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Abstract

We consider one-dimensional biased voter models, where 1’s replace 0’s at a faster rate
than the other way round, started in a Heaviside initial state describing the interface
between two infinite populations of 0’s and 1’s. In the limit of weak bias, for a diffusively
rescaled process, we consider a measure-valued process describing the local fraction of type
1 sites as a function of time. Under a finite second moment condition on the rates, we
show that in the diffusive scaling limit there is a drifted Brownian path with the property
that all but a vanishingly small fraction of the sites on the left (resp. right) of this path
are of type 0 (resp. 1). This extends known results for unbiased voter models. Our proofs
depend crucially on recent results about interface tightness for biased voter models.
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1 Introduction

1.1 Statement of the result

Let {0,1}% denote the space of all configurations of zeros and ones on Z, i.e., elements of
{0,1}% are of the form = = (2(i))ez with 2(i) € {0,1}. The one-dimensional biased voter
model (X7 );>0 with kernel a( -) and bias parameter ¢ € [0, 1) is the interacting particle system
with state space {0,1}% and formal generator

G f(z) = Z a(j — )l pn=100{f(z +e5) — f(z)}
" o (1.1)
+(1 =) > alj — )y {f @ =€) — f(2)},
i,
where e;(j) := 1y;—;;, and x(i,j) = 10 is shorthand for z(i) = 1, z(j) = 0. In words,
says that if 2(7) = 1 and x(j) = 0, then the site j adopts the type of site i with rate a(j — 7).
In the reverse case, when z(i) = 0 and z(j) = 1, the site j adopts the type of site ¢ with rate
(1 —¢)a(j —4). In particular, for ¢ = 0, we obtain a standard voter model.
The kernel a is a probability measure on Z such that a(0) = 0. In addition, throughout
this paper, the following assumptions on a will always be in place:

(i) aisirreducible, i.e., each k € Z can be written as a finite sum of ¢ € Z for which a(i) > 0,
(ii) @ has mean zero, i.e., Y, a(k)k =0,
(iii) @ has a finite second moment, i.e., 02 := 3", a(k)k? < cc.

We let

St i={x € {0,1}*: lim 2(i) =0, lim z(i) =1} (1.2)
1——00 11— 00

denote the space of states in which an infinite population of 0’s on the left and an infinite
population of 1’s on the right are separated by a hybrid zone containing a mixture of 0’s and
1’s. This hybrid zone is called the interface of the biased voter model. If X¢ is started from
an initial state in S2% and a has a finite first moment, then it is known [BMSV06] that almost
surely X§ € SO for all ¢ > 0.

Let M(R) denote the space of locally finite measures on R, equipped with the topology of
vague convergence. We use (X7 );>0 to define a measure-valued process (u5):>0 taking values
in M(R) by

i Y eXiuon  (120), (1.3)
1EZ
where ¢, denotes the delta-measure at » € R. We fix a standard Brownian motion (W;)i>0
and define a Brownian motion B = (By)¢>0 with drift —%02 and diffusion coefficient o2 by
By =W, — %0275. We use B to define a measure-valued process (ut)t>0 by

pe(dz) == 1g>p,y do (t >0), (1.4)

Le., u has the density 1, o) w.r.t. to the Lebesgue measure. Our main result says that
(ut)e>0 arises as the weak limit of (uf)>o.

Theorem 1.1 (Invariance principle for biased voter model interface) Fiz z € SHL

and for e € (0,1), let X be the biased voter model with generator and initial state x.
Define (15)e>0 and (pt)e>0 as in and (1.4). Then

Pl(pg)i=0 € -] = P[(pt)e=o0 € -], (1.5)

where = denotes weak convergence on the Skorohod space D([0, 00), M(R)).



1.2 Main idea of the proof

For each = € S9L

int?

there exists a unique M(z) € Z+ 3 := {i +  : i € Z} such that

S oay= Y (1-a(). (L6)

i<M(x) i>M(x)

that is, the number of 1’s to the left of the reference point M (x) equals the number of 0’s to
the right of it. We call M (x) the weighted midpoint of the interface. We call

L(z):=sup{i € Z+ 5 :2(j) =0Vj < i},
R(z):=inf{i € Z+ 5 :2(j)=1Vj>i}

the left and right boundary of the interface, respectively. Note that L(zx) = M(z) = R(z) if
and only if x is a Heaviside state of the form

xhv,j(i) = 1{z>]} (Z S Z, _] cZ+ %) (18)

In particular, we write 2p, := Zpy,1/2. If 2 is not a Heaviside state, then L(z) < M (z) < R(x).
As a first step towards proving Theorem we will prove the following, weaker result.

Theorem 1.2 (Convergence of the weighted midpoint) Fiz x € SO and for ¢ € (0,1),

1

let X¢ be the biased voter model with generator and initial state x. Then

P[(eM(X:-2))

>0 € } fg P[(Bt)tzo € '}, (1.9)

where = denotes weak convergence on the Skorohod space D([0,00),R), and (Bi)i>o is a
Brownian motion with drift —%02 and diffusion coefficient o2.

It turns out that Theorem has a rather quick and simple proof, which however de-
pends on some nontrivial facts proved in [SSY18] (namely, Theorem 1.3, Proposition 3.7, and
Lemma 3.1 of that paper). The paper [SSY18] is concerned with interface tightness, which we
explain now.

We call two configurations z,y € {0, 1}? equivalent, denoted by x ~ v, if one is a translation
of the other, i.e., there exists some k € Z such that x(i) = y(i + k) (i € Z). We let T denote
the equivalence class containing x and write

g?nlt ={ZT:zx€ Sgllt}. (1.10)

Note that Sionlt,g?it are countable sets. Since our rates are translation invariant, the process
modulo translations (Y,f)tzo is itself a Markov process; if we restrict the state space to ??nlt,
then it is in fact a continuous-time Markov chain. If a is non-nearest-neighbor, then it can be
shown that this Markov chain is irreducible (see [SSY18, Lemma 2.1]). Following [CD95], we
say that (XF);>0 exhibits interface tightness on SOL if Ty, is positive recurrent for (X )i>o.
Under our assumptions (i)—(iii) on the kernel a, interface tightness for biased voter models
has been proved in [SSY18, Thm 1.2].

Interface tightness tells us that the biased voter model, started from any initial state in
Sgllt, spends a positive fraction of its time in Heaviside states. Moreover, the process modulo
translations, started from Ty, returns to Ty, in finite expected time. Finally, the laws of the
width of the interface P[R(X;) — L(X;) € -] are tight as t — co. Theorem 1.3 of [SSY18] shows
that all these statements hold uniformly as the bias € tends to zero.

A simple calculation shows that the weighted midpoint evolves as a random time-changed
random walk, which has a drift of order €. In view of this, to prove Theorem [1.2] it suffices to
control the random time change. It turns out that Lemma 3.1 and Proposition 3.7 of [SSY1§]



give expressions for exactly the quantity we need and Theorem now follows from some
relatively simple renewal arguments.

Combining [SSY18, Thms 1.2 and 1.3], which prove interface tightness uniformly as € | 0,
with the convergence of the weighted midpoint, we then rather easily also obtain convergence
in finite dimensional distributions of the measure-valued process. To complete the proof of
Theorem [I.1] it therefore suffices to show tightness of the laws of the measure-valued processes
(145)¢>0 as € L 0. In the unbiased setting, this has been proved in [AS11] by directly verifying
Jakubowski’s tightness criterion (see e.g. [DA93, Thm 3.6.4]). To use this criterion in the
baised setting, we will construct a sufficient condition in Lemma Using the fact
that the biased and unbiased voter models can be coupled so that the biased process has more
ones, we can use results proved in [AS11] to get bounds on how fast the biased (resp. unbiased)
voter model can decrease (resp. increase). It turns out that these bounds are enough to check

(2.53) and hence prove tightness.

1.3 Discussion and open problems

Combining Theorem with [SSYI8, Thm 1.3], one can easily show that as ¢ | 0, the
diffusively rescaled left boundary (eL(XE_,,)) o and right boundary (eR(XE.,,)) >0 of the
interface converge in finite dimensional distributions to the same drifted Brownian motion as
the weighted midpoint. A natural question then arises. That is, as € | 0, do the boundaries
also converge as processes, or equivalently does path level tightness for the boundaries hold?

In the unbiased case € = 0, this question has been answered in a sequence of papers.
Newman, Ravishankar and Sun [NRS05] confirmed path level tightness under the assumption
that a has a finite fifth moment. This result was later extended by Belhaouari et al. in
[BMSVO06] to all a with a finite (3 + ¢)-th moment for some § > 0. On the other hand, it was
pointed out in [BMSV0G6] that path level tightness for the left and right boundaries does not
hold if ), a(k)|k|" = oo for some v < 3.

Indeed, in this regime, there exist exceptional times when 1’s (resp. 0’s) are created deep
into the territory of the 1’s (resp. 0’s) due to the heavy tail of a. Nevertheless, such 1’s and
0’s are expected to be rare and sparse, thanks to interface tightness. Therefore, one should be
able to restore tightness if those rare 1’s and 0’s are suitably discounted. In [BMSV06], this
idea was achieved by suppressing the infections 0 — 1 and 1 — 0 from site ¢ to site j with
|i — j| > e for some k > 0 depending on a, where a is required to have a finite -th moment
for some v > 2.

The same idea also motivated Athreya and Sun [AS11], who proved an unbiased version of
Theorem assuming only that a has a finite second moment. It is shown in [BMV07] that
if Y, a(k)|k|” = oo for some v < 2, then interface tightness for the (unbiased) voter model
does not hold. In view of this, the finite second moment condition seems optimal.

It is well-known that the voter model is dual to a system of coalescing random walks.
Likewise, the biased voter model is dual to a system of branching and coalescing random
walks. It has been show in [FINRO4] that nearest-neighbor systems of coalescing random
walks, started from every point in space and time, have a diffusive scaling limit, called the
Brownian web. Likewise, it has been shown in [SS08al that nearest-neighbor systems of weakly
branching and coalescing random walks have a diffusive scaling limit called the Brownian net.
To extend these results to non-nearest-neighbor systems of (branching) coalescing random
walks, one needs to prove tightness for the collection of paths in the Brownian web topology,
introduced in [FINRO4]. In the unbiased case, it has been shown in [BMSV06] that tightness
of coalescing random walks in the Brownian web topology is equivalent to path level tightness
for the left and right boundaries of the dual voter model. Their arguments carry over to
branching coalescing random walks and their dual, the biased voter model.

In view of this, for the biased voter model, it is an important open problem to derive



sufficient conditions for path level tightness for the left and right boundaries. We conjecture
that as in the unbiased case, a finite (3 + 0)-th moment should suffice.

The remainder of the paper (which consists of Section [2| and an appendix) is devoted to
proofs. In Subsection [2.I] we give the main line of the proof of Theorem [I.2] and in Subsec-
tions [2.2] and 2:3] we fill in the details. In Subsections [2.4] and [2.5] we then prove Theorem
by first showing convergence in finite dimensional distributions and then tightness. Lastly we
collect some technical lemmas in the appendix.

2 Proofs

2.1 Convergence of the weighted midpoint

In this subsection we outline the proof of Theorem We show that Theorem follows

from Lemmas [2.1] and 2.2] below. Here Lemma [2.1] says that the weighted midpoint evolves

as a time-changed simple random walk, while Lemma contains a statement about the

convergence of the time change. We also show how Lemma can heuristically be derived

from results proved in [SSY18], which prepares for its formal proof in Subsection below.
For x € Smt and k € Z, let

In(z) :={i:2(i) £ x(i + k)} (2.1)
denote the number of k-boundaries in the interface configuration .

Lemma 2.1 (Time-changed random walk) Fiz x € S2L and for e € (0,1), let X¢ be the
biased voter model with generator (1.1)) and initial state x. Then there erxists an a.s. unique

random, strictly increasing continuous function t — Ty such that
Ty
t=: / ds Y a(k)Ik(XS)  (t>0). (2.2)
0 keZ

Moreover, the process (M(Xig))
as

>0 18 a continuous-time Markov chain on Z + % that jumps

m— m — 1 with rate & and m+— m+ 1 with rate (1 —¢). (2.3)

By standard results, the drifted random walk in (2.3)) converges after diffusive rescaling to
a drifted Brownian motion. In view of this, in order to prove Theorem the main task is
to control the time-change in ([2.2]). We will prove the following lemma.

Lemma 2.2 (Convergence of the time change) Let X¢ be as in Theorem[1.2. Then

e 2t
sup ‘0'2t — 52/ ds Za(k’)[k(XE) 50 (T < 0), (2.4)
0<t<T 0 . e—0
where > denotes convergence in probability.
Proof of Theorem [1.2] Let us set
P = eM (X5 ) ) (t>0), (2.5)
e~ 4t

i.e., this is the drifted random walk (M (X%tg))tzo from Lemma diffusively rescaled by e.
Then standard results tell us that

P{(Y{ )0 € -] = P[(W; — $t)i>0 € -], (2.6)

5



where (W3)¢>0 is a standard Brownian motion. Let

5= [ds Satn(xs) (20 (2.7)

k

denote the inverse of the function ¢ + 75 defined in (2.2]). Then

EM(Xia)=Yhs ,  (t20). (2.8)

Lemmatells us that 5252,2 , converges as a process to ot. It is not hard to show (for details
we refer to Lemma, in the appendix) that this implies convergence of the time-changed
process, proving the claim of Theorem [ |

In order to prove the crucial Lemma we heavily rely on results proved in [SSY18]. In
the remainder of this subsection, we recall some of these results and put them into context,
to give the reader a rough idea where Lemma comes from.

As explained in Subsection Theorem 1.2 in [SSY18] establishes interface tightness for
biased voter models. More precisely, this theorem says that if the kernel a is non-nearest-
neighbor, then for any & € [0,1), the process modulo translations (X;);>o is an irreducible,
positive recurrent Markov chain with countable state space g?rft as defined in . Let
7° denote the invariant law of this Markov chain. If a is nearest-neighbor (and therefore
a(—1) = 3 = a(1) by our assumptions on a), then we define 7 to be the delta measure on
the Heaviside state Zy,. In the non-nearest-neighbor case, we cite the following theorem from
[SSYI8, Thm 1.3]. The extension to the nearest-neighbor case is trivial.

Theorem 2.3 (Continuity of the invariant law) The laws T converge weakly to 7 as
e | 0 with respect to the discrete topology on g?nlt.

All existing proofs of interface tightness for unbiased voter models are in some way or
another based on a function that counts the number of inversions, i.e., pairs of sites ¢, j such
that ¢ < j and x(i) > x(j). Let h denote this function, i.e.,

01
1<j
Note that since h is translation invariant, we can alternatively view h as a function on ??nlt.
In [SSY18, Prop. 3.7], it is shown that the invariant law 7° solves the equilibrium equation

> 7@ Gh(x) =0, (2.10)
feg?nlt
where GV is the generator defined in (1.1)). As shown in [SSY18| Prop. 3.7], this equation can
be written more explicitly as follows. (In the nearest-neighbor case, [SSY18| Prop. 3.7] is not
applicable, but (2.11]) below holds trivially with both sides equal to 1.)

Proposition 2.4 (Equilibrium equation) Let X2 be a random variable such that Ygo has

law 7. Then
E[Za(k;)fk(xgo)] — o2, (2.11)

k

It is a remarkable fact that the equilibrium equation for the function in yields an
expression for precisely the quantity that also appears in the time-change in . Proposi-
tion was one of the main ingredients used in [SSY1§| to prove Theorem Together,
Theorem and Proposition will be the main ingredients in our proof of Lemma [2.2



In order to derive Lemma from , we will need uniform control over the speed at
which the process modulo translations converges to equilibrium. This will be achieved by a
renewal decomposition of the process modulo translations, where we get uniform control on
the expected return times as € | 0 as a result of Theorem 2.3

In the coming two subsections, we prove Lemmas and respectively.

2.2 The randon time-change

Proof of Lemma 2.1] Let
I x) = {i:z(i) =0,2(i + k) = 1},

L) == {i:x(i) = 1,2(i + k) = 0}. (2.12)
It is easy to see that (compare [SSOSB, formula (3.5)])
Iy(z) = ' (2) + () and I'(2) = L2(2) + k(2 € Siy). (2.13)
As a result
I"(2) = S(Ix(x) + k) and I'(z) = $(Ix(z) — k). (2.14)

We observe that the quantity M (X[ ) always goes up and down by a single unit. More precisely,
M(X;) goes down by one when a site flips from 0 to 1 and it goes up by one when a site flips
from 1 to 0, which means that if the present state is X; = x, then M (X;) jumps as

m+— m — 1 with rate Za(k)[,%o(x) = %Z a(k)Iy(x)

K 2.15

m+— m+1 with rate (1—5)2@(1{:)[,21( = 1—5%Za (2.15)
k

k

where we have used and our assumption y_, a(k)k = 0. It follows from that
M (X¥) is a random time change of a drifted random walk.

More precisely, defining S; as in , and observing that the integrand is > 1, we see
that S7 is a.s. strictly increasing, continuous, with S5 = 0 and lim;_,, S§ = oo. It follows that
S; has an inverse function with the same properties, which is 77. By standard results, the
time-changed process (Xif)tzo is a Markov process such that if the original process (X7 )¢>0
jumps from z to y with rate r(z,y), then the new process (Xis)tzo jumps from z to y with

rate (3", a(k)Ix(x))"tr(z,y). In particular, the process (M(Xie“f))po is a drifted random

walk with jump rates as in ([2.3)). |

2.3 Renewal arguments
In this subsection, we prove Lemma completing the proof of Theorem [I.2] Since the
functions Ij are translation invariant, we can and will view them as functions on S?nlt Our

task is then to show that if T € Smt is fixed and X  is the biased voter model with bias
€ (0,1), modulo translations, started in Z, then

—2

e™"t
sup |0t — 52/ ds Z a(k) (X)) 250 (2.16)
0<t<T 0 % e—0
We let
=inf{t >0: X, = T} (2.17)

denote the first hitting time of Ty, and define inductively

Foo=inf{t>715_: X, # Tny} and T :=inf {t > 7} : X, = Thy } (n>1). (2.18)



We will first prove 1} under the additional assumptions that Yf) = Tpy and the kernel a
is non-nearest-neighbor. The assumption that X 8 = Ty implies that 7§ from 1j is zero,
while the assumption that a is non-nearest-neighbor implies that r. > 0, where

re= > (k[ = Da(k)+ (1 —¢)) (k- 1)a(k) (2.19)

k<—1 k>1

is the rate at which X~ jumps away from Ty,. We start with a trivial observation. Below,

we view the law of X~ as a probability measure on the space of piecewise constant, right-
. . . . —01

continuous functions with values in the countable set S,

int> and we equip this space with the
Skorohod topology.

Lemma 2.5 (Continuity of the law) Let X = (X, )i>0 be the biased voter model modulo
translations with bias € € [0,1), started in X, = Tny. Then the function & — IED[XE € -] is
continuous w.r.t. weak convergence.

Proof This is trivial, since X is a nonexplosive continuous-time Markov chain and its jump

rates converge pointwise. |

Lemma 2.6 (Convergence of return times) Assume that a is non-nearest-neighbor. Then

liﬁ)l % [75] = E™ [1]] < oo. (2.20)
g

Proof By interface tightness [SSY18, Thm 1.2], we have E[7{] < oo for each € € [0,1). The
regenerative theorem (see [Asm03, Thm 4.1.2]) gives an expression for the invariant law 7=,

e 1 T 4 _ _ =501
7 (T) = WHE hv [/0 L _pyds (T € Sing)- (2.21)

In particular, setting T = Ty, it follows that

1

_ 1 I
B [rf] = ey B ] = e
3 A%

(@) 22

where 7. from (2.19) is the rate at which X leaves Zy,. By Theorem T (Thy) — T (Thy)
as € — 0, which together with (2.22)) yields the claim. |

Lemma 2.7 (Average value during one excursion) Assume that a is non-nearest-
neighbor. Then

Jimn B [/Offds Za(k)[k(yz)} _ R [/f)ds Za(k)fk(fg)] < . (2.23)

0
et % %

Proof Formula ([2.21]) gives

Exhv[/orlds Za(kﬂk(yz)} = EPn [7£] Z ﬁe(f)za(k)lk(f)- (2.24)
k k

By Theorem [2.3] and Fatou’s lemma

> 7@ alk)Iy(F) <liminf (@) Y a(k) (7). (2.25)
k

_ =01 _ =01
ZTE€Sint k



By [SSY18, Lemma 3.1] and Proposition

S 7@ ab)(@) <o and > F@)Dalk) k(@) = o> (2.26)
k

_ =01 _ =01
TES, k zES,

The first formula shows that the limit superior of the right-hand side of (2.25)) can be bounded
from above by o2, while the second formula identifies the left-hand side of (2.25) as o2. We
conclude that

Y 7@ ak)Ii(T) —0>02 =Y @ alk)(@). (2.27)

E—
fegionlc k jegionlt k
Inserting this into (2.24]), using Lemma we obtain ([2.23)). |

The proof of Lemma [2.7] yields a useful corollary.

Corollary 2.8 (Renewal identity) Assume that a is non-nearest-neighbor. Then

Lo [/OTPds Za(k)[k(fg)} =02 (2.28)

B [7]] g

Proof This follows from (2.24) and ([2.26]). n

Let X° denote the process started in X = Thy and let

le2u)| e 2u)|

| s .
$e(u) :=e> Y (rf—7iy) and ¢e(u)=e> Y / ds Y a(B)(X3).  (2:29)
k=1 k=1 Y Tk-1 k

Then ¢.(u) and 9. (u) are sums of i.i.d. random variables. Indeed, 7; — 7;_; is equally dis-
tributed with 7§ while the summands of 1.(u) are equally distributed with

= /0 ds Y a(k) Iy (Xy). (2.30)

k

It follows from Lemma that 7§ and n° converge weakly in law as ¢ — 0 to 7{ and 7",
respectively. Note that 77,7° > 0 a.s. Lemmas and Corollary tell us that

lim E[rf] = E[}] < o0, ii_r)r(l)E[na] =E[n° < oo, and E[R°]/E[)] =02 (2.31)

e—0

By [EKS86, Prop. A.2.3], the convergence in law and in expectation of 7{ and 7° imply that
these random variables are uniformly integrable as € | 0, i.e., for any &, — 0, we have

lim supE[r{";7" > K] =0 and lim supE[n™;n" > K] = 0. (2.32)
K—oo p K—oo n

It follows that
HmE[r; 75 > te 2 =0 and LmE[R%n° >te 2] =0 (t >0). (2.33)
el0 el0

This allows us to apply a standard functional law of large numbers (see Lemma in the
appendix for details) to obtain the following lemma.

Lemma 2.9 (Functional law of large numbers) Let ¢. and . be as in . Then

sup ’uE[T?} — ¢c(u)| L0 and sup |u]E[170] — e (u)] 0 (U>0). (234
0<u<sU e—0 0<u<U e—0

9



Proof of Lemma We first prove the statement under the additional assumptions that
the kernel a is non-nearest-neigbor and YS = Thy. In this case 7§ = 0.

Since ¢.(e2k) = €275 (k > 0), the function ¢, defines a bijection from e?N to {e?7{ : k > 0}.
Let 6. denote the restriction of ¢, to €2N. Then ¢, is the right-continuous interpolation of 6,.
Let 6 I denote the inverse of .. For any t > 0, let us define

[t]Z :==7;_; where te€[r_y,7;) and [t|5, :=7; where t¢€ (175_q,7%] (k>0).
(2.35)

e (071 (2e24)2)) < &2 /0 s > alk)p(X5) < v (6-1(P[eH,))  (6>0), (2.36)

k

where 0-1(e2[e72t].) and 0-!(e%[e2t]°,) are the right- and left-continuous interpolations of
the function 6-1.

Lemma tells us that as € | 0, the right-continuous interpolation of 6. converges in
probability w.r.t. the Skorohod topology to the function u + uE[rY]. By the Skorohod rep-
resentation theorem [Bil99, Thm 6.7], along any sequence &, | 0, we can couple our random
variables such that this convergence is a.s. Since 6. takes values in {e?7f : k > 0}, it is easy
to see that for our coupling

VE>0 3t,e{eirim ik >0} st t, >t (2.37)

i.e., the range of 6., is a.s. dense in the limit. Since the sets 2N are dense in the limit, it is
easy to see that not only the right-continuous interpolation, but also the linear interpolation
of 0., converges locally uniformly to the function u + uE[r{]. It is not hard to see that this
implies locally uniform convergence of the inverse (see Lemma in the appendix). Thus,
the linear interpolation of 6_ ! converges locally uniformly to the function t — t/E[rY]. Using
, we see that the same holds for the right- and left-continuous interpolations of the
function 6_ 1. Since this holds for arbitrary &, | 0, we obtain that

sup [t/E[r0] — 0212 2))| == 0, (2.38)
0<t<T e—0

and similarly for the left-continuous interpolation. Combining this with Lemma [2.9] it is not
hard to show (see Lemma from the appendix) that the left- and right-hand sides of
converge locally uniformly in probability to the composition of the functions ¢ + t/E[r{] and
u > uE[n°]. By , this composite function is the function t — o?t, proving .

This completes the proof under the additional assumptions that the kernel a is non-nearest-
neigbor and X, = Tp,y. If @ is the nearest-neighbor kernel a(—1) = 3 =a(1), then ¢ = 1 and
Y: = Ty for each t > 0. Moreover, >, a(k)I,(Zny) = 1, so in this case l) is trivial.

To treat the case when X started in an arbitrary, fixed initial state X, = 7, it suffices to
show that

a0 _
e 50 and 52/ ds Za(k)]k(Xi) 0. (2.39)
e—0 0 . e—0
Since the jump rates converge, for any T € g?nlt, the laws
_ [T _
P*[rs € -] and ]Pﬂ[/ ds Y a(k)In(X3) € -] (2.40)
0 k

converge weakly as ¢ | 0, so it suffices to show that for the unbiased process

P[7) <oo] =1 and IP’“”[/OTOdS Za(k:)lk(YS) <oo] =1, (2.41)
k
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where in fact the first equality implies the second equality. If the kernel a is non-nearest-
neighbor, then the fact that 7) < oo for any = € ?ionlt
irreducibility [SSY18, Thm 1.2 and Lemma 2.1].

To complete the proof, we must show that the nearest-neighbor unbiased voter model,
started in any state x € Sgllt, a.s. reaches a Heaviside state in finite time. We can obtain a
two-type voter model as a function of a multi-type voter model in which initially each site
has a different type. Since the family size of each type is a martingale, each family dies out
a.s. As soon as the families corresponding to types that were initially between L(z) and R(z)
have all died out, X; will be in a Heaviside state. |

follows from positive recurrence and

2.4 Convergence of finite dimensional distributions

In this subsection, we start proving Theorem by showing convergence in finite dimensional
distributions.

Lemma 2.10 (Local limit) Fiz T € ?ionlt and for e € [0,1), let X~ be the biased voter model
modulo translations with bias €, started in T. Then, for each €, — 0 and t,, — oo,

PT[X," € - 7 2.42
[ tn = :| n?.fo T, ( )
where = denotes weak convergence of probability measures on F?nlt with respect to the discrete
topology, and T° is the invariant law of x°.

Proof We first prove the statement if the kernel a is non-nearest-neighbor. The process X
is irredicible and positive recurrent for each ¢ > 0 by [SSY18, Lemma 2.1 and Thm 1.2].
Moreover, its jump rates and by Theorem also its invariant law converge to those of x°
as € | 0. Using this, a simple abstract argument (see Lemma in the appendix) gives

il;}()) HIPE[Y? €-]-7"| v 0, (2.43)
where || - || denotes the total variation norm. Since
L o e N R i el R Eae (2:44)

the claim follows from the convergence of 7" (Theorem [2.3)).

Since for the nearest-neighbor kernel a(—1) = 3 = a(1), the invariant law 7 is the delta

measure on Ty, in this case it suffices to prove that
P s > t,] — 0 2.45
[TO > n] " ) ( )

where 7§ as in 1) denotes the time X" gets trapped in Zpy. It has already been shown
below ([2.40]) that

: T _ px [0 : T [0 _
lgliglf”x [76 >t] =P"[ry >t] and tlinoloIP’x [0 > ] =0, (2.46)

which implies (2.45)). |

01

Proposition 2.11 (Convergence of the left and right boundaries) Fiz z € S, and

fore € (0,1), let X¢ be the biased voter model with generator and initial state x. Then

P[(eL(XZ 2),eR(XE 2,)) 100 € °] fg%‘% P[(B:, By)iso € -], (2.47)

£

f.d.d. . . . . . . .
where = denotes weak convergence of the finite dimensional distributions, and (Bt)i>0 5 a
Brownian motion with drift —%02 and diffusion coefficient o2.
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Proof Let W (z) := R(x)—L(z) denote the width of an interface z € SP%

int» Which by translation
. . . . 01
invariance we can view as a function on S;

e int- Lemma shows that as ¢ | 0, the law of
W (X _-2;) converges to a limit law on N, and hence

P* [eW (X s,) € -] — 0 (t>0) (2.48)

Since x is fixed, this trivially also holds for ¢ = 0. By Theorem and the Skorohod rep-
resentation theorem [Bil99, Thm 6.7], along any sequence &, | 0, we can couple our pro-
cesses such that (e, M (Xf"n,%)tzg converges a.s. to (Bt)i>0. The claim now follows since

|L(z) — M (x)| < W(x) and similarly for R(z) (z € SL). ]
Lemma 2.12 (Convergence of finite dimensional distributions) Fiz x € S2L and for
e € (0,1), let X be the biased voter model with generator and initial state x. Define

(15)e>0 and (pt)e>o0 as in and . Then for each 0 < t1 < - < tm,
B(1 - 5,) € -] = Bl i) € -], (2.49)

where = denotes weak convergence of probability measures on M(R)™, and M(R) is the space
of locally finite measures on R, equipped with the topology of vague convergence.

Proof Let

ui"g = Z ede; and py© = Z €0zi. (2.50)
i>L(XE,) i>R(X?_,)

By Proposition and the Skorohod representation theorem [Bil99, Thm 6.7], along any
sequence €, | 0, we can couple our processes such that

enl(X°", ) — B

en"tk’ n—oo

and e,R(X", ) — B

en"tr’ n—oo

a.s. (1 <k<m). (2.51)

173 ti

Then, for any continuous function f : R — R with compact support

n—oo

/R s (dr) f(r) — R,utk(dr) fr) as. (1<k<m), (2.52)

and similarly for ,uif", so using the fact that py® < puf < ,ui’e, we see that 1) holds with

En

uik replaced by /ﬁ:, first for f > 0 and then for general f by linearity. This proves that ,u,f
converges a.s. vaguely to p, for each 1 <k < m. Since this holds for arbitrary e, | 0, (2.49)
follows. u

2.5 Tightness

In this subsection, we complete the proof of Theorem by showing tightness. We let
(1, ¢) == [ ¢dp denote the integral of a function ¢ with respect to a measure y, and we
write C2(R) for the space of compactly supported, twice continuously differentiable functions
fR—=R.

Let IC denote the space of all measures y € M(R) such that u([—n,n]) < 3nforn =1,2,....
Then K is a compact subset of M(R) and p; € K for all ¢ € [0,1) and ¢t > 0. In view of
this, by Jakubowski’s tightness criterion [DA93, Thm 3.6.4], for given &, | 0, the laws of
{(15™)t>0 nen are tight on D([0, 00), M(R)) if and only if

(J) (Tightness of evaluations) For each f € C2(R), the laws of {({(1", f))i>0}nen are tight
on D([0,0),R).

12



To verify tightness of the laws of the real-valued processes ({(u;", f))t>0, we will use the fol-
lowing lemma.

Lemma 2.13 (Tightness criterion) Let " € D([0,00),R) and assume that

17/5)
lim > limsupP*[  sup | & =n] =0  (n>0, T <o) (2.53)
00 =5 n—oo tefis,(i+1)8)

Then the laws P[E"™ € -] are tight on D([0,00),R) and each weak limit point is concentrated
on C([0,00),R).

Proof It is well known [Bil99, Thm 15.5] that the conclusion of the lemma is implied by

lim lim sup P | sup & =& =n] =0 (n>0, T <o0). (2.54)
60 n—oo 0<s<t<T:|s—t|<

If | — &7 > n for some 0 < s <t < T with |s — t| < 4, then there must exist 0 <i < [T/
and 0 < s <t < (i +1)d such that |§ — £ > n/2, and hence sup,cj;s i41)9) 167" — &isl = n/4-
This shows that (2.53]) implies (2.54)). |

We will establish tightness for {(1;")i>0}nen by a judicious comparisons between biased
and unbiased voter models using results from [AST1] that we now cite.

Lemma 2.14 (Continuity estimate for the unbiased model) Let P* denote the law of
the unbiased voter model (XP)i>o started in X§ = x and let

vii=Y eX20(i)0s  (e>0, t>0). (2.55)
1€Z

Then for each f € C2(R), there exist C < 0o and to,e0 > 0 such that for all 0 < t < to and
0 < e <eo,

Pr[|(v5, f) — (v5, f)]| > 8] < 0ot (x e {0,1}%, § > 0). (2.56)

Proof This is proved in Section 2.1 of [AS1I], as a first step towards proving that the laws
of the processes in are tight. The proof uses the duality between the voter model and
coalescing random walks to derive estimates for the mean and variance of (vf, f). Crucially,
the bounds are independent of the initial state  and only assumes the properties (i)—(iii) of
the kernel a(-) that we also use. |

Recall that the main result of [ASTI] is that if an unbiased voter model (X7);>q is started
in the Heaviside state xyy, then (vf);>0 converges to (1{y>Bt}dy)t20 ase | 0, where By := W 2,
is a Brownian motion with diffusion coefficient o

more general initial configurations.

. Indeed, their proof can be extended to

Lemma 2.15 (Invariance principle for the unbiased voter model) Let ¢, | 0. For
each n, let (Xl?’n)tzo be an unbiased voter model stared in a deterministic initial state and
define v;™ as in but with X replaced by XO". Assume that vy" converges in the vague
topology to 1¢,>pydy as n — oco. Then

P[(v;")i>0 € -] = P[(1)iz0 € -], (2.57)

n—00

where v, == 1{y>ét}dy 1s the Lebesgue measure on a half line whose boundary is given by the

Brownian motion (Bt)i>o with diffusion coefficient 2.
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Proof When the initial configuration is xyy, tightness and convergence in finite dimensional
distributions are shown in Sections 2.1 and 2.2 of [AS11], respectively. To prove tightness,
[AS1I] also use Jakubowski’s tightness criterion, where Aldous’ tightness criterion (see e.g.
[AId78, Thm 1]) is applied to verify (J). A crucial ingredient is the estimate (2.56]), which
holds for general initial configurations. In view of this, their proof of tightness holds regardless
of the initial condition.

The proof of convergence of the finite dimensional distributions is based on a first and
second moment calculation using duality and the fact that a collection of dual coalescing
random walks converges to a collection of coalescing Brownian motions. For this part of the
argument, it suffices if the initial configuration 1" converges in the vague topology to 1 (y>0ydy
as n — oo. |

We now prove tightness by verifying Jakubowski’s tightness criterion (J), using Lem-
mas[2.13],[2.14] and[2.15] and judicious comparisons between biased and unbiased voter models,
thereby completing the proof of our main result Theorem

Proof of Theorem If a is the nearest-neighbor kernel a(—1) = 3 = a(1), then the
Heaviside state is a trap for the process modulo translations. As in , let 75 denote
the trapping time. It has been shown below that in this case, the biased voter model
observed until 7§ converges in law to the unbiased voter model observed until 7, and that 7
is finite a.s. In view of this, in this case, Theorem follows trivially from Theorem We
assume therefore without loss of generality that a is non-nearest-neighbor.

Convergence of finite dimensional distributions has already been proved in Lemma
so it suffices to show tightness. As argued at the beginning of this section, by Jakubowski’s
tightness criterion, it suffices to show that for each f € C2(R), the laws of {({(i", f))i>0}nen
are tight on D([0,00),R) along any sequence e, | 0. By linearity, it suffices to consider
nonnegative f. We fix f > 0 and apply Lemma to the real-valued processes ((1;™, f))t>o0-
We fix n > 0 and for each n and s > 0 define

Tt ::inf{t >0 (g, f) — (ue, f) > 77}7

n,— : En £ (258)
T i=inf {t >0 (g, ) — (usms f) < —n}.
We will prove the lower and upper bounds
(i) l(sirf)l 6! suplimsup P[r™" < 4] = 0,
L O e20 moee (n > 0), (2.59)
(ii) im0~ " suplimsup P[r;»~ < ] =0
510 s>0 n—oo
which together imply ([2.53) and hence tightness for the laws of ({(u;™, f))i>0-
To prove (2.59) (i), we note that
P[(uStg0 £) = (5" f) = /2] > ConPlrie* <] (2.60
where
Csp = inf infP"[{ug", f) — (ug", ) = —n/2], (2.61)

’ 0<t<d =

and we have conditioned on 7 = 72"" and z = Xn, and used the strong Markov property.
We couple the biased voter model started in Xj" = x to an unbiased voter model started in
X§ = x in such a way that X;* > X} for all t > 0. Defining ;" as in , using that f > 0,
it follows that

PE{(ugm, f) = (ug"s f) = —n/2] Z P [(vi, f) = (g, f) = —n/2]. (2.62)

Using the symmetry between zeros and ones in the unbiased voter model, we obtain by
Lemma that Cs,, > 1 — Cn~26Y/4 > 1/2 for all § small enough and n large enough.
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Inserting this into (2.60)) and using the convergence of the finite dimensional distributions
(Lemma , we find that for § small enough,

lim sup P[r"" < 0] <2limsup P[ ("4, ) — (us*, f) > n/2]

n—oo n—o0

ZQIP’[/f(;r)l{szSH}dx—/f(a:)l{szs}dm 277/2] (2.63)
<2P[|Bsrs — Bs| = gl flloo)

where By = W2, — %O’Qt is a Brownian motion with drift —%02 and diffusion constant o2. It

is easy to see the right-hand side is o(¢d), uniformly in s, proving (2.59)) (i).
The argument for (2.59|) (ii) is similar, but not quite the same. In this case, we couple
biased and unbiased voter models started in the same initial state at time s to bound
Pt~ < 6] < Ploy™ < 4], (2.64)

S

where
ol =inf {t > 0: (i, ) — (Wi, f) < —n}. (2.65)

and we use that f > 0. Arguing as in (2.60) and (2.61)), applying Lemma directly without
the need of the coupling in (2.62)), allows us to estimate, for § small enough,

limsup Plop™ < 8] <2limsupP[(v27 5, f) — (5, f) > n/2]

s+47
n—oo n—0o0

ZQP[/f($)1{zzés+5}d$_/f(x)l{xzés}dx > n/2] (2.66)
§2P[|Bs+6 - BS| > %n”f”w]a

where we have used Lemma instead of Lemma andN(Bt)tZS is a Brownian motion
with zero drift and diffusion constant o2, started at time s in By = B,. Again, the right-hand

side is o(d), which together with (2.64) proves ([2.59) (ii). |

A Appendix

A.1 Locally uniform convergence

For any metrizable space E, we let D(]0,00), E) denote the space of cadlag functions (i.e.,
right-continuous functions with left limits) w : [0,00) — E, equipped with the Skorohod
topology [EKS86, Bil99], and we let C([0, 00), E) denote the subspace of continuous functions.
It is well-known that D([0, 00), E) is Polish if F is [EK86, Thm 3.5.6]. Moreover, a sequence
wy, € D([0,00), E) converges to a limit w € C([0, 00), F) if and only if w,, — w locally uniformly
on compact sets [EK86, Lemma 3.10.1]. We recall the following well-known lemma.

Lemma A.1 (Convergence criterion) Let E be a metrizable space and let d be any metric
generating the topology on E. Let wy,w : [0,00) — E be functions and assume that w is
continuous. Then w, — w locally uniformly if and only if wy(t,) — w(t) for all t,,t > 0 such
that £, — t.

It is not hard to see that locally uniform convergence of functions implies locally uniform
convergence of their compositions and inverses. Moreover, for monotone functions, pointwise
convergence is equivalent to locally uniform convergence.

Lemma A.2 (Convergence of composed functions) Let E be a metrizable space, let
An, A i [0,00) = [0,00) be nondecreasing, and let wy,,w : [0,00) — E. Assume moreover that
A w are continuous. Then A\, — X locally uniformly and w, — w locally uniformly imply that
Wp © Ay = w o X locally uniformly.
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Proof By Lemma t, — t implies A, (t,) — A(t) and hence w,(\(t,)) = w(A(t)). Since
this holds for general ¢,, — t, the claim now follows from Lemma [ |

Lemma A.3 (Convergence of nondecreasing functions) Let Ay, A : [0,00) — [0,00) be
nondecreasing, and assume that X is continuous. Let D C [0,00) be dense. Then Ay, — X locally
uniformly if and only if for all t € D there exist t,, > 0 such that t,, — t and A\, (t,) = A(t).

Proof The necessity of the condition is clear. To prove the sufficiency, by Lemma it
suffices to show that ¢, — ¢ implies A, (t,) — A(t). Fix t* € D with t~ < ¢ < t* and choose
tF > 0 such that & — ¢+ and \,(t5) — A(t*). Then t,, < t, < t} for n sufficiently large,
and hence, since the A, are nondecreasing, A\, () < A\, (t,) < A\ (¢)) for n sufficiently large.
It follows that A\(¢_) < liminf, oo An(tn) and limsup,,_, . An(tn) < A(t4+). Using the density
of D and the continuity of A, we conclude that A, (t,) — A(t). |

For any A € C([0,00),[0,00)), let A([0,00)) := {A(t) : t € [0,00)} denote the image of
[0,00) under A. If X is strictly increasing and A([0,o0)) = [0, 00), then A has an inverse A~

Lemma A.4 (Convergence of inverse functions) Let A\,, A € C([0,00), [0,00)) be strictly
increasing with A ([0, 00)) = [0,00) and A([0,00)) = [0,00). Then A\, — X locally uniformly if
and only if A, — A=t locally uniformly.

Proof Let G := {(t,\(t)) : ¢ > 0} denote the graph of A and similarly, let G,, denote the
graph of \,. Then the graph of A=! is G™! = {(\(¢),t) : t > 0} and similarly for the graph
G, 1 of A\t Lemma tells us that A, — A locally uniformly if and only if for all (¢,s) € G

there exist (t,, s,) € Gy, such that (t,,s,) — (¢,s). Clearly, this holds if and only if G,,;* and
G~ ! satisfy the same condition, which is equivalent to A1 — A~! locally uniformly. n

Let X, be random variables taking values in a Polish space E, and let x € E. Then it is
not hard to see that the following statements are equivalent

(i) PX, € -] = 64,
n—oo
(ii) P[X, &€ A] — 0 for all A € N,
n—oo
where = denotes weak convergence of probability measures and N, is a fundamental system

of neighborhoods of x. If these conditions are fulfilled, then we say that the X, converge to

x in probability and denote this as X, LA particular, let F be a Polish space and d a
metric generating the topology on E, let W, be random variables with values in DE [0, 00),

and let w € Cg[0,00). Then W, B w with respect to the Skorohod topology if and only if
sup d(Wu(t),w(t)) — 0 (T < ). (A1)
0<t<T n—oo

Because we will need these in our proofs, for completeness, we provide proofs for two addi-
tional simple lemmas which lift Lemmas[A-2) and [A-3] to convergence in law and in probability,
respectively.

Lemma A.5 (Convergence of time-changed processes) Let Y = (Y;)i>0 and Y" =
(Y")t>0 be stochastic processes with cadlag sample paths, taking values in a Polish space E.
Let S = (St)i>0 and S™ = (S')t>0 be real-valued stochastic processes whose sample paths are
cadlag, nondecreasing, and satisfy So = 0 resp. S§ = 0. Assume moreover that Y = (Yi)i>0
and S = (St)e>0 have continuous sample paths, and that

PV, SP)iz0 € -] = Bl(Ye, Si)izo € -1, (A.2)
n—oo
where = denotes weak convergence with respect to the Skorohod topology. Then

P[(Ygp)izo € -] == P[(Ys,)iz0 € -]. (A.3)
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Proof By the Skorohod representation theorem [Bil99, Thm 6.7], we can couple our random
variables such that (Y;*,S}")i>0 converges a.s. to (Y, St)i>0 with respect to the Skorohod
topology. Now Lemma [A 2] implies that (Yin)tzo converges a.s. to (Yg,)t>0 w.r.t. the same
topology, and hence (A.3)) follows. |

Lemma A.6 (Convergence of nondecreasing functions) Let S = (S}');>0 be real-valued
stochastic processes whose sample paths are cadlag, nondecreasing, and satisfy So = 0 resp.
S¢=0. Let A :]0,00) — [0,00) be continuous. Then the following statements are equivalent:

i) sup [SP—N| =50 (T<oo), (i) S — A\  (£>0)
Proof The implication (i)=-(ii) is trivial. To prove the converse, let {t;, : k € N} be countable
and dense. Then

sup [Sf, — Ay, | .0 (m < 00), (A.4)
which says that the process k +— S}, converges in probability to k — Ay, with respect to the
product topology on RY. By the Skorohod representation theorem [Bil99, Thm 6.7], we can

couple our random variables such that

By Lemma it follows that supp<;<p }Sf - )\t‘ converges a.s. to zero for all 7' < oo, which
implies (i). |

A.2 A weak law of large numbers

In this subsection we prove two simple versions of the weak law of large numbers. Lemma [A7§]
below is used in the proof of Theorem [I.2] The following lemma would be completely standard
if the law of (V/,;)i>1 would not depend on n.

Lemma A.7 (A weak law of large numbers) For each n > 1, let (V;,;)i>1 be i.i.d.
nonnegative random variables, and let m,, > 1 be integers such that lim,,_,.o m, = co. Assume
that

supE[|Vpal] <oo and E[|Vpal; |Vai| > tmy] — 0 (t>0). (A.6)
n>1 n—o00
Then
1 & P
E[V;1] — - ; Vai — 0, (A.7)

where > denotes convergence in probability.

Proof Define truncated random variables by V,, ; := Viilv, jj<mn}- Then (A.6)) implies that

P[Zvn,i 7’£ Z Vn,i:| < mnP[|Vn,1| > mn] < E[|Vn,1|; |Vn,1| > mn] njo 0. (A8)
i=1 i=1

Since ({A.6) moreover implies that
[E[Vna] = E[Vaal| < E[[Vaal; [Vaal > ma] — 0, (A.9)

it suffices to prove the statement with V,,; replaced by V,, ;. For any § > 0, Chebyshev gives

mnp

P| n; Z}vn ~E[V,]] >8] < 572 L Var(V). (A.10)

1=
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We estimate

Var(Vo1) < E[V2,] </ e P[|Vaa| > 2]dz </ CE[Vali [Vaa] > 2]de. (A1)
0 0

It follows that the right-hand side of ({A.10]) can be estimated by
1
52/ E[|Vaal; [Vaa| > tmy]dt, (A.12)
0
which tends to zero by (A.6)), using dominated convergence. |

Lemma A.8 (Functional law of large numbers) For each n > 1, let (V,;)i>1 be i.i.d.
nonnegative random variables, and let €, > 0 be constants such that lim,, .o £, = 0. Assume
that

lim E[V,1]=c<oo and E[Vpi; Va1 >t/ey] — 0 (t>0). (A.13)

n—oo

Define fy, : [0,00) — [0,00) by

fot)i=en Y Vai  (t=0). (A.14)
=1
Then
sup |et — fu(t)] — 0 (T >0), (A.15)
OStST n—oo

where 5 denotes convergence in probability.

Proof Since the V;,; are nonnegative, the condition lim, o E[V;, 1] = ¢ < oo implies that
SUP,, >0, E[Vpa1] < oo for ng sufficiently large. Applying Lemma to m, = |, 't], we see
that f,(t) converges in probability to ct for each fixed ¢ > 0. The claim now follows from
Lemma [A.6l |

A.3 Uniform ergodicity

The following lemma, which we apply in Subsection [2.4], gives sufficient conditions for the
speed of convergence to equilibrium to be uniform for a sequence of continuous-time Markov
chains.

Lemma A.9 (Uniform ergodicity) Let S be a countable set and for each n € N U {o0},
let X™ = (X{")e>0 be a positive recurrent, irreducible continuous-time Markov chain with state
space S and invariant law w,. Assume that asn — oo, the jump rates of X™ converge pointwise
to the jump rates of X°°, and the invariant laws m, converge weakly to mo. Then, for each
reSs,

sup  ||P[X}' € -] — || — 0, (A.16)
neNU{oco} =00
where || - || denotes the total variation norm.

Proof Fix z € S. Let (X);>0 and (X]")¢>0 be independent processes with the same jump
rates and let T(Z ) = inf{t > 0: X; = z = X;}. Since we can couple two processes by
declaring them to be equal after T(Z 2)» We see that

[P7(X; e ] —PY X e ]| < POVt <l )] (wy €S, t>0), (A.17)
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and hence

P*(X7 € -] =l = | an V(PG e ] - PYXE e )
ves A.18
<> maly vy)t<7(zz)] (€S, t>0). (A.18)
yes

Since the jump rates converge, the probability P(*¥) [t < T(’; 2)] converges pointwise as n — 0o
for each y € S. Using also that m, = 7, which implies that the measures 7, are tight, this
is easily seen to imply that the right-hand side of (A.18)) converges and hence

limsup ||[P*[X] € ] — my| < Z’/Too )t < s (xe S, t>0). (A.19)

The joint process (X2, X°);>0 is irreducible and has an invariant law 7, ® 7o, which implies
positive recurrence. In view of this, the right-hand side of converges to zero as t — o0
for each fixed x € S. Since X" is positive recurrent and hence ergodic for each n € N and
since the total variation distance to the invariant measure is a nonincreasing function of time,

limsup sup |P*[X}* € -] — 7y || < limsup sup |P*[X} € -] — || < sup ||PY[XE € -] — |
t—00 n t—oo n> n>N
(A.20)
for each N,T < oo, where in view of the right-hand side can be made arbitrary small
by choosing N and T large enough. |
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