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Abstract

Aldous and Bandyopadhyay have shown that each solution to a recursive distributional
equation (RDE) gives rise to recursive tree process (RTP), which is a sort of Markov chain
in which time has a tree-like structure and in which the state of each vertex is a random
function of its descendants. If the state at the root is measurable with respect to the
sigma field generated by the random functions attached to all vertices, then the RTP is
said to be endogenous. For RTPs defined by continuous maps, Aldous and Bandyopadhyay
showed that endogeny is equivalent to bivariate uniqueness, and they asked if the continuity
hypothesis can be removed. We introduce a higher-level RDE that through its n-th moment
measures contains all n-variate RDEs. We show that this higher-level RDE has minimal
and maximal fixed points with respect to the convex order, and that these coincide if and
only if the corresponding RTP is endogenous. As a side result, this allows us to answer
the question of Aldous and Bandyopadhyay positively.
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1 Recursive distributional equations

Let S be a Polish space and for k ≥ 1, let Sk denote the space of all ordered sequences
(x1, . . . , xk) of elements of S. Let P(S) denote the space of all probability measures on S,
equipped with the topology of weak convergence and its associated Borel-σ-field. A measurable
map g : Sk → S gives rise to a measurable map ǧ : P(S)k → P(S) defined as

ǧ(µ1, . . . , µk) := µ1 ⊗ · · · ⊗ µk ◦ g−1, (1.1)

where µ1 ⊗ · · · ⊗ µk denotes product measure and the right-hand side of (1.1) is the image of
this under the map g. A more probabilistic way to express (1.1) is to say that if X1, . . . , Xk are
independent random variables with laws µ1, . . . , µk, then g(X1, . . . , Xk) has law ǧ(µ1, . . . , µk).
In particular, we let Tg : P(S)→ P(S) denote the map

Tg(µ) := ǧ(µ, . . . , µ). (1.2)

Note that Tg is in general nonlinear, unless k = 1.
With slight changes in the notation, the construction above works also for k = 0 and

k = ∞. By definition, we let S0 be a set containing a single element, the empty sequence,
which we denote by (∅), and we let S∞ denote the space of all infinite sequences (x1, x2, . . .)
of elements of S, equipped with the product topology and associated Borel-σ-field. It is
well-known that if S is Polish, then so are Sk (0 ≤ k ≤ ∞) and P(S).

Write N := N ∪ {∞}. Let G be a measurable space whose elements are measurable maps
g : Sk → S, where k = kg ∈ N may depend on g, and let π be a probability law on G. Then

T (µ) :=

∫
G
π(dg)Tg(µ)

(
µ ∈ P(S)

)
(1.3)

defines a map T : P(S)→ P(S). Equations of the form

T (µ) = µ (1.4)

are called Recursive Distributional Equations (RDEs). A nice collection of examples of such
RDEs arising in a variety of settings can be found in [AB05]. They include Galton-Watson
branching processes and related random trees, probabilistic analysis of algorithms as well as
statistical physics models.

2 Recursive Tree Processes

For d ∈ N+ := {1, 2, . . .}, let Td denote the space of all finite words i = i1 · · · it (t ∈ N)
made up from the alphabet {1, . . . , d}, and define T∞ similarly, using the alphabet N+. Let ∅
denote the word of length zero. We view Td as a tree with root ∅, where each vertex i ∈ Td
has d children i1, i2, . . ., and each vertex i = i1 · · · it except the root has precisely one ancestor
←
i := i1 · · · it−1. If i, j ∈ Td with i = i1 · · · is and j = j1 · · · jt, then we define the concatenation
ij ∈ Td by ij = i1 · · · isj1 · · · jt. We denote the length of a word i = i1 · · · it by |i| := t and set

Tdt := {i ∈ Td : |i| < t}. For any subtree U ⊂ T, we let ∂U := {i ∈ Td :
←
i ∈ U, i 6∈ U} denote

the outer boundary of U. In particular, ∂Tdt = {i ∈ Td : |i| = t} is the set of all vertices at
distance t from the root.
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As before, let G be a measurable set whose elements are measurable maps g : Sk → S,
where k = kg ∈ N may depend on g, let π be a probability law on G, and let T be the operator
in (1.3). Following [AB05], we will give a stochastic representation of the operator T and its
iterates. Fix some d ∈ N+ := N+ ∪ {∞} such that kg ≤ d for all g ∈ G, and to simplify
notation write T := Td. Let (γi)i∈T be an i.i.d. collection of random maps with common law
π, and write ki := kγi , where as before for a map g ∈ G we let kg ∈ N denote the constant
such that g : Skg → S. Fix t ≥ 1 and µ ∈ P(S), and let (Xi)i∈∂Tt be a collection of S-valued
random variables such that

(Xi)i∈∂Tt are i.i.d. with common law µ and independent of (γi)i∈Tt . (2.1)

Define (Xi)i∈Tt inductively by1

Xi = γi
(
Xi1, . . . , Xiki

)
(i ∈ Tt). (2.2)

Then it is easy to see that for each 1 ≤ s ≤ t,

(Xi)i∈∂Ts are i.i.d. with common law T t−s(µ) and independent of (γi)i∈Ts , (2.3)

where Tn denotes the n-th iterate of the map in (1.3). Also, X∅ (the state at the root) has law
T t(µ). If µ is a solution of the RDE (1.4), then, by Kolmogorov’s extension theorem, there
exists a collection (γi, Xi)i∈T of random variables whose joint law is uniquely characterized by
the following requirements:

(i) (γi)i∈T is an i.i.d. collection of G-valued r.v.’s with common law π,

(ii) for each t ≥ 1, the (Xi)i∈∂Tt are i.i.d. with common law µ
and independent of (γi)i∈Tt ,

(iii) Xi = γi
(
Xi1, . . . , Xiki

)
(i ∈ T).

(2.4)

We call such a collection (γi, Xi)i∈T a Random Tree Process (RTP). We can think of a RTP
as a generalization of a Markov chain, where the time index set T has a tree structure and
time flows in the direction of the root. In each step, the new value Xi is a function of the
previous values Xi1, . . . , Xiki plus some independent randomness, represented by the maps
(γi)i∈T. Following [AB05, Def 7], we say that the RTP corresponding to a solution µ of
the RDE (1.4) is endogenous if X∅ is measurable w.r.t. the σ-field generated by the random
variables (γi)i∈T.

Endogeny is somewhat similar to pathwise uniqueness of stochastic differential equations,
in the sense that it asks whether given (γi)i∈T, there always exists a “strong solution” (Xi)i∈T
on the same probability space, or whether on the other hand additional randomness is needed
to construct (Xi)i∈T. Since for each t ≥ 1, X∅ is a function of (γi)i∈Tt and the “boundary
conditions” (Xi)i∈∂Tt , endogeny says that in a certain almost sure sense, the effect of the
boundary conditions disappears as t→∞. Nevertheless, endogeny does not imply uniqueness
of solutions to the RDE (1.4). Indeed, it is possible for a RDE to have several solutions,
while some of the corresponding RTPs are endogenous and others are not. In the special case
that T = T1, an RTP is a “backward” Markov chain . . . , X11, X1, X∅ generated by i.i.d. maps
. . . , γ11, γ1. In this context, equivalent formulations of endogeny have been investigated in the

1Here and in similar formulas to come, it is understood that the notation should be suitably adapted if
ki = ∞, e.g., in this place, Xi = γi

(
Xi1, Xi2, . . .

)
.
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literature, see for example [BL07] who point back to [Ros59]. Endogeny also plays a role, for
example, in the coupling from the past algorithm by Propp and Wilson [PW96]. We point to
[AB05] for an analogous statement on tree-structured coupling from the past.

Endogeny of RTPs is related to, but not the same as triviality of the tail-σ-field as defined
for infinite volume Gibbs measures. Indeed, if (γi, Xi)i∈T is a RTP, then the law of (Xi)i∈T is
a Gibbs measure on ST. The tail-σ-field of such a Gibbs measure is defined as

T :=
⋂
t≥1

σ
(
(γi)i∈T\Tt

)
. (2.5)

It is known that if (γi, Xi)i∈T is endogenous, then the tail-σ-field of (Xi)i∈T is trivial [Ant06,
Prop. 1], but the converse implication does not hold [Ant06, Example 1]. It is known that
triviality of the tail-σ-field is equivalent to nonreconstructability in information theory [Mos01,
Prop. 15], and also to extremality of (Xi)i∈T as a Gibbs measure [Geo11, Section 7.1].

3 The n-variate RDE

Let g : Sk → S with k ≥ 0 be a measurable map and let n ≥ 1 be an integer. We can
naturally identify the space (Sn)k with the space of all n × k matrices x = (xji )

j=1,...,n
i=1,...,k . We

let xj := (xj1, . . . , x
j
k) and xi = (x1

i , . . . , x
n
i ) denote the rows and columns of such a matrix,

respectively. With this notation, we define an n-variate map g(n) : (Sn)k → Sn by

g(n)
(
x) :=

(
g(x1), . . . , g(xn)

) (
x ∈ (Sn)k

)
. (3.1)

This notation is easily generalized to k = ∞ or n = ∞, or both. The map g(n) describes n
systems that are coupled in such a way that the same map g is applied to each system. We
will be interested in the n-variate map (compare (1.3))

T (n)(ν) :=

∫
G
π(dg)Tg(n)(ν)

(
ν ∈ P(Sn)

)
. (3.2)

and the corresponding n-variate RDE (compare (1.4))

T (n)(ν) = ν. (3.3)

The maps T (n) are consistent in the following sense. Let ν|{i1,...,im} denote the marginal
of ν with respect to the coordinates i1, . . . , im, i.e., the image of ν under the projection
(x1, . . . , xn) 7→ (xi1 , . . . , xim). Then

T (n)(ν)
∣∣
{i1,...,im} = T (m)

(
ν
∣∣
{i1,...,im}

)
. (3.4)

In particular, if ν solves the n-variate RDE (3.3), then its one-dimensional marginals ν|{m}
(1 ≤ m ≤ n) solve the RDE (1.4). For any µ ∈ P(S), we let

P(Sn)µ :=
{
ν ∈ P(Sn) : ν|{m} = µ ∀1 ≤ m ≤ n

}
(3.5)

denote the set of probability measures on Sn whose one-dimensional marginals are all equal
to µ. We also let Psym(Sn) denote the space of all probability measures on Sn that are sym-
metric with respect to permutations of the coordinates {1, . . . , n}, and denote Psym(Sn)µ :=
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Psym(Sn)∩P(Sn)µ. It is easy to see that T (n) maps Psym(Sn) into itself. If µ solves the RDE
(1.4), then T (n) also maps Psym(Sn)µ into itself.

Given a measure µ ∈ P(S), we define µ(n) ∈ P(Sn) by

µ(n) := P
[
(X, . . . ,X) ∈ ·

]
where X has law µ. (3.6)

We will prove the following theorem, which is similar to [AB05, Thm 11]. The main improve-
ment compared to the latter is that the implication (ii)⇒(i) is shown without the additional
assumption that T (2) is continuous with respect to weak convergence, solving Open Problem 12
of [AB05]. We have learned that this problem has been solved before using an argument from
[BL07], although its solution has not been published. We refer to Appendix B for a compari-
son of our solution and this other solution. Below,⇒ denotes weak convergence of probability
measures.

Theorem 1 (Endogeny and bivariate uniqueness) Let µ be a solution to the RDE (1.4).
Then the following statements are equivalent.

(i) The RTP corresponding to µ is endogenous.

(ii) The measure µ(2) is the unique fixed point of T (2) in the space Psym(S2)µ.

(iii) (T (n))t(ν) =⇒
t→∞

µ(n) for all ν ∈ P(Sn)µ and n ∈ N+.

4 The higher-level RDE

In this section we introduce a higher-level map Ť that through its n-th moment measures
contains all n-variate maps (Lemma 2 below). In the next section, we will use this higher-level
map to give a short and elegant proof of Theorem 1. We believe the methods of the present
section to be of wider interest. In particular, in future work we plan to use them to study
iterates of the n-variate maps for a non-endogenous RTP related to systems with cooperative
branching.

Let ξ be a random probability measure on S, i.e., a P(S)-valued random variable, and let
ρ ∈ P(P(S)) denote the law of ξ. Conditional on ξ, let X1, . . . , Xn be independent with law
ξ. Then (see Lemma 7 below)

ρ(n) := P
[
(X1, . . . , Xn) ∈ ·

]
= E

[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
n times

] (4.1)

is called the n-th moment measure of ξ. Here, the expectation of a random measure ξ on S is
defined in the usual way, i.e., E[ξ] is the deterministic measure defined by

∫
φ dE[ξ] := E[

∫
φ dξ]

for any bounded measurable φ : S → R. A similar definition applies to measures on Sn. With
slight changes in the notation, ρ(n) can also be defined for n =∞.

We observe that ρ(n) ∈ Psym(Sn) for each ρ ∈ P(P(S)) and n ∈ N+. By De Finetti’s
theorem, for n = ∞ the converse implication also holds. Indeed, Psym(S∞) is the space of
exchangeable probability measures on S∞ and De Finetti says that each element of Psym(S∞)
is of the form ρ(∞) for some ρ ∈ P(P(S)). Thus, we have a natural identification Psym(S∞) ∼=
P(P(S)) and through this identification the map T (∞) : Psym(S∞)→ Psym(S∞) corresponds
to a map on P(P(S)). Our next aim is to identify this map.
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Let Ť : P(P(S))→ P(P(S)) be given by

Ť (ρ) :=

∫
G
π(dg)Tǧ(ρ)

(
ρ ∈ P(P(S))

)
, (4.2)

where for any g : Sk → S, the map ǧ : P(S)k → P(S) is defined as in (1.1). We call Ť the
higher-level map, which gives rise to the higher-level RDE

Ť (ρ) = ρ. (4.3)

The following lemma shows that Ť is the map corresponding to T (∞) we were looking for.
More generally, the lemma links Ť to the n-variate maps T (n).

Lemma 2 (Moment measures) Let n ∈ N+ and let T (n) and Ť be defined as in (3.3) and
(4.3). Then the n-th moment measure of Ť (ρ) is given by

Ť (ρ)(n) = T (n)(ρ(n))
(
ρ ∈ P(P(S))

)
. (4.4)

Lemma 2 implies in particular that if ρ solves the higher-level RDE (4.3), then its first
moment measure ρ(1) solves the original RDE (1.4). For any µ ∈ P(S), we let

P(P(S))µ :=
{
ρ ∈ P(P(S)) : ρ(1) = µ

}
(4.5)

denote the set of all ρ whose first moment measure is µ. Note that ρ ∈ P(P(S))µ implies
ρ(n) ∈ Psym(Sn)µ for each n ≥ 1.

We equip P(P(S)) with the convex order. By Theorem 13 in Appendix A, two measures
ρ1, ρ2 ∈ P(P(S)) are ordered in the convex order, denoted ρ1 ≤cv ρ2, if and only if there exists
an S-valued random variable X defined on some probability space (Ω,F ,P) and sub-σ-fields
F1 ⊂ F2 ⊂ F such that ρi = P

[
P[X ∈ · |Fi] ∈ ·

]
(i = 1, 2). It is not hard to see that

P(P(S))µ has a minimal and maximal element w.r.t. the convex order. For any µ ∈ P(S), let
us define

µ := P
[
δX ∈ ·

]
where X has law µ. (4.6)

Clearly δµ, µ ∈ P(P(S))µ. Moreover (as will be proved in Section 6 below)

δµ ≤cv ρ ≤cv µ for all ρ ∈ P(P(S))µ. (4.7)

In line with notation that has already been introduced in (3.6), the n-th moment measures of
δµ and µ are given by

δ(n)
µ = P

[
(X1, . . . , Xn) ∈ ·

]
and µ(n) = P

[
(X, . . . ,X) ∈ ·

]
, (4.8)

where X1, . . . , Xn are i.i.d. with common law µ and X has law µ. The following proposition
says that the higher-level RDE (4.3) has a minimal and maximal solution with respect to the
convex order.

Proposition 3 (Minimal and maximal solutions) The map Ť is monotone w.r.t. the
convex order. Let µ be a solution to the RDE (1.4). Then Ť maps P(P(S))µ into itself.
There exists a unique µ ∈ P(P(S))µ such that

Ť t(δµ) =⇒
t→∞

µ, (4.9)

where ⇒ denotes weak convergence of measures on P(S), equipped with the topology of weak
convergence. The measures µ and µ solve the higher-level RDE (4.3), and any ρ ∈ P(P(S))µ
that solves the higher-level RDE (4.3) must satisfy

µ ≤cv ρ ≤cv µ. (4.10)
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Since µ and µ solve the higher-level RDE (4.3), there exist RTPs corresponding to µ and
µ. The following proposition gives an explicit description of these higher-level RTPs.

Proposition 4 (Higher-level RTPs) Let (γi, Xi)i∈T be a RTP corresponding to a solution
µ of the RDE (1.4). Set

ξi := P
[
Xi ∈ · | (γij)j∈T

]
. (4.11)

Then (γ̌i, ξi)i∈T is a RTP corresponding to the solution µ of the higher-level RDE (4.3). Also,
(γ̌i, δXi

)i∈T is a RTP corresponding to µ.

In general, we can interpret the higher-level map Ť as follows. Fix t ≥ 1, and let
(Xi, Yi)i∈∂Tt be i.i.d. random variables, independent of (γi)i∈Tt , where the Xi’s take values
in S and the Yi’s take values in some arbitrary measurable space. Define (Xi)i∈Tt inductively
as in (2.2) and for i ∈ Tt ∪ ∂Tt, let ξi denote the conditional law of Xi given Yi. Then the
(ξi)i∈∂Tt are i.i.d. with some common law ρ ∈ P(P(S)). Using Lemma 8 below, it is not hard
to see that for each 1 ≤ s ≤ t,

(ξi)i∈∂Ts are i.i.d. with common law Ť t−s(ρ) and independent of (γi)i∈Ts . (4.12)

Let µ denote the common law of the random variables (Xi)i∈∂Tt . We think of the random
variables (Yi)i∈∂Tt as providing extra information about the (Xi)i∈∂Tt . The convex order
measures how much extra information we have. For ξi = δXi

, we have perfect information,
while on the other hand for ξi = µ the Yi’s provided no extra information. A solution to the
higher-level RDE gives rise to a higher-level RTP that can be interpreted as a normal (low-
level) RTP (γi, Xi)i∈T in which we have extra information about the (Xi)i∈T. The solutions
µ and µ of the higher-level RDE correspond to minimal and maximal knowledge about Xi,
respectively, where either we know only (γij)j∈T, or we have full knowledge about Xi.

We will derive Theorem 1 from the following theorem, which is our main result.

Theorem 5 (The higher-level RDE) Let µ be a solution to the RDE (1.4). Then the
following statements are equivalent.

(i) The RTP corresponding to µ is endogenous.

(ii) µ = µ.

(iii) Ť t(ρ) =⇒
t→∞

µ for all ρ ∈ P(P(S))µ.

5 Proof of the main theorem

In this section, we use Lemma 2 and Propositions 3 and 4 to prove Theorems 1 and 5. We
need one more lemma.

Lemma 6 (Convergence in probability) Let (γi, Xi)i∈T be an endogenous RTP corre-
sponding to a solution µ of the RDE (1.4), and let (Yi)i∈T be an independent i.i.d. collection
of S-valued random variables with common law µ. For each t ≥ 1, set Xt

i := Yi (i ∈ ∂Tt), and
define (Xt

i )i∈Tt inductively by

Xt
i = γi

(
Xt

i1, . . . , X
t
iki

)
(i ∈ Tt). (5.1)

Then
Xt
∅ −→t→∞ X∅ in probability. (5.2)
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Proof The argument is basically the same as in the proof of [AB05, Thm 11 (c)], but for
completeness, we give it here. Let f, g : S → R be bounded and continuous and let Ft resp.
F∞ be the σ-fields generated by (γi)i∈Tt resp. (γi)i∈T. Since X∅ and Xt

∅ are conditionally
independent and identically distributed given Ft,

E
[
f(X∅)g(Xt

∅)
]

= E
[
E
[
f(X∅)

∣∣Ft]E[g(Xt
∅)
∣∣Ft]] = E

[
E
[
f(X∅)

∣∣Ft]E[g(X∅)
∣∣Ft]]

−→
t→∞

E
[
E
[
f(X∅)

∣∣F∞]E[g(X∅)
∣∣F∞]] = E

[
f(X∅)g(X∅)

]
,

(5.3)

where we have used martingale convergence and in the last step also endogeny. Since this
holds for arbitrary f, g, we conclude that the law of (X∅, X

t
∅) converges weakly to the law of

(X∅, X∅), which implies (5.2).

Proof of Theorem 5 If the RTP corresponding to µ is endogenous, then the random variable
ξ∅ defined in (4.11) satisfies ξ∅ = δX∅ . By Proposition 4, ξ∅ and δX∅ have laws µ and µ,
respectively, so (i)⇒(ii). Conversely, if (i) does not hold, then ξ∅ is with positive probability
not a delta measure, so (i)⇔(ii).

The implication (iii)⇒(ii) is immediate from the definition of µ in (4.9). To get the converse

implication, we observe that by Proposition 3, Ť is monotone with respect to the convex order,
so (4.7) implies

Ť t(δµ) ≤cv Ť
t(ρ) ≤cv Ť

t(µ) (t ≥ 0). (5.4)

By Proposition 3, Ť maps P(P(S))µ into itself, so Ť t(ρ) ∈ P(P(S))µ for each t ≥ 0, and
hence by Lemma 9 in Appendix A, the measures (Ť t(ρ))t≥1 are tight. By Proposition 3, the
left-hand side of (5.4) converges weakly to µ as t→∞ while the right-hand side equals µ for

each t, so we obtain that any subsequential limit Ť tn(ρ) ⇒ ρ∗ satisfies µ ≤cv ρ∗ ≤cv µ. In
particular, this shows that (ii)⇒(iii).

Proof of Theorem 1 The implication (iii)⇒(ii) is trivial. By Lemma 2 and the fact that
µ and µ solve the higher-level RDE, we see that (ii) implies µ(2) = µ(2). By Proposition 3,

µ ≤cv µ. Now Lemma 14 from Appendix A shows that µ(2) = µ(2) and µ ≤cv µ imply µ = µ,
so applying Theorem 5 we obtain that (ii)⇒(i).

To complete the proof, we will show that (i)⇒(iii). Let (γi, Xi)i∈T be a RTP corresponding
to µ and let (Y 1

i , . . . , Y
n
i )i∈T be an independent i.i.d. collection of Sn-valued random variables

with common law ν. For each t ≥ 1 and 1 ≤ m ≤ n, set Xm,t
i := Y m

i (i ∈ ∂Tt), and

define (Xm,t
i )i∈Tt inductively as in (5.1). Then (X1,t

∅ , . . . X
n,t
∅ ) has law (T (n))t(ν), and using

endogeny, Lemma 6 tells us that

(X1,t
∅ , . . . X

n,t
∅ ) −→

t→∞
(X∅, . . . , X∅) in probability. (5.5)

Since the right-hand side has law µ(n) (recall (4.8)), this completes the proof. With a slight
change of notation, this argument also works for n =∞.

6 Other proofs

In this section, we provide the proofs of Lemma 2 and Propositions 3 and 4, as well as formula
(4.7). We start with some preliminary observations.
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Lemma 7 (Moment measures) Let X1, . . . , Xn be S-valued random variables such that
conditionally on some σ-field H, the X1, . . . , Xn are i.i.d. with (random) law P[Xj ∈ · |H] = ξ
a.s. (j = 1, . . . , n). Let ρ ∈ P(P(S)) denote the law of ξ, i.e.,

ρ = P
[
P[Xj ∈ · |H] ∈ ·

]
(j = 1, . . . , n). (6.1)

Then
ρ(n) = P

[
(X1, . . . , Xn) ∈ ·

]
= E

[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
n times

]. (6.2)

Proof This follows by writing

E
[ n∏
i=1

fi(X
i)
]

= E
[ n∏
i=1

E[fi(X
i) |H]

]
=

∫
ρ(dξ)

∫
Sn

ξ(dx1) · · · ξ(dxn) f1(x) · · · fn(xn). (6.3)

for arbitrary bounded measurable fi : S → R.

Lemma 8 (Higher-level map) Let X1, . . . , Xk and H1, . . . ,Hk be S-valued random vari-
ables and σ-fields, respectively, such that (X1,H1), . . . , (Xk,Hk) are i.i.d. Let

ρ = P
[
P[Xi ∈ · |Hi] ∈ ·

]
(i = 1, . . . , k). (6.4)

Let H1 ∨ · · · ∨ Hk denote the σ-field generated by H1, . . . ,Hk. Then, for each measurable
g : Sk → S,

Tǧ(ρ) = P
[
P[g(X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk] ∈ ·

]
. (6.5)

Similarly, if γ is an independent G-valued random variable with law π, then

Ť (ρ) = P
[
P[γ(X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk] ∈ ·

]
, (6.6)

Proof Let ξi := P[Xi ∈ · |Hi]. Then (i) ξ1, . . . , ξk are i.i.d. with common law ρ, and (ii)
conditional on H1 ∨ · · · ∨ Hk, the random variables X1, . . . , Xk are independent with laws
ξ1, . . . , ξk, respectively. Now (ii) implies

P[g(X1, . . . , Xk) ∈ · |H1 ∨ · · · ∨ Hk] = ǧ(ξ1, . . . , ξk) a.s. (6.7)

and in view of (i), (6.5) follows. Formula (6.6) follows by integrating (6.5) with respect to π.
With a slight change in notation, these formulas hold also for k =∞.

Proof of formula (4.7) Let ξ be a P(S)-valued random variable with law ρ and conditional
on ξ, let X be an S-valued random variable with law ξ. Let F0 be the trivial σ-field, let
F1 be the σ-field generated by ξ, and let F2 be the σ-field generated by ξ and X. Then
F0 ⊂ F1 ⊂ F2. Since ρ(1) = µ, the random variable X has law µ. Now

P
[
P[X ∈ · | F0] ∈ ·

]
= P

[
µ ∈ ·

]
= δµ,

P
[
P[X ∈ · | F1] ∈ ·

]
= P

[
ξ ∈ ·

]
= ρ,

P
[
P[X ∈ · | F2] ∈ ·

]
= P

[
δX ∈ ·

]
= µ.

(6.8)

This proves that δµ ≤cv ρ ≤cv µ.

Proof of Lemma 2 Let ξ1, . . . , ξk be i.i.d. with common law ρ and conditional on ξ1, . . . , ξk,
let (Xj

i )j=1,...,n
i=1,...,k be independent S-valued random variables such that Xj

i has law ξi. Let Hi
denote the σ-field generated by ξi. Then ρ = P[P[Xj

i ∈ · |Hi] ∈ · ] for each i, j. By (6.2),

ρ(n) = P
[
(X1

i , . . . , X
n
i ) ∈ ·

]
(i = 1, . . . , k). (6.9)
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Set Xi := (X1
i , . . . , X

n
i ) and Xj := (Xj

1 , . . . , X
j
k). Since X1, . . . , Xk are independent with law

ρ(n),
Tg(n)(ρ(n)) = P

[
g(n)(X1, . . . , Xk) ∈ ·

]
= P

[(
g(X1), . . . , g(Xn)

)
∈ ·
]
. (6.10)

Let H := H1 ∨ · · · ∨ Hk. Since (Xj
1 ,H1), . . . , (Xj

k,Hk) are i.i.d. for each j, formula (6.5)
tells us that Tǧ(ρ) = P

[
P[g(Xj) ∈ · |H] ∈ ·

]
(j = 1, . . . , n). Since conditionally on H, the

g(X1), . . . , g(Xn) are i.i.d., formula (6.2) tells us that

Tǧ(ρ)(n) = P
[(
g(X1), . . . , g(Xn)

)
∈ ·
]
. (6.11)

Combining this with (6.10), we see that Tǧ(ρ)(n) = Tg(n)(ρ(n)) for each g ∈ G. Now (4.4)
follows by integrating w.r.t. π.

Proof of Propositions 3 and 4 We first show that Ť is monotone w.r.t. the convex order.
Let ρ1, ρ2 ∈ P(P(S))µ satisfy ρ1 ≤cv ρ2. Then we can construct S-valued random variables

X1, . . . , Xk and σ-fields (Hji )
j=1,2
i=1,...,k, such that (X1,H1

1,H2
1), . . . , (Xk,H1

k,H2
k) are i.i.d.,

ρj = P
[
P[Xi ∈ · |Hji ] ∈ ·

]
(i = 1, . . . , k, j = 1, 2), (6.12)

and H1
i ⊂ H2

i for all i = 1, . . . , k. Let γ be an independent G-valued random variable with law
π. Then (6.6) says that

Ť (ρj) = P
[
P[γ(X1, . . . , Xk) ∈ · |Hj1 ∨ · · · ∨ H

j
k] ∈ ·

]
(j = 1, 2). (6.13)

Since H1
1 ∨ · · · ∨ H1

k ⊂ H2
1 ∨ · · · ∨ H2

k, this proves that Ť (ρ1) ≤cv Ť (ρ2).
Let µ be a solution to the RDE (1.4). Then Lemma 2 tells us that for ρ ∈ P(P(S))µ

we have Ť (ρ)(1) = T (ρ(1)) = T (µ) = µ, proving that Ť maps P(P(S))µ into itself. It will be
convenient to combine the proof of the remaining statements of Proposition 3 with the proof of
Proposition 4. To check (as claimed in Proposition 4) that (γ̌i, ξi)i∈T is a RTP corresponding
to µ, we need to check that:

(i) The (γ̌i)i∈T are i.i.d.

(ii) For each t ≥ 1, the (ξi)i∈∂Tt are i.i.d. with common law µ and independent of (γ̌i)i∈Tt .

(iii) ξi = γ̌i
(
ξi1, . . . , ξiki

)
(i ∈ T).

Here (i) follows immediately from the fact that the (γi)i∈T are i.i.d. Since ξi depend only on
(γij)j∈T, it is also clear that the (ξi)i∈∂Tt are i.i.d. and independent of (γi)i∈Tt . To see that
their common law is µ, we may equivalently show that ξ∅ has law µ. Thus, we are left with
the task to prove (iii) and

(iv) P[ξ∅ ∈ · ] = µ.

Let F i denote the σ-field generated by (γij)j∈T. Then, for any i ∈ T,

ξi = P[Xi ∈ · |F i] = P
[
γi(Xi1, . . . , Xiki) ∈ ·

∣∣F i
]
. (6.14)

Conditional on F i, the random variables Xi1, . . . , Xiki are independent with laws ξi1, . . . , ξiki ,
and hence γi(Xi1, . . . , Xiki) has law γ̌i(ξi1, . . . , ξiki), proving (iii).
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To prove also (iv), we first need to prove (4.9) from Proposition 3. Fix t ≥ 1 and for
i ∈ Tt ∪ ∂Tt, let F i

t denote the σ-field generated by {γij : j ∈ T, |ij| < t}. In particular, if
i ∈ ∂Tt, then F i

t is the trivial σ-field. Set

ξti := P[Xi ∈ · |F i
t ] (i ∈ Tt ∪ ∂Tt). (6.15)

In particular, ξti = µ a.s. for i ∈ ∂Tt. Arguing as before, we see that

ξti = γ̌i
(
ξti1, . . . , ξ

t
iki

)
(i ∈ Tt), (6.16)

and hence
Ť t(δµ) = P[ξt∅ ∈ · ]. (6.17)

By martingale convergence,

ξt∅ = P[X∅ ∈ · |F∅t ] −→
t→∞

P[X∅ ∈ · |(γi)i∈T] = ξ∅ a.s. (6.18)

Combining this with (6.17), we obtain (4.9) where µ is in fact the law of ξ∅, proving (iv) as
well. This completes the proof that (γ̌i, ξi)i∈T is a RTP corresponding to µ.

The proof that (γ̌i, δXi
)i∈T is a RTP corresponding to µ is simpler. It is clear that (i)

the (γ̌i)i∈T are i.i.d., and (ii) for each t ≥ 1, the (δXi
)i∈∂Tt are i.i.d. with common law µ and

independent of (γ̌i)i∈Tt . To prove that also (iii) δXi
= γ̌i

(
δXi1

, . . . , δXiki

)
(i ∈ T), it suffices to

show that for any measurable g : Sk → S,

ǧ(δx1 , . . . , δxk) = δg(x1,...,xk). (6.19)

By definition, the left-hand side of this equation is the law of g(X1, . . . , Xk), where X1, . . . , Xk

are independent with laws δx1 , . . . , δxk , so the statement is obvious.
This completes the proof of Proposition 4. Moreover, since the marginal law of a RTP

solves the corresponding RDE, our proof also shows that the measures µ and µ solve the
higher-level RDE (4.3).

In view of this, to complete the proof of Proposition 3, it suffices to prove (4.10). If ρ
solves the higher-level RDE (4.3), then applying Ť t to (4.7), using the monotonicity of Ť with
respect to the convex order, we see that Ť t(δµ) ≤cv ρ ≤cv µ for all t. Letting t → ∞, (4.10)
follows.

A The convex order

By definition, a Gδ-set is a set that is a countable intersection of open sets. By [Bou58, §6
No. 1, Theorem. 1], for a metrizable space S, the following statements are equivalent.

(i) S is Polish.

(ii) There exists a metrizable compactification S of S such that S is a Gδ-subset of S.

(iii) For each metrizable compactification S of S, S is a Gδ-subset of S.
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Moreover, a subset S′ ⊂ S of a Polish space S is Polish in the induced topology if and only if
S′ is a Gδ-subset of S.

Let S be a Polish space. Recall that P(S) denotes the space of probability measures on
S, equipped with the topology of weak convergence. In what follows, we fix a metrizable
compactification S of S. Then we can identify the space P(S) (including its topology) with
the space of probability measures µ on S such that µ(S) = 1. By Prohorov’s theorem, P(S) is
compact, so P(S) is a metrizable compactification of P(S). Recall the definition of P(P(S))µ
from (4.5).

Lemma 9 (Measures with given mean) For any µ ∈ P(S), the space P(P(S))µ is com-
pact.

Proof Since any ρ ∈ P(P(S)) whose first moment measure is µ must be concentrated on
P(S), we can identify P(P(S))µ with the space of probability measures on P(S) whose first
moment measure is µ. From this we see that P(P(S))µ is a closed subset of P(P(S)) and
hence compact.

We let C(S) denote the space of all continuous real functions on S, equipped with the
supremumnorm, and we let B(S) denote the space of bounded measurable real functions on
S. The following fact is well-known (see, e.g., [Car00, Cor 12.11]).

Lemma 10 (Space of continuous functions) C(S) is a separable Banach space.

For each f ∈ C(S), we define an affine function lf ∈ C(P(S)) by lf (µ) :=
∫
f dµ. The

following lemma says that all continuous affine functions on P(S) are of this form.

Lemma 11 (Continuous affine functions) A function φ ∈ C(P(S)) is affine if and only
if φ = lf for some f ∈ C(S).

Proof Let φ : P(S)→ R be affine and continuous. Since φ is continuous, setting f(x) := φ(δx)
(x ∈ S) defines a continuous function f : S → R. Since φ is affine, φ(µ) = lf (µ) whenever µ
is a finite convex combination of delta measures. Since such measures are dense in P(S) and
φ is continuous, we conclude that φ = lf .

Lemma 12 (Lower semi-continuous convex functions) Let C ⊂ C(S) be convex, closed,
and nonempty. Then

φ := sup
f∈C

lf (A.1)

defines a lower semi-continuous convex function φ : P(S)→ (−∞,∞]. Conversely, each such
φ is of the form (A.1).

Proof It is straightforward to check that (A.1) defines a lower semi-continuous convex function
φ : P(S)→ (−∞,∞]. To prove that every such function is of the form (A.1), let C(S)′ denote
the dual of the Banach space C(S), i.e., C(S)′ is the space of all continuous linear forms
l : C(S)→ R. We equip C(S)′ with the weak-∗ topology, i.e., the weakest topology that makes
the maps l 7→ l(f) continuous for all f ∈ C(S). Then C(S)′ is a locally convex topological
vector space and by the Riesz-Markov-Kakutani representation theorem, we can view P(S) as
a convex compact metrizable subset of C(S)′. Now any lower semi-continuous convex function
φ : P(S)→ (−∞,∞] can be extended to C(S)′ by putting φ :=∞ on the complement of P(S).
Applying [CV77, Thm I.3] we obtain that φ is the supremum of all continuous affine functions
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that lie below it. By Lemma 11, we can restrict ourselves to continuous affine functions of the
form lf with f ∈ C(S). It is easy to see that {f ∈ C(S) : lf ≤ φ} is closed and convex, proving
that every lower semi-continuous convex function φ : P(S)→ (−∞,∞] is of the form (A.1).

We define
Ccv

(
P(S)

)
:=
{
φ ∈ C(P(S)) : φ is convex

}
(A.2)

If two probability measures ρ1, ρ2 ∈ P(P(S)) satisfy the equivalent conditions of the following
theorem, then we say that they are ordered in the convex order, and we denote this as ρ1 ≤cv ρ2.
The fact that ≤cv defines a partial order will be proved in Lemma 15 below. The convex order
can be defined more generally for ρ1, ρ2 ∈ P(C) where C is a convex space, but in the present
paper we will only need the case C = P(S).

Theorem 13 (The convex order for laws of random probability measures) Let S be
a Polish space and let S be a metrizable compactification of S. Then, for ρ1, ρ2 ∈ P(P(S)),
the following statements are equivalent.

(i)

∫
φ dρ1 ≤

∫
φ dρ2 for all φ ∈ Ccv

(
P(S)

)
.

(ii) There exists an S-valued random variable X defined on some probability space (Ω,F ,P)
and sub-σ-fields F1 ⊂ F2 ⊂ F such that ρi = P

[
P[X ∈ · |Fi] ∈ ·

]
(i = 1, 2).

Proof For any probability kernel P on P(S), measure ρ ∈ P(S), and function φ ∈ C(P(S)),
we define ρP ∈ P(P(S)) and Pφ ∈ B(P(S)) by

ρP :=

∫
ρ(dµ)P (µ, · ) and Pφ :=

∫
P ( · , dµ)φ(µ). (A.3)

By definition, a dilation is a probability kernel P such that Plf = lf for all f ∈ C(S).
As in the proof of Lemma 12, we can view P(S) as a convex compact metrizable subset

of the locally convex topological vector space C(S)′. Then [Str65, Thm 2] tells us that (i) is
equivalent to:

(iii) There exists a dilation P on P(S) such that ρ2 = ρ1P .

To see that this implies (ii), let ξ1, ξ2 be P(S)-valued random variables such that ξ1 has law
ρ1 and the conditional law of ξ2 given ξ1 is given by P . Let F1 be the σ-field generated by ξ1,
let F2 be the σ-field generated by (ξ1, ξ2), and let X be an S-valued random variable whose
conditional law given F2 is given by ξ2. Then

P
[
P[X ∈ · |F2] ∈ ·

]
= P[ξ2 ∈ · ] = ρ1P = ρ2. (A.4)

Since P is a dilation

E[f(X) | F1] = E
[
E[f(X) | F2]

∣∣F1

]
= E

[
lf (ξ2)

∣∣F1

]
=

∫
P (ξ1, dµ)lf (µ) = lf (ξ1) (A.5)

for all f ∈ C(S), and hence

P
[
P[X ∈ · |F1] ∈ ·

]
= P

[
ξ1 ∈ ·

]
= ρ1. (A.6)

We note that since ρ1, ρ2 ∈ P(P(S)), we have ξ1, ξ2 ∈ P(S) a.s. and hence X ∈ S a.s. This
proves the implication (iii)⇒(ii).
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To complete the proof, it suffices to show that (ii)⇒(i). By Lemma 12, each φ ∈ Ccv(P(S))
is of the form φ = supf∈C lf for some C ⊂ C(S). Then (ii) implies∫

φ dρ1 = E
[

sup
f∈C

E[f(X) | F1]
]

= E
[

sup
f∈C

E
[
E[f(X) | F2]

∣∣F1

]]
≤ E

[
E
[

sup
f∈C

E[f(X) | F2]
∣∣F1

]]
= E

[
sup
f∈C

E[f(X) | F2]
]

=

∫
φ dρ2.

(A.7)

The n-th moment measure ρ(n) associated with a probability measure ρ ∈ P(P(S)) has
been defined in (4.1). The following lemma links the first and second moment measures to
the convex order.

Lemma 14 (First and second moment measures) Let S be a Polish space. Assume that

ρ1, ρ2 ∈ P(P(S)) satisfy ρ1 ≤cv ρ2. Then ρ
(1)
1 = ρ

(1)
2 and∫

ρ
(2)
1 (dx, dy)f(x)f(y) ≤

∫
ρ

(2)
2 (dx,dy)f(x)f(y)

(
f ∈ B(S)

)
. (A.8)

If ρ1 ≤cv ρ2 and (A.8) holds with equality for all bounded continuous f : S → R, then ρ1 = ρ2.

Proof By Theorem 13, there exists an S-valued random variable X defined on some prob-
ability space (Ω,F ,P) and sub-σ-fields F1 ⊂ F2 ⊂ F such that ρi = P

[
P[X ∈ · |Fi] ∈ ·

]
(i = 1, 2). Since for each f ∈ B(S)∫

ρ
(1)
1 (dx)f(x) = E

[
E[f(X) |F1]

]
= E[f(X)] = E

[
E[f(X) |F2]

]
=

∫
ρ

(1)
2 (dx)f(x), (A.9)

we see that ρ
(1)
1 = ρ

(1)
2 . Fix f ∈ B(S) and set Mi := E[f(X) |Fi] (i = 1, 2). Then∫

ρ
(2)
2 (dx, dy)f(x)f(y) = E

[
E[f(X) |F2]2

]
= E[M2

2 ]

= E[M2
1 ] + E

[
(M2 −M1)2

]
≥ E[M2

1 ] =

∫
ρ

(2)
1 (dx,dy)f(x)f(y),

(A.10)

proving (A.8). Let S be a metrizable compactification of S. If ρ1 ≤cv ρ2 and (A.8) holds with
equality for all bounded continuous f : S → R, then (A.10) tells us that M1 = M2 for each
f ∈ C(S), i.e.,

E[f(X) |F1] = E[f(X) |F2] a.s. for each f ∈ C(S). (A.11)

Using Lemma 10, we can choose a countable dense set D ⊂ C(S). Then E[f(X) |F1] =
E[f(X) |F2] for all f ∈ D a.s. and hence P[X ∈ · |F1] = P[X ∈ · |F2] a.s., proving that
ρ1 = ρ2.

The following lemma shows that the convex order is a partial order,

Lemma 15 (Convex functions are distribution determining) If ρ1, ρ2 ∈ P(P(S)) sat-
isfy

∫
φ dρ1 =

∫
φ dρ2 for all φ ∈ Ccv(P(S)), then ρ1 = ρ2.

Proof For any f ∈ C(S) and ρ ∈ P(P(S)),∫
S
2
ρ(2)(dx,dy)f(x)f(y) =

∫
P(S)

ρ(dµ)

∫
S
2
µ(dx)µ(dy)f(x)f(y) =

∫
P(S)

ρ(dµ)lf (µ)2. (A.12)

Therefore, since l2f is a convex function,
∫
φ dρ1 =

∫
φ dρ2 for all φ ∈ Ccv(P(S)) implies

equality in (A.8) and hence, by Lemma 14, ρ1 = ρ2.
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B Open Problem 12 of Aldous and Bandyopadhyay

We have seen that the use of the higer-level map from Section 4 and properties of the convex
order lead to an elegant and short proof of Theorem 1, which is similar to [AB05, Thm 11].
The most significant improvement over [AB05, Thm 11] is that the implication (ii)⇒(i) is
shown without a continuity assumption on the map T , solving Open Problem 12 of [AB05].
If one is only interested in solving this open problem, taking the proof of [AB05, Thm 11] for
granted, then it is possible to give a shorter argument that does not involve the higer-level
map and the convex order.

One way to prove the implication (ii)⇒(i) in Theorem 1 is to show that nonendogeny
implies the existence of a measure ν ∈ P(S2)µ such that T (2)(ν) = ν and ν 6= µ(2). In [AB05],
such a ν was constructed as the weak limit of measures νn which satisfied T (2)(νn) = νn+1;
however, to conclude that T (2)(ν) = ν they then needed to assume the continuity of T (2).
Their Open Problem 12 asks if this continuity assumption can be removed.

In our proof of Theorem 1, we take ν = µ(2), which by Theorem 5 and Lemma 14 from

Appendix A satisfies ν 6= µ(2) if and only if the RTP corresponding to µ is not endogenous,
and by Lemma 4.4 satisfies T (2)(ν) = ν.

Antar Bandyopadhyay told us that shortly after the publication of [AB05], he learned that
their Open Problem 12 could be solved by adapting the proof of the implication (3)⇒(2) of
[BL07, Théorème 9] to the setting of RTPs. To the best of our knowledge, this observation
has not been published. The setting of [BL07, Théorème 9] are positive recurrent Markov
chains with countable state space, which are a very special case of the RTPs we consider. In
view of this, we sketch their argument here in our general setting and show how it relates to
our argument.

Let (γi, Xi)i∈T be a RTP corresponding to a solution µ of a RDE. Construct (Yi)i∈T
such that (Xi)i∈T and (Yi)i∈T are conditionally independent and identically distributed given
(γi)i∈T. Then X∅ = Y∅ a.s. if and only if the RTP corresponding to µ is endogenous. Let ν
denote the law of (X∅, Y∅). Then ν = µ(2) if and only if endogeny holds. In view of this, to
prove the implication (ii)⇒(i) in Theorem 1, it suffices to show that ν solves the bivariate
RDE T (2)(ν) = ν. This will follow provided we show that(

γ
(2)
i , (Xi, Yi)

)
i∈T (B.1)

is a RTP corresponding to ν, i.e.,

(i) the (γ
(2)
i )i∈T are i.i.d.,

(ii) for each t ≥ 1, the (Xi, Yi)i∈∂Tt are i.i.d. with common law ν

and independent of (γ
(2)
i )i∈Tt ,

(iii) (Xi, Yi) = γ
(2)
i

(
(Xi1, Yi1), . . . , (Xiki , Yiki)

)
(i ∈ T).

(B.2)

Here (i) and (iii) are trivial. To prove property (ii), set

Γt := (γi)i∈Tt (t ≥ 1) and Λi :=
(
Xi, (γij)j∈T

)
(i ∈ T). (B.3)

Then the (Λi)i∈T are identically distributed and moreover, for each t ≥ 1, the (Λi)i∈∂Tt are
independent of each other and of Γt. Recall that (Xi)i∈T and (Yi)i∈T are conditionally inde-
pendent and identically distributed given Γ := (γi)i∈T. Since the conditional law of Xi given
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Γ only depends on (γij)j∈T, the same is true for Yi. Using this, it is not hard to see that if we
let

Γ
(2)
t := (γ

(2)
i )i∈Tt (t ≥ 1) and Λ

(2)
i :=

(
Xi, Yi, (γ

(2)
ij )j∈T

)
(i ∈ T), (B.4)

then the (Λ
(2)
i )i∈T are identically distributed and for each t ≥ 1, the (Λ

(2)
i )i∈∂Tt are independent

of each other and of Γ
(2)
t , and this in turn implies (ii).

In fact, since the law of (X∅, Y∅) is the second moment measure of the random measure ξ∅
from Proposition 4, the measure ν constructed here is the same as our measure µ(2). Thus,
our argument and the one from [BL07] are both based on the same solution of the bivariate
RDE.
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