distributed random variables (Uk)k≥1 by real random variables having any
non-atomic distribution. At present, it will be more convenient to work with exponentially
distributed random variables with mean one, so we transform the unit interval [0, 1] into the
closed halfline [0,∞] with the transformation q 7→ f(q) := − log(1 − q), set σk := f(Uk)
(k ≥ 1), and, concentrating for the moment on the process started in the empty initial state,
we let Yk := f(X∅k) denote the image of X∅k under f . Then

Yk :=

{
Yk−1 ∪ {σk} if σk < Nk−1,

(Yk−1 ∪ {σk})\{Nk−1} if σk > Nk−1.
(k ≥ 1), (11)

where Nk := min(Yk ∪ {∞}). Let

Ft(k) :=
∣∣Y (t)
k

∣∣ with Y
(t)
k := Yk ∩ [0, t] (k ≥ 0, t ≥ 0) (12)

denote the number of points on the left of t.
We claim that the function-valued process (Ft)t≥0 with Ft = (Ft(k))k≥0 is a continuous-

time Markov processes, where the parameter t plays the role of time. Indeed, at each time
t = σk, let Ft− :=

∣∣Yk ∩ [0, t)
∣∣ denote the state immediately prior to t and let

κt(k) := inf{k′ > k : Ft−(k′ − 1) = 0 and σk′ ≥ t}, (13)

with the convention that inf ∅ :=∞. Then at the time t = σk, the function Ft changes as

Ft(k
′) =

{
Ft−(k′) + 1 if k ≤ k′ < κt(k),

Ft−(k′) otherwise
(k′ ≥ 0). (14)

In the language of self-organized criticality, we may call such a move an avelange. In analogy
with (3), let

τ̃t := inf{k > 0 : Y
(t)
k = ∅} (15)

denote the first time the restricted process Y (t) returns to the empty set. At each (determin-
istic) t ≥ 0, the function Ft starts in Ft(0) = 0 and makes i.i.d. excursions away from 0 whose
length is distributed as τ̃t.

We will be interested in the quantity

∆Ft(k) :=


0 if Ft(k) = Ft(k − 1) = 0,

0 if Ft(k) = Ft(k − 1) > 0,

−1 if Ft(k) = Ft(k − 1)− 1,

+1 if Ft(k) = Ft(k − 1) + 1.

(k ≥ 1, t ≥ 0). (16)
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σk
t < Nk−1

t Nk−1

+1 0

σk
Nk−1 ≤ t

tNk−1

+1 0 −1

Figure 1: Illustration of the quantity ∆Ft(k) from (16). The value of ∆Ft(k) depends on the
relative order of t, Nk−1, and σk.

It follows from (14) that ∆Ft, too, evolves in a Markovian way as a function of t. For each
k ≥ 1, at time t = σk, one has ∆Ft−(k) ∈ {0,−1} immediately prior to t, and the function
∆Ft changes at time t according to the following rules.

(i) If ∆Ft(k) = 0 prior to σk, then ∆Ft(k) becomes +1 at time σk.

(ii) If ∆Ft(k) = −1 prior to σk, then ∆Ft(k) becomes 0 at time σk.

(iii) In both previous cases, the next 0 to the right of k, if there is one, becomes a −1.

These rules are further illustrated in Figure 1. Note that in these pictures, moving the level t
up across the value of σk, the value of ∆Ft(k) changes either from 0 to +1 or from −1 to 0.

We observe, similar to what we did for the cut-off version of Plačková’s model in Section 1.2,

that if (Yk)k≥0 is defined in terms of (σk)k≥1 as in (11) and (Y
(t)
k )k≥0 is the restricted process

as in (12), then the joint process (Y
(t)
k , σk)k≥1 is a Markov chain. If for some t+ > 0, the

return time τ̃t+ from (15) has finite expectation, then it is not hard to see that this Markov

chain (with t = t+) is ergodic, so it is possible to construct a stationary process (Y
(t+)
k , σk)k∈Z,

and such a process is unique in law. Setting

Y
(t)
k := Y

(t+)
k ∩ [0, t] (0 ≤ t ≤ t+) (17)

we also obtain stationary Markov chains (Y
(t)
k , σk)k∈Z for all 0 ≤ t ≤ t+, and associated

functions (Ft(k))k∈Z. We claim that for the stationary process, the densities of 0’s and −1’s
satisfy the following differential equations as a function of t, for 0 ≤ t ≤ t+:

∂
∂tP[∆Ft(k) = 0] =−2P[∆Ft(k) = 0]− P[∆Ft(k) = −1],

∂
∂tP[∆Ft(k) = −1] =P[∆Ft(k) = 0].

(18)

To see this, note that at a per site rate that is proportional to the density of 0’s, rules (i)
and (iii) come into effect, leading to the disappearance of two 0’s and the creation of one −1.
Similarly, at a per site rate that is proportional to the density of −1’s, rules (ii) and (iii) come
into effect, leading to the disappearance of one 0 and no net change in the number of −1’s.
We can solve (18) with the initial condition P[∆Ft(1) = 0] = 1, P[∆Ft(1) = −1] = 0 explicitly
to find

P[∆Ft(1) = 0] = (1− t)e−t and P[∆Ft(1) = −1] = te−t (0 ≤ t ≤ t+). (19)
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Since the density of 0’s must be a nonnegative number, we see that no stationary process

(Y
(t+)
k , σk)k∈Z can exist for t+ > 1. We will prove that on the other hand, for each t+ ≤ 1, a

stationary process exists, and τ̃t has finite expectation for t < 1. Since the function Ft makes
i.i.d. excursions away from 0 whose length is distributed as τ̃t, we can solve the expectation
of τ̃t from the density of 0’s. Indeed, by a simple renewal argument, for each t < 1,

P
[
∆Ft(k) = 0

]
= E[τ̃t]

−1P[τ̃ = 1] = e−tE[τ̃t]
−1. (20)

Combining this with (19), we find that

E[τ̃t] = (1− t)−1 (t < 1). (21)

Taking into account the transformation of variables t = f(q) := − log(1 − q), this yields the
formula for E[τ∅q ] in (4).

2.2 Plačková’s model

In the present section, we descibe the main idea of the proof of Theorem 3. The idea is similar
to what we did in the previous section. Fix 0 ≤ q− < q+ ≤ 1, assume that for these values of
q− and q+, the Markov chain defined by (9) has an invariant law, and let (Lk, Rk, Uk, Bk)k∈Z
be the corresponding stationary process. We will for each q ∈ [q−, q+] be interested in a
stationary process (∆q(k))k∈Z that is similar to the process (∆Ft(k))k∈Z considered in the
previous section, and derive a differential equation for the law of ∆q(k) as a function of q.

The random variable ∆q(k) takes values in

{L→, L ↑, L∗, L ↓, R→, R ↑, R∗, R ↓}, (22)

and is defined as

∆q(k) :=



L→ if Bk = −1, Uk < q ∧MR
k−1,

L ↑ if Bk = −1, q < Uk < MR
k−1,

R∗ if Bk = −1, q ≤MR
k−1 < Uk,

R ↓ if Bk = −1, MR
k−1 < q ∧ Uk,

R→ if Bk = +1, q ∨ML
k−1 < Uk,

R ↑ if Bk = +1, ML
k−1 < Uk < q,

L∗ if Bk = +1, Uk < ML
k−1 ≤ q,

L ↓ if Bk = +1, q ∨ Uk < ML
k−1.

(23)

The definition of ∆q(k) is further illustrated in Figure 2. Note that the event that MR
k−1 = q

only has positive probability if q = q+, since in this case it can happen thatMR
k−1 is the location

of the “immortal” particle at q+. For each (deterministic) q ∈ [q−, q+), the probability that
MR
k−1 = q is zero. Similar statements hold for ML

k−1. Also, the events MR
k−1 = Uk, M

L
k−1 = Uk,

and Uk = q have probability zero.
In Section 4.1 below, we will prove the following result. We note that in Proposition 18

of Section 4.2, we will moreover show that solutions (pL, pR, gL, gR) to (25) and (26), if they
exist, are unique.

Theorem 4 (Differential equation) Let 0 ≤ q− < q+ ≤ 1 and let (Lk, Rk, Uk, Bk)k∈Z be a
stationary cut-off process as in (9). Let

pL := E[ML
k ] and pR := E[MR

k ]. (24)
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Bk = −1
Uk

q ≤MR
k−1

0 q− q+ 1
MR
k−1

q

L→ L ↑ R∗

Bk = −1
Uk

MR
k−1 < q

0 q− q+ 1
MR
k−1

q

L→ R ↓

q < ML
k−1

Uk
Bk = +1

1q+q−0
ML
k−1

q

R→L ↓

ML
k−1 ≤ q

Uk
Bk = +1

1q+q−0
ML
k−1

q

R→R ↑L∗

Figure 2: Illustration of the quantity ∆q(k) from (23). If Bk = −1, then the quantity ∆q(k)
takes one of the values L →, L ↑, R∗, and R ↓ depending on the relative order of Uk, q, and
MR
k−1. If Bk = +1, then the quantity ∆q(k) takes one of the values R →, R ↑, L∗, and L ↓

depending on the relative order of Uk, q, and ML
k−1.

Then there exists continuous real functions gL, gR on [q−, q+] that are continuously differen-
tiable on (q−, q+) and solve the differential equations

∂
∂qgL(q) =−(1− q)−1

[
1
2(1− pR) + gL(q)− gR(q)

]
∂
∂qgR(q) = q−1

[
1
2pL + gR(q)− gL(q)

] } (
q ∈ (q−, q+)

)
, (25)

with the boundary conditions

gL(q−) = 1
2(pR − q−) gL(q+) = 0,

gR(q−) = 0 gR(q+) = 1
2(q+ − pL).

(26)

Moreover, for each q ∈ [q−, q+] and k ∈ Z, the distribution of the random variable ∆q(k) from
(23) is given by

P[∆q(k) = L→] = 1
2pR − gL(q) P[∆q(k) = R→] = 1

2(1− pL)− gR(q),

P[∆q(k) = L ↑] = gL(q) P[∆q(k) = R ↑] = gR(q),

P[∆q(k) = L∗] = 1
2pL − gL(q) P[∆q(k) = R∗] = 1

2(1− pR)− gR(q),

P[∆q(k) = L ↓] = gL(q) P[∆q(k) = R ↓] = gR(q).

(27)

We observe that by the definition of ∆q(k) in (23),

P[∆q+(k) = R∗] = P[Bk = −1, Uk > MR
k−1 ≥ q+]

= P[Bk = −1, Uk > q+, M
R
k−1 = q+] = 1

2(1− q+)P[MR
k−1 = q+],

(28)

9



while on the other hand, by (27) and (26),

P[∆q+(k) = R∗] = 1
2(1− pR)− gR(q+)

= 1
2(1− pR)− 1

2(q+ − pL) = 1
2

[
(1− q+)− (pR − pL)

]
.

(29)

It follows that
(1− q+)P[MR

k−1 < q+] = pR − pL. (30)

In a similar way, we obtain that

q−P[ML
k−1 < q−] = pR − pL. (31)

These equations can also be understood by requiring that the average number of particles of
R and L added between q− and q+ in each time step equals the average number of particles
of each type that are removed. Combining (30) and (31), we see that the requirement that
P[ML

k−1 = q−] = 0 = P[MR
k−1 = q+] implies q− = 1− q+. Using symmetry, one can now derive

a differential equation for the difference g∆ := gR − gL that can be explicitly solved, and one
arrives at Theorem 3.

3 Proofs for the canyon model

3.1 The lower invariant process

To make the arguments in Section 2.1 precise, we must show that the process (∆Ft(k))k∈Z in
(18) is well-defined and that its one-dimensional distributions satisfy the differential equation
(18) up to the first time that P[∆Ft(k) = 0] hits zero. It is tempting to view (∆Ft)t≥0 as an
interacting particle system, but since its jump rates do not satisfy the summability conditions
of [Lig85, Thm. I.3.9], standard theory cannot be applied and we have to proceed differently.

Our first lemma says that solutions to the inductive formula (11) are monotone in the
starting configuration.

Lemma 5 (First comparison lemma) Let y and ỹ be finite subsets of [0, 1] and let (Yk)k≥0

and (Ỹk)k≥0 be defined by the inductive relation (11) with Y0 = y and Ỹ0 = ỹ. Then y ⊂ ỹ
implies that Yk ⊂ Ỹk for all k ≥ 0.

Proof It suffices to show that Yk−1 ⊂ Ỹk−1 implies Yk ⊂ Ỹk. Adding the point σk to both
Yk−1 and Ỹk−1 obviously preserves the order of inclusion, as does simultaneously removing the
minimal elements Nk−1 from Yk−1 and Ñk−1 from Ỹk−1. Since Yk ⊂ Ỹk we have Nk−1 ≥ Ñk−1

and it may happen that Ñk−1 < σk ≤ Nk−1, in which case we remove Ñk−1 from Ỹk−1 but
not Nk−1 from Yk−1, but in this case Ñk−1 is not an element of Yk−1 so again the order is
preserved.

We will be interested in stationary solutions to the inductive relation (11). To this aim,
we consider a two-way infinite sequence (σk)k∈Z of i.i.d. exponentially distributed random
variables with mean one. For each m ∈ Z, we let (Ym,k)k≥m denote the solution to the
inductive relation (11) started in Ym,m := ∅. Since Ym−1,m ⊃ ∅ = Ym,m, we see by Lemma 5,
that Ym−1,k ⊃ Ym,k for all k ≥ m, so there exists a collection (Yk)k∈Z of countable subsets of
[0,∞) such that

Ym,k ↑ Yk as m ↓ −∞. (32)

10



We call the limit process (Yk)k∈Z from (32) the lower invariant process. We set

Ft(k) :=
∣∣Yk ∩ [0, t]

∣∣ (t ∈ [0,∞), k ∈ Z). (33)

The following theorem is the main result of the present subsection.

Theorem 6 (Lower invariant process) For all k ∈ Z, one has

Ft(k)

{
<∞ a.s. if t ∈ [0, 1),

=∞ a.s. if t ∈ [1,∞).
(34)

For each k, the set Yk a.s. has a minimal element Nk := min(Yk) and (Yk)k∈Z solves the
inductive relation (11) for all k ∈ Z. Finally, one has

P[∆Ft(k) = 0] = (1− t)e−t,
P[∆Ft(k) = 0] = 1− (1 + t)e−t,

P[∆Ft(k) = −1] = te−t,

P[∆Ft(k) = +1] = te−t,

(t ∈ [0, 1), k ∈ Z), (35)

where ∆Ft(k) is defined as in (16).

As a first step towards the proof of Theorem 6, for t ∈ [0,∞), we look at the restricted
lower invariant process

Y
(t)
k := Yk ∩ [0, t] (k ∈ Z). (36)

We define N
(t)
k := inf(Y

(t)
k ∪ {t}) (k ∈ Z).

Lemma 7 (Restricted process) For each t ∈ [0,∞), one of the following two alternatives
occurs:

(i) |Y (t)
k | =∞ a.s. for all k ∈ Z.

(ii) |Y (t)
k | <∞ a.s. for all k ∈ Z and (Y

(t)
k )k∈Z solves the inductive relation

Y
(t)
k :=


Y

(t)
k−1 ∪ {σk} if σk ≤ N

(t)
k−1,(

Y
(t)
k−1 ∪ {σk}

)
\{N (t)

k−1} if N
(t)
k−1 < σk ≤ t,

Y
(t)
k−1\{N

(t)
k−1} if t < σk,

(k ∈ Z). (37)

Proof Set Y
(t)
m,k := Ym,k ∩ [0, t]. Since |Y (t)

m,k−1| and |Y (t)
m,k| differ at most by one, letting

m→ −∞, we see that the event{
|Y (t)
m,k| =∞ ∀k ∈ Z

}
∪
{
|Y (t)
m,k| <∞ ∀k ∈ Z

}
(38)

has probability one. Since the indicators of both events occuring in this expression are trans-
lation invariant functions of the ergodic random variables (σk)k∈Z, it follows that exactly one
of these events has probability one.

For each m ≤ k− 1, the sets Ym,k−1 and Ym,k−1 are related as in (11), which is easily seen

to imply that Y
(t)
m,k−1 and Y

(t)
m,k are related as in (37). If |Y (t)

k−1| < ∞, then, since Y
(t)
k−1 is the

increasing limit of Y
(t)
m,k−1 as m→ −∞, there exists some m0 such that Y

(t)
k−1 = Y

(t)
m,k−1 for all

m ≤ m0. Now also Y
(t)
k = Y

(t)
m,k for all m ≤ m0 and hence Y

(t)
k and Y

(t)
k−1 are related as in (37).

11



Lemma 8 (Minimality) Let t ∈ [0,∞) be such that case (ii) of Lemma 7 holds, let (Y
(t)
k )k∈Z

be the restricted lower invariant process defined in (36) and let (Ỹ
(t)
k )k∈Z be any other solution

of the two-way infinite inductive relation (37), taking values in the finite subsets of [0, t]. Then

Y
(t)
k ⊂ Ỹ (t)

k for all k ∈ Z a.s.

Proof Set Y
(t)
m,k := Ym,k ∩ [0, t] as in the previous proof. Then (Y

(t)
m,k)k≥m solves the inductive

relation (37) for k ≥ m and Y
(t)
m,m = ∅ ⊂ Ỹ

(t)
m . In analogy with Lemma 5, it is easy to prove

that solutions to (37) are monotone in the initial state, so it follows that Y
(t)
m,k ⊂ Ỹ

(t)
k for all

k ≥ m. Letting m ↓ −∞ for fixed k now proves the statement.

Since a.s. σk 6= 0 for all k ∈ Z, it is clear from the definition that Yk ∩ {0} = ∅ and hence
∆F0(k) = 0 for all k ∈ Z. The next key proposition shows that Ft(k) is also a.s. finite for t
small enough.

Proposition 9 (Finite regime) Let s ∈ [0,∞) and assume that a.s. Fs(k) < ∞ for all
k ∈ Z. Then there exists some ε such that

P[∆Fs(k) = 0] = ε > 0 (k ∈ Z). (39)

Moreover, for all t ≥ s such that 2(e−s − e−t) < ε, one has Ft(k) <∞ for all k ∈ Z a.s. and

P[∆Ft(k) = 0] ≥ ε− 2(e−s − e−t) (k ∈ Z). (40)

Proof By assumption, Fs(k) is a.s. finite, so P[Fs(k) ≤ m] > 0 for some m < ∞. But then,
by stationarity,

P
[
∆Fs(k) = 0

]
≥P
[
Fs(k −m− 1) ≤ m, σk′ > s ∀k −m− 1 < k′ ≤ k

]
=P
[
Fs(k −m− 1) ≤ m

]
· P
[
σk′ > s ∀k −m− 1 < k′ ≤ k

]
> 0,

(41)

where we have used that Fs(k−m− 1) is a function of (σk′)k′≤k−m−1 and hence independent
of (σk′)k−m−1<k′≤k. This proves (39).

The idea of the proof of (40) is easily explained. For each k such that s < σk ≤ t, at most
two 0’s are destroyed, so the density of 0’s can at most decrease by two times the density of
such k’s, i.e., by 2(e−s − e−t). To make this precise, let us define

∆Gt(k) := 21{σk ∈ (s, t]} − 1{∆Fs(k) = 0} (k ∈ Z), (42)

and let Gt : Z→ Z be defined by

Gt(0) = 0 and Gt(k)−Gt(k − 1) = ∆Gt(k) (k ∈ Z). (43)

We say that k ∈ Z is a point of decrease of the function Gt if

Gt(k
′) > Gt(k) ∀k′ < k. (44)

Let t ≥ s be such that 2(e−s − e−t) < ε. We will prove that

P
[
k is a point of decrease of Gt

]
= ε− 2(e−s − e−t), (45)

12



and there exists a solution (Ỹ
(t)
k )k∈Z of the two-way infinite inductive relation (37) taking

values in the finite subsets of [0, t] such that the associated function F̃t(k) := |Ỹ (t)
k | satisfies

∆F̃t(k) = 0 for each point of decrease k of Gt. (46)

By Lemma 8, we have Ft ≤ F̃t, so it follows that Ft(k) is a.s. finite for each k ∈ Z, and by
(45) we see that

P[∆Ft(k) = 0] ≥ P[∆F̃t(k) = 0] ≥ P
[
k is a point of decrease of Gt

]
= ε− 2(e−s − e−t), (47)

proving (40).
We are left with the task of proving (45) and (46). We start with the latter. By (45) and

the ergodicity of the random variables (σk)k∈Z, points of decrease of Gt occur with spatial
density ε−2(e−s−e−t), which is positive by assumption. In particular, there exists sequences
of such points tending to −∞ and +∞.

Let m and n be points of decrease of Gt that are consecutive in the sense that m < n and

{m1, . . . , n − 1} does not contain any points of decrease of Gt. Let (Ỹ
(t)
k )k≥m be defined by

the inductive relation (37) with Ỹ
(t)
m = ∅. We claim that∣∣Ỹ (t)

k ∩ (s, t]
∣∣ ≤ Gt(k)−Gt(m) (m ≤ k < n). (48)

Indeed, in a given step k, the left-hand side of this equation can only increase by one if
σk ∈ (s, t], but in this case Gt also increases by one. The right-hand side decreases by one
if ∆Fs(k) = 0 and σk 6∈ (s, t], but in this case either the left-hand case also decreases by
one, or it is already zero. Since m and n are consecutive points of decrease of Gt, we have
Gt(k)−Gt(m) ≥ 0 for all m ≤ k < n, so also in this case the order is preserved.

Since n is a point of decrease of Gt, we have ∆Fs(n) = 0 and σn 6∈ (s, t], so (48) proves that

F̃t(k) := |Ỹ (t)
k | satisfies ∆F̃t(n) = 0. Pasting together solutions of (37) between consecutive

points of decrease of Gt, we obtain a two-way infinite solution satisfying (46).
We are left with the task of proving (45). By the ergodicity of the (σk)k∈Z,

lim
k→∞

1

k
Gt(−k) = −E[∆Gt(0)] = ε− 2(e−s − e−t), (49)

which is by assumption positive. It follows that there are infinitely many points of decrease
of Gt on the left of the origin and hence such points must occur with a positive density. For
each k ∈ Z, let

λ(k) := min
{
k′ ≥ k : k′ is a point of decrease of Gt

}
. (50)

Set f(k, k′) := E[∆Gt(k)1{λ(k)=k′}]. Then f(k+m, k′ +m) = f(k, k′) and hence, by the mass
transport principle,

E[∆Gt(0)] =
∑
k′∈Z

f(0, k′) =
∑
k∈Z

f(k, 0)

= E
[ ∑
k:λ(k)=0

∆Gt(k)
]

= −P[0 is a point of decrease of Gt],
(51)

where we have used that
∑

k:λ(k)=0 ∆Gt(k) = −1 if 0 is a point of decrease and zero otherwise.

Our next aim is to derive the differential equation (18). We will actually derive the
somewhat different equation (52) below, but it is easy to check that the two equations have
the same solution (19) with the initial conditions P[∆Ft(0) = 0] = 1, P[∆Ft(0) = −1] = 0.
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Proposition 10 (Differential equation) Let Ft be the as in (33) and assume that u > 0
is such that Fu(k) < ∞ a.s. for all k ∈ Z. For t ∈ [0, u] define ∆Ft(k) as in (16). Then the
functions t 7→ P[∆Ft(0) = 0] and t 7→ P[∆Ft(0) = −1] are continuously differentiable on [0, u]
and satisfy the differential equations

∂
∂tP[∆Ft(k) = 0] =−P[∆Ft(k) = 0]− e−t,

∂
∂tP[∆Ft(k) = −1] =−P[∆Ft(k) = −1] + e−t.

(52)

Proof For all t ∈ [0, u] and k ∈ Z, define κt(k) as in (13), i.e.,

κt(k) := inf{k′ > k : ∆Ft−(k′) = 0}. (53)

Since the set {k ∈ Z : ∆Ft(k) = 0} is nonincreasing in t, we see that for each k ∈ Z there is
at most one t ∈ [0, u] such that

at time t, one has t = σk′ for some k′ < k and κt(k
′) = k. (54)

Note that at such a time, ∆Ft−(k) = 0 and ∆Ft = −1. If such a time exists, we denote it by
τk. For definiteness, we set τk :=∞ if there exists no t ∈ [0, u] such that (54) holds.

For all 0 ≤ s < t ≤ u, we observe that

P[∆Ft(k) = 0] =P
[
∆Fs(k) = 0, {σk, τk} ∩ (s, t] = ∅

]
,

P[∆Ft(k) = −1] =P
[
∆Fs(k) = −1, σk 6∈ (s, t]

]
+ P

[
τk ∈ (s, t], σk > t

]
.

(55)

Since ∆Fs(k) = −1 implies that σk > s and ∆Fs depends only on information about the times
(σk′)k′∈Z until time s, we have

P
[
∆Fs(k) = −1, σk 6∈ (s, t]

]
= P[∆Fs(k) = −1]e−(t−s). (56)

Using translation invariance and changing the summation order, we see that

P
[
τk ∈ (s, t]

]
=
∑
k′∈Z

P
[
σk′ ∈ (s, t], κσk′ (k

′) = k
]

=
∑
k′∈Z

P
[
σ0 ∈ (s, t], κσ0(0) = k − k′

]
= P

[
σ0 ∈ (s, t]

]
= e−s − e−t = e−s(1− e−(t−s)).

(57)
Finally, we observe that τk ∈ (s, t] implies τk < σk and we use this to estimate

P
[
τk ∈ (s, t] and σk ∈ (s, t]

]
≤ P

[
τk ∈ (s, t] and σk − τk ≤ (t− s)

]
= e−s

(
1− e−(t−s))2, (58)

where in the last step we have used (57) and the fact that by the memoryless property of te
exponential distribution, conditional on τk ∈ (s, t], the random variable σk−τk is exponentially
distributed.

We rewrite the right-hand side of the first equation in (55) as

P
[
∆Fs(k) = 0, {σk, τk} ∩ (s, t] = ∅

]
= P

[
∆Fs(k) = 0

]
− P

[
∆Fs(k) = 0, σk ∈ (s, t]

]
− P

[
∆Fs(k) = 0, τk ∈ (s, t]

]
+ P

[
∆Fs(k) = 0, σk ∈ (s, t] and τk ∈ (s, t]

]
.

(59)
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Here, arguing as in (56) and using (57)

P
[
∆Fs(k) = 0, σk ∈ (s, t]

]
=P[∆Fs(k) = 0]

(
1− e−(t−s)),

P
[
∆Fs(k) = 0, τk ∈ (s, t]

]
=P
[
τk ∈ (s, t]

]
= 1− e−(t−s).

(60)

Using also (58), it follows that for any 0 ≤ s < s+ ε ≤ u,

P
[
∆Fs+ε(k) = 0

]
− P

[
∆Fs(k) = 0

]
= −εP[∆Fs(k) = 0]− εe−s +O(ε2), (61)

where O(ε2) is a term that can uniformly be estimated as |O(ε2)| ≤ Kε2 for some fixed
K <∞. Treating the second equation in (55) in a similar manner, using (56), (57) and (58),
we obtain

P
[
∆Fs+ε(k) = −1

]
− P

[
∆Fs(k) = −1

]
= −εP

[
∆Fs(k) = −1

]
+ εe−s +O(ε2). (62)

Letting ε ↓ 0, we arrive at (52).

Proof of Theorem 6 Let I be the set of all t ∈ [0,∞) such that case (i) of Lemma 7) holds,
i.e., Ft(k) < ∞ a.s. for all k ∈ Z. As remarked above Proposition 9, we have 0 ∈ I. It is
immediate from the definition of Ft(k) in (33) that t 7→ Ft(k) is a.s. nondecreasing, so I is a
subinterval of [0,∞) containing 0. It follows from Proposition 9 that I is of the form I = [0, tc)
for some tc ∈ (0,∞]. Moreover, P[∆Ft(k) = 0] > 0 for t ∈ [0, tc) and if tc <∞, then we must
have

lim
t↑tc

P[∆Ft(k) = 0] = 0. (63)

Solving the differential equation of Proposition 10, we see that

P[∆Ft(k) = 0] = (1− t)e−t,
P[∆Ft(k) = −1] = te−t,

(t ∈ [0, tc), k ∈ Z), (64)

which together with (63) allows us to conclude that tc = 1.
Since F1(k) = ∞ a.s., it follows that Nk := inf(Yk) < 1 a.s., and since Ft(k) < ∞ a.s. for

all t < 1, this infimum is in fact a minimum. Since for each t < 1, the restricted process Y (t)

solves the inductive relation (37) and since for each k, there exists a t < 1 such that N
(t)
k < t,

it is easy to see that (Yk)k∈Z solves the inductive relation (11).
To conclude the proof, we must show that

P[∆Ft(k) = +1] = P[∆Ft(k) = −1] (0 ≤ t < 1), (65)

which toghether with (64) and the requirement that the total probability is one then yields
(35). Let us write

FMt (k) := Ft(k) ∧M and ∆FMt (k) := FMt (k)− FMt (k − 1) (k ∈ Z, M ∈ N). (66)

By stationarity E[FMt (k)] = E[FMt (k− 1)], so letting M ↑ ∞ we conclude that E[∆Ft(k)] = 0
and hence the two probabilities in (65) are equal.

Remark Although, by Theorem 6, the function Ft is finite only for t < 1, it is possible to
give a sensible definition of ∆Ft also for t ≥ 1 by setting (compare (16) and Figure 1)

∆Ft(k) :=


0 if t < Nk−1 < σk,

0 if Nk−1 < σk ≤ t
−1 if Nk−1 ≤ t < σk,

+1 if σk ≤ t ∧Nk−1.

(
k ∈ Z, t ∈ [0, 1]

)
, (67)

where Nk := min(Yk) (k ∈ Z) and (Yk)k∈Z is the lower invariant process.
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3.2 Ergodicity

In the present section, we use Theorem 6 to derive Theorems 1 and 2. Most of the work is
already done. The remaining arguments are for a large part standard Markov chain theory.

Let Y0 = y be any finite subset of [0,∞) and let (Yk)k≥0 be the Markov chain with initial
state Y0 defined by the inductive relation (11). We have already seen that for each t ∈ [0,∞),

the restricted process Y
(t)
k := Yk ∩ [0, t] is a Markov chain and in fact given by the inductive

relation (37). When we need to specify the initial state y, we make this explicit in our notation

by writing (Y y
k )k≥0 for the original process and (Y

y (t)
k )k≥0 for the restricted process. As in

(3), we define

τ̃yt := inf{k > 0 : Y
y (t)
k = ∅}. (68)

In particular, if y = ∅, then this is the first return time of the restricted process to the empty
configuration.

Lemma 11 (Expected return time) One has E[τ̃∅t ] = (1− t)−1 for each t ∈ [0, 1).

Proof Let (Yk)k∈Z be the lower invariant process from (32) and let Ft and ∆Ft be defined as
in (33) and (16). Then, by Theorem 6, for t ∈ [0, 1) one has

(1− t)e−t = P[∆Ft(k) = 0] = P[Ft(k − 1) = 0]P[σk > t] = P[Ft(k − 1) = 0]e−t, (69)

which proves that the restricted lower invariant process satisfies P[Y
(t)
k = ∅] = 1 − t. Let

λt(k) := sup{k′ < k : Y
(t)
k′ = ∅} (k ∈ Z). Then, for t ∈ [0, 1), by the mass transport principle,

1 =
∑
k∈Z

P[λt(0) = −k] =
∑
k∈Z

P[λt(k) = 0] =
∑
k∈Z

P[Y
(t)

0 = ∅, 0 < τ̃t ≤ k] = (1− t)E[τ̃∅t ]. (70)

Lemma 12 (Transience) One has P[τ̃∅t =∞] > 0 for each t ∈ (1,∞).

Proof Let Ft(k) :=
∣∣Y ∅k ∩ [0, t]

∣∣ (k ≥ 0) and for k ≥ 1 define ∆Ft(k) as in (16). We observe
that for any 0 ≤ s < t,

Ft(n) ≥
n∑
k=1

1{s < σk < t} −
n∑
k=1

1{Fs(k − 1) = 0}, (71)

where we have used that ∆Ft(k) ≥ 0 whenever s < σk < t, and ∆Ft(k) = +1 if moreover
Fs(k − 1) 6= 0. Since the process (Fs(k))k≥0 makes i.i.d. excursions from 0 with length
distributed as τ̃∅s , by Lemma 11 and the strong law of large numbers, we have for each s ∈ [0, 1)

n−1
n∑
k=1

1{s < σk < t} −→n→∞ (e−s−e−t) and n−1
n∑
k=1

1{Fs(k − 1) = 0} −→n→∞ 1−s a.s. (72)

Choosing s close enough to 1 such that 1 − s < e−s − e−t, we see that Ft(n) → ∞ a.s.
Since (Ft(k))k≥0 makes i.i.d. excursions from 0 with length distributed as τ̃∅t , it follows that
P[τ̃∅t =∞] > 0.

Lemmas 11 and 12 show that the restricted process Y
(t)
k = Yk ∩ [0, t] started from the

empty configuration returns to the empty configuration in finite expected time if t < 1 and

16



has a positive probability never to return to the empty configuration if t > 1. We would
like to conclude from this that the process, started in an arbitrary initial state, is “positively
recurrent” for t < 1 and “transient” for t > 1. Since the state space of Y (t) is uncountable,
we have to specify in exactly which meaning we use these terms. Recall from (68) that τ̃yt
is the first time after time zero that the restricted process Y y (t) started in the initial state y
is in the empty state. We will say that Y (t) is positive recurrent, null recurrent, or transient
depending on whether case (i), (ii), or (iii) of the following lemma occurs.

Lemma 13 (Recurrence versus transience) For each t > 0, exactly one of the following
three possibilities occurs.

(i) For all finite y ⊂ [0,∞), one has E[τ̃yt ] <∞.

(ii) For all finite y ⊂ [0,∞), one has τ̃yt <∞ a.s. and E[τ̃yt ] =∞.

(iii) For all finite y ⊂ [0,∞), one has P[τ̃yt =∞] > 0.

We first need a preparatory result. Instead of using general Markov chain techniques (such
as the theory of Harris recurrence) to prove Lemma 13, we will rely on monotonicity arguments
that are special to our model. The next lemma, which is of some interest in its own right,
may loosely be described as saying that for Y (t) to avoid becoming the empty set, it is good
to have many particles that are situated as far as possible to right in the interval [0, t].

Lemma 14 (Second comparison lemma) For each 0 ≤ s ≤ t and finite y ⊂ [0,∞), let
F ys,t(k) :=

∣∣Y y
k ∩ [s, t]

∣∣ (k ≥ 0). Fix t > 0 and let x, y ⊂ [0,∞) be finite. Then

F xs,t(0) ≤ F ys,t(0) ∀s ∈ [0, t] implies F xs,t(k) ≤ F ys,t(k) ∀s ∈ [0, t], k ≥ 0. (73)

Proof It suffices to prove (73) for k = 1; the general statement follows by induction. Without
loss of generality, we may also assume that x and y are subsets of [0, t]. Order the elements
of x and y as x = {x1, . . . , xn} and y = {y1, . . . , ym} with xn < · · · < x1 (in this order!) and
ym < · · · < y1. Then the assumption that F xs,t(0) ≤ F ys,t(0) ∀s ∈ [0, t] is equivalent to the
statement that m ≥ n and xi ≤ yi for all i = 1, . . . , n. We must show that we can order the
elements of x̃ := Y x

1 ∩ [0, t] and ỹ := Y y
1 ∩ [0, t] in the same way. We distinguish three different

cases.
Case I: σ1 < xn. In this case, no points are removed from x while x̃n+1 := σ1 is added as

the (n + 1)-th element. Since xn ≤ yn, the elements y1, . . . , yn remain unchanged while ỹn+1

is the minimal element of {σ1} ∪ {ym, . . . , yn+1}, which lies on the right of x̃n+1 = σ1.
Case II: xn < σ1 < t. In this case, xn is removed from x and there exist 1 ≤ n′ ≤ n and

n′ ≤ m′ ≤ m+ 1 such that σ1 is inserted into x between the n′-th and (n′− 1)-th element and
into y between the m′-th and (m′ − 1)-th element, where we allow for the cases that n′ = 1
(σ1 is added at the right end of x and possibly also of y) and m′ = m+ 1 (σ1 is added at the
left end of y). The elements of the new sets x̃ and ỹ, ordered from low to high, are now

{xn−1, . . . , xm′ , xm′−1, . . . , xn′ , σ1, xn′−1, . . . , x1}= x̃,

{ym−1, . . . , yn, yn−1, . . . , ym′ , σ1, ym′−1, . . . , yn′ , yn′−1, . . . , y1}= ỹ.
(74)

Here xn−1, . . . , xm′ lie on the left of yn−1, . . . , ym′ , and likewise xn′−1, . . . , x1 lie on the left of
yn′−1, . . . , y1, respectively. Since moreover

xm′−1 < · · · < xn′ < σ1 < ym′−1 < · · · < yn′ , (75)
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these elements are ordered in the right way too.
Case III: t < σ1. In this case, the lowest elements of x and y are removed while no new

elements are added, which obviously also preserves the order.

Proof of Lemma 13 It suffices to show that for any finite y ⊂ [0,∞), one has τ̃yt < ∞ a.s.
if and only if τ̃∅t < ∞ a.s., and likewise, E[τ̃yt ] = ∞ if and only if E[τ̃∅t ] = ∞. By the first
comparison Lemma 5, τ̃∅t ≤ τ̃yt which immediately gives us the implications in one direction.
To complete the proof, we must show that P[τ̃yt = ∞] > 0 implies P[τ̃∅t = ∞] > 0 and
E[τ̃yt ] =∞ implies E[τ̃∅t ] =∞.

Recalling notation introduced in the second comparison Lemma 14, we observe that for
any finite y ⊂ [0,∞) there is a k ≥ 1 such that

P
[
τ̃∅t > k and F ∅s,t(k) ≥ F ys,t(0) ∀s ∈ [0, t]

]
> 0. (76)

Using this, Lemma 14, and the Markov property, we see that

P[τ̃∅t =∞]≥P
[
τ̃∅t > k and F ∅s,t(k) ≥ F ys,t(0) ∀s ∈ [0, t]

]
P[τ̃yt =∞],

E[τ̃∅t ]≥P
[
τ̃∅t > k and F ∅s,t(k) ≥ F ys,t(0) ∀s ∈ [0, t]

](
k + E[τ̃yt ]

)
,

(77)

which together with (76) gives us the desired implications.

Positive recurrence in the sense of Lemma 13 suffices to prove ergodicity of the restricted
process Y (t). In fact, the following general result applies.

Proposition 15 (Markov chain with an atom) Let P be a measurable probability kernel
on a Polish space E and for each x ∈ E, let (Xx

k )k≥0 denote the Markov chain with initial
state x and transition kernel P . Let z ∈ E be fixed and let

τx := inf{k > 0 : Xx
k = z} (x ∈ E). (78)

Assume that E[τ z] < ∞, P[τx < ∞] = 1 for all x ∈ E, and that the greatest common divisor
of {k > 0 : P[τ z = k] > 0} is one. Then there exists a unique invariant law ν for P and∥∥ν − P

[
Xx
k ∈ ·

]∥∥ −→
k→∞

0, (79)

where ‖ · ‖ denotes the total variation norm.

Proof This follows from standard arguments, so we only sketch the proof. First, one can
check that

ν := E[τ z]−1
∞∑
k=1

P[τ z ≤ k and Xz ∈ · ] (80)

is an invariant law for P . We can couple the corresponding stationary process (Xk)k≥0 and
the process (Xx

k )k≥0 started in a deterministic initial state x in such a way that they evolve
independently until the time σ := inf{k ≥ 0 : Xx

k = z = Xk}. Since P[τx < ∞] = 1 for all
x ∈ E, both processes reach z in a finite random time and after that make i.i.d. excursions
away from z whose length has finite mean E[τ z]. Using also the aperiodicity assumption, it
follows that σ <∞ a.s. so the coupling is successful.

Remark 1 The assumption that the state space is Polish guarantees that Kolmogorov’s exten-
sion theorem can be applied to construct the process from its finite dimensional distributions.
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This assumption can certainly be relaxed; see [MT09, Section 3.1] for a “general” set-up which
is, however, so general that singletons {z} may fail to be measurable. When we apply Propo-
sition 15 below to the restricted process Y (t), the state space is the set of all simple counting
measures on [0, t], equipped with the topology of weak convergence. This space is Polish be-
cause of the following facts: 1. for any Polish space E, the space M(E) of finite measures on
E, equipped with the topology of weak convergence, is Polish, 2. the set N [0, t] of all counting
measures on [0, t] is a closed subset of M[0, t], 3. the set of all simple counting measures is a
Gδ-subset of N [0, t], 4. a Gδ-subset of a Polish space is Polish.

Remark 2 The fact that formula (80) defines an invariant law follows from [MT09, Theo-
rem 10.1.2 (i)]. The fact that our coupling is successful follows from [Woe09, Lemma 3.46].
The latter is written down for Markov chains with countable state space only, but this applies
generally since any N+-valued random variable with finite mean is the law of the return time
of a suitably constructed positively recurrent Markov chain with countable state space.

Proof of Theorem 1 By Lemma 11, for each t < 1, the restricted process Y
y (t)
k = Y y

k ∩ [0, t]

is positively recurrent in the sense of Lemma 13, case (i), so a.s. Y
y (t)
k = ∅ for infinitely many

k, proving that

lim sup
k→∞

N
y (t)
k ≥ t a.s. (t < 1), (81)

where N
(t)
k := inf(Y

y (t)
k ∪ {t}) (k ∈ Z). On the other hand, by Lemma 12, Y y (t) is transient

in the sense of Lemma 13, case (i), for all t > 1, so

P
[
∃n s.t. Y y

k ∩ [0, t] 6= ∅ ∀k ≥ n
]

= 1. (82)

Combining this with (81) we see that

lim sup
k→∞

Ny
k = 1 a.s., (83)

where Ny
k := min(Y y

k ∪ {∞}) (k ≥ 0). Translating this to the process X through the trans-
formaton q = 1− e−t as discussed in Section 2.1 yields Theorem 1.

Proof of Theorem 2 Formula (4) is just the translation of Lemmas 11 and 12 to the process
X through the transformaton t = − log(1− q) as discussed in Section 2.1.

Let (Yk)k∈Z denote the lower invariant process from (32). By Theorem 6, for each t < 1,
setting ν := P[Y0 ∩ [0, t] ∈ · ] defines an invariant law for the process restricted to [0, t]. By
Lemma 11, this process is positively recurrent in the sense of Lemma 13, case (i). Since
P[τ̃∅t = 1] = P[σ1 > t] = e−t, this process is ergodic in the sense of Proposition 15, i.e., ν is
its unique invariant law and the long-time limit law (w.r.t. the total variation norm) started
from any initial state. Translated for the process X, this yields (5). It has been proved in
Theorem 6 that Y0 ∩ [0, 1) is a.s. an infinite set, so the same is true for the set X∞ which is
the image of Y0 ∩ [0, 1) under the map t 7→ 1− e−t.

4 Proofs for Plačková’s model

4.1 The differential equation

Fix 0 ≤ q− < q+ ≤ 1, assume that for these values of q− and q+, the Markov chain defined
by (9) has an invariant law, and let (Lk, Rk, Uk, Bk)k∈Z denote the corresponding stationary
process, where (Lk, Rk) takes values in the space defined in (8).
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Lemma 16 (Stationary process) Any stationary process (Lk, Rk, Uk, Bk)k∈Z as above has
the following properties.

(i) (Uk)k∈Z and (Bk)k∈Z are independent i.i.d. sequences such that Uk is uniformly dis-
tributed on [0, 1] and Bk is uniformly distributed on {−1,+1}.

(ii) For each k ∈ Z, the pair (Lk−1, Rk−1) is independent of (Uk′ , Bk′)k′≥k.

Proof These may seem like tautologies but we have defined (Lk, Rk, Uk, Bk)k∈Z as a stationary
Markov process with certain transition probabilities, so the statements above are not a priori
part of its definition. However, the transition probabilities of (Lk, Rk, Uk, Bk)k∈Z are such that
in each time step, (Uk, Bk) are independent of (Lk−1, Rk−1), and then (Lk, Rk) are given in
terms of (Uk, Bk) and (Lk−1, Rk−1) as in (9). From this, the statements follow easily.

Lemma 17 (Frequencies of events) Let (Lk, Rk, Uk, Bk)k∈Z be a stationary process as in
Lemma 16 and let ∆q(k) be defined as in (23). Then, for each q ∈ [q−, q+],

P[∆q(k) = L→] = 1
2E[q ∧MR

k−1] P[∆q(k) = R→] = 1
2E[1− q ∨ML

k−1],

P[∆q(k) = L ↑] = 1
2E[(MR

k−1 − q) ∨ 0] P[∆q(k) = R ↑] = 1
2E[(q −ML

k−1) ∨ 0],

P[∆q(k) = L∗] = 1
2E[1{ML

k−1≤q}
ML
k−1] P[∆q(k) = R∗] = 1

2E[1{q≤MR
k−1}

(1−MR
k−1)],

P[∆q(k) = L ↓] = 1
2E[1{q<ML

k−1}
ML
k−1] P[∆q(k) = R ↓] = 1

2E[1{MR
k−1<q}

(1−MR
k−1)].

(84)

Proof Immediate from Lemma 16 and the definition of ∆q(k) in (23).

Proof of Theorem 4 By symmetry, it suffices to prove the statements for the function gL
only. Using Lemma 17, we observe that

P
[
∆q(k) ∈ {L→, L ↑}

]
= 1

2E[q ∧MR
k−1] + 1

2E[(MR
k−1 − q) ∨ 0] = 1

2E[MR
k−1] = 1

2pR (85)

and

P
[
∆q(k) ∈ {L ↓, L∗}

]
= 1

2E[1{ML
k−1≤q}

ML
k−1] + E[1{q<ML

k−1}
ML
k−1] = 1

2E[ML
k−1] = 1

2pL. (86)

Let FLq (k) := |Lk ∩ [q, q+]|, which by assumption (see (8) is a.s. finite for each q > q−. Then

E
[
FLq (k)− FLq (k − 1)

]
= P

[
∆q(k) = L ↑

]
− P

[
∆q(k) = L ↓

]
. (87)

Using stationarity, arguing as in (66), we see that this expression is zero, so

P
[
∆q(k) = L ↑

]
= P

[
∆q(k) = L ↓

]
(88)

for all q ∈ (q−, q+]. Using monotone convergence and Lemma 17, we see that the left-hand side
of (88) is continuous as a function of q on [q−, q+] while the right-hand side is right-continuous
as a function of q. We conclude that (88) holds also at q = q− and that

gL(q) := P
[
∆q(k) = L ↑

] (
q ∈ [q−, q+]

)
(89)

is a continuous function. This also shows that P
[
∆q(k) = L ↓

]
is in fact also left-continuous

as a function of q, which implies that

P
[
ML
k−1 = q] = 0

(
q ∈ (q−, q+]

)
, (90)
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i.e., the law of ML
k is at q− has no atoms except possibly at q = q−. Note that by Lemma 17,

gL satisfies the boundary conditions in (26). In view of this, (85), (86), and (88), to complete
the proof, it sufficies to show that the function gL defined in (89) is continuously differentiable
on (q−, q+) and satisfies the differential equation in (25).

For any q− < q < q′ < q+,

P
[
∆q(k) = L ↑, ∆q′(k) 6= L ↑

]
= P

[
Bk = −1, Uk ∈ (q, q′), Uk < MR

k−1

]
= 1

2P
[
Uk ∈ (q, q′), Uk < MR

k−1

]
,

(91)

where

P
[
Uk ∈ (q, q′), q′ < MR

k−1

]
≤ P

[
Uk ∈ (q, q′), Uk < MR

k−1

]
≤ P

[
Uk ∈ (q, q′), q < MR

k−1

]
(92)

By Lemma 16 (ii), the left- and right-hand sides of this equation equal

(q′ − q)P
[
q < MR

k−1

]
and (q′ − q)P

[
q′ < MR

k−1

]
, (93)

respectively, so for any q− < q < q + ε < q+, we obtain that

P
[
∆q+ε(k) = L ↑

]
= P

[
∆q(k) = L ↑

]
+ ε1

2P
[
q < MR

k−1

]
+ o(ε), (94)

where
|o(ε)| ≤ ε1

2P
[
MR
k−1 ∈ (q, q + ε)

]
, (95)

which by the symmetric analogue of (90) for MR
k−1 is a small o or ε as ε ↓ 0.

By Lemma 17,

P[∆q(k) = L ↑] + P[∆q(k) = R∗]

= 1
2E[1{q≤MR

k−1}
(MR

k−1 − q)] + 1
2E[1{q≤MR

k−1}
(1−MR

k−1)] = 1
2(1− q)P

[
q ≤MR

k−1

]
.

(96)

By the symmetric analogues of (86) and (88),

P[∆q(k) = R∗] = 1
2(1− pR)− P[∆q(k) = R ↓]

= 1
2(1− pR)− P[∆q(k) = R ↑] = 1

2(1− pR)− gR(q).
(97)

Combining this with (94) and (96), we see that gL is continuously differentiable on (q−, q+)
and

∂
∂qgL(q) = 1

2P
[
q < MR

k−1

]
= (1− q)−1

(
P[∆q(k) = L ↑] + P[∆q(k) = R∗]

)
= (1− q)−1

(
gL(q) + 1

2(1− pR)− gR(q)
)
,

(98)

in agreement with (25).

4.2 The critical point

Proposition 18 (Uniqueness of solutions) For given 0 < q− < q+ < 1, there exists
at most one quadruple (pL, pR, gL, gR) such that pL, pR are real constants satisfying q− ≤
pL ≤ pR ≤ q+ and gL, gR are continuous real functions on [q−, q+] that are continuously
differentiable on (q−, q+) and solve the differential equation (25) with the boundary conditions
(26).
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Proof Setting
ĝL(q) := gL(q)− 1

2(pR − q−), (99)

we can rewrite (25) as

∂
∂q ĝL(q) =−(1− q)−1

[
1
2(1− q−) + ĝL(q)− gR(q)

]
∂
∂qgR(q) = q−1

[
1
2q− −

1
2(pR − pL) + gR(q)− ĝL(q)

] } (
q ∈ (q−, q+)

)
, (100)

while the boundary conditions (26) transform into

ĝL(q−) = 0 ĝL(q+) =−1
2(pR − q−),

gR(q−) = 0 gR(q+) = 1
2(q+ − pL).

(101)

Setting
p∆ := pR − pL and h(q) := gR(q)− ĝL(q)

(
q ∈ [q−, q+]

)
, (102)

we see that h solves the differential equation

∂
∂qh(q) = 1

2

(q− − p∆

q
+

1− q−
1− q

)
+
{
q−1 − (1− q)−1

}
h(q) (103)

with the boundary conditions

h(q−) = 0 and h(q+) = 1
2(q+ − q− + p∆). (104)

For given values of q− and p∆, the equation (103) has a unique solution h with the initial
condition h(q−) = 0, and this solution is defined on all of [q−, 1). Since the equation (103)
is an inhomogeneous linear differential equation of which the first, inhomogeneous term in is
strictly decreasing in p∆, we see that making p∆ larger makes the solution h strictly smaller on
(q−, 1). Since the value of h in q+ is a decreasing function of p∆ while the boundary condition
at q+ in (104) is an increasing function of p∆, there can at most be one value of p∆ for which
(103) and (104) are satisfied.

Given this value of p∆ and q−, the equation (100) also has a unique solution on [q−, 1)
subject to the left boundary conditions

(
ĝL(q−), gR(q−)

)
= (0, 0) from (101). Given q+, we

can read off pR and pL from the right boundary conditions in (101), which by (99) also tells
us what gL is.

Proof of Theorem 3 In Section 2.2, we have already seen that by (30) and (31), the require-
ment (10) implies q− = 1−q+. Also, since the constants in (24) clearly satisfy pL < pR, by (30)
and (31), we must have 0 < q− and q+ < 1. By Proposition 18, solutions to (pL, pR, gL, gR)
(25) and (26), if they exist, are unique, so whenever q− = 1− q+, by symmetry, we must have

pR = 1− pL and gL(q) = gR(1− q)
(
q ∈ [q−, q+]

)
. (105)

Let
p∆ := pR − pL and g∆(q) := gR(q)− gL(q)

(
q ∈ [q−, q+]

)
. (106)

Symmetry (105) implies that

pL = 1
2(1− p∆), pR = 1

2(1 + p∆), and gL(1
2) = gR(1

2). (107)
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Using this, we see from (25) and (26) that g∆ solves the equation

∂
∂qg∆(q) = 1

4(1− p∆)
{
q−1 + (1− q)−1

}
+
{
q−1 − (1− q)−1

}
g∆(q) (108)

with the boundary conditions

g∆(0) = 0 and g∆(q+) = 1
2q+ − 1

4(1− p∆). (109)

We can solve (108) with the boundary condition g∆(0) = 0 explicitly to obtain

g∆(q) = 1
4(1− p∆)q(1− q)

{
1/(1− q)− 1/q − 2 log(1− q) + 2 log(q)

}
. (110)

By (30) and our assumption that P[MR
k−1 < q+] = 1, we see that q+ = 1− p∆, so in this case

the right boundary condition in (109) reads g∆(q+) = 1
4q+. Using the fact that q+ = 1 − p∆

and the explicit solution (110), this yields the equation

1
4q

2
+(1− q+)

{
1/(1− q+)− 1/q+ − 2 log(1− q+) + 2 log(q+)

}
= 1

4q+. (111)

Using the fact that 1
2 ≤ q+ < 1, we can rewrite this as

q+ − (1− q+)

q+(1− q+)
− 2 log(1− q+) + 2 log(q+) =

1

q+(1− q+)
, (112)

or equivalently

− 2(1− q+)

q+(1− q+)
= 2 log

(1− q+

q+

)
. (113)

Setting z = −1/q+, this can be rewritten as

z = log(−z − 1) ⇔ ez = −z − 1. (114)
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