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Abstract

We introduce a self-reinforced point processes on the unit interval that appears to exhibit
self-organized criticality, somewhat reminiscent of the well-known Bak Sneppen model.
The process takes values in the finite subsets of the unit interval and evolves according to
the following rules. In each time step, a particle is added at a uniformly chosen position,
independent of the particles that are already present. If there are any particles to the left
of the newly arrived particle, then the left-most of these is removed. We show that all
particles arriving to the left of pc = 1 − e−1 are a.s. eventually removed, while for large
enough time, particles arriving to the right of pc stay in the system forever.
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1 Introduction and results

1.1 Main results

Let (Uk)k≥1 be an i.i.d. collection of uniformly distributed [0, 1]-valued random variables. For
each finite subset x of [0, 1], we inductively define a sequence Xx = (Xx

k )k≥0 of random finite
subsets of [0, 1] by Xx

0 := x, Mx
k−1 := min(Xx

k−1 ∪ {1}) and

Xx
k :=

{
Xx
k−1 ∪ {Uk} if Uk < Mx

k−1,

(Xx
k−1 ∪ {Uk})\{Mx

k−1} if Uk > Mx
k−1.

(k ≥ 1). (1)

In words, this says that Mx
k−1 is the minimal element of Xx

k−1 and that the set Xx
k is con-

structed from Xx
k−1 by adding Uk, and in case that Mx

k−1 < Uk, removing Mx
k−1 from Xx

k−1.
Since the (Uk)k≥1 are i.i.d. and Xx

k is a function of Xx
k−1 and Uk, it is clear that Xx is a

Markov chain. (In fact, we have just given a random mapping representation for it.) The
state space of Xx is the set Pfin[0, 1] of all finite subsets of [0, 1], which is naturally isomorphic
to the space of all simple counting measures on [0, 1] (i.e., N-valued measures ν such that
ν({x}) ≤ 1 for all x ∈ [0, 1]). We equip this space with the topology of weak convergence and
the associated Borel-σ-algebra.

The process Xx is an example of a Markov process with self-reinforcement (compare
[Pem07]), since the number of particles in the system can grow without bounds and influ-
ences the fate of newly arrived particles. As we will see in a moment, it also appears to
exhibit self-organized criticality in a way that is reminiscent of the well-known Bak Sneppen
model. The empirical distribution function F xk (q) :=

∣∣Xx
k ∩ [0, q]

∣∣ can loosely be interpreted
as the profile of a canyon being cut out by a river. If Uk < Mx

k−1, then the river cuts deeper
into the rock. If Uk > Mx

k−1, then the slope of the canyon between Uk and the river is eroded
one step down.

Our first result says that particles arriving on the left of the critical point pc := 1 − e−1

are eventually removed from the system, but for large enough time, particles arriving on the
right of pc stay in the system forever.

Theorem 1 (A.s. behavior of the minimum) For any finite x ⊂ [0, 1], one has

lim sup
k→∞

Mx
k = 1− e−1 a.s. (2)

To understand Theorem 1 better, note that for each 0 ≤ q ≤ 1, the restriction Xx
k ∩ [0, q]

of Xx
k to [0, q] is a Markov chain. Indeed, particles arriving on the right of q just have the

effect that in each time step, with probability 1 − q, the minimal element of Xx
k ∩ [0, q], if

there is one, is removed, while no new particles are added inside [0, q]. Theorem 1 says that
this Markov chain is recurrent for q < pc and transient for q > pc. For any q ∈ [0, 1], let

τ∅q := inf{k > 0 : X∅k ∩ [0, q] = ∅} (3)

be the first time the restricted process X∅k ∩ [0, q] returns to the empty set. Our next theorem
shows that for q < pc, the restricted chain is positively recurrent and ergodic, while for q > pc,
it is transient. Below, we call a subset of [0, pc) locally finite if its intersection with any
compact subset of [0, pc) is finite.
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Theorem 2 (Ergodicity of restricted process) Let pc := 1− e−1. Then

E[τ∅q ] =
(
1 + log(1− q)

)−1
(q < pc) and P[τ∅q =∞] > 0 (q > pc). (4)

Moreover, there exists a random, locally finite subset X∞ ⊂ [0, pc) such that, regardless of the
initial state x,

P
[
Xx
k ∩ [0, q] ∈ ·

]
−→
k→∞

P
[
X∞ ∩ [0, q] ∈ ·

]
(0 < q < pc), (5)

where → denotes convergence of probability measures in total variation norm distance. The
random point set X∞ a.s. consists of infinitely many points.

Numerical simulations strongly suggest that at q = pc, the restricted chain Xx
k ∩ [0, q] is

null recurrent and, starting from a state with no particles on the left on q, the probability
that one has to wait longer than k steps before the area on the left of q is again empty decays
as k−1/2, but we have no proof for this. Note that such a proof would establish self-organized
criticality for our process. Our process is self-organized in the sense that it finds the transition
point pc by itself. In particular, one does not have to tune a parameter of the model to exactly
the right value to see the (presumed) power-law critical behavior at pc.

1.2 Discussion

Our model is similar to the well-known Bak Sneppen model [BS93], which is one of the best-
known models exhibiting self-organized criticality, although this is only been fully rigorously
established for a simplified version of the model [MS12]. Like our process, the Bak Sneppen
model and its modifications are also based on the principle that the particle with the lowest
value is killed. This rule alone, however, is not enough to see interesting behavior.

In our process, we add particles one by one and also kill the particle with the lowest value,
but only if this is not the newly arrived particle. In this way, the total population is allowed
to grow and the process takes the limit of large population size by itself, so to say. In the
Bak Sneppen model, the total number of particles is fixed, and when a particle is killed, not
only this particle, but also some of its neighbors (according to some additional structure) are
killed, and the killed particles are replaced by new particles with uniformly chosen values.
The original Bak Sneppen model and its modifications differ in the way these “neighbors” are
chosen. In the original model, the particles are numbered 0, . . . , N − 1 and their neighbors
are those with neighboring numbers (modulo N). In the modified model from [MS12], one
“neighbor” is chosen uniformly from the population, with a new choice for each time step.

Closely related to the Bak Sneppen model is the Barabási queueing system introduced in
[Bar05], which has so far been studied only in the physics literature. Exact results for this
model have been derived in [Vaz05, Ant09]. In the original model, items in a queue have a
priority taking values in a continuous interval. In each time step, with probability p close to
one, the item with the highest priority is served, and with the remaining probability a random
item is removed from the list. At the end of each step, a new item is added so that the length
of the queue remains constant.

In [CG09], this latter assumption is dropped and the number of items added in each time
step is assumed to be larger than one, with the result that some items never get served and the
length of the queue grows without bounds, in a way that is very similar to our model. They
show that their model can be mapped to invasion percolation on a tree. Using this mapping,
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they are able to prove power-law behavior at the critical point. A similar mapping also exists
for Barabási’s original model [CG07]. Contrary to our model, the critical point for the model
in [CG09] is trivial since the number of items added and removed in each step is known.

Somewhat similar in spirit to these models is also the model [GMS11], which is basically a
supercitical branching process in which fitnesses are assigned to the particles and those killed
have the lowest fitness.

We note that in the construction of all these processes and in particular also ours, only
the relative order of the points (i.e., their rank or priority) matters, so replacing the uniform
distribution on [0, 1] by any other atomless law on R yields the same model up to a continuous
transformation of space. Starting from the empty initial state, adding points one by one,
and taking notice only of their relative order, one in effect constructs after k steps a ran-
dom permutation of k elements. In view of this, our quantities of interest may be described
as functions of such a random permutation. This is somewhat reminiscent of the way the
authors of [AD99] use what they call Hammersley’s process to study the longest increasing
subsequence of a random permutation. There is an extensive literature on functions of random
permutations, but none of those studied so far seem relevant for our process.

2 Proofs

2.1 Main idea of the proofs

In the present section, we describe the main idea of the proof of Theorems 1 and 2. As already
mentioned in Section 1.2, by a simple transformation of space, we may replace the uniformly
distributed random variables (Uk)k≥1 by real random variables having any non-atomic distri-
bution. At present, it will be more convenient to work with exponentially distributed random
variables with mean one, so we transform the unit interval [0, 1] into the closed halfline [0,∞]
with the transformation q 7→ f(q) := − log(1− q), set σk := f(Uk) (k ≥ 1), and, concentrating
for the moment on the process started in the empty initial state, we let Yk := f(X∅k) denote

the image of X∅k under f . Then

Yk :=

{
Yk−1 ∪ {σk} if σk < Nk−1,

(Yk−1 ∪ {σk})\{Nk−1} if σk > Nk−1.
(k ≥ 1), (6)

where Nk := min(Yk ∪ {∞}). Let

Ft(k) :=
∣∣Y (t)
k

∣∣ with Y
(t)
k := Yk ∩ [0, t] (k ≥ 0, t ≥ 0) (7)

denote the number of points on the left of t.
We claim that the function-valued process (Ft)t≥0 with Ft = (Ft(k))k≥0 is a continuous-

time Markov processes, where the parameter t plays the role of time. Indeed, at each time
t = σk, let Ft− :=

∣∣Yk ∩ [0, t)
∣∣ denote the state immediately prior to t and let

κt(k) := inf{k′ > k : Ft−(k′ − 1) = 0 and σk′ ≥ t}, (8)

with the convention that inf ∅ :=∞. Then at the time t = σk, the function Ft changes as

Ft(k
′) =

{
Ft−(k′) + 1 if k ≤ k′ < κt(k),

Ft−(k′) otherwise
(k′ ≥ 0). (9)
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σk
t < Nk−1

t Nk−1

+1 0

σk
Nk−1 ≤ t

tNk−1

+1 0 −1

Figure 1: Illustration of the quantity ∆Ft(k) from (11). The value of ∆Ft(k) depends on the
relative order of t, Nk−1, and σk.

In the language of self-organized criticality, we may call such a move an avelange. In analogy
with (3), let

τ̃t := inf{k > 0 : Y
(t)
k = ∅} (10)

denote the first time the restricted process Y (t) returns to the empty set. At each (determin-
istic) t ≥ 0, the function Ft starts in Ft(0) = 0 and makes i.i.d. excursions away from 0 whose
length is distributed as τ̃t.

We will be interested in the quantity

∆Ft(k) :=


0 if Ft(k) = Ft(k − 1) = 0,

0 if Ft(k) = Ft(k − 1) > 0,

−1 if Ft(k) = Ft(k − 1)− 1,

+1 if Ft(k) = Ft(k − 1) + 1.

(k ≥ 1, t ≥ 0). (11)

It follows from (9) that ∆Ft, too, evolves in a Markovian way as a function of t. For each
k ≥ 1, at time t = σk, one has ∆Ft−(k) ∈ {0,−1} immediately prior to t, and the function
∆Ft changes at time t according to the following rules.

(i) If ∆Ft(k) = 0 prior to σk, then ∆Ft(k) becomes +1 at time σk.

(ii) If ∆Ft(k) = −1 prior to σk, then ∆Ft(k) becomes 0 at time σk.

(iii) In both previous cases, the next 0 to the right of k, if there is one, becomes a −1.

These rules are further illustrated in Figure 1. Note that in these pictures, moving the level t
up across the value of σk, the value of ∆Ft(k) changes either from 0 to +1 or from −1 to 0.

We observe that if (Yk)k≥0 is defined in terms of (σk)k≥1 as in (6) and (Y
(t)
k )k≥0 is the

restricted process as in (7), then the joint process (Y
(t)
k , σk)k≥1 is a Markov chain. If for some

t+ > 0, the return time τ̃t+ from (10) has finite expectation, then it is not hard to see that
this Markov chain (with t = t+) is ergodic, so it is possible to construct a stationary process

(Y
(t+)
k , σk)k∈Z, and such a process is unique in law. Setting

Y
(t)
k := Y

(t+)
k ∩ [0, t] (0 ≤ t ≤ t+) (12)

we also obtain stationary Markov chains (Y
(t)
k , σk)k∈Z for all 0 ≤ t ≤ t+, and associated

functions (Ft(k))k∈Z. We claim that for the stationary process, the densities of 0’s and −1’s

5



satisfy the following differential equations as a function of t, for 0 ≤ t ≤ t+:

∂
∂tP[∆Ft(k) = 0] =−2P[∆Ft(k) = 0]− P[∆Ft(k) = −1],

∂
∂tP[∆Ft(k) = −1] =P[∆Ft(k) = 0].

(13)

To see this, note that at a per site rate that is proportional to the density of 0’s, rules (i)
and (iii) come into effect, leading to the disappearance of two 0’s and the creation of one −1.
Similarly, at a per site rate that is proportional to the density of −1’s, rules (ii) and (iii) come
into effect, leading to the disappearance of one 0 and no net change in the number of −1’s.
We can solve (13) with the initial condition P[∆Ft(1) = 0] = 1, P[∆Ft(1) = −1] = 0 explicitly
to find

P[∆Ft(1) = 0] = (1− t)e−t and P[∆Ft(1) = −1] = te−t (0 ≤ t ≤ t+). (14)

Since the density of 0’s must be a nonnegative number, we see that no stationary process

(Y
(t+)
k , σk)k∈Z can exist for t+ > 1. We will prove that on the other hand, for each t+ ≤ 1, a

stationary process exists, and τ̃t has finite expectation for t < 1. Since the function Ft makes
i.i.d. excursions away from 0 whose length is distributed as τ̃t, we can solve the expectation
of τ̃t from the density of 0’s. Indeed, by a simple renewal argument, for each t < 1,

P
[
∆Ft(k) = 0

]
= E[τ̃t]

−1P[τ̃ = 1] = e−tE[τ̃t]
−1. (15)

Combining this with (14), we find that

E[τ̃t] = (1− t)−1 (t < 1). (16)

Taking into account the transformation of variables t = f(q) := − log(1 − q), this yields the
formula for E[τ∅q ] in (4).

2.2 An alternative approach

After the proofs of the present paper were written, I was made aware of a paper by Luckock
[Luc03], who treats a generalization of a model due to Stigler [Sti64] modeling the evolution
of bid and ask limit orders in an order book such as used on a stock market. Although this
model differs considerably from our model, Luckock’s methods can be adapted to the present
setting, leading to a simpler differential equation than (13), from which the critical point can
also be determined.

Since the approach sketched in the previous section also seems to have its merits, in
particular, because of the observation that the process (∆Ft)t≥0 is a continuous-time Markov
chain, we will stick to this approach in the proofs. For the interest of the reader, however, we
sketch here the different approach based on Luckock’s methods which seems simpler in certain
aspects.

Assume, just as in the previous section, that for some t+ > 0, the restricted process in

Y (t+) is positively recurrent, let (Y
(t+)
k , σk)k∈Z be a stationary process, and write N

(t+)
k :=

min
(
Y

(t+)
k ∪ {t+}

)
(k ∈ Z). For 0 ≤ t < t+ and k ∈ Z, define as before

Ft(k) :=
∣∣Y (t+)
k ∩ [0, t]

∣∣ and ∆Ft(k) := Ft(k)− Ft(k − 1), (17)
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where in the present approach, it is not necessary to distinguish the cases ∆Ft = 0 and
∆Ft = 0. Stationarity leads to the requirement that, for 0 ≤ t < t+,

P[N
(t+)
k−1 ≤ t]P[σk > t] = P[∆Ft(k) = −1]

!
= P[∆Ft(k) = 1]

= P[σk < N
(t+)
k−1 , σk ≤ t] =

∫ t

0
P[σk ∈ ds]P[s < N

(t+)
k−1 ].

(18)

Using the fact that the σk’s are exponentially distributed with mean one, this yields

e−t
(
1− P[t < N

(t+)
k−1 ]

)
=

∫ t

0
e−sdsP[s < N

(t+)
k−1 ] (0 ≤ t < t+). (19)

Since the right-hand side is differentiable with respect to t, the same must be true for the
left-hand side, and one finds that

− e−t
(
1− P[t < N

(t+)
k−1 ]

)
− e−t ∂∂tP[t < N

(t+)
k−1 ] = e−tP[t < N

(t+)
k−1 ], (20)

which can be simplified to

∂
∂tP[t < N

(t+)
k−1 ] = −1 (0 ≤ t < t+). (21)

Using the boundary condition P[0 < N
(t+)
k−1 ] = 1, one finds that P[t < N

(t+)
k−1 ] = 1 − t or

equivalently, the expected time before the process restricted to [0, t] returns to the empty
configuration is as in (16).

2.3 The lower invariant process

To make the arguments in Section 2.1 precise, we must show that the process (∆Ft(k))k∈Z in
(13) is well-defined and that its one-dimensional distributions satisfy the differential equation
(13) up to the first time that P[∆Ft(k) = 0] hits zero. It is tempting to view (∆Ft)t≥0 as an
interacting particle system, but since its jump rates do not satisfy the summability conditions
of [Lig85, Thm. I.3.9], standard theory cannot be applied and we have to proceed differently.

Our first lemma says that solutions to the inductive formula (6) are monotone in the
starting configuration.

Lemma 3 (First comparison lemma) Let y and ỹ be finite subsets of [0, 1] and let (Yk)k≥0

and (Ỹk)k≥0 be defined by the inductive relation (6) with Y0 = y and Ỹ0 = ỹ. Then y ⊂ ỹ
implies that Yk ⊂ Ỹk for all k ≥ 0.

Proof It suffices to show that Yk−1 ⊂ Ỹk−1 implies Yk ⊂ Ỹk. Adding the point σk to both
Yk−1 and Ỹk−1 obviously preserves the order of inclusion, as does simultaneously removing the
minimal elements Nk−1 from Yk−1 and Ñk−1 from Ỹk−1. Since Yk ⊂ Ỹk we have Nk−1 ≥ Ñk−1

and it may happen that Ñk−1 < σk ≤ Nk−1, in which case we remove Ñk−1 from Ỹk−1 but
not Nk−1 from Yk−1, but in this case Ñk−1 is not an element of Yk−1 so again the order is
preserved.

We will be interested in stationary solutions to the inductive relation (6). To this aim,
we consider a two-way infinite sequence (σk)k∈Z of i.i.d. exponentially distributed random
variables with mean one. For each m ∈ Z, we let (Ym,k)k≥m denote the solution to the
inductive relation (6) started in Ym,m := ∅. Since Ym−1,m ⊃ ∅ = Ym,m, we see by Lemma 3,

7



that Ym−1,k ⊃ Ym,k for all k ≥ m, so there exists a collection (Yk)k∈Z of countable subsets of
[0,∞) such that

Ym,k ↑ Yk as m ↓ −∞. (22)

We call the limit process (Yk)k∈Z from (22) the lower invariant process. We set

Ft(k) :=
∣∣Yk ∩ [0, t]

∣∣ (t ∈ [0,∞), k ∈ Z). (23)

The following theorem is the main result of the present subsection.

Theorem 4 (Lower invariant process) For all k ∈ Z, one has

Ft(k)

{
<∞ a.s. if t ∈ [0, 1),

=∞ a.s. if t ∈ [1,∞).
(24)

For each k, the set Yk a.s. has a minimal element Nk := min(Yk) and (Yk)k∈Z solves the
inductive relation (6) for all k ∈ Z. Finally, one has

P[∆Ft(k) = 0] = (1− t)e−t,
P[∆Ft(k) = 0] = 1− (1 + t)e−t,

P[∆Ft(k) = −1] = te−t,

P[∆Ft(k) = +1] = te−t,

(t ∈ [0, 1), k ∈ Z), (25)

where ∆Ft(k) is defined as in (11).

As a first step towards the proof of Theorem 4, for t ∈ [0,∞), we look at the restricted
lower invariant process

Y
(t)
k := Yk ∩ [0, t] (k ∈ Z). (26)

We define N
(t)
k := inf(Y

(t)
k ∪ {t}) (k ∈ Z).

Lemma 5 (Restricted process) For each t ∈ [0,∞), one of the following two alternatives
occurs:

(i) |Y (t)
k | =∞ a.s. for all k ∈ Z.

(ii) |Y (t)
k | <∞ a.s. for all k ∈ Z and (Y

(t)
k )k∈Z solves the inductive relation

Y
(t)
k :=


Y

(t)
k−1 ∪ {σk} if σk ≤ N

(t)
k−1,(

Y
(t)
k−1 ∪ {σk}

)
\{N (t)

k−1} if N
(t)
k−1 < σk ≤ t,

Y
(t)
k−1\{N

(t)
k−1} if t < σk,

(k ∈ Z). (27)

Proof Set Y
(t)
m,k := Ym,k ∩ [0, t]. Since |Y (t)

m,k−1| and |Y (t)
m,k| differ at most by one, letting

m→ −∞, we see that the event{
|Y (t)
m,k| =∞ ∀k ∈ Z

}
∪
{
|Y (t)
m,k| <∞ ∀k ∈ Z

}
(28)

has probability one. Since the indicators of both events occuring in this expression are trans-
lation invariant functions of the ergodic random variables (σk)k∈Z, it follows that exactly one
of these events has probability one.
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For each m ≤ k − 1, the sets Ym,k−1 and Ym,k−1 are related as in (6), which is easily seen

to imply that Y
(t)
m,k−1 and Y

(t)
m,k are related as in (27). If |Y (t)

k−1| < ∞, then, since Y
(t)
k−1 is the

increasing limit of Y
(t)
m,k−1 as m→ −∞, there exists some m0 such that Y

(t)
k−1 = Y

(t)
m,k−1 for all

m ≤ m0. Now also Y
(t)
k = Y

(t)
m,k for all m ≤ m0 and hence Y

(t)
k and Y

(t)
k−1 are related as in (27).

Lemma 6 (Minimality) Let t ∈ [0,∞) be such that case (ii) of Lemma 5 holds, let (Y
(t)
k )k∈Z

be the restricted lower invariant process defined in (26) and let (Ỹ
(t)
k )k∈Z be any other solution

of the two-way infinite inductive relation (27), taking values in the finite subsets of [0, t]. Then

Y
(t)
k ⊂ Ỹ (t)

k for all k ∈ Z a.s.

Proof Set Y
(t)
m,k := Ym,k ∩ [0, t] as in the previous proof. Then (Y

(t)
m,k)k≥m solves the inductive

relation (27) for k ≥ m and Y
(t)
m,m = ∅ ⊂ Ỹ

(t)
m . In analogy with Lemma 3, it is easy to prove

that solutions to (27) are monotone in the initial state, so it follows that Y
(t)
m,k ⊂ Ỹ

(t)
k for all

k ≥ m. Letting m ↓ −∞ for fixed k now proves the statement.

Since a.s. σk 6= 0 for all k ∈ Z, it is clear from the definition that Yk ∩ {0} = ∅ and hence
∆F0(k) = 0 for all k ∈ Z. The next key proposition shows that Ft(k) is also a.s. finite for t
small enough.

Proposition 7 (Finite regime) Let s ∈ [0,∞) and assume that a.s. Fs(k) < ∞ for all
k ∈ Z. Then there exists some ε such that

P[∆Fs(k) = 0] = ε > 0 (k ∈ Z). (29)

Moreover, for all t ≥ s such that 2(e−s − e−t) < ε, one has Ft(k) <∞ for all k ∈ Z a.s. and

P[∆Ft(k) = 0] ≥ ε− 2(e−s − e−t) (k ∈ Z). (30)

Proof By assumption, Fs(k) is a.s. finite, so P[Fs(k) ≤ m] > 0 for some m < ∞. But then,
by stationarity,

P
[
∆Fs(k) = 0

]
≥P
[
Fs(k −m− 1) ≤ m, σk′ > s ∀k −m− 1 < k′ ≤ k

]
=P
[
Fs(k −m− 1) ≤ m

]
· P
[
σk′ > s ∀k −m− 1 < k′ ≤ k

]
> 0,

(31)

where we have used that Fs(k−m− 1) is a function of (σk′)k′≤k−m−1 and hence independent
of (σk′)k−m−1<k′≤k. This proves (29).

The idea of the proof of (30) is easily explained. For each k such that s < σk ≤ t, at most
two 0’s are destroyed, so the density of 0’s can at most decrease by two times the density of
such k’s, i.e., by 2(e−s − e−t). To make this precise, let us define

∆Gt(k) := 21{σk ∈ (s, t]} − 1{∆Fs(k) = 0} (k ∈ Z), (32)

and let Gt : Z→ Z be defined by

Gt(0) = 0 and Gt(k)−Gt(k − 1) = ∆Gt(k) (k ∈ Z). (33)

We say that k ∈ Z is a point of decrease of the function Gt if

Gt(k
′) > Gt(k) ∀k′ < k. (34)
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Let t ≥ s be such that 2(e−s − e−t) < ε. It follows from Lemma 8 below that

P
[
k is a point of decrease of Gt

]
= −E[∆Gt(0)] = ε− 2(e−s − e−t), (35)

as long as the expression on the right-hand side is positive. We will prove that there exists

a solution (Ỹ
(t)
k )k∈Z of the two-way infinite inductive relation (27) taking values in the finite

subsets of [0, t] such that the associated function F̃t(k) := |Ỹ (t)
k | satisfies

∆F̃t(k) = 0 for each point of decrease k of Gt. (36)

By Lemma 6, we have Ft ≤ F̃t, so it follows that Ft(k) is a.s. finite for each k ∈ Z, and by
(35) we see that

P[∆Ft(k) = 0] ≥ P[∆F̃t(k) = 0] ≥ P
[
k is a point of decrease of Gt

]
= ε− 2(e−s − e−t), (37)

proving (30).
We are left with the task of proving (36). By (35) and the ergodicity of the random

variables (σk)k∈Z, points of decrease of Gt occur with spatial density ε− 2(e−s − e−t), which
is positive by assumption. In particular, there exists sequences of such points tending to −∞
and +∞.

Let m and n be points of decrease of Gt that are consecutive in the sense that m < n and

{m1, . . . , n − 1} does not contain any points of decrease of Gt. Let (Ỹ
(t)
k )k≥m be defined by

the inductive relation (27) with Ỹ
(t)
m = ∅. We claim that∣∣Ỹ (t)

k ∩ (s, t]
∣∣ ≤ Gt(k)−Gt(m) (m ≤ k < n). (38)

Indeed, in a given step k, the left-hand side of this equation can only increase by one if
σk ∈ (s, t], but in this case Gt also increases by one. The right-hand side decreases by one
if ∆Fs(k) = 0 and σk 6∈ (s, t], but in this case either the left-hand case also decreases by
one, or it is already zero. Since m and n are consecutive points of decrease of Gt, we have
Gt(k)−Gt(m) ≥ 0 for all m ≤ k < n, so also in this case the order is preserved.

Since n is a point of decrease of Gt, we have ∆Fs(n) = 0 and σn 6∈ (s, t], so (38) proves that

F̃t(k) := |Ỹ (t)
k | satisfies ∆F̃t(n) = 0. Pasting together solutions of (27) between consecutive

points of decrease of Gt, we obtain a two-way infinite solution satisfying (36).

Lemma 8 (Points of increase) Let ω = (ωk)k∈Z be an i.i.d. collection of random variables
taking values in a measurable space (E, E). Let φ : EZ → Z be a measurable function, let
θn : EZ → EZ be the shift operator (θnu)k := uk+n, and let (Gk)k∈Z be the unique integer-
valued process such that G0 = 0 and

Gk −Gk−1 = φ(θkω) (k ∈ Z). (39)

Assume that E[|G1 −G0|] <∞, E[G1 −G0] > 0, and G1 −G0 ≤ 1 a.s. Then

lim
n→∞

n−1
n∑
k=1

1{Gm>Gk ∀m>k} = P[Gm > G0 ∀m > 0] = E[G1 −G0] a.s. (40)
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Proof We call
Ak := {Gm > Gk ∀m > k} (41)

the event that k ∈ Z is a point of increase ofG. The first equality in (40) follows from Birkhoff’s
ergodic theorem and the ergodicity of the i.i.d. random variables (ωk)k∈Z. Ergodicity also
implies that

lim
n→∞

n−1
n∑
k=1

Gk = E[G1 −G0], (42)

which is positive by assumption, so a.s. G has infinitely many points of increase. For each
k ∈ Z, let

κ(k) := min{k′ ≥ k : Gm > Gk′ for all m > k′}, (43)

be the position of the next point of increase to the right, which is a.s. well-defined. Set
f(k, k′) := E[(Gk −Gk−1)1{κ(k)=k′}]. We claim that

E[G1 −G0]
1
= E

[
(G1 −G0)

(∑
k′∈Z

1{κ(1)=k′}
)] 2

=
∑
k′∈Z

f(1, k′)
3
=
∑
k∈Z

f(k, 0)

4
= E

[∑
k∈Z

(Gk −Gk−1)1{κ(k)=0}
] 5

= P[Gm > G0 for all m > 0].
(44)

Here equality 1 follows from the fact that κ(0) is a.s. well-defined, 2 follows from Fubini and
the assumption that E[|G1 − G0|] < ∞, and 3 follows from the fact that f(0, k) = f(−k, 0)
and a change of the summation order. Equation 4 is again Fubini, using the fact that∑

k∈Z
E
[
|Gk −Gk−1|1{κ(k)=0}

]
=
∑
k′∈Z

E
[
|G1 −G0|1{κ(1)=k′}

]
< 0. (45)

To see why equation 5 holds, we observe that ifm is a point of increase ofG, thenGm+1 = Gm+
1 by our assumption that increments of G are a.s. ≤ 1, and hence m′ := max{k : Gk = Gm+1}
is the next point of increase after m. Letting l := max{k < 0 : k is a point of increase of G},
we have ∑

k∈Z
(Gk −Gk−1)1{κ(k)=0}

= 1{Gm>G0 for all m>0}

0∑
k=l+1

(Gk −Gk−1) = 1{Gm>G0 for all m>0},
(46)

where we have used that G0 −G1 = 1 on the event that 0 is a point of increase of G.

Our next aim is to derive the differential equation (13). We will actually derive the
somewhat different equation (47) below, but it is easy to check that the two equations have
the same solution (14) with the initial conditions P[∆Ft(0) = 0] = 1, P[∆Ft(0) = −1] = 0.

Proposition 9 (Differential equation) Let Ft be the as in (23) and assume that u > 0 is
such that Fu(k) < ∞ a.s. for all k ∈ Z. For t ∈ [0, u] define ∆Ft(k) as in (11). Then the
functions t 7→ P[∆Ft(0) = 0] and t 7→ P[∆Ft(0) = −1] are continuously differentiable on [0, u]
and satisfy the differential equations

∂
∂tP[∆Ft(k) = 0] =−P[∆Ft(k) = 0]− e−t,

∂
∂tP[∆Ft(k) = −1] =−P[∆Ft(k) = −1] + e−t.

(47)
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Proof For all t ∈ [0, u] and k ∈ Z, define κt(k) as in (8), i.e.,

κt(k) := inf{k′ > k : ∆Ft−(k′) = 0}. (48)

Since the set {k ∈ Z : ∆Ft(k) = 0} is nonincreasing in t, we see that for each k ∈ Z there is
at most one t ∈ [0, u] such that

at time t, one has t = σk′ for some k′ < k and κt(k
′) = k. (49)

Note that at such a time, ∆Ft−(k) = 0 and ∆Ft = −1. If such a time exists, we denote it by
τk. For definiteness, we set τk :=∞ if there exists no t ∈ [0, u] such that (49) holds.

For all 0 ≤ s < t ≤ u, we observe that

P[∆Ft(k) = 0] =P
[
∆Fs(k) = 0, {σk, τk} ∩ (s, t] = ∅

]
,

P[∆Ft(k) = −1] =P
[
∆Fs(k) = −1, σk 6∈ (s, t]

]
+ P

[
τk ∈ (s, t], σk > t

]
.

(50)

Since ∆Fs(k) = −1 implies that σk > s and ∆Fs depends only on information about the times
(σk′)k′∈Z until time s, we have

P
[
∆Fs(k) = −1, σk 6∈ (s, t]

]
= P[∆Fs(k) = −1]e−(t−s). (51)

Using translation invariance and changing the summation order, we see that

P
[
τk ∈ (s, t]

]
=
∑
k′∈Z

P
[
σk′ ∈ (s, t], κσk′ (k

′) = k
]

=
∑
k′∈Z

P
[
σ0 ∈ (s, t], κσ0(0) = k − k′

]
= P

[
σ0 ∈ (s, t]

]
= e−s − e−t = e−s(1− e−(t−s)).

(52)
Finally, we observe that τk ∈ (s, t] implies τk < σk and we use this to estimate

P
[
τk ∈ (s, t] and σk ∈ (s, t]

]
≤ P

[
τk ∈ (s, t] and σk − τk ≤ (t− s)

]
= e−s

(
1− e−(t−s))2, (53)

where in the last step we have used (52) and the fact that by the memoryless property of te
exponential distribution, conditional on τk ∈ (s, t], the random variable σk−τk is exponentially
distributed.

We rewrite the right-hand side of the first equation in (50) as

P
[
∆Fs(k) = 0, {σk, τk} ∩ (s, t] = ∅

]
= P

[
∆Fs(k) = 0

]
− P

[
∆Fs(k) = 0, σk ∈ (s, t]

]
− P

[
∆Fs(k) = 0, τk ∈ (s, t]

]
+ P

[
∆Fs(k) = 0, σk ∈ (s, t] and τk ∈ (s, t]

]
.

(54)

Here, arguing as in (51) and using (52)

P
[
∆Fs(k) = 0, σk ∈ (s, t]

]
=P[∆Fs(k) = 0]

(
1− e−(t−s)),

P
[
∆Fs(k) = 0, τk ∈ (s, t]

]
=P
[
τk ∈ (s, t]

]
= 1− e−(t−s).

(55)

Using also (53), it follows that for any 0 ≤ s < s+ ε ≤ u,

P
[
∆Fs+ε(k) = 0

]
− P

[
∆Fs(k) = 0

]
= −εP[∆Fs(k) = 0]− εe−s +O(ε2), (56)
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where O(ε2) is a term that can uniformly be estimated as |O(ε2)| ≤ Kε2 for some fixed
K <∞. Treating the second equation in (50) in a similar manner, using (51), (52) and (53),
we obtain

P
[
∆Fs+ε(k) = −1

]
− P

[
∆Fs(k) = −1

]
= −εP

[
∆Fs(k) = −1

]
+ εe−s +O(ε2). (57)

Letting ε ↓ 0, we arrive at (47).

Proof of Theorem 4 Let I be the set of all t ∈ [0,∞) such that case (i) of Lemma 5) holds,
i.e., Ft(k) < ∞ a.s. for all k ∈ Z. As remarked above Proposition 7, we have 0 ∈ I. It is
immediate from the definition of Ft(k) in (23) that t 7→ Ft(k) is a.s. nondecreasing, so I is a
subinterval of [0,∞) containing 0. It follows from Proposition 7 that I is of the form I = [0, tc)
for some tc ∈ (0,∞]. Moreover, P[∆Ft(k) = 0] > 0 for t ∈ [0, tc) and if tc <∞, then we must
have

lim
t↑tc

P[∆Ft(k) = 0] = 0. (58)

Solving the differential equation of Proposition 9, we see that

P[∆Ft(k) = 0] = (1− t)e−t,
P[∆Ft(k) = −1] = te−t,

(t ∈ [0, tc), k ∈ Z), (59)

which together with (58) allows us to conclude that tc = 1.
Since F1(k) = ∞ a.s., it follows that Nk := inf(Yk) < 1 a.s., and since Ft(k) < ∞ a.s. for

all t < 1, this infimum is in fact a minimum. Since for each t < 1, the restricted process Y (t)

solves the inductive relation (27) and since for each k, there exists a t < 1 such that N
(t)
k < t,

it is easy to see that (Yk)k∈Z solves the inductive relation (6).
Stationarity implies (see Lemma 10 below) that

P[∆Ft(k) = +1] = P[∆Ft(k) = −1] (0 ≤ t < 1), (60)

which toghether with (59) and the requirement that the total probability is one yields (25).

Lemma 10 (Stationary increments) Let (F (k))k∈Z be a stationary process, and assume
that E

[
|F (1)− F (0)|

]
<∞. Then E

[
F (1)− F (0)

]
= 0.

Proof For M > 0, let FM (k) := F (k) if −M ≤ F (k) ≤ M and FM (k) := M or −M if
F (k) ≥ M or F (k) ≤ −M , respectively. By stationarity, E[FM (1)] = E[FM (0)] and hence
E[FM (1)−FM (0)] = 0. Letting M ↑ ∞, using the fact that |FM (1)−FM (0)| ≤ |F (1)−F (0)|
and dominated convergence, we conclude that E[F (1)− F (0)] = 0.

Remark Although, by Theorem 4, the function Ft is finite only for t < 1, it is possible to
give a sensible definition of ∆Ft also for t ≥ 1 by setting (compare (11) and Figure 1)

∆Ft(k) :=


0 if t < Nk−1 < σk,

0 if Nk−1 < σk ≤ t
−1 if Nk−1 ≤ t < σk,

+1 if σk ≤ t ∧Nk−1.

(
k ∈ Z, t ∈ [0, 1]

)
, (61)

where Nk := min(Yk) (k ∈ Z) and (Yk)k∈Z is the lower invariant process.
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2.4 Ergodicity

In the present section, we use Theorem 4 to derive Theorems 1 and 2. Most of the work is
already done. The remaining arguments are for a large part standard Markov chain theory.

Let Y0 = y be any finite subset of [0,∞) and let (Yk)k≥0 be the Markov chain with initial
state Y0 defined by the inductive relation (6). We have already seen that for each t ∈ [0,∞),

the restricted process Y
(t)
k := Yk ∩ [0, t] is a Markov chain and in fact given by the inductive

relation (27). When we need to specify the initial state y, we make this explicit in our notation

by writing (Y y
k )k≥0 for the original process and (Y

y (t)
k )k≥0 for the restricted process. As in

(3), we define

τ̃yt := inf{k > 0 : Y
y (t)
k = ∅}. (62)

In particular, if y = ∅, then this is the first return time of the restricted process to the empty
configuration.

Lemma 11 (Expected return time) One has E[τ̃∅t ] = (1− t)−1 for each t ∈ [0, 1).

Proof Let (Yk)k∈Z be the lower invariant process from (22) and let Ft and ∆Ft be defined as
in (23) and (11). Then, by Theorem 4, for t ∈ [0, 1) one has

(1− t)e−t = P[∆Ft(k) = 0] = P[Ft(k − 1) = 0]P[σk > t] = P[Ft(k − 1) = 0]e−t, (63)

which proves that the restricted lower invariant process satisfies P[Y
(t)
k = ∅] = 1 − t. Let

λt(k) := sup{k′ < k : Y
(t)
k′ = ∅} (k ∈ Z). Then, for t ∈ [0, 1), by the mass transport principle,

1 =
∑
k∈Z

P[λt(0) = −k] =
∑
k∈Z

P[λt(k) = 0] =
∑
k∈Z

P[Y
(t)

0 = ∅, 0 < τ̃t ≤ k] = (1− t)E[τ̃∅t ]. (64)

Lemma 12 (Transience) One has P[τ̃∅t =∞] > 0 for each t ∈ (1,∞).

Proof Let Ft(k) :=
∣∣Y ∅k ∩ [0, t]

∣∣ (k ≥ 0) and for k ≥ 1 define ∆Ft(k) as in (11). We observe
that for any 0 ≤ s < t,

Ft(n) ≥
n∑
k=1

1{s < σk < t} −
n∑
k=1

1{Fs(k − 1) = 0}, (65)

where we have used that ∆Ft(k) ≥ 0 whenever s < σk < t, and ∆Ft(k) = +1 if moreover
Fs(k − 1) 6= 0. Since the process (Fs(k))k≥0 makes i.i.d. excursions from 0 with length
distributed as τ̃∅s , by Lemma 11 and the strong law of large numbers, we have for each s ∈ [0, 1)

n−1
n∑
k=1

1{s < σk < t} −→n→∞ (e−s−e−t) and n−1
n∑
k=1

1{Fs(k − 1) = 0} −→n→∞ 1−s a.s. (66)

Choosing s close enough to 1 such that 1 − s < e−s − e−t, we see that Ft(n) → ∞ a.s.
Since (Ft(k))k≥0 makes i.i.d. excursions from 0 with length distributed as τ̃∅t , it follows that
P[τ̃∅t =∞] > 0.

Lemmas 11 and 12 show that the restricted process Y
(t)
k = Yk ∩ [0, t] started from the

empty configuration returns to the empty configuration in finite expected time if t < 1 and
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has a positive probability never to return to the empty configuration if t > 1. We would
like to conclude from this that the process, started in an arbitrary initial state, is “positively
recurrent” for t < 1 and “transient” for t > 1. Since the state space of Y (t) is uncountable,
we have to specify in exactly which meaning we use these terms. Recall from (62) that τ̃yt
is the first time after time zero that the restricted process Y y (t) started in the initial state y
is in the empty state. We will say that Y (t) is positive recurrent, null recurrent, or transient
depending on whether case (i), (ii), or (iii) of the following lemma occurs.

Lemma 13 (Recurrence versus transience) For each t > 0, exactly one of the following
three possibilities occurs.

(i) For all finite y ⊂ [0,∞), one has E[τ̃yt ] <∞.

(ii) For all finite y ⊂ [0,∞), one has τ̃yt <∞ a.s. and E[τ̃yt ] =∞.

(iii) For all finite y ⊂ [0,∞), one has P[τ̃yt =∞] > 0.

We first need a preparatory result. Instead of using general Markov chain techniques (such
as the theory of Harris recurrence) to prove Lemma 13, we will rely on monotonicity arguments
that are special to our model. The next lemma, which is of some interest in its own right,
may loosely be described as saying that for Y (t) to avoid becoming the empty set, it is good
to have many particles that are situated as far as possible to right in the interval [0, t].

Lemma 14 (Second comparison lemma) For each 0 ≤ s ≤ t and finite y ⊂ [0,∞), let
F ys,t(k) :=

∣∣Y y
k ∩ [s, t]

∣∣ (k ≥ 0). Fix t > 0 and let x, y ⊂ [0,∞) be finite. Then

F xs,t(0) ≤ F ys,t(0) ∀s ∈ [0, t] implies F xs,t(k) ≤ F ys,t(k) ∀s ∈ [0, t], k ≥ 0. (67)

Proof It suffices to prove (67) for k = 1; the general statement follows by induction. Without
loss of generality, we may also assume that x and y are subsets of [0, t]. Order the elements
of x and y as x = {x1, . . . , xn} and y = {y1, . . . , ym} with xn < · · · < x1 (in this order!) and
ym < · · · < y1. Then the assumption that F xs,t(0) ≤ F ys,t(0) ∀s ∈ [0, t] is equivalent to the
statement that m ≥ n and xi ≤ yi for all i = 1, . . . , n. We must show that we can order the
elements of x̃ := Y x

1 ∩ [0, t] and ỹ := Y y
1 ∩ [0, t] in the same way. We distinguish three different

cases.
Case I: σ1 < xn. In this case, no points are removed from x while x̃n+1 := σ1 is added as

the (n + 1)-th element. Since xn ≤ yn, the elements y1, . . . , yn remain unchanged while ỹn+1

is the minimal element of {σ1} ∪ {ym, . . . , yn+1}, which lies on the right of x̃n+1 = σ1.
Case II: xn < σ1 < t. In this case, xn is removed from x and there exist 1 ≤ n′ ≤ n and

n′ ≤ m′ ≤ m+ 1 such that σ1 is inserted into x between the n′-th and (n′− 1)-th element and
into y between the m′-th and (m′ − 1)-th element, where we allow for the cases that n′ = 1
(σ1 is added at the right end of x and possibly also of y) and m′ = m+ 1 (σ1 is added at the
left end of y). The elements of the new sets x̃ and ỹ, ordered from low to high, are now

{xn−1, . . . , xm′ , xm′−1, . . . , xn′ , σ1, xn′−1, . . . , x1}= x̃,

{ym−1, . . . , yn, yn−1, . . . , ym′ , σ1, ym′−1, . . . , yn′ , yn′−1, . . . , y1}= ỹ.
(68)

Here xn−1, . . . , xm′ lie on the left of yn−1, . . . , ym′ , and likewise xn′−1, . . . , x1 lie on the left of
yn′−1, . . . , y1, respectively. Since moreover

xm′−1 < · · · < xn′ < σ1 < ym′−1 < · · · < yn′ , (69)
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these elements are ordered in the right way too.
Case III: t < σ1. In this case, the lowest elements of x and y are removed while no new

elements are added, which obviously also preserves the order.

Proof of Lemma 13 It suffices to show that for any finite y ⊂ [0,∞), one has τ̃yt < ∞ a.s.
if and only if τ̃∅t < ∞ a.s., and likewise, E[τ̃yt ] = ∞ if and only if E[τ̃∅t ] = ∞. By the first
comparison Lemma 3, τ̃∅t ≤ τ̃yt which immediately gives us the implications in one direction.
To complete the proof, we must show that P[τ̃yt = ∞] > 0 implies P[τ̃∅t = ∞] > 0 and
E[τ̃yt ] =∞ implies E[τ̃∅t ] =∞.

Recalling notation introduced in the second comparison Lemma 14, we observe that for
any finite y ⊂ [0,∞) there is a k ≥ 1 such that

P
[
τ̃∅t > k and F ∅s,t(k) ≥ F ys,t(0) ∀s ∈ [0, t]

]
> 0. (70)

Using this, Lemma 14, and the Markov property, we see that

P[τ̃∅t =∞]≥P
[
τ̃∅t > k and F ∅s,t(k) ≥ F ys,t(0) ∀s ∈ [0, t]

]
P[τ̃yt =∞],

E[τ̃∅t ]≥P
[
τ̃∅t > k and F ∅s,t(k) ≥ F ys,t(0) ∀s ∈ [0, t]

](
k + E[τ̃yt ]

)
,

(71)

which together with (70) gives us the desired implications.

Positive recurrence in the sense of Lemma 13 suffices to prove ergodicity of the restricted
process Y (t). In fact, the following general result applies.

Proposition 15 (Markov chain with an atom) Let P be a measurable probability kernel
on a Polish space E and for each x ∈ E, let (Xx

k )k≥0 denote the Markov chain with initial
state x and transition kernel P . Let z ∈ E be fixed and let

τx := inf{k > 0 : Xx
k = z} (x ∈ E). (72)

Assume that E[τ z] < ∞, P[τx < ∞] = 1 for all x ∈ E, and that the greatest common divisor
of {k > 0 : P[τ z = k] > 0} is one. Then there exists a unique invariant law ν for P and∥∥ν − P

[
Xx
k ∈ ·

]∥∥ −→
k→∞

0, (73)

where ‖ · ‖ denotes the total variation norm.

Proof This follows from standard arguments, so we only sketch the proof. First, one can
check that

ν := E[τ z]−1
∞∑
k=1

P[τ z ≤ k and Xz ∈ · ] (74)

is an invariant law for P . We can couple the corresponding stationary process (Xk)k≥0 and
the process (Xx

k )k≥0 started in a deterministic initial state x in such a way that they evolve
independently until the time σ := inf{k ≥ 0 : Xx

k = z = Xk}. Since P[τx < ∞] = 1 for all
x ∈ E, both processes reach z in a finite random time and after that make i.i.d. excursions
away from z whose length has finite mean E[τ z]. Using also the aperiodicity assumption, it
follows that σ <∞ a.s. so the coupling is successful.

Remark 1 The assumption that the state space is Polish guarantees that Kolmogorov’s exten-
sion theorem can be applied to construct the process from its finite dimensional distributions.
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This assumption can certainly be relaxed; see [MT09, Section 3.1] for a “general” set-up which
is, however, so general that singletons {z} may fail to be measurable. When we apply Propo-
sition 15 below to the restricted process Y (t), the state space is the set of all simple counting
measures on [0, t], equipped with the topology of weak convergence. This space is Polish be-
cause of the following facts: 1. for any Polish space E, the space M(E) of finite measures on
E, equipped with the topology of weak convergence, is Polish, 2. the set N [0, t] of all counting
measures on [0, t] is a closed subset of M[0, t], 3. the set of all simple counting measures is a
Gδ-subset of N [0, t], 4. a Gδ-subset of a Polish space is Polish [Bou58, §6 No. 1, Theorem. 1].

Remark 2 The fact that formula (74) defines an invariant law follows from [MT09, Theo-
rem 10.1.2 (i)]. The fact that our coupling is successful follows from [Woe09, Lemma 3.46].
The latter is written down for Markov chains with countable state space only, but this applies
generally since any N+-valued random variable with finite mean is the law of the return time
of a suitably constructed positively recurrent Markov chain with countable state space.

Proof of Theorem 1 By Lemma 11, for each t < 1, the restricted process Y
y (t)
k = Y y

k ∩ [0, t]

is positively recurrent in the sense of Lemma 13, case (i), so a.s. Y
y (t)
k = ∅ for infinitely many

k, proving that

lim sup
k→∞

N
y (t)
k ≥ t a.s. (t < 1), (75)

where N
(t)
k := inf(Y

y (t)
k ∪ {t}) (k ∈ Z). On the other hand, by Lemma 12, Y y (t) is transient

in the sense of Lemma 13, case (i), for all t > 1, so

P
[
∃n s.t. Y y

k ∩ [0, t] 6= ∅ ∀k ≥ n
]

= 1. (76)

Combining this with (75) we see that

lim sup
k→∞

Ny
k = 1 a.s., (77)

where Ny
k := min(Y y

k ∪ {∞}) (k ≥ 0). Translating this to the process X through the trans-
formaton q = 1− e−t as discussed in Section 2.1 yields Theorem 1.

Proof of Theorem 2 Formula (4) is just the translation of Lemmas 11 and 12 to the process
X through the transformaton t = − log(1− q) as discussed in Section 2.1.

Let (Yk)k∈Z denote the lower invariant process from (22). By Theorem 4, for each t < 1,
setting ν := P[Y0 ∩ [0, t] ∈ · ] defines an invariant law for the process restricted to [0, t]. By
Lemma 11, this process is positively recurrent in the sense of Lemma 13, case (i). Since
P[τ̃∅t = 1] = P[σ1 > t] = e−t, this process is ergodic in the sense of Proposition 15, i.e., ν is
its unique invariant law and the long-time limit law (w.r.t. the total variation norm) started
from any initial state. Translated for the process X, this yields (5). It has been proved in
Theorem 4 that Y0 ∩ [0, 1) is a.s. an infinite set, so the same is true for the set X∞ which is
the image of Y0 ∩ [0, 1) under the map t 7→ 1− e−t.
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