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Abstract

Aldous and Bandyopadhyay have shown that each solution to a recursive distributional
equation (RDE) gives rise to recursive tree process (RTP), which is a sort of Markov chain
in which time has a tree-like structure and in which the state of each vertex is a random
function of its descendents. If the state at the root is measurable with respect to the
sigma field generated by the random functions attached to all vertices, then the RTP is
said to be endogenous. For RTPs defined by continuous maps, Aldous and Bandyopadhyay
showed that endogeny is equivalent to bivariate uniqueness, and they asked if the continuity
hypothesis can be removed. We answer this question positively. Our main tool is a higher-
level RDE that through its n-th moment measures contains all n-variate RDEs. We show
that this higher-level RDE has minimal and maximal fixed points with respect to the
convex order, and that these coincide if and only if the corresponding RTP is endogenous.
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1 Recursive distributional equations

Let S be a Polish space and for k ≥ 0, let Sk denote the space of all ordered sequences
(x1, . . . , xk) of elements of S, where by definition S0 is a set containing a single element,
the empty sequence, which we denote by (∅). Let P(S) denote the space of all probability
measures on S, equipped with the topology of weak convergence and its associated Borel-σ-
field. It is well-known that P(S) is a Polish space. A measurable map g : Sk → S gives rise
to a measurable map ǧ : P(S)k → P(S) defined as

ǧ(µ1, . . . , µk) := µ1 ⊗ · · · ⊗ µk ◦ g−1, (1.1)

where µ1 ⊗ · · · ⊗ µk denotes product measure and the right-hand side of (1.1) is the image of
this under the map g. A more probabilistic way to express (1.1) is to say that if X1, . . . , Xk are
independent random variables with laws µ1, . . . , µk, then g(X1, . . . , Xk) has law ǧ(µ1, . . . , µk).
In particular, we let Tg : P(S)→ P(S) denote the map

Tg(µ) := ǧ(µ, . . . , µ). (1.2)

Note that Tg is in general nonlinear, unless k = 1. Let G be a measurable set whose elements
are measurable maps g : Sk → S, where k = kg ≥ 0 may depend on g, and let π be a
probability law on G. Then

T (µ) :=

∫
G
π(dg)Tg(µ)

(
µ ∈ P(S)

)
(1.3)

defines a map T : P(S)→ P(S). Equations of the form

T (µ) = µ (1.4)

are called Recursive Distributional Equations (RDEs). A nice collection of examples of such
RDEs can be found in [AB05].

2 Recursive Tree Processes

For d ∈ N+ := {1, 2, . . .}, let Td denote the space of all finite words i = i1 · · · it (t ≥ 0) made up
from the alphabet {1, . . . , d}, and define T∞ similarly, using the alphabet N+. Let ∅ denote the
word of length zero. We view Td as a tree with root ∅, where each vertex i ∈ Td has d children
i1, i2, . . ., and each vertex i = i1 · · · it except the root has precisely one ancestor

←
i := i1 · · · it−1.

We denote the length of a word i = i1 · · · it by |i| := t and set Tdt := {i ∈ Td : |i| < t}. For

any subtree U ⊂ T, we let ∂U := {i ∈ Td :
←
i ∈ U, i 6∈ U} denote the outer boundary of U. In

particular, ∂Tdt = {i ∈ Td : |i| = t} is the set of all vertices at distance t from the root.
As before, let G be a measurable set whose elements are measurable maps g : Sk → S,

where k = kg ≥ 0 may depend on g, let π be a probability law on G, and let T be the operator
in (1.3). Following [AB05], we will give a stochastic representation of the operator T and its
iterates. Fix some d ∈ N+ ∪ {∞} such that kg ≤ d for all g ∈ G, and to simplify notation
write T := Td. Let (γi)i∈T be an i.i.d. collection of random maps with common law π, and
write ki := kγi , where as before for a map g ∈ G we let kg ≥ 0 denote the associated integer
such that g : Skg → S. Fix t ≥ 1 and µ ∈ P(S), and let (Xi)i∈∂Tt be a collection of S-valued
random variables such that

(Xi)i∈∂Tt are i.i.d. with common law µ and independent of (γi)i∈Tt . (2.1)
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Define (Xi)i∈Tt inductively by

Xi = γi
(
Xi1, . . . , Xiki

)
(i ∈ Tt). (2.2)

Then it is easy to see that for each 1 ≤ s ≤ t,

(Xi)i∈∂Ts are i.i.d. with common law T t−s(µ) and independent of (γi)i∈Ts . (2.3)

where Tn denotes the n-th iterate of the map in (1.3). Also, X∅ (the state at the root) has law
T t(µ). If µ is a solution of the RDE (1.4), then, by Kolmogorov’s extension theorem, there
exists a collection (γi, Xi)i∈T of random variables whose joint law is uniquely characterized by
the following requirements:

(i) (γi)i∈T is an i.i.d. collection of G-valued r.v.’s with common law π,

(ii) for each t ≥ 1, the (Xi)i∈∂Tt are i.i.d. with common law µ
and independent of (γi)i∈Tt ,

(iii) Xi = γi
(
Xi1, . . . , Xiki

)
(i ∈ T).

(2.4)

We call such a collection (γi, Xi)i∈T a Random Tree Process (RTP). We can think of a RTP
as a generalization of a Markov chain, where the time index set T has a tree structure and
time flows in the direction of the root. In each step, the new value Xi is a function of the
previous values Xi1, . . . , Xiki plus some independent randomness, represented by the maps
(γi)i∈T. Following [AB05, Def 7], we say that the RTP corresponding to a solution µ of
the RDE (1.4) is endogenous if X∅ is measurable w.r.t. the σ-field generated by the random
variables (γi)i∈T.

3 The n-variate RDE

Let g : Sk → S with k ≥ 0 be a measurable map and let n ≥ 1 be an integer. We can
naturally identify the space (Sn)k with the space of all n × k matrices x = (xji )

j=1,...,n
i=1,...,k . We

let xj := (xj1, . . . , x
j
k) and xi = (x1

i , . . . , x
n
i ) denote the rows and columns of such a matrix,

respectively. With this notation, we define an n-variate map g(n) : (Sn)k → Sn by

g(n)
(
x) :=

(
g(x1), . . . , g(xn)

) (
x ∈ (Sn)k

)
. (3.1)

The map g(n) describes n systems that are coupled in such a way that the same map g is
applied to each system. We will be interested in the n-variate map (compare (1.3))

T (n)(ν) :=

∫
G
π(dg)Tg(n)(ν)

(
ν ∈ P(Sn)

)
. (3.2)

and the corresponding n-variate RDE (compare (1.4))

T (n)(ν) = ν. (3.3)

The maps T (n) are consistent in the following sense. Let ν|{i1,...,im} denote the marginal
of ν with respect to the coordinates i1, . . . , im, i.e., the image of ν under the projection
(x1, . . . , xn) 7→ (xi1 , . . . , xim). Then

T (n)(ν)
∣∣
{i1,...,im} = T (m)

(
ν
∣∣
{i1,...,im}

)
. (3.4)
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In particular, if ν solves the n-variate RDE (3.3), then its its one-dimensional marginals ν|{m}
(1 ≤ m ≤ n) solve the RDE (1.4). For any µ ∈ P(S), we let

P(Sn)µ :=
{
ν ∈ P(Sn) : ν|{m} = µ ∀1 ≤ m ≤ n

}
(3.5)

denote the set of probability measures on Sn whose one-dimensional marginals are all equal
to µ. We also let Psym(Sn) denote the space of all probability measures on Sn that are sym-
metric with respect to permutations of the coordinates {1, . . . , n}, and denote Psym(Sn)µ :=
Psym(Sn)∩P(Sn)µ. It is easy to see that T (n) maps Psym(Sn) into itself. If µ solves the RDE
(1.4), then T (n) also maps Psym(Sn)µ into itself.

Given a measure µ ∈ P(S), we define µ(n) ∈ P(Sn) by

µ(n) := P
[
(X, . . . ,X) ∈ ·

]
where X has law µ. (3.6)

We will prove the following theorem, which is similar to [AB05, Thm 11]. The main improve-
ment compared to the latter is that the implication (ii)⇒(i) is shown without the additional
assumption that T (2) is continuous with respect to weak convergence, solving Open Problem 12
of [AB05].

Theorem 1 (Endogeny and bivariate uniqueness) Let µ be a solution to the RDE (1.4).
Then the following statements are equivalent.

(i) The RTP corresponding to µ is endogenous.

(ii) The measure µ(2) is the unique fixed point of T (2) in the space Psym(S2)µ.

(iii) (T (n))t(ν) =⇒
t→∞

µ(n) for all ν ∈ P(Sn)µ.

4 The higher-level RDE

We define a higher-level map Ť : P(P(S))→ P(P(S)) by

Ť (ρ) :=

∫
G
π(dg)Tǧ(ρ)

(
ρ ∈ P(P(S))

)
, (4.1)

where for any g : Sk → S, the map ǧ : P(S)k → P(S) is defined as in (1.1). Our main tool
for proving Theorem 1 is the higher-level RDE

Ť (ρ) = ρ. (4.2)

A measure ρ ∈ P(P(S)) is the law of a random measure ξ on S. The n-th moment measure
ρ(n) of such a random measure ξ is defined as

ρ(n) := E
[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
n times

] where ξ has law ρ. (4.3)

Here, the expectation of a random measure ξ on S is defined in the usual way, i.e., E[ξ] is the
deterministic measure defined by

∫
φ dE[ξ] := E[

∫
φ dξ] for any bounded measurable φ : S → R.

A similar definition applies for measures on Sn. The following lemma links the higher-level
map Ť to the n-variate maps T (n) of the previous subsection.
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Lemma 2 (Moment measures) Let n ≥ 1 and let T (n) and Ť be defined as in (3.3) and
(4.2). Then the n-th moment measure of Ť (ρ) is given by

Ť (ρ)(n) = T (n)(ρ(n))
(
ρ ∈ P(P(S))

)
. (4.4)

Lemma 2 implies in particular that if ρ solves the higher-level RDE (4.2), then its first
moment measure ρ(1) solves the original RDE (1.4). For any µ ∈ P(S), we let

P(P(S))µ :=
{
ρ ∈ P(P(S)) : ρ(1) = µ

}
(4.5)

denote the set of all ρ whose first moment measure is µ. Note that ρ ∈ P(P(S))µ implies
ρ(n) ∈ Psym(Sn)µ for each n ≥ 1.

We equip P(P(S)) with the convex order. By Theorem 11 in the appendix, two measures
ρ1, ρ1 ∈ P(P(S)) are ordered in the convex order, denoted ρ1 ≤cv ρ2, if and only if there exists
an S-valued random variable X defined on some probability space (Ω,F ,P) and sub-σ-fields
F1 ⊂ F2 ⊂ F such that ρi = P

[
P[X ∈ · |Fi] ∈ ·

]
(i = 1, 2). It is not hard to see that

P(P(S))µ has a minimal and maximal element w.r.t. the convex order. For any µ ∈ P(S), let
us define

µ := P
[
δX ∈ ·

]
where X has law µ. (4.6)

Clearly δµ, µ ∈ P(P(S))µ. Moreover (as will be proved in Section 6 below)

δµ ≤cv ρ ≤cv µ for all ρ ∈ P(P(S))µ. (4.7)

In line with notation that has already been introduced in (3.6), the n-th moment measures of
δµ and µ are given by

δ(n)
µ = P

[
(X1, . . . , Xn) ∈ ·

]
and µ(n) = P

[
(X, . . . ,X) ∈ ·

]
, (4.8)

where X1, . . . , Xn are i.i.d. with common law µ and X has law µ. The following proposition
says that the higher-level RDE (4.2) has a minimal and maximal solution with respect to the
convex order.

Proposition 3 (Minimal and maximal solutions) Let µ be a solution to the RDE (1.4).
Then the map Ť maps P(P(S))µ into itself and is monotone w.r.t. the convex order. There
exists a unique µ ∈ P(P(S))µ such that

Ť t(δµ) =⇒
t→∞

µ, (4.9)

where ⇒ denotes weak convergence of measures on P(S), equipped with the topology of weak
convergence. The measures µ and µ solve the higher-level RDE (4.2), and any ρ ∈ P(P(S))µ
that solves the higher-level RDE (4.2) must satisfy

µ ≤cv ρ ≤cv µ. (4.10)

Since µ and µ solve the higher-level RDE (4.2), there exist RTPs corresponding to µ and
µ. The following proposition gives an explicit description of these higher-level RTPs.

Proposition 4 (Higher-level RTPs) Let (γi, Xi)i∈T be a RTP corresponding to a solution
µ of the RDE (1.4). Set

ξi := P
[
Xi ∈ · | (γij)j∈T

]
. (4.11)

Then (γ̌i, ξi)i∈T is a RTP corresponding to the solution µ of the higher-level RDE (4.2). Also,
(γ̌i, δXi

)i∈T is a RTP corresponding to µ.
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We will derive Theorem 1 from the following theorem, which is our main result.

Theorem 5 (The higher-level RDE) Let µ be a solution to the RDE (1.4). Then the
following statements are equivalent.

(i) The RTP corresponding to µ is endogenous.

(ii) µ = µ.

(iii) Ť t(ρ) =⇒
t→∞

µ for all ρ ∈ P(P(S))µ.

5 Proof of the main theorem

In this section, we use Lemma 2 and Propositions 3 and 4 to prove Theorems 1 and 5. We
need one more lemma.

Lemma 6 (Convergence in probability) Let (γi, Xi)i∈T be an endogenous RTP corre-
sponding to a solution µ of the RDE (1.4), and let (Yi)i∈T be an independent i.i.d. collection
of S-valued random variables with common law µ. For each t ≥ 1, set Xt

i := Yi (i ∈ ∂Tt), and
define (Xt

i )i∈Tt inductively by

Xt
i = γi

(
Xt

i1, . . . , X
t
iki

)
(i ∈ Tt). (5.1)

Then
Xt
∅ −→t→∞ X∅ in probability. (5.2)

Proof The argument is basically the same as in the proof of [AB05, Thm 11 (c)], but for
completeness, we give it here. Let f, g : S → R be bounded and continuous and let Ft resp.
F∞ be the σ-fields generated by (γi)i∈Tt resp. (γi)i∈T. Since X∅ and Xt

∅ are conditionally
independent and identically distributed given Ft,

E
[
f(X∅)g(Xt

∅)
]

= E
[
E
[
f(X∅)

∣∣Ft]E[g(Xt
∅)
∣∣Ft]] = E

[
E
[
f(X∅)

∣∣Ft]E[g(X∅)
∣∣Ft]]

−→
t→∞

E
[
E
[
f(X∅)

∣∣F∞]E[g(X∅)
∣∣F∞]] = E

[
f(X∅)g(X∅)

]
,

(5.3)

where we have used martingale convergence and in the last step also endogeny. Since this
holds for arbitrary f, g, we conclude that the law of (X∅, X

t
∅) converges weakly to the law of

(X∅, X∅), which implies (5.2).

Proof of Theorem 5 If the RTP corresponding to µ is endogenous, then the random variable
ξ∅ defined in (4.11) satisfies ξ∅ = δX∅ . By Proposition 4, ξ∅ and δX∅ have laws µ and µ,
respectively, so (i)⇒(ii). Conversely, if (i) does not hold, then ξ∅ is with positive probability
not a delta measure, so (i)⇔(ii).

The implication (iii)⇒(ii) is immediate from the definition of µ in (4.9). To get the converse

implication, we observe that by Proposition 3, Ť is monotone with respect to the convex order,
so (4.7) implies

Ť t(δµ) ≤cv Ť
t(ρ) ≤cv Ť

t(µ) (t ≥ 0). (5.4)

By Lemma 2, Ť t(ρ) ∈ P(P(S))µ for each t ≥ 0, so by Lemma 7 in the appendix, the measures
(Ť t(ρ))t≥1 are tight. By Proposition 3, the left-hand side of (5.4) converges weakly to µ as
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t→∞ while the right-hand side equals µ for each t, so we obtain that any subsequential limit
Ť tn(ρ)⇒ ρ∗ satisfies µ ≤cv ρ∗ ≤cv µ. In particular, this shows that (ii)⇒(iii).

Proof of Theorem 1 The implication (iii)⇒(ii) is trivial. By Lemma 2 and the fact that
µ and µ solve the higher-level RDE, we see that (ii) implies µ(2) = µ(2). By Proposition 3,

µ ≤cv µ. Now Lemma 12 from the appendix shows that µ(2) = µ(2) and µ ≤cv µ imply µ = µ,
so applying Theorem 5 we obtain that (ii)⇒(i).

To complete the proof, we will show that (i)⇒(iii). Let (γi, Xi)i∈T be a RTP corresponding
µ and let (Y 1

i , . . . , Y
n
i )i∈T be an independent i.i.d. collection of Sn-valued random variables

with common law ν. For each t ≥ 1 and 1 ≤ m ≤ n, set Xm,t
i := Y m

i (i ∈ ∂Tt), and

define (Xm,t
i )i∈Tt inductively as in (5.1). Then (X1,t

∅ , . . . X
n,t
∅ ) has law (T (n))t(ν), and using

endogeny, Lemma 6 tells us that

(X1,t
∅ , . . . X

n,t
∅ ) −→

t→∞
(X∅, . . . , X∅) in probability. (5.5)

Since the right-hand side has law µ(n), this completes the proof.

6 Other proofs

In this section, we provide the proofs of Lemma 2 and Propositions 3 and 4, as well as formula
(4.7). We start with the latter.

Proof of formula (4.7) Let ξ be a P(S)-valued random variable with law ρ and conditional
on ξ, let X be an S-valued random variable with law ξ. Let F0 be the trivial σ-field, let
F1 be the σ-field generated by ξ, and let F2 be the σ-field generated by ξ and X. Then
F0 ⊂ F1 ⊂ F2. Since ρ(1) = µ, the random variable X has law µ. Now

P
[
P[X ∈ · | F0] ∈ ·

]
= P

[
µ ∈ ·

]
= δµ,

P
[
P[X ∈ · | F1] ∈ ·

]
= P

[
ξ ∈ ·

]
= ρ,

P
[
P[X ∈ · | F2] ∈ ·

]
= P

[
δX ∈ ·

]
= µ.

(6.1)

This proves that δµ ≤cv ρ ≤cv µ.

For each ρ ∈ P(P(S)) we can find an S-valued random variable X defined on some
probability space (Ω,F ,P) as well as a sub-σ-field H ⊂ F such that

ρ = P
[
P[X ∈ · |H] ∈ ·

]
. (6.2)

More generally, we can construct, on some probability space, S-valued random variables
X1, . . . , Xn that are conditionally independent given a σ-field H, in such a way that (6.2)
holds with X replaced by Xi, for all i = 1, . . . , n. Then the law of (X1, . . . , Xn) is the n-th
moment measure associated with ρ, i.e.,

ρ(n) = P
[
(X1, . . . , Xn) ∈ ·

]
, (6.3)

as can be seen by writing

E
[ n∏
i=1

fi(X
i)
]

= E
[ n∏
i=1

E[fi(X
i) |H]

]
=

∫
ρ(dξ)

∫
Sn

ξ(dx1) · · · ξ(dxn) f1(x) · · · fn(xn). (6.4)
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for arbitrary bounded measurable fi : S → R.
Fix ρ ∈ P(P(S)). We wish to give a stochastic representation of the probability measure

Ť (ρ), where Ť is defined in (4.2). We start by giving a representation of Tǧ(ρ), where g :
Sk → S is measurable. Let X1, . . . , Xk be S-valued random variables and let H1, . . . ,Hk be
σ-fields, such that (X1,H1), . . . , (Xk,Hk) are independent and

ρ = P
[
P[Xi ∈ · |Hi] ∈ ·

]
(i = 1, . . . , k). (6.5)

Let H1 ∨ · · · ∨ Hk denote the σ-field generated by H1, . . . ,Hk. We claim that

Tǧ(ρ) = P
[
P[g(X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk] ∈ ·

]
. (6.6)

To see this, set ξi := P[Xi ∈ · |Hi]. Then, conditional on H1 ∨ · · · ∨ Hk, the random variables
X1, . . . , Xk are independent with laws ξ1, . . . , ξk, respectively, and hence

P[g(X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk] = ǧ(ξ1, . . . , ξk) a.s. (6.7)

Since ξ1, . . . , ξk are i.i.d. with common law ρ, (6.6) follows. Similarly, if γ is a G-valued random
variable with law π, then

Ť (ρ) = P
[
P[γ(X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk] ∈ ·

]
, (6.8)

as can be seen by integrating (6.6) with respect to π.

Proof of Lemma 2 Let ξ1, . . . , ξk be i.i.d. with common law ρ and conditional on ξ1, . . . , ξk,
let (Xj

i )j=1,...,n
i=1,...,k be independent S-valued random variables such that Xj

i has law ξi. Let Hi
denote the σ-field generated by ξi. Then ρ = P[P[Xj

i ∈ · |Hi] ∈ · ] for each i, j, and hence, by
(6.3)

ρ(n) = P
[
(X1

i , . . . , X
n
i ) ∈ ·

]
(j = 1, . . . , k). (6.9)

Set Xi := (X1
i , . . . , X

n
i ) and Xj := (Xj

1 , . . . , X
j
k). Since X1, . . . , Xk are independent with law

ρ(n),
Tg(n)(ρ(n)) = P

[
g(n)(X1, . . . , Xk) ∈ ·

]
= P

[(
g(X1), . . . , g(Xn)

)
∈ ·
]
. (6.10)

Let H := H1 ∨ · · · ∨ Hk. Then, by (6.6), Tǧ(ρ) = P
[
P[g(Xj) ∈ · |H] ∈ ·

]
. Since moreover

g(X1), . . . , g(Xn) are conditionally independent given H, by (6.3)

Tǧ(ρ)(n) = P
[(
g(X1), . . . , g(Xn)

)
∈ ·
]
. (6.11)

Combining this with (6.10), we see that Tǧ(ρ)(n) = Tg(n)(ρ(n)) for each g ∈ G. Now (4.4)
follows by integrating w.r.t. π.

Proof of Propositions 3 and 4 We first show that Ť is monotone w.r.t. the convex order. Let
ρ1, ρ2 ∈ P(P(S)) satisfy ρ1 ≤cv ρ2. Then there exists S-valued random variables X1, . . . , Xk

and σ-fields (Hji )
j=1,2
i=1,...,k, such that (X1,H1

1,H2
1), . . . , (Xk,H1

k,H2
k) are independent,

ρj = P
[
P[Xi ∈ · |Hji ] ∈ ·

]
(i = 1, . . . , k, j = 1, 2), (6.12)

and H1
i ⊂ H2

i for all i = 1, . . . , k. Let γ be an independent G-valued random variable with law
π. Then (6.8) says that

Ť (ρj) = P
[
P[γ(X1, . . . , Xk) ∈ · |Hj1 ∨ · · · ∨ H

j
k] ∈ ·

]
(j = 1, 2). (6.13)
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Since H1
1 ∨ · · · ∨ H1

k ⊂ H2
1 ∨ · · · ∨ H2

k, this proves that Ť (ρ1) ≤cv Ť (ρ2).
It will be convenient to combine the proof of the remaining statements of Proposition 3

with the proof of Proposition 4. To check (as claimed in Proposition 4) that (γ̌i, ξi)i∈T is a
RTP corresponding to µ, we need to check that:

(i) The (γ̌i)i∈T are i.i.d.

(ii) For each t ≥ 1, the (ξi)i∈∂Tt are i.i.d. with common law µ and independent of (γ̌i)i∈Tt .

(iii) ξi = γ̌i
(
ξi1, . . . , ξiki

)
(i ∈ T).

Here (i) follows immediately from the fact that the (γi)i∈T are i.i.d. Since ξi depend only on
(γij)j∈T, it is also clear that the (ξi)i∈∂Tt are i.i.d. and independent of (γi)i∈Tt . To see that
their common law is µ, we may equivalently show that ξ∅ has law µ. Thus, we are left with
the task to prove (iii) and

(iv) P[ξ∅ ∈ · ] = µ.

Let F i denote the σ-field generated by (γij)j∈T. Then, for any i ∈ T,

ξi = P[Xi ∈ · |F i] = P
[
γi(Xi1, . . . , Xiki) ∈ ·

∣∣F i
]
. (6.14)

Conditional on F i, the random variables Xi1, . . . , Xiki are independent with laws ξi1, . . . , ξiki ,
and hence γi(Xi1, . . . , Xiki) has law γ̌i(ξi1, . . . , ξiki), proving (iii).

To prove also (iv), we first need to prove (4.9) from Proposition 3. Fix t ≥ 1 and for
i ∈ Tt ∪ ∂Tt, let F i

t denote the σ-field generated by {γij : j ∈ T, |ij| < t}. In particular, if
i ∈ ∂Tt, then F i

t is the trivial σ-field. Set

ξti := P[Xi ∈ · |F i
t ] (i ∈ Tt ∪ ∂Tt). (6.15)

In particular, ξti = µ a.s. for i ∈ ∂Tt. Arguing as before, we see that

ξti = γ̌i
(
ξti1, . . . , ξ

t
iki

)
(i ∈ Tt), (6.16)

and hence
Ť t(δµ) = P[ξt∅ ∈ · ]. (6.17)

By martingale convergence,

ξt∅ = P[X∅ ∈ · |F∅t ] −→
t→∞

P[X∅ ∈ · |(γi)i∈T] = ξ∅ a.s. (6.18)

Combining this with (6.17), we obtain (4.9) where µ is in fact the law of ξ∅, proving (iv) as
well. This completes the proof that (γ̌i, ξi)i∈T is a RTP corresponding to µ.

The proof that (γ̌i, δXi
)i∈T is a RTP corresponding to µ is simpler. It is clear that (i)

the (γ̌i)i∈T are i.i.d., and (ii) for each t ≥ 1, the (δXi
)i∈∂Tt are i.i.d. with common law µ and

independent of (γ̌i)i∈Tt . To prove that also (iii) δXi
= γ̌i

(
δXi1

, . . . , δXiki

)
(i ∈ T), it suffices to

show that for any measurable g : Sk → S,

ǧ(δx1 , . . . , δxk) = δg(x1,...,xk). (6.19)

By definition, the left-hand side of this equation is the law of (X1, . . . , Xk), where X1, . . . , Xk

are independent with laws δx1 , . . . , δxk , so the statement is obvious.

9



This completes the proof of Proposition 4. Moreover, since the marginal law of a RTP
solves the corresponding RDE, our proof also shows that the measures µ and µ solve the
higher-level RDE (4.2).

In view of this, to complete the proof of Proposition 3, it suffices to prove (4.10). If ρ
solves the higher-level RDE (4.2), then applying Ť t to (4.7), using the monotonicity of Ť with
respect to the convex order, we see that Ť t(δµ) ≤cv ρ ≤cv µ for all t. Letting t → ∞, (4.10)
follows.

A The convex order

By definition, a Gδ-set is a set that is a countable intersection of open sets. By [Bou58, §6
No. 1, Theorem. 1], for a metrizable space S, the following statements are equivalent.

(i) S is Polish.

(ii) There exists a metrizable compactification S of S such that S is a Gδ-subset of S.

(iii) For each metrizable compactification S of S, S is a Gδ-subset of S.

Moreover, a subset S′ ⊂ S of a Polish space S is Polish in the induced topology if and only if
S′ is a Gδ-subset of S.

Let S be a Polish space. Recall that P(S) denotes the space of probability measures on
S, equipped with the topology of weak convergence. In what follows, we fix a metrizable
compactification S of S. Then we can identify the space P(S) (including its topology) with
the space of probability measures µ on S such that µ(S) = 1. By Prohorov’s theorem, P(S)
is compact, so P(S) is a metrizable compactification of S. Recall the definition of P(P(S))µ
from (4.5).

Lemma 7 (Measures with given mean) For any µ ∈ P(S), the space P(P(S))µ is com-
pact.

Proof Since any ρ ∈ P(P(S)) whose first moment measure is µ must be concentrated on
P(S), we can identify P(P(S))µ with the space of probability measures on P(S) whose first
moment measure is µ. From this we see that P(P(S))µ is a closed subset of P(P(S)) and
hence compact.

We let C(S) denote the space of all continuous real functions on S, equipped with the
supremumnorm, and we let B(S) denote the space of bounded measurable real functions on
S. The following fact is well-known (see, e.g., [Car00, Cor 12.11]).

Lemma 8 (Space of continuous functions) C(S) is a separable Banach space.

For each f ∈ C(S), we define an affine function lf ∈ C(P(S)) by lf (µ) :=
∫
f dµ. The

following lemma says that all continuous affine functions on P(S) are of this form.

Lemma 9 (Continuous affine functions) A function φ ∈ C(P(S)) is affine if and only if
φ = lf for some f ∈ C(S).

Proof Let φ : P(S)→ R be affine and continuous. Since φ is continuous, setting f(x) := φ(δx)
(x ∈ S) defines a continuous function f : S → R. Since φ is affine, φ(µ) = lf (µ) whenever µ
is a finite convex combination of delta measures. Since such measures are dense in P(S) and
φ is continuous, we conclude that φ = lf .

10



Lemma 10 (Lower semi-continuous convex functions) Let C ⊂ C(S) be convex, closed,
and nonempty. Then

φ := sup
f∈C

lf (A.1)

defines a lower semi-continuous convex function φ : P(S)→ (−∞,∞]. Conversely, each such
φ is of the form (A.1).

Proof It is straightforward to check that (A.1) defines a lower semi-continuous convex function
φ : P(S)→ (−∞,∞]. To prove that every such function is of the form (A.1), let C(S)′ denote
the dual of the Banach space C(S), i.e., C(S)′ is the space of all continuous linear forms
l : C(S)→ R. We equip C(S)′ with the weak-∗ topology, i.e., the weakest topology that makes
the maps l 7→ l(f) continuous for all f ∈ C(S). Then C(S)′ is a locally convex topological
vector space and by the Riesz-Markov-Kakutani representation theorem, we can view P(S) as
a convex compact metrizable subset of C(S)′. Now any lower semi-continuous convex function
φ : P(S)→ (−∞,∞] can be extended to C(S)′ by putting φ :=∞ on the complement of P(S).
Applying [CV77, Thm I.3] we obtain that φ is the supremum of all continuous affine functions
that lie below it. By Lemma 9, we can restrict ourselves to continuous affine functions of the
form lf with f ∈ C(S). It is easy to see that {f ∈ C(S) : lf ≤ φ} is closed and convex, proving
that every lower semi-continuous convex function φ : P(S)→ (−∞,∞] is of the form (A.1).

We define
Ccv

(
P(S)

)
:=
{
φ ∈ C(P(S)) : φ is convex

}
(A.2)

If two probability measures ρ1, ρ2 ∈ P(P(S)) satisfy the equivalent conditions of the following
theorem, then we say that they are ordered in the convex order, and we denote this as ρ1 ≤cv ρ2.
The fact that ≤cv defines a partial order will be proved in Lemma 13 below. The convex order
can be defined more generally for ρ1, ρ2 ∈ P(C) where C is a convex space, but in the present
paper we will only need the case C = P(S).

Theorem 11 (The convex order for laws of random probability measures) Let S be
a Polish space and let S be a metrizable compactification of S. Then, for ρ1, ρ2 ∈ P(P(S)),
the following statements are equivalent.

(i)

∫
φ dρ1 ≤

∫
φ dρ2 for all φ ∈ Ccv

(
P(S)

)
.

(ii) There exists an S-valued random variable X defined on some probability space (Ω,F ,P)
and sub-σ-fields F1 ⊂ F2 ⊂ F such that ρi = P

[
P[X ∈ · |Fi] ∈ ·

]
(i = 1, 2).

Proof For any probability kernel P on P(S), measure ρ ∈ P(S), and function φ ∈ C(P(S)),
we define ρP ∈ P(P(S)) and Pφ ∈ B(P(S)) by

ρP :=

∫
ρ(dµ)P (µ, · ) and Pf :=

∫
P ( · , dµ)f(µ). (A.3)

By definition, a dilation is a probability kernel P such that Plf = lf for all f ∈ C(S).
As in the proof of Lemma 10, we can view P(S) as a convex compact metrizable subset

of the locally convex topological vector space C(S)′. Then [Str65, Thm 2] tells us that (i) is
equivalent to:

(iii) There exists a dilation P on P(S) such that ρ2 = ρ1P .

11



To see that this implies (ii), let ξ1, ξ2 be P(S)-valued random variables such that ξ1 has law
ρ1 and the conditional law of ξ2 given ξ1 is given by P . Let F1 be the σ-field generated by ξ1,
let F2 be the σ-field generated by (ξ1, ξ2), and let X be an S-valued random variable whose
conditional law given F2 is given by ξ2. Then

P
[
P[X ∈ · |F2] ∈ ·

]
= P[ξ2 ∈ · ] = ρ1P = ρ2. (A.4)

For f ∈ C(S) and µ ∈ P(S), write lf (µ) :=
∫
f dµ. Since P is a dilation

E[f(X) | F1] = E
[
E[f(X) | F2]

∣∣F1

]
= E

[
lf (ξ2)

∣∣F1

]
=

∫
P (ξ1, dµ)lf (µ) = lf (ξ1) (A.5)

for all f ∈ C(S), and hence

P
[
P[X ∈ · |F1] ∈ ·

]
= P

[
ξ1 ∈ ·

]
= ρ1. (A.6)

We note that since ρ1, ρ2 ∈ P(P(S)), we have ξ1, ξ2 ∈ P(S) a.s. and hence X ∈ S a.s. This
proves the implication (iii)⇒(ii).

To complete the proof, it suffices to show that (ii)⇒(i). By Lemma 10, each φ ∈ Ccv(P(S))
is of the form φ = supf∈C lf for some C ⊂ C(S). Then (ii) implies∫

φ dρ1 = E
[

sup
f∈C

E[f(X) | F1]
]

= E
[

sup
f∈C

E
[
E[f(X) | F2]

∣∣F1

]]
≤ E

[
E
[

sup
f∈C

E[f(X) | F2]
∣∣F1

]]
= E

[
sup
f∈C

E[f(X) | F2]
]

=

∫
φ dρ2.

(A.7)

The n-th moment measure ρ(n) associated with a probability measure ρ ∈ P(P(S)) has
been defined in (4.3). The following lemma links the first and second moment measures to
the convex order.

Lemma 12 (First and second moment measures) Let S be a Polish space. Assume that

ρ1, ρ2 ∈ P(P(S)) satisfy ρ1 ≤cv ρ2. Then ρ
(1)
1 = ρ

(1)
2 and∫

ρ
(2)
1 (dx, dy)f(x)f(y) ≤

∫
ρ

(2)
2 (dx,dy)f(x)f(y)

(
f ∈ B(S)

)
. (A.8)

If ρ1 ≤cv ρ2 and (A.8) holds with equality for all bounded continuous f : S → R, then ρ1 = ρ2.

Proof By Theorem 11, there exists an S-valued random variable X defined on some prob-
ability space (Ω,F ,P) and sub-σ-fields F1 ⊂ F2 ⊂ F such that ρi = P

[
P[X ∈ · |Fi] ∈ ·

]
(i = 1, 2). Since for each f ∈ B(S)∫

ρ
(1)
1 (dx)f(x) = E

[
E[f(X) |F1]

]
= E[f(X)] = E

[
E[f(X) |F2]

]
=

∫
ρ

(1)
1 (dx)f(x), (A.9)

we see that ρ
(1)
1 = ρ

(1)
2 . Fix f ∈ B(S) and set Mi := E[f(X) |Fi] (i = 1, 2). Then∫

ρ
(2)
2 (dx, dy)f(x)f(y) = E

[
E[f(X) |F2]2

]
= E[M2

2 ]

= E[M2
1 ] + E

[
(M2 −M1)2

]
≥ E[M2

1 ] =

∫
ρ

(2)
1 (dx,dy)f(x)f(y),

(A.10)
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proving (A.8). Let S be a metrizable compactification of S. If ρ1 ≤cv ρ2 and (A.8) holds with
equality for all bounded continuous f : S → R, then (A.10) tells us that M1 = M2 for each
f ∈ C(S), i.e.,

E[f(X) |F1] = E[f(X) |F2] a.s. for each f ∈ C(S). (A.11)

Using Lemma 8, we can choose a countable dense set D ⊂ C(S). Then E[f(X) |F1] =
E[f(X) |F2] for all f ∈ D a.s. and hence P[X ∈ · |F1] = E[X ∈ · |F2] a.s., proving that
ρ1 = ρ2.

The following lemma shows that the convex order is a partial order,

Lemma 13 (Convex functions are distribution determining) If ρ1, ρ2 ∈ P(P(S)) sat-
isfy

∫
φ dρ1 =

∫
φ dρ2 for all φ ∈ Ccv(P(S)), then ρ1 = ρ2.

Proof For any f ∈ C(S) and ρ ∈ P(P(S)),∫
S
2
ρ(2)(dx,dy)f(x)f(y) =

∫
P(S)

ρ(dµ)

∫
S
2
µ(dx)µ(dy)f(x)f(y) =

∫
P(S)

ρ(dµ)lf (µ)2. (A.12)

Therefore, since l2f is a convex function,
∫
φ dρ1 =

∫
φ dρ2 for all φ ∈ Ccv(P(S)) implies

equality in (A.8) and hence, by Lemma 12, ρ1 = ρ2.
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