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Abstract

In frozen percolation, i.i.d. uniformly distributed activation times are assigned to the edges
of a graph. At its assigned time, an edge opens provided neither of its endvertices is part
of an infinite open cluster; in the opposite case, it freezes. Aldous (2000) showed that such
a process can be constructed on the infinite 3-regular tree and asked whether the event
that a given edge freezes is a measurable function of the activation times assigned to all
edges. We give a negative answer to this question, or, using an equivalent formulation
and terminology introduced by Aldous and Bandyopadhyay (2005), we show that the
recursive tree process associated with frozen percolation on the oriented binary tree is
nonendogenous. An essential role in our proofs is played by a frozen percolation process
on a continuous-time binary Galton Watson tree that has nice scale invariant properties.
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u. 1, 1111 Budapest, Hungary. rathb@math.bme.hu
†The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod vodárenskou věž́ı
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1 Introduction

1.1 Frozen percolation on the 3-regular tree

Let (T,E) be a regular tree where each vertex has degree 3, and let U = (Ue)e∈E be an i.i.d.
collection of uniformly distributed [0, 1]-valued random variables, indexed by the edges of the
tree. We write Et := {e ∈ E : Ue ≤ t} (t ∈ [0, 1]). Aldous [Ald00] has proved the following
theorem.

Theorem 1 (Frozen percolation on the 3-regular tree) It is possible to couple U to a
random subset F ⊂ E with the following properties:

(i) e 6∈ F if and only if no endvertex of e is part of an infinite cluster of EUe\(F ∪ {e}).

(ii) The law of (U , F ) is invariant under automorphisms of the tree.

At time t ∈ [0, 1], we call edges in Et\F open, edges in Et ∩ F frozen, and all other edges
closed. Then property (i) can be described in word as follows. Initially all edges are closed. At
its activation time Ue, the edge e opens provided neither of its endvertices is at that moment
part of an infinite open cluster; in the opposite case, it freezes.

It is not known if properties (i) and (ii) uniquely determine the joint law of (U , F ). However,
it is possible to obtain an object that is unique in law by adding one natural additional
property. To formulate this, we view T as an oriented graph (T, ~E) where ~E :=

{
(v, w), (w, v) :

{v, w} ∈ E
}

contains two oriented edges for every unoriented edge in E. A ray is an infinite
sequence of oriented edges (vn, wn)n≥0 such that vn = wn−1 and wn 6= vn−1 (n ≥ 1). We let

~E(v,w) :=
{

(vm, wm) : ∃m ≥ 0 and ray (vn, wn)n≥0 s.t. (v0, w0) = (v, w)
}

(1.1)

denote the union of all rays that start with (v, w), and we let E(v,w) :=
{
{v′, w′} : (v′, w′) ∈

~E(v,w)

}
denote the associated set of unoriented edges. For each subset S of T , we let

∂S :=
{

(v, w) ∈ ~E : v ∈ S, w ∈ T\S
}

(1.2)

denote the collection of oriented edges pointing out of S, and we let ES :=
{
{v, w} ∈ E : v ∈

S and w ∈ S
}

denote the set of edges induced by S. We say that S is a subtree if its induced
subgraph (S,ES) is a tree.

Let U = (Ue)e∈E be as before and let ~Et := {(v, w) ∈ ~E : U{v,w} ≤ t} (t ∈ [0, 1]). The
existence part of the following theorem was proved in [Ald00], but the uniqueness part is new.

Theorem 2 (Frozen percolation on the oriented 3-regular tree) It is possible to couple
U to a random subset ~F ⊂ ~E with the following properties:

(i) (v, w) ∈ ~F if and only if there exists a ray (vn, wn)n≥0 with (v0, w0) = (v, w) and
(vn, wn) ∈ ~EU{v,w}\~F for all n ≥ 1.

(ii) The law of (U , ~F ) is invariant under automorphisms of the tree.

(iii) Let U(v,w) := (Ue)e∈E(v,w)
and ~F(v,w) := ~F ∩ ~E(v,w). Then, for each finite subtree S ⊂

T , the random variables (U(v,w), ~F(v,w))(v,w)∈∂S are independent of each other and of
(Ue)e∈ES .

These properies uniquely determine the joint law of (U , ~F ). Moreover, setting F :=
{
{v, w} ∈

E : (v, w) ∈ ~F or (w, v) ∈ ~F
}

defines a pair (U , F ) with properties (i) and (ii) of Theorem 1.
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In this paper, our main interest is not in uniqueness in law but rather in almost sure
uniqueness. In [Ald00, Section 5.7], Aldous asked whether the set F of frozen edges is mea-
surable w.r.t. the σ-field generated by U , and cautiously conjectured that this might indeed
be the case. In [AB05, Thm 55], an apparent proof of this conjecture by Bandyopadhyay was
announced that appeared on the arXiv [Ban04] but turned out to contain an error. In the last
posted update of [Ban04] from 2006, Bandyopadhyay reported on numerical simulations (sim-
ilar to those shown in Figure 3 below) that suggested nonuniqueness, and from this moment
on this seems to have been the generally held belief. We finally settle the issue by proving
this.

Theorem 3 (Frozen percolation is not almost sure unique) Let (U , F ) be the pair
defined in Theorem 2 and let F ′ be a copy of F , conditionally independent of F given U . Then
F 6= F ′ a.s. In particular, the random variable F is not measurable w.r.t. the σ-field generated
by U .

1.2 Frozen percolation on the oriented binary tree

For a given oriented edge (v, w) ∈ ~E of the 3-regular tree, the set ~E(v,w) of oriented edges
that lie on rays starting with (v, w) can naturally be labeled with the space T of all finite
words i = i1 · · · in (n ≥ 0) made up from the alphabet {1, 2}. We call |i| := n the length of
the word i and denote the word of length zero by ∅, which we distinguish notationally from
the empty set ∅. The concatenation of two words i = i1 · · · in and j = j1 · · · jm is denoted by
ij := i1 · · · inj1 · · · jm.

Apart from using T to label oriented edges as above, we can also interpret T as labeling
the vertices of a binary tree with root ∅, in which each vertex i has two descendants i1, i2 and
each vertex i = i1 · · · in (n ≥ 1) except the root has a unique predecessor

←
i := i1 · · · in−1. By

definition, a ray starting at i is a sequence (in)n≥0 such that i0 = i and
←
in = in−1 (n ≥ 1). For

any A ⊂ T and i ∈ T, we write i
A−→ ∞ if there exists a ray (in)n≥0 with i0 = i and in ∈ A

(n ≥ 0).
We write i ≺ j if j = ik for some k ∈ T. By definition, a rooted subtree of T is a set U ⊂ T

with the property that i ≺ j ∈ U implies i ∈ U. For each nonempty rooted subtree U of T, we
let ∂U := {i ∈ T\U :

←
i ∈ U} denote the boundary of U relative to T, and we use the convention

that ∂U = {∅} if U = ∅.
Let τ = (τi)i∈T be an i.i.d. collection of uniformly distributed [0, 1]-valued random variables.

In the picture where elements of T label oriented edges in ~E(v,w), this corresponds to the
collection of activation times (Ue)e∈E(v,w)

. Using the same picture, let (Xi)i∈T be a collection
of real random variables, which correspond to the first time when there is an infinite open ray
of edges starting with a given oriented edge, with Xi := ∞ if this never happens. Note that
Xi takes values in I := [0, 1] ∪ {∞}. By properties (ii) and (iii) of Theorem 2, for each finite
rooted subtree U ⊂ T,

the r.v.’s (Xi)i∈∂U are i.i.d. and independent of (τi)i∈U. (1.3)

Using also property (i), it is easy to see that the random variables (Xi)i∈T satisfy the inductive
relation (compare [AB05, formula (65)])

Xi = γ[τi](Xi1, Xi2) (i ∈ T), (1.4)

where γ : [0, 1]× I2 → I is defined as

γ[t](x, y) :=

{
x ∧ y if x ∧ y > t,

∞ otherwise.
(1.5)

4



Generalising from the set-up of Theorem 2, we will more generally be interested in collections
of random variables (τi, Xi)i∈T such that (τi)i∈T are i.i.d. uniformly distributed on [0, 1] and
(1.3) and (1.4) hold. As will be explained in the next subsection, in the terminology of [AB05],
such a collection forms a Recursive Tree Process (RTP). The theory of RTPs provides us with
a convenient general framework to reformulate and prove Theorems 2 and 3.

1.3 Recursive Tree Processes

Roughly speaking, a Recursive Tree Process (RTP) is a stationary Markov chain in which time
has a tree-like structure and flows in the direction of the root. The state at each node of the
tree is a function of the states of its descendants and i.i.d. randomness attached to the nodes.
Following [AB05], we call an RTP endogenous if the state at the root is measurable w.r.t. the
σ-field generated by the i.i.d. randomness attached to the nodes. It has been shown in [AB05,
Thm 11] that endogeny is equivalent to bivariate uniqueness. We first explain these concepts
in a general setting and then specialise to frozen percolation.

Slightly generalising our previous notation, let T denote the space of all finite words i =
i1 · · · in (n ≥ 0) made up from the alphabet {1, . . . , d}, where d ≥ 1 is some fixed integer.
All previous notation involving the binary tree generalizes in a straightforward manner to the
d-ary tree T. Let I and Ω be Polish spaces, let γ : Ω× Id → I be a measurable function, and
let (ωi)i∈T be i.i.d. Ω-valued random variables with common law p. Let ν be a probability law
on I that solves the Recursive Distributional Equation (RDE)

X∅
d
= γ[ω∅](X1, . . . , Xd), (1.6)

where
d
= denotes equality in distribution, X∅ has law ν, and X1, . . . , Xd are copies of X∅,

independent of each other and of ω∅. A simple argument based on Kolmogorov’s extension
theorem (see [MSS19, Lemma 8]) tells us that the i.i.d. random variables (ωi)i∈T can be coupled
to I-valued random variables (Xi)i∈T in such a way that:

(i) For each finite rooted subtree U ⊂ T, the r.v.’s (Xi)i∈∂U are i.i.d. with common law ν
and independent of (ωi)i∈U.

(ii) Xi = γ[ωi](Xi1, . . . , Xid) (i ∈ T).

Moreover, these conditions uniquely determine the joint law of (ωi, Xi)i∈T. We call the latter
the Recursive Tree Process (RTP) corresponding to the maps γ and solution ν of the RDE
(1.6). By definition, the RTP (ωi, Xi)i∈T is endogenous if the random variable X∅ is measur-
able w.r.t. the σ-field generated by the random variables (ωi)i∈T. It has been shown in [AB05,
Thm 11] that this is equivalent to bivariate uniqueness, as we now explain.

Let P(I) denote the space of all probability measures on I. We can define a map T :
P(I)→ P(I) by

T (µ) := the law of γ[ω∅](X1, . . . , Xd), (1.7)

where X1, . . . , Xd are i.i.d. with law µ and independent of ω∅. In particular, solutions to
the RDE (1.6) correspond to fixed points of T . Similarly, we can define a bivariate map
T (2) : P(I2)→ P(I2) by

T (2)(µ(2)) := the law of
(
γ[ω∅](X1, . . . , Xd), γ[ω∅](X∗1 , . . . , X

∗
d)
)
, (1.8)

where (X1, X
∗
1 ), . . . , (Xd, X

∗
d) are i.i.d. with common law µ(2) and independent of ω∅. A trivial

way to construct a fixed point of T (2) is to set

ν(2) := P
[
(X∅, X∅) ∈ ·

]
(1.9)
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where the law ν of X∅ is a fixed point of T . We will refer to ν(2) as the trivial fixed point
or as the diagonal fixed point of T (2) with marginal distribution ν. A more interesting way
to construct a fixed point of T (2) goes as follows. Let (ωi, Xi)i∈T be the RTP corresponding
to the map γ and a fixed point ν of T , and let (X ′i)i∈T be a copy of (Xi)i∈T, conditionally
independent given (ωi)i∈T. It follows from [MSS18, Lemma 2 and Prop 4] that

ν(2) := P
[
(X∅, X

′
∅) ∈ ·

]
(1.10)

is also a fixed point of T (2). Let us denote by (T (2))n the n-th iterate of the bivariate map
T (2). By [MSS18, Lemma 2 and Prop. 3], one has

(T (2))n(ν ⊗ ν) =⇒
n→∞

ν(2). (1.11)

The following theorem links endogeny to bivariate uniqueness. The essential idea goes back
to [AB05, Thm 11]. In its present form, it follows from [MSS18, Thms 1 and 5 and Lemma 14].
Below, P(I2)ν denotes the space of all probability measures on I2 whose one-dimensional
marginals are given by ν. Note that condition (ii) below and formula (1.11) suggest a method
to numerically investigate whether an RTP is endogenous, compare Figure 3 below.

Theorem 4 (Endogeny and bivariate uniqueness) Let (ωi, Xi)i∈T be the RTP corre-
sponding to the map γ and solution ν of the RDE (1.6). Then the following statements are
equivalent:

(i) The RTP (ωi, Xi)i∈T is endogenous.

(ii) ν(2) = ν(2).

(iii) The bivariate map T (2) has a unique fixed point in P(I2)ν .

(iv) (T (2))n(µ(2)) =⇒
n→∞

ν(2) for all µ(2) ∈ P(I2)ν .

Note that since we know that ν(2) and ν(2) are fixed points, the implications (iv)⇒(iii)⇒(ii)
are trivial. The implication (ii)⇒(i) follows from our characterisation of ν(2) in (1.10), so the
essential claim is that (i) implies (iv).

1.4 Nonendogeny

Specialising from the general set-up of the previous subsection, we set d := 2 and as our i.i.d.
randomness (ωi)i∈T we use an i.i.d. collection (τi)i∈T of uniformly distributed [0, 1]-valued
random variables. We set I := [0, 1] ∪ {∞}, and choose for γ : Ω × I2 → I the map defined
in (1.5). Using these objects, we define a map T : P(I) → P(I) as in (1.7). The associated
RDE T (µ) = µ then takes the form (compare (1.6))

X∅
d
= γ[τ∅](X1, X2), (1.12)

where
d
= denotes equality in distribution, X∅ has law µ, and X1, X2 are copies of X∅, inde-

pendent of each other and of τ∅. Solutions to the RDE (1.12) are not unique. We will describe
all solutions of (1.12) in Lemma 33 and Proposition 37 below.

Let (τi, Xi)i∈T be an RTP corresponding to the map γ in (1.5) and an arbitrary solution
to the RDE (1.12). We set

Tt :=
{
i ∈ T : τi ≤ t

}
and Fx :=

{
i ∈ T : τi ≥ Xi1 ∧Xi2

}
, (1.13)

and define I-valued random variables (X↑i )i∈T by

X↑i := inf
{
t ∈ [0, 1] : i

Tt\Fx−→ ∞
}
, (1.14)
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with X↑i := ∞ if the set on the right-hand side is empty. In line with our interpretation

where elements of T represent oriented edges in ~E(v,w) (with (v, w) fixed), we say that at time
t ∈ [0, 1], points in Tt\Fx are open, points in Tt ∩ Fx are frozen, and all other points in T are

closed. We call τi the activation time of i and refer to Xi and X↑i as its burning time and
percolation time, respectively. Note that since the subset of [0, 1] on the right-hand side of

(1.14) is a.s. closed (in the topological sense), i percolates at time t if and only if X↑i ≤ t.
Formula (1.13) says that initially, all points i ∈ T are closed. At its activation time τi, the
point i freezes if at that moment one of its descendants is burnt, and opens otherwise.

It follows from the inductive relation (1.4) that Xi > τi a.s., i.e., a point i can only burn
after its activation time. Comparing the definition of Fx in (1.13) with the definition of the
map γ in (1.5), we observe that if i burns at some time Xi ∈ [0, 1], then i must be open at
that time. Moreover, by (1.5), if i burns at some time Xi ∈ [0, 1], then there must be a ray
starting at i of points that burn at the same time as i. In particular, such a ray must be open,
which proves that

X↑i ≤ Xi a.s. (i ∈ T). (1.15)

We will prove Theorem 2 by showing that the opposite inequality holds a.s. if and only if
(τi, Xi)i∈T is the RTP corresponding to one particular solution of the RDE (1.12). This
solution is described by the following lemma, which we cite from [Ald00, Lemma 3]. Note that
(1.16) below implies that ν({∞}) = 1

2 .

Lemma 5 (Special solution to the RDE) Let ν denote the probability measure on I
defined by

ν
(
(t, 1] ∪ {∞}

)
:= 1 ∧ 1

2t

(
t ∈ [0, 1]

)
. (1.16)

Then ν solves the RDE (1.12).

We will deduce Theorem 2 from the following, more precise theorem. Aldous proved the
“if” part of the statement below in [Ald00], but the “only if” part is new.

Theorem 6 (Frozen percolation on the oriented binary tree) Let (τi, Xi)i∈T be an
RTP corresponding to the map γ in (1.5) and an arbitrary solution µ to the RDE (1.12), and

let (X↑i )i∈T be defined as in (1.14). Then one has X↑∅ = X∅ a.s. if and only if µ = ν, the
measure defined in (1.16).

Using the language of RTPs, we can formulate our main result as follows. Theorem 3 will
follow from the theorem below in a straightforward manner using methods from [Ald00].

Theorem 7 (Frozen percolation on the binary tree is nonendogenous) The RTP
(τi, Xi)i∈T corresponding to the map γ from (1.5) and the law ν from (1.16) is nonendogenous.

We prove Theorem 7 using Theorem 4, by explicitly identifying the solution ν(2) to the
bivariate RDE in terms of the solution to a certain differential equation (see formula (3.86)
below) and showing that ν(2) is not equal to ν(2). An essential role in our proofs is played by
frozen percolation on a continuum tree that we will call the Marked Binary Branching Tree
(MBBT). The advantage of working with the latter is that it enjoys a nice scaling property
that will significantly simplify our analysis. A simple trick then allows us to relate frozen
percolation on the oriented binary tree to frozen percolation on the MBBT and also prove
Theorem 7.

1.5 The Marked Binary Branching Tree

Roughly speaking, the marked binary branching tree is the family tree of a continuous-time,
rate one binary branching process, equipped with a marked Poisson point process of intensity
one and uniformly distributed [0, 1]-valued marks. We now introduce this object more formally.
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Let (Ah)h≥0 be a continuous-time branching process, started with a single particle, where
each particle splits into two new particles with rate one. We view Ah as an evolving set. In
particular, the cardinality |Ah| is a Markov process in N that jumps from a to a + 1 with
rate a, and A0 = {x0} is a set containing a single element x0. In the next subsection, we
will make a more explicit choice for the labels of elements of Ah. We choose (Ah)h≥0 to be
right-continuous and let (Ah−)h≥0 denote its left-continuous modification.

For each pair of times g, h ≥ 0 and individuals x ∈ Ag, y ∈ Ah that are alive at these
times, let τ(x, y) denote the last time in [0, g ∧ h] that a common ancestor existed of x and y,
and let

d
(
(x, g), (y, h)

)
:= g + h− 2τ(x, y) (1.17)

denote their genetic distance. Then the random set

T :=
{

(x, h) : x ∈ Ah−, h ≥ 0
}

(1.18)

equipped with the metric (1.17) is a random continuum tree. In pictures, we draw x horizon-
tally and h vertically, and from now on, we refer to h as the height, rather than time, of a
point (x, h) = z ∈ T . We call ∅ := (x0, 0) the root of T .

Conditional on T , we let Π0 be a Poisson point set on T whose intensity measure is
the length measure on T , and conditional on T and Π0, we let (τz)z∈Π0 be i.i.d. uniformly
distributed [0, 1]-valued marks. We think of z = (x, h) ∈ Π0 as a hole on T that disappears
(i.e., gets filled in) at time τz. We observe that

Π =
{

(z, τz) : z ∈ Π0

}
(1.19)

is a Poisson set of intensity one on T × [0, 1] and that Π0 as well as the marks (τz)z∈Π0 can be
read off from Π. For lack of better name, we call the pair (T ,Π) the Marked Binary Branching
Tree (MBBT). See Figure 1 for an illustration.

We set
Πt :=

{
z ∈ Π0 : τz > t

}
(t ∈ [0, 1]). (1.20)

Intuitively, Πt is the set of holes on T which are still present at time t. For any set A ⊂ T and

point z ∈ T , we write ∅ T \A−→ z if ∅ and z are connected in T \A and we write z
T \A−→∞ if there

exists an infinite, continuous, upward path through T \A. We start with a simple observation.
Note that below, in contrast with our earlier notation Et, points in Πt play the role of points
that can not be passed at time t.

Lemma 8 (Oriented percolation on the marked binary branching tree) One has

P
[
∅ T \Πt−→ ∞

]
= t (0 ≤ t ≤ 1). (1.21)

Indeed, if we cut T at points of Πt, then the remaining connected component of the root is
the family tree of a branching process where particles split into two with rate one and die with
rate 1−t. It is an elementary exercise in branching theory to show that the survival probability
of such a branching process is t. The fact that the survival probability is a linear function of t
reflects a scaling property of the marked binary branching tree that will be important in our
analysis. Below, we view (T ,Π) as a marked metric space, i.e., we consider two marked trees
to be equal if one can be mapped onto the other by an isometry that preserves the marks.

Proposition 9 (Scaling) Let (T ,Π) be the marked binary branching tree. Fix 0 < t < 1 and
define

T ′ :=
{
z ∈ T : ∅ T \Πt−→ z

T \Πt−→ ∞
}

and Π′ :=
{

(z, τz) ∈ Π : z ∈ T ′
}
. (1.22)
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∅ ∅

Figure 1: Scaling of the marked binary branching tree. On the left: at time t, points in Πt

are still closed and marked with white circles, while points in Π0\Πt have already opened and
are marked with black circles. On the right: removing the loose ends from the open cluster
at the root yields a stretched version of the original marked binary branching tree.

Then the probability that T ′ 6= ∅ is t and conditional on this event, the pair (T ′,Π′), viewed as
a marked metric space, is equally distributed with the stretched marked binary branching tree
(T ′′,Π′′) defined as

T ′′ :=
{

(x, t−1h) : (x, t) ∈ T
}

and Π′′ :=
{

(x, t−1h, tτ(x,h)) : (x, h, τ(x,h)) ∈ Π
}
. (1.23)

In words, this says that if we cut off all parts of T that lie above points z ∈ Πt, then remove
the loose ends of the tree, and condition on the event that the remaining tree is nonempty,
then we end up with the family tree of a branching process where particles split into two
with rate t, equipped with a marked Poisson point set with intensity t and i.i.d. uniformly
distributed on [0, t]-valued marks. See Figure 1 for an illustration.

1.6 Frozen percolation on the MBBT

In the previous subsection, we have been deliberately vague about the labeling of elements of
the evolving set-valued branching process (Ah)h≥0. We now make an explicit choice, which
naturally leads to an RTP that is closely related to, but different from the one introduced in
Subsection 1.4.

We will construct the branching process (Ah)h≥0 in such a way that A0 = {∅} and Ah ⊂ T
for all h ≥ 0. (Note that by a slight abuse of notation, ∅ now denotes both the root of the
discrete tree T and of the continuum tree T , the latter being defined as ∅ = (∅, 0).) Each
element i ∈ Ah branches with rate one into two new elements labeled i1 and i2. In addition,
we arrange things in such a way that each element i ∈ Ah is with rate one replaced by a new
element labeled i1. The idea of this is to encode the Poisson point set Π0 from the MBBT
in terms of the labels of elements of Ah, in such a way that Π0 is given by the collection of
points (i, h) for which i is at time h replaced by i1.
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We will give an explicit construction of the MBBT based on three collections of i.i.d.
random variables:

(i) (τi)i∈T are i.i.d. uniformly distributed on [0, 1],

(ii) (κi)i∈T are i.i.d. uniformly distributed on {1, 2},

(iii) (`i)i∈T are i.i.d. exponentially distributed with mean 1/2.

We interpret `i as the lifetime of the individual i and let

bi1···in :=
n−1∑
k=0

`i1···ik and di1···in :=
n∑
k=0

`i1···ik (1.24)

with b∅ := 0 and d∅ := `∅ denote the birth and death times of i. The random variable κi
indicates what happens with the individual i at the end of its lifetime. If κi = 1, then it is
replaced by a single new individual with label i1, and if κi = 2, then it is replaced by two new
individuals with labels i1 and i2. In line with this, we let S denote the random subtree of T
defined by

S :=
{
i1 · · · in ∈ T : im ≤ κi1···im−1 ∀ 1 ≤ m ≤ n

}
, (1.25)

which is the collection of all individuals that will ever be born. Recall that ∂U denotes the
boundary of a rooted subtree U ⊂ T relative to T. Likewise, for any rooted subtree U ⊂ S we
let ∇U := ∂U ∩ S denote the boundary of U relative to S.

For h ≥ 0, we let

Th :=
{
i ∈ T : di ≤ h

}
, ∂Th =

{
i ∈ T : bi ≤ h < di

}
,

Sh := Th ∩ S, ∇Sh = ∂Th ∩ S
(1.26)

denote the sets of individuals that have died by time h and those that are alive at time h,
respectively. Note that the former are a.s. finite rooted subtrees of T and S, respectively, and
the latter are their boundaries. Then

(∇Sh)h≥0 = (Ah)h≥0 (1.27)

gives an explicit construction of the branching process (Ah)h≥0 we have earlier described in
words. Defining T as in (1.18) and setting

Π :=
{

(i, di, τi) : i ∈ S, κi = 1
}

(1.28)

yields an explicit construction of the MBBT (T ,Π) based on i.i.d. randomness.
Instead of giving a description of oriented frozen percolation on (T ,Π) similar to Theo-

rem 6, we immediately jump to the corresponding RTP for the percolation times. Letting
Yi denote the first time when there is an infinite upwards open path in frozen percolation
on (T ,Π) starting from the point (i, bi), it is not hard to see that (Yi)i∈S must satisfy the
inductive relation

Yi = χ[τi, κi](Yi1, Yi2), (1.29)

where χ : [0, 1]× {1, 2} × I2 → I is the function

χ[τ, κ](x, y) :=


x if κ = 1, x > τ,

∞ if κ = 1, x ≤ τ,
x ∧ y if κ = 2.

(1.30)

Note that in (1.29), Yi is a priori only defined for i ∈ S. The definition of S in (1.25) is such,
however, that in cases when i ∈ S but i2 6∈ S, the value of Yi2 is irrelevant for the outcome of
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the function χ. The subtree S plays an important role in the theory of continuous-time RTPs,
see [MSS19, Sect. 1.4].

Like in the case of the oriented binary tree (as discussed in Subsection 1.4) it is possible to
go the other way, i.e., starting from a solution to the RDE corresponding to the map χ, one
can construct an RTP (τi, κi, Yi)i∈T where now Yi is defined for all i ∈ T, and then restrict to
S to construct oriented frozen percolation on the MBBT. In the present setting, it turns out
that the “right” solution to the corresponding RDE is given by the following lemma. Since
we will later (in Subsection 3.5 below) see that frozen percolation on the MBBT and on the
oriented binary tree can be mapped into each other, we will at this moment not explain why
in the present setting, Lemma 10 describes the “right” solution to the RDE.

Lemma 10 (Special solution to the RDE) Let ρ denote the probability measure on I
defined by

ρ
(
[0, t]

)
:= 1

2 t
(
t ∈ [0, 1]

)
, ρ({∞}) := 1

2 . (1.31)

Then ρ solves the RDE

Y∅
d
= χ[τ∅, κ∅](Y1, Y2), (1.32)

where
d
= denotes equality in distribution, Y∅ has law ρ, and Y1, Y2 are copies of Y∅, independent

of each other and of τ∅, κ∅.

We will prove that the RTP (τi, κi, Yi)i∈T corresponding to the map χ from (1.30) and law
ρ from (1.31) is nonendogenous. We apply Theorem 4. We will explicitly identify the special
solutions ρ(2) and ρ(2) to the bivariate RDE and show that they are not equal.

It is clear from the definitions of ρ(2) and ρ(2) in (1.9) and (1.10) that both measures
are symmetric under a permutation of the two coordinates and that their one-dimensional
marginals equal ρ. The main advantage of working with the MBBT is that as a result of the
scaling property described in Proposition 9, the measures ρ(2) and ρ(2) are also scale invariant.

We let P∗(I2)ρ denote the space of symmetric measures µ(2) on I2 whose one-dimensional
marginals are given by ρ and that are moreover scale invariant in the sense that

µ(2)
(
[0, tr]× [0, ts]

)
= tµ(2)

(
[0, r]× [0, s]

) (
r, s, t ∈ [0, 1]

)
. (1.33)

Lemma 11 (Scale invariance) One has ρ(2), ρ(2) ∈ P∗(I2)ρ.

By Theorem 4, to show that the RTP (τi, κi, Yi)i∈T is nonendogenous, it suffices to show
that apart from the trivial fixed point ρ(2), the bivariate map T (2) has at least one other fixed
point in P(I2)ρ. The following theorem identifies all fixed points in P∗(I2)ρ. Since there are
precisely two of them, by Lemma 11 we conclude that the nontrivial fixed point is ρ(2).

Theorem 12 (Nonendogeny) The bivariate map T (2) associated with the map χ from (1.30)

has precisely two fixed points ρ
(2)
1 , ρ

(2)
2 in P∗(I2)ρ. For each c ≥ 0, let fc : [0, 1]→ [0, 1] denote

the continuous function given by the unique solution to the Cauchy problem

∂
∂rfc(r) =

cr

fc(r)− r/2
, 0 ≤ r < 1, fc(0) = 1

2 . (1.34)

The equation
fc(1)2 − 1

2fc(1) = 2c (1.35)

is solved for precisely two values of c in [0,∞). Denoting these by c1 and c2 with c1 < c2, we

have c1 = 0 and c2 ∈ (0, 1/4). The measures ρ
(2)
i (i = 1, 2) are uniquely characterised by

ρ
(2)
i

(
{[0, r]× I} ∪ {I × [0, s]}

)
= (s ∨ r)fci

(r ∧ s
r ∨ s

)
,
(
(r, s) ∈ [0, 1]2\{(0, 0)}

)
. (1.36)

One has ρ
(2)
1 = ρ(2), the trivial fixed point defined as in (1.9).
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Figure 2: The nontrivial solutions ν(2) and ρ(2) of the bivariate RDE for frozen percolation
on the oriented binary tree and the MBBT, respectively. Plotted are the densities of the
restrictions of the measures to [1

2 , 1]2 and [0, 1]2, respectively.

Numerically, we find c2 ≈ 0.01770838. The function fc2 is increasing and convex with

fc2(0) = 1
2 and fc2(1) ≈ 0.5629165415. Lemma 11 allows us to identify ρ

(2)
2 as ρ(2), the

nontrivial fixed point defined in (1.10). As a result of Theorem 12, we also have an explicit
expression for the nontrivial solution ν(2) to the bivariate RDE for frozen percolation on the
oriented binary tree, see formula (3.86) below. Numerical data for ν(2) and ρ(2) are plotted in
Figure 2.
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Figure 3: Iterating the bivariate map T (2) on the product measure ρ⊗ ρ produces a series of
measures that by (1.11) converge to the nontrivial fixed point ρ(2). Plotted is the density of

the restriction of (T (2))n(ρ ⊗ ρ) to the unit square for n = 0, 1, 3, 10, 40, and 100. The last
plot is already very close to the theoretical limit.
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1.7 Discussion

Frozen percolation on finite graphs

Let G = (V,E) be a finite graph. Let (Ue)e∈E be i.i.d. uniformly distributed on [0, 1] and let
(Λv)v∈V be an independent i.i.d. collection of exponentially distributed random variables with
mean λ−1. Now consider a process where edges and vertices can be in two possible states:
edges are either closed or open, and vertices are either available or frozen. Initially, all edges
are closed and all vertices are available. The evolution is as follows:

(i) At time Ue, the edge e becomes open, provided neither of its endvertices is frozen.

(ii) At time Λv, all vertices of the open component containing v become frozen.

We call such a process frozen percolation on the finite graph G, and by a certain analogy with
forest fire models, we call λ the lightning rate.

One is typically interested in the limit when G is large. Let us therefore consider a sequence
Gn = (Vn, En) of finite graphs with |Vn| = n vertices and with lightning rates λn, and make
two assumptions:

(A1) The graphs Gn converge to a weak local limit G in the sense of Benjamini and Schramm.

(A2) n−1 � λn � 1 as n→∞.

We recall that a sequence of graphs converge to a weak local limit if the neighbourhood of
a typical (uniformly chosen) vertex converges in law to a (possibly random) rooted graph;
see [BS01] or [Hof17b, Section 1.4]. Assumption (A2) guarantees that in the limit, small
open clusters with size of order one never freeze, but giant components that occupy a positive
fraction of all vertices freeze immediately.

We can think of this as a model for polymerisation, where open components represent
polymers that grow through merger with neighbours. Polymers that grow too large become
part of the “gel” and are unable to grow any further. In the model we have just described, this
is guaranteed by the lightning process, which has certain mathematical advantages. However,
one can also think about alternative models where polymers are, e.g., prevented from growing
when they reach a certain deterministic size.

If pc is the critical value for percolation in the local limit graph G from assumption (A1),
then up to time pc, open clusters grow as in normal percolation. Since beyond this time, large
clusters are prevented from growing further, one can expect the model to exhibit self-organised
criticality (SOC) in the sense of [Bak96, Jen98], i.e., in the whole time regime beyond time
pc we can expect phenomena that are usually associated with the behaviour of large systems
at their critical point. Statements of this form have indeed been proved. With the model
described above in mind, we will give a short overview of the literature and mention some
open problems.

Frozen percolation on the complete graph

Although historically not the oldest, frozen percolation on the complete graph is one of the
most natural models to consider. Since in this case, the degree of each vertex is n, it is
more natural to take the (Ue)e∈E to be uniformly distributed on [0, n] instead of [0, 1]. The
complete graph does not have a weak local limit, but one can take the local limit of the
combined object consisting of the complete graph and the edge activation times Ue. The
resulting limiting object is called the Poisson Weighted Infinite Tree (PWIT) [AS04, Sect 4.2].

Following a suggestion in [Ald00, Sect. 5.5], one of us has studied frozen percolation on the
complete graph. In [Rat09], it was shown that the fraction of clusters of sizes k ∈ N at time
t converges to a solution of Smoluchowski’s equations with multiplicative kernel, an infinite
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system of differential equation that serves as a deterministic model of polymerisation, and
that is known to exhibit self-organised criticality (SOC).

The closely related forest fire model of [RT09] is further studied in [CFT15, CRY18, Cra18].
In [CRY18] it is shown that the asymptotic distribution of a typical cluster is that of a critical
multi-type Galton-Watson tree after gelation.

Aldous [Ald00, Sect. 5.5] in fact suggested to study the variant of the mean field frozen
percolation model where clusters are frozen when their size exceeds a deterministic threshold
1 � α(n) � n. This model is studied in in [MN14]. Their Theorem 1.3 states that at any
time t ≥ 1, the limiting distribution of a typical non-frozen cluster is that of a critical Galton-
Watson tree with Poisson offspring distribution, again establishing SOC. As an open problem,
we mention:

Problem 1 Construct frozen percolation on the PWIT and show that it is the local weak
limit of the models in [Rat09, MN14].

Coagulation equations

The relation of frozen percolation on the complete graph to Smoluchowski’s coagulation equa-
tions has already been mentioned. A remark of Stockmayer [Sto43] on these equations inspired
Aldous’ work for the 3-regular tree. In [Ald00, Section 1.1] Aldous compares the post-gel be-
haviour of Smoluchowski’s coagulation equations to the self-similar behaviour of his model.
In [Ald99] Aldous surveys the connections between variants of Smoluchowski’s coagulation
equations and various stochastic models of coagulation.

The configuration model [Hof17a] is a well-studied random graph whose weak local limit is
well-known. In particular, one can choose the parameters of the configuration model so that
this limit is the 3-regular or more generally any d-regular graph. The configuration model has
a dynamical construction where to vertices there are assigned “half-edges” or “arms” that are
then randomly linked. In [MN15] a variant of this model is treated where components freeze
once their size exceeds a fixed threshold. They link the model to a variant of Smoluchowski’s
equations and it is shown that after gelation, the asymptotic distribution of a typical non-
frozen cluster is that of a critical Galton-Watson tree.

The mathematical connection between more general stochastic models of coalescence where
clusters with a size above a certain threshold are frozen and Smoluchowski’s equation with
more general kernels is established in [FL09].

Frozen percolation the 3-regular tree

Aldous’ work on frozen percolation on the 3-regular tree is the first example of a dynamically
constructed random graph model that exhibits SOC. In [Ald00, Prop 11 and Thm 14] it is
proved that at any time t ∈ [1

2 , 1], a typical finite cluster is distributed as a critical percolation
cluster on the binary tree, and infinite clusters are distributed as the incipient infinite cluster.
As an open problem, we mention:

Problem 2 Show that frozen percolation on the 3-regular tree is the weak local limit of frozen
percolation on a suitable sequence of finite graphs.

When proving convergence, it is very useful to have a unique characterization of the limit.
A unique characterization of frozen percolation on the 3-regular tree is provided by our The-
orem 2. We do not know if condition (iii) is in fact needed for uniqueness. Likewise, the
following question is still open:

Question 3 Do conditions (i) and (ii) of Theorem 1 uniquely determine the law of (U , F )?
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We note that using Theorem 3, it is not hard to show that (i) alone is not sufficient for
distributional uniqueness.

Let us note here that a variant of Aldous’ frozen percolation model on the binary tree where
clusters with size greater than a large number N are frozen was introduced in [BKN12]. The
law of the cluster of the origin at time t ∈ [0, 1] in the frozen percolation model with freezing
threshold N locally converges to the corresponding law in the frozen percolation model of
Aldous [Ald00] as N →∞ (see [BKN12, Theorem 1]).

Nonendogeny

In line with Problem 2, we expect that for a suitable sequence of finite graphs whose weak
local limit is the 3-regular tree, if we couple two frozen percolation processes on these graphs
by using the same edge activation times but independent lightning processes, then the weak
local limit should be the process (U , F, F ′) from Theorem 3. In particular, the local limit of
such processes should be a.s. different because of nonendogeny.

Even though the basic question of endogeny has now been settled for the binary tree, more
detailed questions remain open. In Section 3.3, we classify all solutions to RDE (1.32). This
leads to the question:

Question 4 For which solutions of the RDE (1.32) is the corresponding RTP nonendoge-
nous?

Even for the RTP in Theorem 7, one would like to understand better what is going on.

Question 5 By Theorem 7, the σ-field generated by (τi, Xi)i∈T is larger than the σ-field
generated by (τi)i∈T. Give an explicit characterisation of the extra randomness needed to
construct (Xi)i∈T.

In this context, we mention that in [Ban06, Thm 1.2], it is proved that the tail σ-algebra of
(Xi)i∈T is trivial. Proposition 1.1 of [Ban06] states that generally, endogeny of a RTP implies
its tail-triviality, however our main result exemplifies that the converse implication does not
necessarily hold.

Related to our previous question is the following problem. Let X ′∅ denote the first time
when there is an infinite path of open or frozen edges starting at the root. Then clearly
X ′∅ ≤ X∅ a.s. If the answer to the following question is positive, then this is all that can be
said with certainty about X∅ based on (τi)i∈T.

Question 6 Let ξ := P
[
X∅ ∈ ·

∣∣ (τi)i∈T]. Is it true that the support of ξ is a.s. equal to
[X ′∅,∞)?

In Theorem 12, we have shown that the bivariate RDE has precisely two scale invariant
fixed points. We believe that there exist fixed points that are not scale invariant. To see why,
recall that we suggested that ν(2) should describe the local limit of two finite frozen percolation
processes that use the same edge activation times but independent lightning processes. We
believe that the local limit of two processes that use the same lightning process up to some
time 1

2 < s < 1 and independent lightning processes thereafter should be described by a fixed

point of T (2) that is neither ν(2) nor ν(2).
It has been shown in [MSS19, Thm 1] that for each initial state, the differential equation

∂
∂hµ

(2)
h = T (2)(µ

(2)
h )− µ(2)

h (h ≥ 0) (1.37)

has a unique solution.

Problem 7 For frozen percolation on the oriented binary tree, find all fixed points of (1.37)
and their domains of attraction.
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In [MSS19, Prop 12] Problem 7 is solved for a different RTP, which is also nonendogenous.
In that example, ν(2) and ν(2) turned out to be the only fixed points, where the trivial fixed
point ν(2) is unstable and the nontrivial fixed point ν(2) attracts all other initial states. One
wonders if the situation for frozen percolation is similar. In general, we ask:

Question 8 For a general RTP, can one prove nonendogeny by proving that the trivial fixed
point ν(2) is unstable?

Our proof of Theorem 7 is based on an explicit formula for ν(2). Ultimately, one would
like to be able to prove nonendogeny without having to solve the bivariate RDE.

Frozen percolation on regular trees

In Problem 1, we have already mentioned frozen percolation on the PWIT. Aldous [Ald00,
Sect. 5.4] observed that his construction can be carried out on any d-regular tree, and even
gave a formula for the distribution of freezing times on d-regular trees. This leads to:

Question 9 Are frozen percolation on the PWIT or on general d-regular trees endogenous?

We conjecture the answer to this question to be negative, but this does not follow from
the methods of this paper. Our main results are for the MBBT and essentially rely on the
nice scaling property of the latter that simplifies our formulas. The fact that we are also able
to treat the oriented binary tree and consequently the unoriented 3-regular tree depends on a
trick that uses in an essential way that the MBBT is a binary tree.

Nevertheless, we hope that our methods will be useful in answering Question 9. The reason
for this optimism is that the MBBT can be seen as the near-critical scaling limit of percolation
on a wide class of oriented trees, such as oriented d-ary trees or the PWIT.

Indeed, since edges with Ue ≤ pc belong to finite clusters when they open, from the point
of view of frozen percolation it does not matter when they open. In view of this, let us focus
only on those edges whose activation times lie between pc and pc + ε for some small ε > 0.
If we condition on the event that there is an infinite path starting at the root along edges
with activation times Ue ≤ pc + ε, and cut off all parts of the tree that do not lie on such an
infinite path, then the scaling limit as ε → 0 of our tree T , and the locations marked with
the (scaled) activation times of edges with pc < Ue < pc + ε converge to the marked Poisson
process Π on T .

In view of this, we expect that on a general class of oriented trees, frozen percolation
is nonendogenous and the nontrivial fixed point ν(2) of the bivariate RDE will in a small
neighbourhood of the critical point look similar to the nontrivial fixed point from Theorem 12.

Frozen percolation on integer lattices

One can try to “naively” define frozen percolation on any infinite graph as in property (i) of
Theorem 1, by specifying that clusters stop growing as soon as they reach infinite size. It is an
observation of Benjamini and Schramm that such a process cannot be defined on the planar
square lattice (for a sketch of a proof, see [BT01, Section 3]). The following question is open:

Question 10 For which d ≥ 3 does there exists a frozen percolation process on the nearest-
neighbour lattice Zd that satisfies property (i) of Theorem 1?

There exists an extensive literature for finite versions of frozen percolation on the planar
lattice. A model where clusters with diameter greater than a large number N are frozen was
introduced in [BLN12]. The behaviour of this model is rather different from the the analogous
model of [BKN12] on the binary tree that we have discussed after Problem 2, because in pla-
nar diameter-frozen percolation all frozen clusters freeze in the critical time window around
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the Bernoulli percolation threshold pc, the frozen clusters look similar to critical percolation
clusters, and moreover macroscopic non-frozen clusters asymptotically have full density as
N → ∞, c.f. [BLN12, Kis15]. In [BN17] it is shown that the particular mechanism to freeze
clusters (the “boundary rules”) matters strongly, i.e., if we modify the diameter-frozen site
percolation model on the triangular lattice in a way that the outer boundary of frozen con-
nected components can become occupied (and later freeze) then frozen clusters in the terminal
configuration have non-vanishing density as N →∞.

The percolation on the planar lattice where clusters with volume (cardinality) greater
than a large number N are frozen was introduced in [BN17], the main result being that if
we restrict the process to a large box with side-length n, then the probability that the origin
freezes depends on the relation between N and n in an oscillatory fashion. Thus the behaviour
of the volume-frozen process is substantially different from that of the diameter-frozen process.
In [BKN18] it is shown that in the volume-frozen model many frozen clusters surrounding the
origin appear successively, each new cluster having a diameter much smaller than the previous
one. In [BKN18] it is also proved that in the full planar case (n =∞) with high probability (as
N → ∞), the origin does not belong to a frozen cluster in the final configuration. In [BN18]
it is proved that if the freezing mechanism in a box of size n is governed by independent
lightnings hitting the vertices then the density of frozen sites depends on the relation between
the lightning rate and n in an oscillatory fashion.

Self-destructive percolation and forest fire model on infinite graphs

The “naive” definition of the forest fire model on an infinite graph G = (V,E) (dating back
to [DS92]) is as follows: vacant sites become occupied at rate 1 and infinite occupied clusters
become vacant instantaneously. Similarly to the case of the frozen percolation model, it is a
highly non-trivial question whether such a process exists.

The model of self-destructive percolation was introduced by [BB04] in order to address this
question on the planar lattice: given some p > pc, let us switch all of the sites which are in
an infinite occupied component into vacant state (destruction) and then turn any vacant site
occupied with probability δ (enhancement). Denote by δ(p) the smallest enhancement needed
for the appearance of an infinite cluster in the enhanced configuration. Theorem 4.1 of [BB04]
states that if limp↘pc δ(p) > 0 then the forest fire process cannot be defined on the planar
lattice. Theorem 1 of [KMS15] states that indeed limp↘pc δ(p) > 0 on the planar lattice.
However, we have limp↘pc δ(p) = 0 on non-amenable graphs [AST14] and Zd for high enough

d [ADKS15]. Also note that in mean field percolation models we have limp↘pc
δ(p)
p−pc = 1. This

asymptotic relation becomes an exact equality of the lengths of growth and recovery time
intervals if one considers self-destructive (frozen) percolation on the MBBT, moreover the
general solutions to the RDE (1.32) (c.f. Section 3.3) and the associated RTP’s (c.f. Section
3.4) also exhibit time intervals of (supercritical) growth and (subcritical) recovery, which are
of equal length.

Currently it is an open question whether it is possible to define a forest fire process on
the nearest-neighbour lattice Zd, d ≥ 3. In [BT01] a variant of the forest fire model (with
site-dependent occupation rates) is constructed on the half-line. The construction of the
variant of the forest fire model with a positive rate of lightning per vertex on Zd is given in
[Dur06a, Dur06b]: if a lightning hits a vertex v, then all of the sites in the occupied cluster
of v become vacant instantaneously. In [Gra14, Gra16] a variant of the forest fire model on
the half-plane is defined where components that touch the boundary (or become infinite) are
destroyed. It is shown that before (and including) the critical time, the effect of the destruction
mechanism is only felt locally near the boundary of the half-plane, whereas after the critical
time, it is felt globally on the entire half-plane.
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Outline

The rest of the paper is devoted to proofs. We prove Lemma 10 and Theorem 12 in Section 2
and the remaining results in Section 3. The paper concludes with a small appendix on skeletal
branching processes, which are related to the scaling property of the MBBT described in
Proposition 9.

Even though Theorem 7, which is proved in Subsection 3.2, is our main result, considerable
extra effort is needed to prove additional results, in particular, uniqueness of the nontrivial
fixed point in Theorem 12 and its subsequent identification as ρ(2) with the help of Lemma 11,
as well as Theorem 2, which depends on the classification of general solutions to the RDE
(1.32) in Subsection 3.3.

2 The bivariate RDE

2.1 Main line of the proof

In this section, we prove Lemma 10 and Theorem 12. The main steps of the proof of the
latter are summarised in the following lemmas. We first need a convenient way to parametrise
elements of the space P∗(I2)ρ.

Lemma 13 (Parametrisation of the space of interest) For each ρ(2) ∈ P∗(I2)ρ, there
exists a unique continuous function f : [0, 1]→ R such that

ρ(2)
(
{[0, r]× I} ∪ {I × [0, s]}

)
= (s ∨ r)f

(r ∧ s
r ∨ s

)
,
(
(r, s) ∈ [0, 1]2\{(0, 0)}

)
, (2.1)

and such a function f uniquely characterizes ρ(2). In particular, the trivial fixed point ρ(2)

corresponds to f(r) = 1
2 , (r ∈ [0, 1]).

There are a priori many different ways of parametrising elements of P∗(I2)ρ. The para-
metrisation in terms of the function f from (2.1) turns out to lead to a particularly simple
form of the bivariate RDE.

Lemma 14 (Bivariate RDE) An element ρ(2) ∈ P∗(I2)ρ is a fixed point of the bivariate
map T (2) associated with the map χ from (1.30) if and only if the function f : [0, 1]→ R from
(2.1) is continuously differentiable on [0, 1) and satisfies

(i) ∂
∂rf(r) =

cr

f(r)− r/2
(
r ∈ [1, 0)

)
,

(ii) f(0) = 1
2 , (iii) f(1)2 − 1

2f(1) = 2c,
(2.2)

for some c ≥ 0.

In particular, the trivial fixed point f(r) = 1
2 solves (2.2) with c = c := 0. The following

lemma shows that there is exactly one other, nontrivial solution.

Lemma 15 (Nontrivial solution of (2.2)) For each c ≥ 0, there exists a unique solution
fc to (2.2) (i) and (ii). There exists a unique c2 > 0 such that the function fc2 also satisfies
(2.2) (iii). Moreover, we have c2 ∈ (0, 1

4).

In Lemma 13, we have shown that a probability law ρ(2) ∈ P∗(I2)ρ is uniquely characterised
by the corresponding function f from (2.1), but we have not given sufficient conditions for a
function f : [0, 1] → R to correspond to an element of P∗(I2)ρ. In view of this, to complete
the proof of Theorem 12, we need one more lemma.
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Lemma 16 (Nontrivial solution of the bivariate RDE) The function fc2 from Lemma 15

defines through (2.1) a probability measure ρ
(2)
2 ∈ P∗(I2)ρ. The restriction of ρ

(2)
2 to [0, 1]2

has a density w.r.t. the Lebesgue measure. In particular, ρ
(2)
2 puts no mass on the diagonal{

(r, r) : r ∈ [0, 1]
}

.

Proof of Theorem 12 By Lemmas 13, 14, 15, and 16, the bivariate map T (2) has, apart
from the trivial fixed point ρ(2), precisely one more fixed point in P∗(I2)ρ, which is given as
in (1.36) in terms of the function fc2 .

We will prove Lemmas 10, 13, 14, 15 and 16 in Sections 2.2, 2.3, 2.4, 2.5 and 2.6,
respectively.

2.2 Special solution of univariate RDE

The goal of this subsection is to prove Lemma 10.
The statement of Lemma 10 follows from Lemmas 5 and 33, but in order to make our

treatment of the MBBT self-contained, we give a direct proof.

Proof of Lemma 10 Let Y1, Y2 be i.i.d. with law ρ, let τ and κ be independent r.v.’s that
are uniformly distributed on [0, 1] and {1, 2}, respectively, and define Y∅ := χ[τ, κ](Y1, Y2),
where χ is defined in (1.30). We claim that Y∅ has law ρ. Indeed, for each t ∈ [0, 1], we have

P[Y∅ ≤ t] = 1
2

∫ 1

0
P[χ[s, 1](Y1, Y2) ≤ t] ds+ 1

2P[Y1 ∧ Y2 ≤ t]

= 1
2

∫ 1

0
P[s ≤ Y1 ≤ t] ds+ 1

2

(
1− P[Y1 > t]2

)
= 1

2

∫ t

0
(1

2 t− 1
2s) ds+ 1

2

(
1− (1− 1

2 t)
2
)

= 1
2 t.

(2.3)

2.3 Parametrisation of scale invariant measures

In this subsection we prove Lemma 13. We also prepare for the proof of Lemma 16 by giving
sufficient conditions for a function f : [0, 1] → R to define a measure ρ(2) ∈ P∗(I2)ρ through
(2.1).

Lemma 17 (Encoding ρ(2) as a bivariate function) Any ρ(2) ∈ P(I2)ρ is uniquely char-
acterised by the continuous function F : [0, 1]2 → [0, 1] defined as

F (r, s) := ρ(2)
(
{[0, r]× I} ∪ {I × [0, s]}

)
,

(
r, s ∈ (0, 1]

)
. (2.4)

Moreover, ρ(2) ∈ P∗(I2)ρ if and only if F is symetric in the sense that F (r, s) = F (s, r) and

F (tr, ts) = tF (r, s)
(
r, s, t ∈ [0, 1]

)
. (2.5)

Proof Since both marginals of ρ(2) are equal to ρ, formula (2.4) is equivalent to

(i) ρ(2)
(
{∞} × {∞}

)
= 1− F (1, 1),

(ii) ρ(2)
(
[0, r]× {∞}

)
=F (r, 1)− 1

2 ,

(iii) ρ(2)
(
{∞} × [0, s]

)
=F (1, s)− 1

2 ,

(iv) ρ(2)
(
[0, r]× [0, s]

)
= 1

2r + 1
2s− F (r, s).

(2.6)
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Since these functions uniquely determine the restrictions of ρ(2) to {(∞,∞)}, [0, 1] × {∞},
{∞} × [0, 1], and [0, 1]2, the function F determines ρ(2) uniquely. Moreover, we see from
(2.6) (iv) that ρ(2) is scale invariant in the sense of (1.33) if and only if (2.5 holds. Since the
marginals of ρ(2) are equal to ρ, and ρ has no atoms in [0, 1], we see from (2.6) (iv) that F is
a continuous function.

Lemma 18 (Sufficient conditions on F corresponding to ρ(2) ∈ P(I2)ρ) Let ∆ :={
(r, s) ∈ [0, 1]2 : 0 ≤ r ≤ s

}
and let F : ∆ → [0,∞) be a twice continuously differentiable

function such that:

(i) F (1, 1) ≤ 1, (ii) F (0, s) = 1
2s, (iii) r 7→ F (r, 1) is nondecreasing,

(iv) ∂
∂rF (r, s)

∣∣
r=s

= ∂
∂sF (r, s)

∣∣
r=s

, (v) g(r, s) := − ∂2

∂r∂sF (r, s) ≥ 0.

Extend F and g to [0, 1]2 by setting F (s, r) := F (r, s) and g(s, r) := g(r, s) for
(
(r, s) ∈ ∆

)
.

Then there exists a unique probability measure ρ(2) ∈ P(I2)ρ such that (2.4) holds, and the
restriction of ρ(2) to [0, 1]2 has density g with respect to the Lebesgue measure.

Proof Uniqueness follows from Lemma 17. By (2.6), condition (i) guarantees that the mass
at (∞,∞) is nonnegative, while conditions (ii) and (iii) guarantee that the restrictions of ρ(2)

to [0, 1]× {∞} and {∞} × [0, 1] are nonnegative measures.
To complete the proof, we will show that conditions (ii), (iv) and (v) imply that (2.6) (iv)

defines a measure on [0, 1]2 with density g. Equivalently, we must show that

D(r, s) :=

∫ r

0
dr′
∫ s

0
ds′ g(r′, s′)− 1

2r − 1
2s+ F (r, s)

(
(r, s) ∈ ∆

)
(2.7)

is identically zero. Conditions (ii), (iv) and (v) imply that

D(0, s) = 0, ∂
∂rD(r, s)

∣∣
r=s

= ∂
∂sD(r, s)

∣∣
r=s

, and ∂2

∂r∂sD(r, s) = 0
(
(r, s) ∈ ∆

)
. (2.8)

The third equality implies that D(r, s) = u(r) + v(s) for some differentiable functions u
and v, but then D(0, s) ≡ 0 implies that u(0) + v(s) ≡ 0, thus v is constant and therefore
u′(r) = ∂

∂rD(r, s)
∣∣
r=s

= ∂
∂sD(r, s)

∣∣
r=s

= v′(r) = 0, so u is also a constant, so D(r, s) = 0 for
any 0 ≤ r ≤ s ≤ 1.

Proof of Lemma 13 Given ρ(2) ∈ P∗(I2)ρ, let F be as in (2.4) and let f : [0, 1]→ R be the
continuous function defined by

f(r) := F (r, 1) = ρ(2) ({[0, r]× I} ∪ {I × [0, 1]}) , 0 ≤ r ≤ 1. (2.9)

Then F (r, s) = sf(r/s) (s 6= 0) by (2.5) and hence (2.1) follows by symmetry. The fact that
f uniquely characterizes the measure ρ(2) follows from (2.1) and Lemma 17. The trivial fixed
point ρ(2) of T (2) is the distribution of (Y, Y ), where Y ∼ ρ. In this case f(r) = P({Y ≤
r} ∪ {Y ≤ 1}) = 1

2 for any r ∈ [0, 1].

Lemma 19 (Sufficient conditions on f corresponding to ρ(2) ∈ P∗(I2)ρ) Let f : [0, 1]→
R be a twice continuously differentiable function such that

(i) f(1) ≤ 1, (ii) f(0) = 1
2 , (iii) r 7→ f(r) is nondecreasing,

(iv) 2f ′(1) = f(1), (v) f ′′(r) ≥ 0 (r ∈ [0, 1]).

Then there exists a unique probability measure ρ(2) ∈ P∗(I2)ρ such that (2.1) holds, and the
restriction of ρ(2) has a density with respect to the Lebesgue measure.
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Proof For 0 ≤ r ≤ s, define F (r, s) := sf(r/s) if s 6= 0 and := 0 otherwise, and F (s, r) :=
F (r, s). Then (2.1) is equivalent to (2.6) so uniqueness follows from Lemma 17. Since F is
symmetric and satisfies (2.5), the same lemma shows that if ρ(2) exists, then ρ(2) ∈ P∗(I2)ρ.

To get existence, we apply Lemma 18. We claim that conditions (i)–(v) of that lemma
follow from the corresponding conditions of the present lemma. This is trivial for condi-
tions (i)–(iii). Condition (iv) of Lemma 18 yields

f ′
(r
s

)
= f

(r
s

)
− r

s
f ′
(r
s

)
(r = s), (2.10)

which corresponds to the present condition (iv). Finally, condition (v) of Lemma 18 requires
that

− ∂2

∂r∂ssf
(r
s

)
= − ∂

∂sf
′(r
s

)
=

r

s2
f ′′
(r
s

)
≥ 0, (2.11)

which corresponds to the present condition (v).

2.4 Bivariate RDE and controlled ODE

In this subsection we prove Lemma 14, i.e., we equivalently reformulate the bivariate fixed
point property T (2)ρ(2) = ρ(2) for a scale invariant measure ρ(2) ∈ P∗(I2)ρ as the controlled
ODE problem (2.2) for the function f defined in (2.9). We start by deriving an integral
expression for the map T (2). Equation (2.12) below is an adaptation of equations (11) and
(12) of [Ban04] to the MBBT.

Lemma 20 (Bivariate map) Let ρ(2) ∈ P(I2)ρ, let T (2) denote the bivariate map defined
as in (1.8) for the map χ in (1.30), taking uniformly distributed τ∅, κ∅ as its input. Let F be
defined in terms of ρ(2) as in (2.4) and let F̃ be defined similarly in terms of T (2)(ρ(2)). Then

F̃ (r, s) = F (r, s)− F (r, s)2

2
+
r2

8
+
s2

8

+ 1
2

∫ r∧s

0
(F (r, s)− F (t, s)− F (r, t) + F (t, t)) dt, r, s ∈ (0, 1]. (2.12)

Proof Let τ∅ and κ∅ denote independent random variables, where τ∅ ∼ Uni[0, 1] and κ∅ is
uniformly distributed on {1, 2}. Let (Y1, Y

∗
1 ) and (Y2, Y

∗
2 ) denote I2-valued random variables

with distribution ρ(2), independent from each other and of τ∅, κ∅. Let us define

Y∅ := χ[τ∅, κ∅](Y1, Y2), Y ∗∅ := χ[τ∅, κ∅](Y ∗1 , Y
∗

2 ), (2.13)

where χ is defined in (1.30). Then the distribution of (Y∅, Y
∗
∅) is T (2)(ρ(2)). It follows that

F̃ (r, s) = 1
2P[Y∅ ≤ r or Y ∗∅ ≤ s |κ∅ = 1] + 1

2P[Y∅ ≤ r or Y ∗∅ ≤ s |κ∅ = 2]. (2.14)

Here

P[Y∅ ≤ r or Y ∗∅ ≤ s |κ∅ = 1]
(1.30)

=

∫ 1

0
P[Y1 ∈ (t, t ∨ r] or Y ∗1 ∈ (t, t ∨ s] ) dt

=

∫ 1

0
P[Y1 ∈ (t, t ∨ r] ] dt+

∫ 1

0
P[Y ∗1 ∈ (t, t ∨ s] ] dt−

∫ 1

0
P[Y1 ∈ (t, t ∨ r], Y ∗1 ∈ (t, t ∨ s] ] dt

(1.31)
=

∫ r

0

1
2(r − t) dt+

∫ s

0

1
2(s− t) dt−

∫ r∧s

0
P[Y1 ∈ (t, r], Y ∗1 ∈ (t, s] ] dt

(∗)
=
r2

4
+
s2

4
−
∫ r∧s

0
(F (t, s) + F (r, t)− F (t, t)− F (r, s)) dt, (2.15)
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where in (∗) we used (2.4) and inclusion-exclusion. Moreover

P[Y∅ ≤ r or Y ∗∅ ≤ s |κ = 2]
(1.30)

= 1− P[Y1 ∧ Y2 > r, Y ∗1 ∧ Y ∗2 > s ]

= 1− P[Y1 > r, Y ∗1 > s ]2 = 1− (1− F (r, s))2 = 2F (r, s)− F (r, s)2. (2.16)

Now (2.12) follows as a combination of (2.14), (2.15) and (2.16).

Lemma 21 (Scale invariant bivariate fixed point) ρ(2) ∈ P∗(I2)ρ satisfies T (2)(ρ(2)) =
ρ(2) if and only if the function f in (2.1) satisfies

f(r)2 =
1

4
+ rf(r)−

∫ r

0
f(u) du+

(
1

4
+
f(1)

2
−
∫ 1

0
f(s) ds

)
r2, r ∈ [0, 1]. (2.17)

Proof If ρ(2) ∈ P(I2)ρ then ρ(2) is symmetric, so Lemmas 17 and 20 imply that T (2)(ρ(2)) =
ρ(2) holds if and only if for any 0 < r ≤ s ≤ 1

F (r, s)2 =
r2

4
+
s2

4
+

∫ r

0
(F (r, s)− F (t, s)− F (t, r) + F (t, t)) dt. (2.18)

If ρ(2) ∈ P∗(I2)ρ, then the function F from (2.4) can be expressed in the function f from (2.1)
as

F (r, s) = sf
(r
s

)
, 0 < r ≤ s ≤ 1. (2.19)

Plugging this into (2.18), dividing both sides by s2 and using the substitution u = t/s in the
integral we obtain

f
(r
s

)2
=

(r/s)2

4
+

1

4
+

∫ r/s

0

(
f
(r
s

)
− f(u)− r

s
f

(
u

r/s

)
+ uf(1)

)
du, (2.20)

which holds for all 0 < r ≤ s ≤ 1 if and only if

f(r)2 =
1

4
+
r2

4
+

∫ r

0

(
f(r)− f(u)− rf

(u
r

)
+ uf(1)

)
du, 0 < r ≤ 1. (2.21)

Evaluating the integrals, using the substitution s = u/r, we arrive at (2.17), which also holds
for r = 0 since f is continuous.

Remark 22. For any ρ(2) ∈ P∗(I2)ρ, setting s = 1 in (2.1) yields (2.9), which shows that f
is nondecreasing. Since the marginals of ρ(2) are ρ, we have f(0) = 1

2 . If f(1) = 1
2 , then we

must have f(r) = 1
2 , r ∈ [0, 1]. In this case (2.17) holds. This is the f associated to the (scale

invariant) diagonal fixed point ρ(2) of T (2).

Lemma 23 (Controlled ODE) Let f : [0, 1]→ [0,∞) be continuous and nondecreasing with
f(1) > 1

2 . Then f satisfies (2.17) if and only if f is continuously differentiable and solves

(i) f(0) =
1

2
, (ii) f ′(r) =

cr

f(r)− r/2 , r ∈ [0, 1], (2.22)

where

c =
1

4
+
f(1)

2
−
∫ 1

0
f(s) ds > 0. (2.23)
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Proof Plugging in r = 0 into (2.17) we obtain f(0) = 1
2 . Using this, we have

(i) f(r)2 =
1

4
+

∫ r

0
2f(u)df(u), (ii) rf(r)−

∫ r

0
f(u) du =

∫ r

0
udf(u), (2.24)

where both integrals in (2.24) are Stieltjes. Inserting this into (2.17) yields∫ r

0
(2f(u)− u) df(u) = cr2, 0 ≤ r ≤ 1, (2.25)

with c as in (2.22). Since f is nondecreasing with f(0) = 1
2 , we observe that 2f(u) − u ≥

2f(0) − u > 0 for all u ∈ [0, 1). Combining this with the assumption f(1) > 1
2 we get

m := min0≤u≤1 (2f(u)− u) > 0, since u 7→ 2f(u)− u is a continuous function on the compact
interval [0, 1]. Since the right-hand side of (2.25) is has Lipschitz constant 2c, we conclude that
f is 2c/m-Lipschitz-continuous on [0, 1]. Thus, by the Radon-Nykodim theorem, there exists
a Lebesgue-a.s. unique measurable function f◦ : [0, 1] → [0, 2c/m] such that

∫ r
0 f
◦(u) du =

f(r)− 1
2 for all 0 ≤ r ≤ 1.

By (2.25) we have
∫ r

0 (2f(u)−u) f◦(u) du = cr2 for any 0 ≤ r ≤ 1, thus (2f(r)− r)f◦(r) =
2cr for Lebesgue-almost all r ∈ [0, 1], from which it follows that the Radon-Nykodim derivative
f◦ can be chosen to be the continuous function f◦(r) = 2cr

2f(r)−r , therefore f is continuously

differentiable, f ′ = f◦ and (2.22) holds.
Since f is nondecreasing, (2.22) implies c ≥ 0. Solving (2.22) with c = 0 yields f(1) = 1

2 ,
contradicting f(1) > 1

2 , so we conclude that c > 0.
Assume, conversely, that f solves (2.22) and (2.23). Then (2.22) (ii) implies (2.25) and

(2.22) (i) yields (2.24) (i). Combining this with (2.24) (ii) and (2.23), we see that f solves
(2.17).

Lemma 24 (Well-defined ODE) For each c ∈ [0,∞), there exists a unique continuous
function fc : [0, 1]→ R that solves (2.2) (i) and (ii).

Proof Solutions to (2.2) (i) and (ii) exist and are unique up to the first time τ when f(r) = 1
2r.

Since solutions are nondecreasing with f(0) = 1
2 , we have τ ≥ 1. If τ = 1 then f(1) = 1

2 which
corresponds to the case f(r) = 1

2 (r ∈ [0, 1]), so f is in any case continuous on [0, 1].

Lemma 25 (Integral equation for fc) The function fc from Lemma 24 satisfies

fc(r)
2 = 1

4 + rfc(r)−
∫ r

0
fc(u) du+ cr2, 0 ≤ r ≤ 1, c ∈ [0,∞). (2.26)

Proof (2.26) holds for r = 0 since fc(0) = 1
2 and the derivatives of the two sides of (2.26) are

equal for all 0 ≤ r ≤ 1 by (2.22).

Proof of Lemma 14 We note that the function f(r) = 1
2 (r ∈ [0, 1]) solves (2.22) for

r ∈ [0, 1) and c = 0. In view of this, Lemma 21, Remark 22, and Lemma 23 show that
T (2)(ρ(2)) = ρ(2) if and only if the function f from (2.1) satisfies (2.2) (i) and (ii) with
c = 1

4 + 1
2f(1)−

∫ 1
0 f(s)ds ≥ 0. To see that this latter condition is equivalent to (2.2) (iii), we

insert r = 1 into (2.26) which yields 1
4 + fc(1)

2 −
∫ 1

0 fc(s) ds = fc(1)2 − fc(1)
2 − c.

2.5 Finding the nontrivial control parameter

The goal of this subsection is to prove Lemma 15. By Lemma 24, the ODE (2.2) (i) with the
left boundary condition (2.2) (ii) has a unique solution fc for all c ≥ 0. We need to prove
the existence and uniqueness of a control parameter c2 > 0 for which fc2 also solves the right
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boundary condition (2.2) (iii). In Lemma 26 we solve the ODE and obtain an implicit equation
for fc(1). In Lemma 28 we use this to rewrite (2.2) (iii) as h(c) = 1 for some explicit function
h (see (2.34)). In Lemma 29 we show that there is a unique c2 > 0 such that h(c2) = 1 holds,
and c ∈ (0, 1

4).
Given any c ∈ (0,∞), let us define g+(c), g−(c), A+(c), A−(c) by

g±(c) :=
1

4

(
1±
√

1 + 16c
)
, A±(c) := −1

2
± 1

2
√

1 + 16c
. (2.27)

Lemma 26 (Solution of ODE for fc) For any c > 0, the function fc from Lemma 24 is
given by fc(r) = rgc(r) (r ∈ (0, 1]), where gc(r) is the unique element of (g+(c),+∞) that
satisfies

1
2 (gc(r)− g+(c))A+(c) (gc(r)− g−(c))A−(c) = r. (2.28)

Proof If we define gc(r) := fc(r)/r for any r ∈ (0, 1], then we can use (2.2) (i) to show that
the function r 7→ gc(r) solves the ODE

gc(r)− 1/2

c− gc(r)(gc(r)− 1/2)
g′c(r) =

1

r
, r ∈ (0, 1]. (2.29)

We first find the general solution of this ODE by integrating both sides of (2.29). In order to
calculate the indefinite integral of the l.h.s., we perform the substitution g = gc(r) and apply
the partial fraction decomposition

1/2− g
g2 − g/2− c

(2.27)
=

A+(c)

g − g+(c)
+

A−(c)

g − g−(c)
. (2.30)

Integrating and then exponentiating both sides of (2.29), we obtain that the general solution
of (2.29) satisfies the implicit equation R(gc(r)) = r for any r ∈ (0, 1], where

R(g) := α∗ (g − g+(c))A+(c) (g − g−(c))A−(c) , g ∈ (g+(c),+∞) (2.31)

for some positive constant α∗. Note that the function g 7→ R(g) is strictly decreasing
(since both A+(c) and A−(c) are negative) and satisfies limg→g+(c)R(g) = +∞ as well as
limg→∞R(g) = 0. Therefore, the equation R(g) = r has a unique solution g for any
r ∈ (0, 1]. In order to identify the value of α∗, we observe that (2.2) (ii) is equivalent to
limr→0+ gc(r)r = 1

2 , which is in turn equivalent to

lim
g→∞

gα∗ (g − g+(c))A+(c) (g − g−(c))A−(c) = 1
2 . (2.32)

Noting that A+(c) +A−(c) = −1 (c.f. (2.27)), we obtain α∗ = 1
2 using (2.32).

Lemma 27 (fc is increasing and concave) For any c > 0, the function fc from Lemma 24
is twice continuously differentiable with fc(0) = 1

2 , f ′c(r) ≥ 0, and f ′′c (r) > 0
(
r ∈ (0, 1]

)
.

Proof The facts that fc(0) = 1
2 and f ′c(r) ≥ 0 are immediate from (2.2) (i) and (ii). To see

that fc is twice continuously differentiable with f ′′c (r) ≥ 0, we observe that by (2.2) (i),

f ′′c (r) = ∂
∂r

c

r−1fc(r)− 1
2

= ∂
∂r

c

gc(r)− 1
2

, (2.33)

where gc is the function in Lemma 26. Since the function in (2.31) is strictly decreasing, gc(r)
is strictly decreasing, and hence the right-hand side of (2.33) is strictly positive for r > 0.

Let us define

h(c) := 1
4

(√
1 + 32c−

√
1 + 16c√

1 + 32c+
√

1 + 16c

) 1√
1+16c 1

c
, c ∈ (0,∞). (2.34)
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Lemma 28 (Right boundary condition) Let c ∈ (0,+∞). The following conditions are
equivalent:

2c = fc(1)2 − 1
2fc(1) (2.35)

fc(1) = 1
4

(
1 +
√

1 + 32c
)

(2.36)

h(c) = 1 (2.37)

Proof The positive solution of the quadratic equation (2.35) is (2.36). By Lemma 26, fc(1)
is the unique element of (g+(c),+∞) that satisfies

1
2 (fc(1)− g+(c))A+(c) (fc(1)− g−(c))A−(c) = 1. (2.38)

Now by (2.38) and A+(c) +A−(c) = −1, (2.36) is equivalent to

2
(√

1 + 32c−
√

1 + 16c
)A+(c) (√

1 + 32c+
√

1 + 16c
)A−(c)

= 1. (2.39)

Finally, the equivalence of the condition (2.39) and (2.37) (c.f. (2.34)) follows using elementary
algebra.

Lemma 29 (Existence and uniqueness of the positive root) There exists exactly one
c2 ∈ (0,+∞) such that h(c2) = 1. Moreover we have

c2 ∈ (0, 1
4). (2.40)

Proof Let us first observe that limc→0+ h(c) = 1, thus h is a continuous function on [0,+∞)
if we define h(0) := 1. Next we observe that

h(1/4)
(2.34)

=

(
3−
√

5

3 +
√

5

) 1√
5

< 1. (2.41)

We will show that

∃ c̃ ∈ (0,+∞) : h′(c) > 0 if c ∈ (0, c̃), but h′(c) < 0 if c ∈ (c̃,+∞). (2.42)

Now h(0) = 1, h(1/4) < 1 and (2.42) imply the statement of Lemma 29.
It remains to prove (2.42). Let us define

k(c) := ln(h(c/16)), r(c) := (1 + c)3/2k′(c). (2.43)

Let us observe that in order to prove (2.42), it is enough to prove

∃ ĉ ∈ (0,+∞) : r(c) > 0 if c ∈ (0, ĉ), but r(c) < 0 if c ∈ (ĉ,+∞), (2.44)

where actually ĉ = 16c̃. It remains to prove (2.44). First note that we have

k′(c) =
−c+ (1 + 2c)−1/2 − 1

c2 + c
− 1

2
(1 + c)−3/2 ln

(√
1 + 2c−

√
1 + c√

1 + 2c+
√

1 + c

)
, (2.45)

thus limc→0+ k
′(c) = +∞. Also note that ∃ c : k′(c) < 0, since k(0) = 0 and k(4) < 0 by

(2.41) and (2.43). These observations imply that the function c 7→ r(c) takes both positive
and negative values. Thus in order to prove (2.44), it is enough to prove that r : (0,+∞)→ R
is a decreasing function.

r′(c) =

√
1 + c

2c2(2c+ 1)3/2
q(c), where q(c) :=

√
2c+ 1(2− 2c2 + 3c)− 2− 6c. (2.46)

It remains to check that q(c) < 0 for all c > 0. This readily follows after we observe that
q(0) = 0, q′(0) = −1 and q′′(c) = −15c√

2c+1
for any c > 0.
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Remark 30. Although it is just elementary calculus, the proof of the uniqueness part of
Lemma 29 is one of the trickiest of the paper. Since ultimately, the uniqueness of the nontrivial
scale invariant fixed point of Theorem 12 hinges on this, one would like to find a more elegant
and insightful proof. It is tempting to try and prove that the function h, or the function
c 7→ ch(c), are either convex or concave on the entire positive axis, but this is not true. The
function c 7→ fc(1)2− 1

2fc(1) that occurs in (2.2) (iii) appears to be concave, but we have been
unable to prove so.

2.6 Non-trivial solution of the bivariate RDE

Proof of Lemma 16 We apply Lemma 19 to the function fc2 . Condition (i) is satisfied since

fc2(1)
(2.36)

= 1
4

(
1 +
√

1 + 32c2

) (2.40)
< 1

4

(
1 +
√

9
)

= 1. (2.47)

Conditions (ii), (iii) and (v) of Lemma 19 are satisfied by Lemma 27, so it remains to check
condition (iv), which requires 2f ′c2(1) = fc2(1). Using (2.22) (ii), we can rewrite this as

2c2

fc2(1)− 1
2

= fc2(1), (2.48)

which is satisfied by Lemmas 28 and 29.

Remark 31. Formula (2.48) shows that condition (2.2) (iii) is equivalent to the statement
that the measure ρ(2) associated with f puts no mass on the diagonal

{
(r, r) : r ∈ [0, 1]

}
.

3 Frozen percolation

3.1 Outline

In the previous section, we have proved Lemma 10 and Theorem 12. Together, these results
imply that there exists an RTP (τi, κi, Yi)i∈T corresponding to the map χ from (1.30) and
law ρ from (1.31), and that this RTP is nonendogenous. In the present section, we provide
the proofs of our remaining results, which are Theorems 2, 3, 6, and 7, as well as Lemma 8,
Proposition 9, and Lemma 11.

In Subsection 3.2, we show that there is a one-to-one correspondence between solutions
to the RDEs (1.12) and (1.32), under which the measure ν from (1.16) corresponds to the
measure ρ from (1.31). We also prove a correspondence between solutions to the associated
bivariate RDEs and use this to derive Theorem 7 from Theorem 12.

In Subsection 3.3, we classify all solutions to the RDE (1.32). Using results from the
preceding subsection, this also leads to a description of general solutions to the RDE (1.12).

Theorem 6 is proved in Subsections 3.4 and 3.5. In Subsection 3.4, we use the classification
of solutions to (1.32) to prove a version of Theorem 6 for frozen percolation on the MBBT. In
Subsection 3.5 this is then translated into a result for the oriented binary tree using a coupling
between two RTPs, one for frozen percolation on the MBBT, and the other for the oriented
binary tree.

In Subsection 3.6, we prove Lemma 8 as well as Proposition 9 and Lemma 11 about scale

invariance of the MBBT. Lemma 11 allows us to identify the nontrivial solution ρ
(2)
2 of the

bivariate RDE from Theorem 12 as ρ(2). Using results from Subsection 3.3, we use this to

obtain an explicit formula for ν(2) based on our formula for ρ(2).
In Subsection 3.7 we mainly rely on arguments from [Ald00] to translate results about

frozen percolation on the oriented binary tree into results about frozen percolation on the
3-regular tree. In particular, we derive Theorem 2 from Theorem 6 and Theorem 3 from
Theorem 7.
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3.2 Equivalence of RDEs

In this subsection, we show that there is a one-to-one correspondence between solutions to the
RDEs (1.12) and (1.32), under which the measure ν from (1.16) corresponds to the measure
ρ from (1.31). We also prove a correspondence between solutions to the associated bivariate
RDEs and use this to derive Theorem 7 from Theorem 12. We start with a simple observation.

Lemma 32 (No burning before the critical point) Every solution µ to the RDE (1.12)
is concentrated on I ′ := [1

2 , 1] ∪ {∞}.

Proof If µ solves the RDE (1.12), then we can construct an RTP (τi, Xi)i∈T corresponding
to the map γ from (1.5) and µ. Then by (1.15),

µ
(
[0, 1

2 ]
)

= P[X∅ ≤ 1
2 ] ≤ P[X↑∅ ≤ 1

2 ] = P
[
∅ T1/2\Fx−→ ∞

]
≤ P

[
∅ T1/2

−→∞
]

= 0, (3.1)

where the last equality follows from the fact that a branching process with a binomial offspring
distribution with parameters 2, 1

2 is critical and hence dies out a.s.

The next lemma, which is the first main result of the present subsection, says that there
is a one-to-one correspondence between solutions to the RDEs (1.12) and (1.32). The idea
behind the proof (and in particular the occurrence of the geometric distribution in (3.6)) will
become more clear in Section 3.5 below.

Lemma 33 (Equivalence of RDEs) Let I ′ := [1
2 , 1] ∪ {∞} and let H : I → I ′ be the

bijection defined by H(t) := 1/(2− t) (t ∈ [0, 1]) and H(∞) :=∞. If µ solves the RDE (1.32),
then its image under the map H solves the RDE (1.12). Conversely, if µ′ solves the RDE
(1.12), then its image under the map H−1 solves the RDE (1.32).

Proof Let Ty be defined as in (1.7) but for the map χ in (1.30), i.e.,

Ty(µ) := the law of χ[τ∅, κ∅](Y1, Y2) (3.2)

where Y1, Y2 are i.i.d. with law µ and independent of (τ∅, κ∅). Then we can write

Ty = 1
2TΦ + 1

2Tmin, (3.3)

where
TΦ(µ) := the law of Φ[τ∅](Y1) and Tmin(µ) := the law of Y1 ∧ Y2, (3.4)

and Φ : [0, 1]× I → I denotes the function

Φ[t](x) :=

{
x if x > t,

∞ if x ≤ t.
(3.5)

Note that the map TΦ is linear, but Tmin is not. Let us define

Tz :=

∞∑
n=1

2−nTn−1
Φ Tmin. (3.6)

We claim that µ is a fixed point of Ty if and only if it is a fixed point of Tz. Indeed, Ty(µ) = µ
implies Tmin(µ) = 2µ− TΦ(µ) and hence, using the linearity of TΦ,

Tz(µ) =

∞∑
n=1

2−nTn−1
Φ

(
2µ− TΦ(µ)

)
= µ. (3.7)
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Conversely, since
Tz = 1

2Tmin + 1
2TΦ ◦ Tz (3.8)

Tz(µ) = µ implies µ = 1
2Tmin(µ) + 1

2TΦ(µ) = Ty(µ).
We observe that

Tz(µ) := the law of Φ[τ1] ◦ · · · ◦ Φ[τN ](Y1 ∧ Y2) = γ[τ1 ∨ · · · ∨ τN ](Y1, Y2), (3.9)

where (τk)k≥1 are uniformly distributed on [0, 1], the r.v.’s Y1, Y2 have law µ, the r.v. N is
geometrically distributed with P[N = n] = 2−n−1 (n ≥ 0), and all r.v.’s are independent.
Since

P
[
τ1 ∨ · · · ∨ τN ≤ t

]
=

∞∑
n=0

2−n−1tn =
1
2

1− 1
2 t

= H(t)
(
t ∈ [0, 1]

)
, (3.10)

we have that τ := H(τ1 ∨ · · · ∨ τN ) satisfies P[τ = 1
2 ] = P[N = 0] = 1

2 and

P
[
τ < t

]
= P

[
τ1 ∨ · · · ∨ τN < H−1(t)

]
= H

(
H−1(t)

)
= t

(
t ∈ [1

2 , 1]
)
. (3.11)

Then, using the fact that

γ[H(t)]
(
H(x), H(y)

)
= H

(
γ[t](x, y)

) (
x, y ∈ I, t ∈ [0, 1]

)
(3.12)

and using also Lemma 32, we see that the law µ of an I-valued random variable Y solves the
RDE Tz(µ) = µ or equivalently

Y
d
= γ[τ1 ∨ · · · ∨ τN ](Y1, Y2), (3.13)

if and only if X := H(Y ), X1 := H(Y1), and X2 := H(Y2) solve the RDE (1.12).

Lemma 34 (Equivalence of special solutions) The measure ν in (1.16) is the image of
the measure ρ in (1.31) under the map H.

Proof Since H−1(t) = 2 − 1/t (t ∈ [1
2 , 1]) is the inverse of H(t) := 1/(2 − t) (t ∈ [0, 1]), we

see that

ρ
(
[0, H−1(t)]

)
= 1

2H
−1(t) = 1− 1

2t
= ν

(
[0, t]

) (
t ∈ [1

2 , 1]
)
, (3.14)

which shows that ν is the image of ρ under H.

We next turn our attention to the bivariate RDEs.

Lemma 35 (Equivalence of bivariate RDEs) Let H : I → I ′ be the map defined in

Lemma 33. Let T
(2)
x and T

(2)
y be the bivariate maps defined as in (1.8) for the maps γ in

(1.5) and χ in (1.30), respectively. Then a measure µ(2) ∈ P(I2) solves the bivariate RDE

T
(2)
y (µ(2)) = µ(2) if and only if its image ν(2) under the map (y1, y2) 7→

(
H(y1), H(y2)

)
solves

the bivariate RDE T
(2)
x (ν(2)) = ν(2).

Proof Let TH : P(I) → P(I ′) be the function that maps a measure on I to its image under
the map H. The proof of Lemma 33 consisted of showing that for any µ ∈ P(I), one has
Ty(µ) = µ if and only if Tz(µ) = µ, and moreover TxTH = THTz. With exactly the same proof,
these statements remain true if we replace the maps Tx, Ty, Tz, and TH with their bivariate

versions T
(2)
x , T

(2)
y , T

(2)
z , and T

(2)
H . It follows that µ(2) ∈ P(I2) solves T

(2)
y (µ(2)) = µ(2) if and

only if ν(2) := T
(2)
H (µ(2)) solves T

(2)
x (ν(2)) = ν(2), which is the claim of the lemma.

Our results so far allow us to prove Theorem 7.
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Proof of Theorem 7 By Theorem 12, the bivariate map T
(2)
y has a fixed point ρ

(2)
2 ∈ P(I2)ρ

that is is not concentrated on the diagonal {(y, y) : y ∈ I}. Let ν
(2)
2 denote the image of ρ

(2)
2

under the map (y1, y2) 7→
(
H(y1), H(y2)

)
. Then ν

(2)
2 ∈ P(I2)ν by Lemma 34. By Lemma 35,

ν
(2)
2 is a fixed point of T

(2)
x . Since ν

(2)
2 is not concentrated on the diagonal, Theorem 4 (i) and

(iii) imply that the RTP associated with ν is nonendogenous.

Each solution µ to an RDE defines an RTP, which through (1.10) defines a special solution
µ(2) to the corresponding bivariate RDE. In particular, we define ν(2) and ρ(2) in this way
starting from the measures ρ and ν defined in (1.31) and (1.16). The final result of this
subsection relates these measures to each other.

Lemma 36 (Nontrivial solutions to bivariate RDE) Let (Y∅, Y
′
∅) be a random variable

with law ρ(2) and let H be the function from (3.56). Then
(
H(Y∅), H(Y ′∅)

)
has law ν(2).

Proof We will use a characterization of ρ(2) and ν(2) from [MSS18]. We first need some
abstract definitions. Let I be a Polish space. If ξ is a random probability law on I, and
η ∈ P(P(I)) is the law of ξ, then

η(n) := E
[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
n times

]
(3.15)

is called the n-th moment measure of η. In [MSS18, Lemma 2] it was shown that for each map
T of the form (1.7), there exists a higher level map Ť : P(P(I)) → P(P(I)) that is uniquely
characterised by

Ť (η)(n) = T (n)(η(n))
(
n ≥ 1, η ∈ P(P(I))

)
, (3.16)

where T (n) is the associated n-variate map. Let ν be a solution to the RDE (1.6) and let
P(P(I))ν denote the space of all η ∈ P(P(I)) with η(1) = ν. In [MSS18, Prop 3], it was
shown that the set {η ∈ P(P(I))ν : Ť (η) = η}, equipped with the convex order, has a unique
minimal element ν and maximal element ν. Moreover, by [MSS18, Lemma 2 and Props 3 and
4], the measures ν(2) and ν(2) from (1.9) and (1.10) are the second moment measures of ν and
ν.

We now return to our special setting with I = [0, 1] ∪ {∞}. Let Tx, Ty, and TH be as in
the proof of Lemma 35. In Lemma 33, we have proved that µ ∈ P(I) satisfies Ty(µ) = µ if
and only if ν := TH(µ) satisfies Tx(ν) = ν. In Lemma 35, we have shown that the same is true

for the bivariate maps T
(2)
x , T

(2)
y , and T

(2)
H . The argument carries over without a change for

general n-variate maps and therefore, by (3.16), the statement is also true for the associated
higher-level maps Ťx, Ťy, and ŤH . In particular, using also Lemma 34, we obtain that the
image of the set

A :=
{
η ∈ P(P(I))ρ : Ťy(η) = η

}
(3.17)

under the higher-level map ŤH is the set

B :=
{
η ∈ P(P(I ′)))ν : Ťx(η) = η

}
. (3.18)

Since by [MSS18, Prop 3], higher-level maps are monotone w.r.t. the convex order, ŤH maps
the minimal element of A, which is ρ, into the minimal element of B, which is ν. By (3.16),

this implies that the bivariate map T
(2)
H maps ρ(2) to ν(2), which is the claim we wanted to

prove.
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3.3 General solution of the RDE

In this subsection, we classify all solutions to the RDE (1.32). Through Lemma 33, this then
also implies the form of a general solution of the RDE (1.12), significantly extending [Ald00,
Lemma 3], who only considered solutions without atoms in [0, 1].

Let O ⊂ (0, 1] be open. Then O is a countable union of disjoint open intervals (Ok)0≤k<n+1

for some 0 ≤ n ≤ ∞. Without loss of generality we can assume that ∅ 6= Ok ⊂ (0, 1) for all
1 ≤ k < n+ 1 while either 1 ∈ O0 or O0 = ∅. We let xk ∈ (0, 1) and ck > 0 denote the center
and radius of Ok, respectively, i.e., Ok = (xk − ck, xk + ck), and we choose x0 ∈ (0, 1] ∪ {2}
and c0 > 0 such that O0 = (x0 − c0, x0 + c0) ∩ (0, 1]. We define a measure µ on [0, 1] by

µ(dt) := 1
21[0,1]\O(t)dt+ 1{x0 6=2}c0δx0(dt) +

n∑
k=1

ckδxk(dt). (3.19)

It is easy to see that µ([0, 1]) ≤ 1, so we can unambiguously extend µ to a probability measure
on I = [0, 1] ∪ {∞}. We will prove the following result.

Proposition 37 (General solution to RDE) The probability measure µ defined in (3.19)
solves the RDE (1.32), and conversely, every solution of (1.32) is of this form.

We need one preparatory lemma.

Lemma 38 (RDE for MBBT) A probability measure µ on I solves the RDE (1.32) if and
only if ∫

[0,t]
µ(ds) s = µ

(
[0, t]

)2 (
t ∈ [0, 1]

)
. (3.20)

Proof Let Φ be the function defined in (3.5). Then

χ[τ, 1](x, y) = Φ[τ ](x) and χ[τ, 2](x, y) = x ∧ y. (3.21)

Using this and the fact that the function F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]) uniquely characterizes µ,

we see that (1.32) is equivalent to

F (t) = P[Y∅ ≤ t] = 1
2

∫ 1

0
dsP

[
Φ[s](Y1) ≤ t

]
+ 1

2P[Y1 ∧ Y2 ≤ t]

= 1
2

∫ 1

0
dsP[s < Y1 ≤ t] + 1

2

(
1− P[Y1 > t]2

)
= 1

2

∫ t

0
ds
{
F (t)− F (s)

}
+ 1

2

(
1− (1− F (t))2

)
= 1

2 tF (t)− 1
2

∫ t

0
ds F (s) + F (t)− 1

2F (t)2,

(3.22)

which can be rewritten as(
t− F (t)

)
F (t) =

∫ t

0
ds F (s)

(
t ∈ [0, 1]

)
. (3.23)

Using the fact that

tF (t) =

∫
[0,t]

d(sF (s)) =

∫
[0,t]

sdF (s) +

∫
[0,t]

F (s) ds, (3.24)

we can rewrite (3.23) as (3.20).

Proof of Proposition 37 We first prove that the measure in (3.19) solves (3.20). We will
prove that the measure µ′ on [0,∞) defined by

µ′(dt) := 1
21[0,∞)\O(t)dt+

n∑
k=0

ckδxk(dt) (3.25)
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solves (3.20) for all t ≥ 0. Restricting µ′ to [0, 1] we then see that µ satisfies (3.20) for all
t ∈ [0, 1].

If µ′(ds) := 1
2ds then the left-hand side of (3.20) is 1

2 · 1
2 t

2 while the right-hand side is
(1

2 t)
2, so (3.20) holds. Next, if we modify µ′ by concentrating all the mass in an interval of the

form (x− c, x+ c) in the middle of that interval, then (3.20) remains true for all t ≤ x− c and
t ≥ x + c. Applying this observation inductively and taking the limit, we see that µ′ solves
(3.20) for all t ∈ [0,∞)\O. But the left- and right-hand sides of (3.20) are constant on the
intervals [xk − ck, xk) and [xk, xk + ck] (k ≥ 0) so (3.20) holds for all t ≥ 0.

The proof that all solutions of (3.20) are of the form (3.19) goes in a number of steps.
Taking increasing limits, we observe that (3.20) implies∫

[0,t)
µ(ds) s = µ

(
[0, t)

)2 (
t ∈ (0, 1]

)
. (3.26)

We next claim that:

If µ solves (3.20) and µ
(
[0, t)

)
= 1

2u with 0 ≤ t ≤ u, then µ
(
[t, u]

)
= 0. (3.27)

Indeed, we obtain from (3.20) that∫
[0,t)

µ(ds) s+

∫
[t,u]

µ(ds) s =
[
µ
(
[0, t)

)
+ µ

(
[t, u]

)]2
, (3.28)

which using (3.26) and our assumption that µ
(
[0, t)

)
= 1

2u yields

µ
(
[t, u]

)2
=

∫
[t,u]

µ(ds) s− uµ
(
[t, u]

)
≤ 0. (3.29)

Our next claim is that:

If µ solves (3.20) and c := µ({t}) > 0 for some t ∈ [0, 1], then c = 2
[

1
2 t− µ

(
[0, t)

)]
. (3.30)

Indeed, (3.20) implies ∫
[0,t)

µ(ds) s+ ct =
[
µ
(
[0, t)

)
+ c
]2
, (3.31)

which using (3.26) implies
ct = 2cµ

(
[0, t)

)
+ c2. (3.32)

Using our assumption that c > 0, we arrive at (3.30). Let F denote the function F (t) :=
µ
(
[0, t]

)
(t ∈ [0, 1]). We need one more claim, which says that:

If µ solves (3.20) and has no atoms in [s, u),
then µ

(
[0, s)

)
< 1

2s implies µ
(
[s, u)

)
= 0.

(3.33)

Indeed, if µ has no atoms in [s, u), then the function F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]) solves

tµ(dt) = tdF (t)
(3.20)

= d
(
F (t)2

)
= 2F (t)dF (t) = 2F (t)µ(dt) (3.34)

on [s, u), which shows that the restriction of µ to [s, u) is concentrated on {t ∈ [s, u) : F (t) =
1
2 t}. Now if (3.33) would not hold, then τ := inf{t ∈ [s, u) : F (t) = F (s) + ε} would satisfy
s < τ < u for some ε > 0. But then µ

(
[s, τ ]

)
= 0 and hence F (τ) = F (s), which is a

contradiction.
Claim (3.27) says that if F (t) > 1

2 t, then F must stay constant until the next time when
F (t) = 1

2 t. Claim (3.27) says that if F (t) < 1
2 t, then F must stay constant until the next time

when it makes a jump. Claim (3.27) says that if F makes a jump at time t, then it jumps
from 1

2 t− 1
2c to 1

2 t+ 1
2c for some c > 0. Using these facts, it is easy to see that µ must be of

the form (3.19).
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3.4 Frozen percolation on the MBBT

In this subsection, we prove a version of Theorem 6 for frozen percolation on the MBBT,
from which in the next subsection we will derive Theorem 6. We first need some definitions
concerning general RTPs corresponding to the RDE (1.32), similar to those introduced in
Subsection 1.4 for general RTPs corresponding to the RDE (1.12).

Let (τi, κi, Yi)i∈T be an RTP corresponding to the map χ from (1.30) and a general solution
µ to the RDE (1.32). Generalising the definition in (1.25), we set

Si :=
{
ij1 · · · jn ∈ T : jm ≤ κij1···jm−1 ∀1 ≤ m ≤ n

}
. (3.35)

Modifying the definition of Tt in (1.13), in the present context, we set

Tt :=
{
i ∈ T : κi = 2 or τi ≤ t

}
, Sti := Tt ∩ Si, and Fy :=

{
i ∈ T : κi = 1, τi ≥ Yi1

}
.

(3.36)

Similar to (1.14), we define I-valued random variables (Y ↑i )i∈T by

Y ↑i := inf
{
t ∈ [0, 1] : i

Sti\Fy−→ ∞
}
, (3.37)

with inf ∅ :=∞. Note that if i ∈ S, then in (3.37) we can equivalently replace Sti by St∅ =: St.
At time t ∈ [0, 1], we call points in Tt\Fy open, points in Tt ∩ Fy frozen, and all other points

in T closed. We call τi the activation time of i and refer to Yi and Y ↑i as its burning time
and percolation time, respectively. Note that our modified definition of Tt has the effect that
branching points, i.e., points i for which κi = 2, are always open. The remaining blocking
points, i.e., points i for which κi = 1 are initially closed. At its activation time, a blocking
point i either freezes or opens, depending on whether at that moment i1 is burnt or not.

It follows from the inductive relation (1.29) that if κi = 1, then Yi > τi, i.e., a blocking
point can only burn after its activation time. We see from the definition of Fy in (3.36) and
the definition of the map χ in (1.30) that if a blocking point i burns at some time Yi ∈ [0, 1],
then i must be open at that time. Formula (1.30) moreover implies that if a point i ∈ T burns
at some time Yi ∈ [0, 1], then starting at i there must be a ray in Si consisting of points that
burn at the same time as i. By our earlier remark and since branching points are always open,
such a ray must be open, which proves that (compare (1.15))

Y ↑i ≤ Yi a.s. (i ∈ T). (3.38)

The next proposition says that the opposite inequality holds only if µ is the special solution
ρ to the RDE defined in (1.31).

Proposition 39 (Percolation probability) Let (τi, κi, Yi)i∈T be an RTP corresponding to
the map χ from (1.30) and a solution µ to the RDE (1.32). Then

P
[
Y ↑i ≤ t

]
= F (t) ∨

(
t− F (t)

) (
t ∈ [0, 1]

)
, (3.39)

where F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]). Moreover, one has Y ↑∅ = Y∅ a.s. if and only if µ is the

measure ρ in (1.31).

The proof of Proposition 39 needs some preparations. We will be interested in the law of
the open connected component of the root conditional on the root not being burnt. In the
next lemma we condition on the origin not being burnt and calculate the probability that (i)
the root is a branching point, (ii) the root is a blocking point and its descendant is not burnt,
(iii) the root is a blocking point and its descendant is burnt. We show that conditional on the
event (ii), the activation time of the root is uniformly distributed.
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Lemma 40 (Law conditioned on not being burnt) Let (τi, κi, Yi)i∈T be an RTP corre-
sponding to the map χ from (1.30) and a solution µ to the RDE (1.32). Then

(i) P
[
κ∅ = 2

∣∣Y∅ > t
]

= 1
2

(
1− F (t)

)
,

(ii) P
[
κ∅ = 1, Y1 > t

∣∣Y∅ > t
]

= 1
2 ,

(iii) P
[
κ∅ = 1, Y1 ≤ t

∣∣Y∅ > t
]

= 1
2F (t),

(3.40)

where F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]). Moreover,

P
[
τ∅ ≤ s

∣∣κ∅ = 1, Y1 > t, Y∅ > t
]

= s
(
s, t ∈ [0, 1]

)
. (3.41)

Proof One has

P
[
κ∅ = 2, Y∅ > t

]
=P
[
κ∅ = 2, Y1 > t, Y2 > t

]
= 1

2

(
1− F (t)

)2
,

P
[
κ∅ = 1, Y1 > t, Y∅ > t

]
= 1

2P[Y1 > t] = 1
2

(
1− F (t)

)
.

(3.42)

Dividing by P[Y∅ > t] = 1− F (t) yields (3.40) (i) and (ii), and the remaining formula follows
since the total probability is one. Since κ∅ = 1 and Y1 > t a.s. imply Y∅ > t, and since τ∅ is
independent of Y1, κ∅ and uniformly distributed, we also obtain (3.41).

For t ∈ [0, 1], we inductively define (Ot
n)n≥0 by Ot

0 := {∅} and

Ot
n :=

{
ij : i ∈ (Ot

n−1 ∩ Tt)\Fy, 1 ≤ j ≤ κi
}
. (3.43)

We call Ot :=
⋃∞
n=0 Ot

n the open component of the root. Note that Ot
n consists of all descen-

dants of open elements of Ot
n−1, while elements of Ot

n−1 that are closed or frozen produce
no offspring. As a result, the root percolates at time t ∈ [0, 1] if and only if Ot is infinite.
The next lemma says that conditional on the event that the root is not burnt, (Ot

n)n≥0 is a
branching process that can be subcritical, critical, or supercritical, depending on t and our
choice of the solution µ to the RDE (1.32).

Lemma 41 (The open unburnt component of the root) Fix t ∈ [0, 1] and write Ot
n =

{ij : i ∈ Ot
n−1, 1 ≤ j ≤ λti} with λti ∈ {0, 1, 2}. If (Uk)0≤k<n is a possible realization of

(Ot
k)0≤k<n, then conditional on the event At := {Y∅ > t, (Ot

k)0≤k<n = (Uk)0≤k<n}, the
random variables (λti)i∈Un−1 are i.i.d. with law

P[λti = 0 | At] = 1
2

(
1− t+ F (t)

)
, P[λti = 1 | At] = 1

2 t, P[λti = 2 | At] = 1
2

(
1− F (t)

)
, (3.44)

where F (t) := µ
(
[0, t]

)
(t ∈ [0, 1]).

Proof Fix t ∈ [0, 1]. We claim that Y∅ > t implies Yi > t for all i ∈ Ot. Indeed, if i ∈ Ot
n−1

is open and not burnt, then all its descendants must be unburnt, while elements that are not
open have no descendants in Ot

n, so the claim follows by induction.
Fix (Uk)0≤k<n and define At as in the lemma, which by what we have just proved is the

same as the event
At =

{
Yi > t ∀i ∈ U, (Ot

k)0≤k<n = (Uk)0≤k<n
}
, (3.45)

where U :=
⋃

0≤k<nUk. By Lemma 40, independently for each i ∈ Un−1,

(i) P
[
κi = 2

∣∣At]= 1
2

(
1− F (t)

)
,

(ii) P
[
κi = 1, τi ≤ t, Yi1 > t

∣∣At]= 1
2 t,

(iii) P
[
κi = 1, τi > t, Yi1 > t

∣∣At]= 1
2(1− t),

(iv) P
[
κi = 1, Yi1 ≤ t

∣∣At]= 1
2F (t),

(3.46)
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which are the conditional probabilities that (i) i is a branching point, (ii) i is an open blocking
point, (iii) i is a closed blocking point and its descendant is not burnt, (iv) i is a blocking
point and its descendant is burnt, which is only possible if i is closed or frozen. Since λti = 2
in case (i), λti = 1 in case (ii), and λti = 0 in the remaining cases, the lemma follows.

Proof of Proposition 39 By (3.38),

P
[
Y ↑∅ ≤ t

]
=P
[
Y∅ ≤ t

]
+ P

[
Y∅ > t

]
P
[
Y ↑∅ ≤ t

∣∣Y∅ > t
]

=F (t) +
(
1− F (t)

)
P
[
Ot
n 6= ∅ ∀n ≥ 0

∣∣Y∅ > t
]
.

(3.47)

By Lemma 41, the probability

p := P
[
Ot
n 6= ∅ ∀n ≥ 0

∣∣Y∅ > t
]

(3.48)

is the survival probability of a branching process with offspring distribution as in (3.44). It is
well-known [AN72, Thm III.4.1] that the survival probability is the largest solution in [0, 1] of
the equation Ψ(p) = p, where (compare formula (A.1) in the appendix)

Ψ(p) := 1
2

(
1− F (t)

)
p(1− p)− 1

2

(
1− t+ F (t)

)
p. (3.49)

Assuming that F (t) < 1, it follows that

p = 0 ∨
{

1− 1− t+ F (t)

1− F (t)

}
= 0 ∨ t− 2F (t)

1− F (t)
. (3.50)

Inserting this into (3.47) we arrive at (3.39). This argument does not work if F (t) = 1, which
by Proposition 37 is only possible if t = 1 and µ = δ1. In this case, no freezing takes place
until at time t = 1 all i ∈ T are open, so the left- and right-hand sides of (3.39) are both
trivially equal to one.

Formula (3.38) says that Y ↑∅ ≤ Y∅ a.s., so we have Y ↑∅ = Y∅ a.s. if and only if

P
[
Y ↑∅ ≤ t

]
= P[Y∅ ≤ t] = F (t)

(
t ∈ [0, 1]

)
, (3.51)

which by (3.39) happens if and only if F (t) ≥ 1
2 t (t ∈ [0, 1]). By Proposition 37, the only

solution to the RDE (1.32) with this property is the measure ρ in (1.31).

3.5 Frozen percolation on the binary tree

In this subsection we derive Theorem 6 from Proposition 39. Our main tool is a coupling
between, one the one hand, an RTP (τi, κi, Yi)i∈T corresponding to the map χ from (1.30),
and on the other hand, an RTP (τi, Xi)i∈T corresponding to the map γ from (1.5). We first
describe the main idea of the construction and then fill in the technical details.

It is easy to see that for an RTP corresponding to the map χ from (1.30), the number of
blocking points between two consecutive branching points is geometrically distributed with
parameter 1/2. Imagine, for the moment, that instead there would always be exactly one
blocking point between two consecutive branching points. Then, comparing (1.5) and (1.30),
one can check that the inductive relation satisfied by the burning times (Yi)i∈S, κi=1 of blocking
points would be exactly the same as the inductive relation satisfied by the burning times
(Xi)i∈T of arbitrary points in an RTP corresponding to the map γ from (1.5). Inspired by
this, starting from an RTP corresponding to the map χ from (1.30), we will construct an
associated RTP corresponding to the map γ from (1.5) along the following steps:

(i) If there are two or more blocking points between two consecutive branching points,
then we replace them by one point, whose new activation time is the maximum of the
activation times of the blocking points it replaces.
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(ii) If there are no blocking points between two consecutive branching points, then we add
one such point, and assign it an activation time that is uniformly distributed on [−1, 0].

(iii) We transform the activation times that we obtain by this procedure using a monotone
mapping from [−1, 1] to [0, 1], which has the result that the transformed times are
uniformly distributed on [0, 1].

We now formulate this a little more precisely. Let

1n := 1 · · · 1︸ ︷︷ ︸
n times

(3.52)

denote the word of length n ≥ 0 that contains only 1’s. For each i ∈ S, we set

b(i) := i1Ni
with Ni := inf{n ≥ 0 : κi1n = 2}. (3.53)

In words, b(i) is the next branching point above i (which may be i itself). We inductively
define a map ψ : T→ S by ψ(∅) = ∅ and

ψ(ij) := b
(
ψ(i)

)
j (i ∈ T, j = 1, 2). (3.54)

Note that points of the form ψ(i) with i ∈ T\{∅} are direct descendants of branching points,
and Nψ(i) is the number of steps we have to walk up from ψ(i) to reach the next branching
point.

We let (τ̃i)i∈T be an i.i.d. collection of uniformly distributed [−1, 0]-valued random vari-
ables, independent of everything else. For each i ∈ T, we define

σi :=

{
max

{
τψ(i)1n : 0 ≤ n ≤ Nψ(i) − 1

}
if Nψ(i) ≥ 1,

τ̃i otherwise,
(3.55)

i.e., σi is the maximum of the activation times of blocking points that lie directly below the
branching point b(ψ(i)), if there are any, and σi = τ̃i otherwise. For each i ∈ T, the number
Nψ(i) of blocking points that lie below the branching point b(ψ(i)) is geometrically distributed
with parameter 1/2, and the values of their activation times are i.i.d. uniformly distributed
on [0, 1] and independent of Nψ(i). These quantities are moreover independent for different
i ∈ T. As a result, the (σi)i∈T are i.i.d. with distribution function

P[σi < s] = H(s) :=


1
2(1 + s) if s ∈ [−1, 0],

1

2− s if s ∈ [0, 1],
(3.56)

where we have used the calculation in (3.10) and we extend the function H : [0, 1] → [1
2 , 1]

from Lemma 33 into a function H : [−1, 1]→ [0, 1].

Proposition 42 (Coupling of RTPs) Let (τi, κi, Yi)i∈T be an RTP corresponding to the
map χ from (1.30) and any solution to the RDE (1.32). Let (τ̃i)i∈T be an independent i.i.d.
collection of uniformly distributed [−1, 0]-valued random variables, and let ψ : T→ T, (σi)i∈T,
and H : [−1, 1]→ [0, 1] be defined as in (3.54), (3.55), and (3.56). Then setting

τ i := H(σi) and Xi := H(Yψ(i)) (i ∈ T) (3.57)

defines an RTP (τ i, Xi)i∈T corresponding to the map γ from (1.5). Moreover, any RTP cor-
responding to γ is equal in distribution to an RTP constructed in this way. Finally, one has

X↑i := H(Y ↑ψ(i)) (i ∈ T), (3.58)

where X↑i is defined in (1.14) and Y ↑ψ(i) is defined in (3.37).

35



Proof We claim that (Yψ(i))i∈T satisfy the inductive relation

Yψ(i) = γ[σi]
(
Yψ(i1), Yψ(i2)

)
(i ∈ T), (3.59)

where we define γ[t](x, y) as in (1.5) also for negative t. Indeed, if Nψ(i) = 0, then σi ≤ 0
while Yψ(i1), Yψ(i2) > 0 a.s., and

Yψ(i) = χ[2]
(
Yψ(i)1, Yψ(i)2

)
= Yψ(i1) ∧ Yψ(i2). (3.60)

On the other hand, if Nψ(i) ≥ 1, then

Yψ(i) =χ[τψ(i), 1] ◦ · · · ◦ χ[τψ(i)1Nψ(i)
, 1] ◦ χ[2]

(
Yψ(i)1Nψ(i)

1, Yψ(i)1Nψ(i)
2

)
= γ[τψ(i) ∨ · · · ∨ τψ(i)1Nψ(i)

]
(
Yψ(i1), Yψ(i2)

)
.

(3.61)

Using (3.59) and (3.12), we conclude that (Xi)i∈T satisfy the inductive relation (1.4). By
(3.56), the random variables (τ i)i∈T are i.i.d. and uniformly distributed on [0, 1]. Moreover,
for any finite rooted subtree U ⊂ T, the r.v.’s (Xi)i∈∂U are independent of (τ i)i∈∂U and i.i.d.

This completes the proof that (τ i, Xi)i∈T is an RTP corresponding to the map γ from (1.5).
Using Lemma 33, we see that every RTP (τi, Xi)i∈T corresponding to the map γ from (1.5)
and some solution µ to the RDE (1.12) is equal in distribution to an RTP constructed in this
way.

To prove also (3.58), we observe that the frozen set Fx from (1.13) for the RTP (τ i, Xi)i∈T
is given by

Fx =
{
i ∈ T : τ i ≥ Xi1 ∧Xi2

}
=
{
i ∈ T : σi ≥ Yψ(i1) ∧ Yψ(i2)

}
=
{
i ∈ T : Nψ(i) ≥ 1, τψ(i)1n ≥ Yψ(i)1n+1

for some 0 ≤ n < Nψ(i)

}
=
{
i ∈ T : Nψ(i) ≥ 1, ψ(i)1n ∈ Fy for some 0 ≤ n < Nψ(i)

}
,

(3.62)

and hence at time t there exists a ray in Stψ(i)\Fy starting at ψ(i) if and only if at time

s := H(t) there exists a ray in Ts\Fx starting at i.

Proof of Theorem 6 By Lemma 32, µ is concentrated on I ′ = [1
2 , 1] ∪ {∞}. Let µ′ be the

image of µ under the inverse of the map H : I → I ′ defined in Lemma 33. Then µ′ solves the
RDE (1.32). Let (τi, κi, Yi)i∈T be the RTP corresponding to the map χ from (1.30) and the
measure µ′. We couple this RTP to (τi, Xi)i∈T as in Proposition 42. Since the function H is

strictly increasing, we see that X↑∅ = X∅ a.s. if and only if Y ↑∅ = Y∅ a.s. By Proposition 39
this is equivalent to µ′ being the measure ρ in (1.31), which by Lemma 34 is equivalent to µ
being the measure ν in (1.16).

3.6 Scale invariance of the MBBT

The aim of the present subsection is to prove Proposition 9 and Lemma 11 about scale invari-
ance of (frozen percolation on) the MBBT. Lemma 11, in particular, allows us to identify the

nontrivial fixed point ρ
(2)
2 from Theorem 12 as ρ(2). Combining this with Lemma 36, we also

obtain an explicit expression for ν(2). As a preparation for this, we first prove Lemma 8.

Proof of Lemma 8 It is well-known [AN72, Thm III.4.1] that the survival probability is
the largest solution in [0, 1] of the equation Ψ(p) = p, where (compare formula (A.1) in the
appendix)

Ψ(p) = {(1− p)− (1− p)2}+ (1− t){(1− p)− (1− p)0} = p(1− p)− (1− t)p. (3.63)
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Since Ψ(p) = 0 has two roots, p = 0 and p = t, we conclude that the survival probability is t.

We next turn our attention to the proof of Proposition 9. Let (T ,Π) be the MBBT. If
we cut T at points in Πt, then the connected component of the root is the family tree of a
continuous-time branching process where particles split into two with rate one and die with
rate 1−t. The tree T ′ defined in (1.22) is the skeleton of this process. It is well-known that T ′
is the family tree of a branching process, which is known as the skeletal process. There exist
standard ways to find the skeletal process associated with a given branching process. Using
these, it is easy to check that T ′ is the family tree of a binary branching process with branching
rate t. In Appendix A, we outline a proof of this fact along these lines, with references to the
relevant literature.

To prove Proposition 9, we need a bit more, however, since we need to determine the joint
law of T ′ and Π′. To prove also Lemma 11, we will moreover need a scaling property of RTPs
corresponding to the map χ in (1.30) and law ρ from (1.31). In view of this, we find it more
convenient to give self-contained proofs of Proposition 9 and Lemma 11, not referring to the
abstract theory of skeletal processes.

Let (τi, κi, Yi)i∈T be the RTP corresponding to the map χ from (1.30) and law ρ from
(1.31), and let (`i)i∈T be an independent i.i.d. collection of exponentially distributed random
variables with mean 1/2. As in Subsection 1.6, we use the random variables (τi, κi, `i)i∈T to
define an MBBT (T ,Π). In particular, T is the family tree of a branching process (∇Sh)h≥0

where S, defined in (1.25), is the collection of all individuals that will ever live.
We fix 0 < t ≤ 1 and define

Y ∗i :=

{
t−1Yi if Yi ≤ t,
∞ otherwise.

(3.64)

We also define (T ′,Π′) as in (1.22) and define (T ∗,Π∗) by

T ∗ :=
{

(x, th) : (x, h) ∈ T ′
}

and Π∗ :=
{

(x, th, t−1τ(x,h)) : (x, h, τ(x,h)) ∈ Π′
}
. (3.65)

As in Proposition 9, we view (T ′,Π′) and (T ∗,Π∗) as marked metric spaces, i.e., we do not
care about the precise labeling of elements of T ′ or T ∗. Proposition 9 can be rephrased by

saying that the conditional law of (T ∗,Π∗) given ∅ T \Πt−→ ∞ is equal to the original law of
(T ,Π). The following lemma says that in a sense, (T ∗,Π∗) contains all relevant information
about Y ∗∅ .

Lemma 43 (Relevant information) One has

P
[
Y ∗∅ ∈ ·

∣∣ (τi, κi)i∈T] = P
[
Y ∗∅ ∈ ·

∣∣ (T ∗,Π∗)] a.s. (3.66)

The following proposition extends Proposition 9 to a scaling property of the joint law of
(Y ∗∅ , T ∗,Π∗). In particular, this implies Proposition 9.

Proposition 44 (Scaling of the joint law) One has

P
[
(Y ∗∅ , T ∗,Π∗) ∈ ·

∣∣ T ∗ 6= ∅] = P
[
(Y∅, T ,Π) ∈ ·

]
. (3.67)

Before we prove Lemma 43 and Proposition 44, we first show how they imply Lemma 11.

Proof of Lemma 11 Conditional on (τi, κi)i∈T, let (Y ′i )i∈T be an independent copy of (Yi)i∈T.
Then, according to the definitions in (1.9) and (1.10)

ρ(2) = P
[
(Y∅, Y∅) ∈ ·

]
and ρ(2) = P

[
(Y∅, Y

′
∅) ∈ ·

]
. (3.68)
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Clearly, these measures are symmetric and their one-dimensional marginals are given by ρ. It
remains to show that they have the scaling property (1.33). The claim for ρ(2) follows easily
from the fact that Y∅ has the law ρ in (1.31). It remains to prove the statement for ρ(2).

Fix r, s, t ∈ [0, 1]. Since Y∅ =∞ a.s. on the complement of the event ∅ T \Πt−→ ∞, we have

P
[
(Y∅, Y

′
∅) ∈ [0, tr]× [0, ts]

]
= P

[
(Y∅, Y

′
∅) ∈ [0, tr]× [0, ts]

∣∣∅ T \Πt−→ ∞
]
P
[
∅ T \Πt−→ ∞

]
. (3.69)

Here P
[
∅ T \Πt−→ ∞

]
= t by Lemma 8, so to show that ρ(2) has the scaling property (1.33), it

suffices to show that

P
[
(Y∅, Y

′
∅) ∈ [0, tr]× [0, ts]

∣∣∅ T \Πt−→ ∞
]

= P
[
(Y∅, Y

′
∅) ∈ [0, r]× [0, s]

]
. (3.70)

Since Y∅ and Y ′∅ are conditionally independent given the σ-field generated by (τi, κi)i∈T, and

since the event that ∅ T \Πt−→ ∞ is measurable w.r.t. this σ-field, we can rewrite the left-hand
side of (3.70) as

E
[
P
[
Y∅ ∈ [0, tr]

∣∣∅ T \Πt−→ ∞, (τi, κi)i∈T
]
P
[
Y∅ ∈ [0, ts]

∣∣∅ T \Πt−→ ∞, (τi, κi)i∈T
]]

1
= E

[
P
[
Y ∗∅ ∈ [0, r]

∣∣ T ∗ 6= ∅, (T ∗,Π∗)
]
P
[
Y ∗∅ ∈ [0, s]

∣∣ T ∗ 6= ∅, (T ∗,Π∗)
]]

2
= E

[
P
[
Y∅ ∈ [0, r]

∣∣ (T ,Π)
]
P
[
Y∅ ∈ [0, s]

∣∣ (T ,Π)
]]

3
= E

[
P
[
Y∅ ∈ [0, r]

∣∣ (τi, κi)i∈T]P[Y∅ ∈ [0, s]
∣∣ (τi, κi)i∈T]],

(3.71)

which equals the right-hand side of (3.70). Here, in step 1, we have used the definition of Y ∗∅

in (3.64), as well as the fact that the event {∅ T \Πt−→ ∞} is the same as the event {T ∗ 6= ∅},
which is measurable with respect to the σ-fields generated by (τi, κi)i∈T and (T ∗,Π∗), and we
have applied Lemma 43. Step 2 follows from Proposition 44. In step 3 we have again applied
Lemma 43 but this time for t = 1, in which case (Y ∗∅ , T ∗,Π∗) = (Y∅, T ,Π).

Proof of Propositions 9 and 44 Let (τi, κi, Yi)i∈T be the RTP corresponding to the map
χ from (1.30) and law ρ from (1.31), and let (`i)i∈T be an independent i.i.d. collection of
exponentially distributed random variables with mean 1/2. Fix t ∈ (0, 1]. For any A ⊂ T and

i ≺ j ∈ T, we write i
A−→ j if there exist i0, . . . , in ∈ A, n ≥ 0, such that i0 = i, in = j, and

←
ik = ik−1 (k = 1, . . . , n). Let us say that i ∈ T is active if it is either open or frozen, i.e., if
κi = 2 or τi ≤ t, and let

A :=
{
i ∈ T : ∅ St−→ i

St−→∞
}
, (3.72)

with St as in (3.36) denote the collection of points that lie on an active ray in S starting at
the root. Note that by Lemma 8, the probability that A is not empty is t. We give each i ∈ A
a type ωi ∈ [0, t) ∪ {1, 2}, which is defined as follows:

ωi :=


τi if κi = 1,
1 if κi = 2 and {i1, i2} ∩ A has precisely one element,
2 if κi = 2 and i1, i2 are both elements of A.

(3.73)

Let An := {i ∈ A : |i| = n}. We claim that conditional on the event that A 6= ∅, the process
(An)n≥0 with the types assigned to its elements is a multitype branching process with the
following description. In each generation, we first assign types to the particles that are alive
in an i.i.d. fashion according to the law

P[ω ≤ s] := 1
2s

(
s ∈ [0, t]

)
, P[ω = 1] := 1− t, and P[ω = 2] = 1

2 t, (3.74)
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and then let particles of type 2 produce two offspring while all other particles produce one
offspring. To see this, observe that by Lemma 8, for each i ∈ T and s ∈ [0, t],

P
[
κi = 1, τi ≤ s, i1

Sti−→∞
]

= 1
2st,

P
[
κi = 2, i1

Sti−→∞ or i2
Sti−→∞ but not both

]
= t(1− t),

P
[
κi = 2, i1

Sti−→∞ and i2
Sti−→∞

]
= 1

2 t
2.

(3.75)

If we condition on (Ak)0≤k≤n and also on the types of particles in generations 0, . . . , n − 1,
then the types of particles in the n-th generation are i.i.d. and their law is the distribution in
(3.75) normalised to make it a probability law, which is the distribution P in (3.74).

Let (T ,Π) be the MBBT constructed from the random variables (τi, κi, `i)i∈T as in Subsec-
tion 1.6, and let (T ′,Π′) be as in (1.22). Then (T ′,Π′) is uniquely determined by the branching
process A and the types ωi and lifetimes `i of elements i ∈ A. However, A contains, in a sense,
too much information, since points i ∈ A with type ωi = 1 are not visible in (T ′,Π′). To
remedy this, we need a procedure to remove these points, which we describe now.

For i ∈ A with ωi 6= 2, let f(i) := ij where j is the unique element of {1, 2} such that
ij ∈ A, and let

b(i) := fn(i)(i) with n(i) := inf{k ≥ 0 : ωfk(i) 6= 1} (3.76)

denote the next point above i that is not of type 1. Let B := {i ∈ A : ωi 6= 1}. We inductively
define a map ψ : B→ T by ψ

(
b(∅)

)
:= ∅ and

ψ
(
b(ij)

)
:=ψ(i)j (j = 1, 2) if ωi = 2,

ψ
(
b(i1)

)
:=ψ(i)1 if ωi ∈ [0, t).

(3.77)

We let S′ denote the image of B under the map ψ and assign types to the elements of S′ by

ω′ψ(i) := ωi (i ∈ B). (3.78)

We also define new lifetimes by

`′ψ(i) :=

n(f(i))∑
k=0

`fk(i) (3.79)

where n(i) is defined as in (3.76). Then the set S′ and the random variables (ω′i, `
′
i)i∈S contain

precisely the information needed to construct (T ′,Π′), and nothing more.
Let S′n := {i ∈ S′ : |i| = n}. The process (S′n)n≥0 inherits the branching property from the

process (An)n≥0. To get the new generation, we first assign i.i.d. types to the particles in the
present generation according to the law

P′[ω ≤ s] :=
s

2t

(
s ∈ [0, t]

)
, P′[ω = 2] = 1

2 , (3.80)

which is the law in (3.74) conditioned on ω 6= 1, and then let particles with type in [0, t) and {2}
produce one or two offspring, respectively. Each lifetime `′i is the sum of a geometric number
of exponentially distributed random variables. From this, it is easy to see that conditional
on S′ and the types, the lifetimes (`′i)i∈S′ are i.i.d. and exponentially distributed with mean
1
2 t
−1. Since the random tree T ′ is the family tree of the branching process (S′n)n≥0 with the

lifetimes (`′i)i∈S′ , and the Poisson set Π′ records points with type ωi ∈ [0, t) together with their
activation times τ ′i := ωi ∈ [0, t), this completes proof of Proposition 9.

We could have obtained Proposition 9 faster by referring to the the abstract theory of
skeletal processes (see Appendix A). The advantage of our explicit construction, however, is
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that it also easily yields the stronger statement of Proposition 44. To see this, we define
(Y ′i )i∈S′ by

Y ′ψ(i) :=

{
Yi if Yi ≤ t
∞ otherwise.

(i ∈ B). (3.81)

Since we started from an RTP corresponding to the law ρ from (1.31), and since Yi > t

a.s. on the complement of the event i
St−→ ∞, we see that conditional on (S′k)0≤k≤n and the

types of particles in generations 0, . . . , n− 1, the random variables (Y ′i )i∈S′n are i.i.d. with law
P[Y ′i ≤ s] = 1

2s/t (s ∈ [0, t]). We claim that they satisfy the inductive relation

Y ′i = χ[ω′i](Y
′
i1, Y

′
i2) (i ∈ S′), (3.82)

where (compare (1.30))

χ[ω](x, y) :=


x if ω ∈ [0, t), x > ω,

∞ if ω ∈ [0, t), x ≤ ω,
x ∧ y if ω = 2.

(3.83)

Note that i2 6∈ S′ if ωi ∈ [0, t), but since in this case, χ[ωi](x, y) does not depend on y, (3.82) is
unambiguous. Indeed, (3.82) follows from the fact that the original random variables (Yi)i∈T
satisfy the inductive relation (1.29) and, in view of (3.73), Yi = Yi1 if i ∈ A is of type ωi = 1.

These observations imply the statement of Proposition 44. Indeed, if we set

Y ∗i := t−1Y ′i , ω∗i :=

{
t−1ω′i if ω′i ∈ [0, t),
2 if ω′i = 2,

`∗i := t−1`′i, (3.84)

then the random variables S′ and (ω∗i , `
∗
i )i∈S′ define a marked tree (T ∗,Π∗) such that the joint

law of (Y ∗∅ , T ∗,Π∗), conditioned on T ∗ 6= ∅, is equal to the joint law of (Y∅, T ,Π).

Proof of Lemma 43 We use notation as in the proof of Propositions 9 and 44. We adapt
the proof of [MSS19, Lemma 46] to our present setting. We set T(n) := {i ∈ T : |i| < n}
and let F (n) and F be the σ-fields generated by the random variables τi, κi with i ∈ T(n) and
i ∈ T, respectively. We also set S′(n) := S′ ∩ T(n), we let F(n) be the σ-field generated by the

random variables S′(n) and (ω′i)i∈S′(n)
, and we define F similarly, with S′(n) replaced by S′. We

observe that F(n) ⊂ F (n) (n ≥ 1).
The inductive relation (3.82) shows that conditional on F(n), the state at the root Y ′∅ is a

deterministic function of (Y ′i )i∈Tn . Since (Y ′i )i∈Tn are independent of F (n), it follows that Y ′∅
is conditionally independent of F (n) given F(n), i.e.,

P
[
Y ′∅ ∈ A

∣∣F (n)

]
= P

[
Y ′∅ ∈ A

∣∣F(n)

]
a.s. (3.85)

for any measurable A ⊂ R. Letting n→∞, using martingale convergence and observing that
Y ′∅ contains the same information as Y ∗∅ while (T ∗,Π∗) contains the same information as F ,
the claim follows.

Remark 45. It follows from Lemma 11 that ρ(2) = ρ
(2)
2 , the nontrivial scale-invariant fixed

point from Theorem 12. Therefore, combining Lemma 36 with formula (1.36), we obtain a
formula for ν(2). Indeed,

ν(2)
(
[0, r]× [0, s]

)
= 2− 1

2r
− 1

2s
−
(

2− 1

s ∨ r
)
fc2

(
2− 1

s∧r
2− 1

s∨r

) (
1
2 < r, s ≤ 1

)
, (3.86)

where fc2 is the function defined in Theorem 12.
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3.7 Frozen percolation on the 3-regular tree

In this subsection, we use methods from [Ald00] to derive Theorems 2 and 3, which are
concerned with the unoriented 3-regular tree, from Theorems 6 and 7, which are concerned
with the oriented binary tree. We start with a preparatory lemma.

Let (U , ~F ) satisfy properties (i)–(iii) of Theorem 2 and let F be defined in terms of ~F
as in that theorem. Recall that we call edges in Et\F open, edges in Et ∩ F frozen, and all
other edges closed. A similar convention applies in the oriented setting. For each w ∈ T and
t ∈ [0, 1], let Ct(w) resp. ~Ct(w) denote the set of vertices that can at time t be reached by an
open unoriented resp. oriented path starting at w.

Lemma 46 (Finite unoriented clusters) Almost surely, for all t ∈ [0, 1], if Ct(w) is finite,
then Ct(w) = ~Ct(w).

Proof Clearly Ct(w) ⊂ ~Ct(w) regardless of whether Ct(w) is finite or not. To see that equality
holds if Ct(w) is finite, assume the converse. Then there must be x ∈ Ct(w) and y 6∈ Ct(w)
such that the oriented edge (x, y) is open at time t. Among all such edges, we can choose the
unique one for which s := U{x,y} is minimal. Since y 6∈ Ct(w), the oriented edge must have
frozen at time s, so by property (i) of Theorem 2, at time s there must be an open ray starting
at x not using y. Such a ray must use an oriented edge to leave Ct(w) that is open at time s
and hence also at the later time t, contradicting the minimality of U{x,y}.

Proof of Theorem 2 We first prove uniqueness. Assume that ~F satisfies properties (i)–(iii).
For each (v, w) ∈ ~E, let

X(v,w) := inf
{
t ∈ [0, 1] : ∃ ray (vn, wn)n≥0 starting with (v0, w0) = (v, w)

such that (vn, wn) ∈ ~F ∀n ≥ 0
}
,

(3.87)

with inf ∅ :=∞. Let γ be the map in (1.5). Property (i) implies that

X(x,v) := γ[U{x,v}](X(v,y), X(v,z)) (3.88)

whenever v ∈ T and x, y, z are the three neighbours of v. Let S be a finite subtree of (T,E).
Then, for each (v, w) ∈ ∂S, the set ~E(v,w) is naturally isomorphic to the oriented binary
tree T. Formula (3.88) and properties (ii) and (iii) imply that (U{x,y}, X(x,y))(x,y)∈ ~E(v,w)

is an

RTP corresponding to the map γ and some solution µ to the RDE (1.12). Property (i) and
Theorem 6 imply that µ = ν, the measure defined in (1.16). By property (iii), the RTPs
corresponding to different (v, w) ∈ ∂S are independent. By (3.88), these RTPs uniquely
determine X(x,y) for each (x, y) ∈ ~E. This shows that the joint law of U = (U{x,y}){x,y}∈E and
(X(x,y))(x,y)∈E is uniquely determined. Since

(x, v) ∈ ~F if and only if U{x,v} ≥ X(v,y) ∧X(v,z) (3.89)

whenever v ∈ T and x, y, z are the three neighbours of v, the joint law of (U , ~F ) is also uniquely
determined.

As Aldous already showed in [Ald00], existence follows basically from the same argument.
We fix a finite subtree S of (T,E), construct independent RTPs corresponding to γ and
ν for each (v, w) ∈ ∂S, inductively define X(x,y) for each (x, y) ∈ ~E by (3.88), and then

define ~F by (3.89). It follows from the properties of RTPs that if we add a vertex to S or
remove a vertex, then the law of the object we have just constructed does not change. As a
result, our construction is independent of the choice of S, the law of (U , ~F ) is invariant under
automorphisms of the tree, and property (iii) holds for general S. Property (i) now follows
from Theorem 6, completing the proof that an object satisfying (i)–(iii) exists.
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It is clear that (U , F ), defined in terms of (U , ~F ), is invariant under automorphisms of the
tree. To see that it also satisfies property (i) of Theorem 1, we observe that by the way F
has been defined in terms of ~F and property (i) of Theorem 2, {v, w} 6∈ F if and only if for
each t < U{v,w}, the oriented clusters ~Ct(v) and ~Ct(w) are both finite. By Lemma 46, this is
equivalent to Ct(v) and Ct(w) being finite, proving property (i) of Theorem 1.

The following simple abstract lemma prepares for the proof of Theorem 3.

Lemma 47 (Almost surely not equal) Let (ωi, Xi)i∈T be a nonendogenous RTP, where
T denotes the space of all finite words made up from the alphabet {1, . . . , d}, with d ≥ 2. Let
(X ′i)i∈T be a copy of (Xi)i∈T, conditionally independent given (ωi)i∈T. Then (Xi)i∈T 6= (X ′i)i∈T
a.s.

Proof Let ν denote the solution of the RDE used to construct the RTP. Let Tn := {i ∈ T :
|i| = n}. Then (Xi, X

′
i)i∈Tn are i.i.d. with common law ν(2) as in (1.10). By Theorem 4,

ν(2) 6= ν(2), which implies that p := P[Xi 6= X ′i ] > 0 and hence

P
[
(Xi)i∈T 6= (X ′i)i∈T

]
≤ P

[
Xi = X ′i for all i ∈ Tn

]
≤ (1− p)dn . (3.90)

Since d ≥ 2 and n is arbitrary, the claim follows.

Proof of Theorem 3 We use the construction of (U , ~F ) in the proof of Theorem 2. We
fix a finite subtree S of (T,E). Independently for each (v, w) ∈ ∂S, we construct an RTP
(U{x,y}, X(x,y))(x,y)∈ ~E(v,w)

corresponding to the map γ in (1.5) and measure ν in (1.16), and

we let (X ′(x,y))(x,y)∈ ~E(v,w)
be a copy of (X(x,y))(x,y)∈ ~E(v,w)

, conditionally independent given

(U{x,y}){x,y}∈E(v,w)
. Using (3.88), we inductively define X(x,y) and X ′(x,y) for all (x, y) ∈ ~E and

in terms of these random variables we define ~F and ~F ′ as in (3.89), which are finally used to
define F and F ′ as in Theorem 2. Then F and F ′ are conditionally independent given U .

It follows from Theorem 7 and Lemma 47 that a.s. X(x,y) 6= X ′(x,y) for some (x, y) ∈ ~F . By

(3.87), this implies that ~F 6= ~F ′ a.s. By Lemma 46 and property (i) of Theorem 2, the set ~F
is a.s. determined by the pair (U , F ), and likewise ~F ′ is a.s. determined by (U , F ′), so ~F 6= ~F ′

a.s. implies F 6= F ′ a.s.

A Skeletal branching processes

Informally speaking, the skeletal process of a branching process is the process consisting of
those particles whose offspring will never die out. It is well-known that the skeletal process
of a branching process is itself a branching process. For discrete time processes, a proof can
be found in [AN72, Thm I.12.1]. There is also an extensive literature about skeletal processes
of superprocesses, see [EKW15] and references therein. In this appendix, we show how the
skeletal process of a continuous-time branching process can be calculated, and use this to
sketch an alternative proof that T ′, defined in (1.22), is the family tree of a binary branching
process with branching rate t.

Generalising our set-up, let (Zh)h≥0 be a continuous-time branching processes in which
each particle is with rate r(k) replaced by k new particles. A sufficient condition for (Zh)h≥0

to be well-defined and nonexplosive is that
∑

k r(k)k <∞. A convenient tool is the generating
semigroup (Uh)h≥0 defined as Uhφ := uh (φ ∈ [0, 1]), where (uh)h≥0 is the unique solution
with initial state u0 = φ to the differential equation

∂
∂huh = Ψ(uh) (h ≥ 0) with Ψ(u) :=

∑
k≥0

r(k)
{

(1− u)− (1− u)k
} (

u ∈ [0, 1]
)
. (A.1)
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The generating semigroup uniquely determines the transition probabilities of (Zh)h≥0 through
the relation

E
[
(1− φ)Zh

]
= E

[
(1− Uhφ)Z0

]
(h ≥ 0). (A.2)

This can be deduced, for example, from [AN72, Sect. III.3], although the notation there is
quite different.

Let p be the survival probability of (Zh)h≥0, which is the largest root in [0, 1] of the
equation Ψ(p) = 0. Then we claim that setting

U ′hφ := p−1Uh(pφ)
(
φ ∈ [0, 1]

)
(A.3)

defines a generating semigroup, which corresponds to the skeletal process (Z ′h)h≥0 of (Zh)h≥0.
For discrete time processes, a proof can be found in [AN72, Thm I.12.1]. The statement for
continuous-time processes can easily be derived from this by adding independent exponentially
distributed lifetimes to the discrete time process. In particular, if r(0) = 1− t, r(2) = 1, and
all other rates are zero, then the differential equation in (A.1) reads

∂
∂huh = Ψ(uh) = uh(1− uh)− (1− t)uh (h ≥ 0), (A.4)

and (U ′h)h≥0 is given by the solutions to the differential equation

∂
∂hvh = t−1Ψ(tvh) = t−1

(
tvh(1− tvh)− (1− t)tvh

)
= tvh(1− vh) (h ≥ 0), (A.5)

which we recognise as the generating semigroup of a branching process where particles split
into two with rate t and never die.

The transformation in (A.3) can be traced back to [Har48] while the interpretation in
terms of the skeletal process dates back to [AN72, Thm I.12.1]. See also [FS04, Thm 9] for
a statement in the context of superprocesses. It is possible to go further and write (Zh)h≥0

as the union of skeletal and non-skeletal particles, which then form a two-type branching
process. This sort of statements date back to [OCo93] and have been developed and exploited
in a superprocess setting; see [EKW15] and references therein.
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