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Abstract

Interacting particle systems can often be constructed from a graphical representation, by
applying local maps at the times of associated Poisson processes. This leads to a natural
coupling of systems started in different initial states. We consider interacting particle
systems on the complete graph in the mean-field limit, i.e., as the number of vertices tends
to infinity. We are not only interested in the mean-field limit of a single process, but
mainly in how several coupled processes behave in the limit. This turns out to be closely
related to recursive tree processes as studied by Aldous and Bandyopadyay in discrete
time. We here develop an analogue theory for recursive tree processes in continuous time.
We illustrate the abstract theory on an example of a particle system with cooperative
branching. This yields an interesting new example of a recursive tree process that is not
endogenous.
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1 Introduction and main results

1.1 Introduction

Let Ω and S be Polish spaces, let r be a finite measure on Ω with total mass |r| := r(Ω) > 0,
and let γ : Ω×SN+ → S be measurable, where N+ := {1, 2, . . . }. Let T be the operator acting
on probability measures on S defined as

T (µ) := the law of γ[ω](X1, X2, . . .), (1.1)

where ω is an Ω-valued random variable with law |r|−1r and (Xi)i≥1 are i.i.d. with law µ. We
assume that there exists a measurable function κ : Ω→ N ∪ {∞} such that

γ[ω](x1, x2, . . .) = γ[ω](x1, . . . , xκ(ω)) (ω ∈ Ω, x ∈ SN+) (1.2)

depends only on the first κ(ω) coordinates. In some of our results, we can allow for the case
that κ(ω) =∞ (i.e., γ[ω] depends on all its coordinates), but most of the time the assumption∫

Ω
r(dω)κ(ω) <∞ (1.3)

will be in place. We will be interested in the differential equation

∂
∂tµt = |r|

{
T (µt)− µt

}
(t ≥ 0). (1.4)

In Theorem 1.1 below, we will prove existence and uniqueness of solutions to (1.4) under the
assumption (1.3). Our interest in equation (1.4) stems from the fact that, as we will prove in
Theorem 1.5 below, the mean-field limits of a large class of interacting particle systems are
described by equations of the form (1.4). In view of this, we call (1.4) a mean-field equation.
The analysis of this sort of equations is commonly the first step towards understanding a
given interacting particle system. Some illustrative examples of mean-field equations in the
literature are [DN97, (1.1)], [NP99, (1.2)], and [FL17, (4)].

In the special case that κ(ω) = 1 for all ω ∈ Ω, we observe that T (µ) =
∫
S µ(dx)K(x, · ),

where K is the probability kernel on S defined as

K(x,A) := P
[
γ[ω](x) ∈ A

]
(x ∈ S, A ⊂ S measurable). (1.5)

In view of this, if ω1,ω2, . . . are i.i.d. with law |r|−1r and X0 has law µ, then setting X(k) :=
γ[ωk](X(k−1)) (k ≥ 1) inductively defines a Markov chain with transition kernel K, such that
X(k) has law T k(µ), where T k denotes the k-th iterate of the map T . Also, (1.4) describes
the forward evolution of a continuous-time Markov chain where random maps γ[ω] are applied
with Poisson rate r(dω). A representation of a probability kernel K in terms of a random
map γ[ω] as in (1.5) is called a random mapping representation.

More generally, when the function κ is not identically one, Aldous and Bandyopadhyay
[AB05] have shown that the iterates T k of the map T from (1.1) can be represented in terms of
a Finite Recursive Tree Process (FRTP), which is a generalization of a discrete-time Markov
chain where time has a tree-like structure. More precisely, they construct a finite tree of depth
k where the state of each internal vertex is a random function of the states of its offspring. If
the states of the leaves are i.i.d. with law µ, they show that the state at the root has law T k(µ).
They are especially interested in fixed points of T , which generalize the concept of an invariant
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law of a Markov chain. They show that each such fixed point ν gives rise to a Recursive Tree
Process (RTP), which is a process on an infinite tree where the state of each vertex has
law ν. One can think of such an RTP as a generalization of a stationary backward Markov
chain (. . . , X−2, X−1, X0). A fixed point equation of the form T (ν) = ν is called a Recursive
Distributional Equation (RDE). Studying RDEs and their solutions is of independent interest
as they appear naturally in many applications, see for example [AB05, Als12].

In the present paper, we develop an analogue theory in continuous time, generalizing the
concept of a continuous-time Markov chain to chains where time has a tree-like structure. Let
(Tt)t≥0 be the semigroup defined by

Tt(µ) := µt where (µt)t≥0 solves (1.4) with µ0 = µ. (1.6)

In Theorem 1.6, we show that Tt has a representation similar to (1.1), namely

Tt(µ) = the law of Gt
(
(Xi)i∈T

)
, (1.7)

where T is a countable set, Gt : ST → S is a random map, and the (Xi)i∈T are i.i.d. with law
µ and independent of Gt. Similar to what we have in (1.2), the map Gt does not depend on
all coordinates in T but only on a finite subcollection (Xi)i∈∇St . Here (∇St)t≥0 turns out to
be a branching process and condition (1.3) (which is not needed in the discrete-time theory)
guarantees that the offspring distribution of this branching process has finite mean. Similarly
to (1.5), we can view (1.7) as a random mapping representation of the operator in (1.6).

We note that in the RTPs studied by Aldous and Bandyopadhyay [AB05], the underlying
tree is always deterministic. In the continuous-time setting, one has to work with the random
subtree S defined in (1.43) below, which is the family tree of a branching process. RTPs
on random trees generated by branching processes have recently also been studied in [MS18,
JPS19, BDF20].

As we have already mentioned, in Theorem 1.5 below, we prove that the mean-field limits
of a large class of interacting particle systems are described by equations of the form (1.4).
These interacting particle systems are constructed by applying local maps at the times of
associated Poisson processes, which are introduced in detail in Section 1.3.

We are not only interested in the mean-field limit of a single process, but mainly in the
mean-field limit of n coupled processes that are constructed from the same Poisson processes.
For each n ≥ 1, a measurable map g : Sk → S gives rise to n-variate map g(n) : (Sn)k → Sn

defined as

g(n)
(
x1, . . . , xk) = g(n)

(
x1, . . . , xn

)
:=
(
g(x1), . . . , g(xn)

)
(x1, . . . , xn ∈ Sk), (1.8)

where we denote an element of (Sn)k as (xmi )m=1,...,n
i=1,...,k with xi = (x1

i , . . . , x
n
i ) and xm =

(xm1 , . . . , x
m
k ). Note that since (Sn)k ∼= (Sk)n, we can view g(n) either as a function of

(x1, . . . , xk) or (x1, . . . , xn). Let P(S) denote the space of probability measures on a space S.
Letting γ(n)[ω] denote the n-variate map associated with γ[ω] then, in analogy to (1.1),

T (n)(µ) := the law of γ(n)[ω](X1, . . . , Xκ(ω)), (1.9)

defines an n-variate map T (n) : P(Sn) → P(Sn), which as in (1.4) gives rise to an n-variate
mean-field equation, which describes the mean-field limit of n coupled processes.

If X is an S-valued random variable whose law ν := P[X ∈ · ] is a fixed point of T , then
ν(n) := P[(X, . . . ,X) ∈ · ] is a fixed point of T (n) that describes n perfectly coupled processes.
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We will be interested in the stability (or instability) of ν(n) under the n-variate mean-field
equation. In other words, for our mean-field interacting particle systems, we fix the Poisson
processes used in the construction and want to know if small changes in the initial state lead
to small (or large) changes in the final state. Aldous and Bandyopadhyay [AB05] define an
RTP to be endogenous if the state at the root is a measurable function of the random maps
attached to all vertices of the tree. They showed, in some precise sense (see Theorem 1.11
below), that endogeny is equivalent to stability of ν(n). In Theorem 1.12, we generalize their
result to the continuous-time setting.

The n-variate map T (n) is well-defined even for n = ∞, and T (∞) maps the space of all
exchangeable probability laws on SN+ into itself. Let ξ be a P(S)-valued random variable
with law ρ ∈ P(P(S)), and conditional on ξ, let (Xm)m=1,2,... be i.i.d. with common law
ξ. Then the unconditional law of (Xm)m=1,2,... is exchangeable, and by De Finetti, each
exchangeable law on SN+ is of this form. In view of this, T (∞) naturally gives rise to a
map Ť : P(P(S)) → P(P(S)) which is the higher-level map defined in [MSS18], and which
analogously to (1.4) gives rise to a higher-level mean-field equation. For any ν ∈ P(S), let
P(P(S))ν denote the set of all ρ ∈ P(P(S)) with mean

∫
ρ(dµ)µ = ν. In [MSS18] it is

shown that if ν is a fixed point of T , then the corresponding higher-level map Ť has two fixed
points ν and ν in P(P(S))ν that are minimal and maximal with respect to the convex order,
defined in Theorem 1.15 below. Moreover, ν = ν if and only if the RTP corresponding to ν is
endogenous.

We will apply the theory developed here as well as in [MSS18] to the higher-level mean-field
equation for a particular interacting particle system with cooperative branching and deaths;
see also [SS15, Mac17, BCH18] for several different variants of the model. To formulate this
properly, it is useful to introduce some more general notation. Recall that for each ω ∈ Ω,
γ[ω] is a map from Sκ(ω) into S. We let

G :=
{
γ[ω] : ω ∈ Ω

}
(1.10)

denote the set of all maps that can be obtained by varying ω. Here, elements of G are
measurable maps g : Sk → S where k = kg ∈ N ∪ {∞} may depend on g. If k = 0, then S0 is
defined to be a set with just one element, which we denote by ∅ (the empty sequence, which
we distinguish notationally from the empty set ∅). We equip G with the final σ-field for the
map ω 7→ γ[ω] (i.e., the strongest σ-field on G for which this map is measurable) and let π
denote the image of the measure r under this map. Then the mean-field equation (1.4) can
be rewritten as

∂
∂tµt =

∫
G
π(dg)

{
Tg(µt)− µt

}
(t ≥ 0), (1.11)

where for any measurable map g : Sk → S,

Tg(µ) := the law of g(X1, . . . , Xk), where (Xi)i=1,...,k are i.i.d. with law µ. (1.12)

In the concrete example that we are interested in, S := {0, 1} and G := {cob, dth} each
have just two elements. Here cob : S3 → S and dth : S0 → S are maps defined as

cob(x1, x2, x3) := x1 ∨ (x2 ∧ x3) and dth(∅) := 0. (1.13)

We choose
π
(
{cob}

)
:= α ≥ 0 and π

(
{dth}

)
:= 1. (1.14)
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Then the mean-field equation (1.11) takes the form

∂
∂tµt = α

{
Tcob(µt)− µt

}
+
{
Tdth(µt)− µt

}
. (1.15)

which describes the mean-field limit of a particle system with cooperative branching (with
rate α) and deaths (with rate 1). We will see that for α > 4, (1.11) has two stable fixed points
νlow, νupp, and an unstable fixed point νmid that separates the domains of attraction of the
stable fixed points.

In Theorem 1.18 below, we find all fixed points of the corresponding higher-level mean-field
equation, and determine their domains of attraction. Note that solutions of the higher-level
mean-field equation take values in the probability measures on P({0, 1})∼= [0, 1]. As mentioned
before, each fixed point ν of the original mean-field equation gives rise to two fixed points ν, ν
of the higher-level mean-field equation, which are minimal and maximal in P(P(S))ν with
respect to the convex order. Moreover, ν = ν if and only if the RTP corresponding to ν
is endogenous. In our example, we find that the stable fixed points νlow, νupp give rise to
endogenous RTPs, but the RTP associated with νmid is not endogenous. The higher-level
equation has no other fixed points in P(P(S))νmid

except for νmid and νmid, of which the
former is stable and the latter unstable. Numerical data for the nontrivial fixed point νmid

(viewed as a probability measure on [0, 1]) are plotted in Figure 2.

1.2 The mean-field equation

In this subsection, we collect some basic results about the mean-field equation (1.4) that form
the basis for all that follows. We interpret (1.4) in the following sense: letting 〈µ, φ〉 :=

∫
φ dµ,

we say that a process (µt)t≥0 solves (1.4) if for each bounded measurable function φ : S → R,
the function t 7→ 〈µt, φ〉 is continuously differentiable and

∂
∂t〈µt, φ〉 =

∫
Ω

r(dω)
{
〈Tγ[ω](µt), φ〉 − 〈µt, φ〉

}
(t ≥ 0). (1.16)

Our first result gives sufficient conditions for existence and uniqueness of solutions to (1.4).
We note that in view of Lemma 3.3 below, in order to check that a process (µt)t≥0 solves (1.4),
it suffices to check (1.16) for a measure-determining class of functions φ in the sense defined
below (3.13).

Theorem 1.1 (Mean-field equation) Let S and Ω be Polish spaces, let r be a nonzero
finite measure on Ω, and let γ : Ω × SN+ → S be measurable. Assume that there exists a
measurable function κ : Ω → N such that (1.2) and (1.3) hold. Then the mean-field equation
(1.4) has a unique solution (µt)t≥0 for each initial state µ0 ∈ P(S).

Theorem 1.1 allows us to define a semigroup (Tt)t≥0 of operators Tt : P(S)→ P(S) as in
(1.6). It is often useful to know that solutions to (1.4) are continuous as a function of their
initial state. The following proposition gives continuity w.r.t. the total variation norm ‖ · ‖
and moreover shows that if the constant K from (1.18) is negative, then the operators (Tt)t≥0

form a contraction semigroup.

Proposition 1.2 (Continuity in total variation norm) Under the assumptions of Theo-
rem 1.1, one has ∥∥Tt(µ)− Tt(ν)

∥∥ ≤ eKt‖µ− ν‖ (µ, ν ∈ P(S), t ≥ 0), (1.17)
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where

K :=

∫
Ω

r(dω)
(
κ(ω)− 1

)
. (1.18)

Continuity w.r.t. weak convergence needs an additional assumption.

Proposition 1.3 (Continuity w.r.t. weak convergence) Assume that

r
(
{ω : κ(ω) = k, γ[ω] is discontinuous at x}

)
= 0 (k ∈ N ∪ {∞}, x ∈ Sk). (1.19)

Then the operator T in (1.1) is continuous w.r.t. the topology of weak convergence. Under the
additional assumption (1.2) and (1.3), the same is true for the operators Tt (t ≥ 0) in (1.6).

The condition (1.19) is considerably weaker than the condition that γ[ω] is continuous
for all ω ∈ Ω. A simple example is Ω = S = [0, 1], r the Lebesgue measure, κ ≡ 1, and
γ[ω](x) := 1{x≥ω}.

1.3 The mean-field limit

In this subsection, we show that equations of the form (1.4) arise as the mean-field limits of a
large class of interacting particle systems. In order to be reasonably general, and in particular
to allow for systems in which more than one site can change its value at the same time, we
will introduce quite a bit of notation that will not be needed anywhere else in Section 1, so
impatient readers can just glance at Theorem 1.5 and the discussion surrounding (1.36) and
skip the rest of this subsection.

Let S be a Polish space as before, and let N ∈ N+. We will be interested in continuous-
time Markov processes taking values in SN , where N is large. Denoting an element of SN

by x = (x1, . . . , xN ), we will focus on processes with a high degree of symmetry, in the sense
that their dynamics are invariant under a permutation of the coordinates. It is instructive,
though not necessary for what follows, to view {1, . . . , N} as the vertex set of a complete
graph, where all vertices are neighbors of each other. The basic ingredients we will use to
describe our processes are:

(i) a Polish space Ω′ equipped with a finite nonzero measure q,

(ii) a measurable function λ : Ω′ → N+,

as well as, for each ω ∈ Ω′ and 1 ≤ i ≤ λ(ω),

(iii) a function γi[ω] : Sλ(ω) → S,

(iv) a finite set Ki(ω) ⊂ {1, . . . , λ(ω)} such that γi[ω](x1, . . . , xλ(ω)) = γi[ω]
(
(xj)j∈Ki(ω)

)
depends only on the coordinates in Ki(ω).

Setting Ω′l := {ω ∈ Ω′ : λ(ω) = l}, we assume that the functions

Ω′l × Sl 3 (ω, x) 7→ γi[ω](x) and Ω′l 3 ω 7→ 1{j∈Ki(ω)} are measurable (1.20)

for each 1 ≤ i, j ≤ l. We let ~γ[ω] : Sλ(ω) → Sλ(ω) denote the function

~γ[ω](x) :=
(
γ1[ω](x), . . . , γλ(ω)[ω](x)

)
(1.21)

and let κi(ω) := |Ki(ω)| denote the cardinality of the set Ki(ω).
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The space Ω′, measure q, and functions λ and ~γ play roles similar, but not quite identical to
Ω, r, κ, and γ from Subsection 1. We can use Ω′,q, λ, and ~γ to define the following mean-field
equation:

∂
∂tµt =

∫
Ω′

q(dω)

λ(ω)∑
i=1

{
Tγi[ω](µt)− µt

}
. (1.22)

The following lemma says that (1.22) is really a mean-field equation of the form we have
already seen in (1.4). This is why in subsequent sections we will only work with equations of
this form.

Lemma 1.4 (Simplified equation) Assume that

(i)

∫
Ω′

q(dω)λ(ω) <∞ and (ii)

∫
Ω′

q(dω)

λ(ω)∑
i=1

κi(ω) <∞. (1.23)

Then equation (1.22) can be cast in the simpler form (1.4) for a suitable choice of Ω, r, κ,
and γ, where (1.23) (i) guarantees that r is a finite measure and (1.23) (ii) implies that (1.3)
holds. If

q
(
{ω : λ(ω) = l, γi[ω] is discontinuous at x}

)
= 0 (1 ≤ i ≤ l, x ∈ Sl), (1.24)

then moreover (1.19) can be satisfied.

We now use the ingredients Ω′,q, λ, and ~γ to define the class of Markov processes we are
interested in. We construct these processes by applying local maps, that affect only finitely
many coordinates, at the times of associated Poisson processes. In the context of interacting
particle systems, such constructions are called graphical representations.

For any N ∈ N+ we set [N ] := {1, . . . , N}. We let [N ]〈l〉 denote the set of all sequences
i = (i1, . . . , il) for which i1, . . . , il ∈ [N ] are all different. Note that [N ]〈l〉 has N 〈l〉 := N(N −
1) · · · (N − l + 1) elements. We will consider Markov processes X = (X(t))t≥0 with values in
SN that evolve in the following way:

(i) At the times of a Poisson process with intensity |q| := q(Ω′), an element ω ∈ Ω′ is chosen
according to the probability law |q|−1q.

(ii) If λ(ω) > N , nothing happens.

(iii) Otherwise, an element i ∈ [N ]〈λ(ω)〉 is selected according to the uniform distribution
on [N ]〈λ(ω)〉, and the previous values

(
Xi1(t−), . . . , Xiλ(ω)(t−)

)
of X at the coordinates

i1, . . . , iλ(ω) are replaced by(
Xi1(t), . . . , Xiλ(ω)(t)

)
= ~γ[ω]

(
Xi1(t−), . . . , Xiλ(ω)(t−)

)
.

More formally, we can construct our Markov process X = (X(t))t≥0 as follows. For each
ω ∈ Ω′ with λ(ω) ≤ N , and for each i ∈ [N ]〈λ(ω)〉, define a map mω,i : SN → SN by

mω,i(x)j :=

{
γj [ω](xi1 , . . . , xiλ(ω)) if j ∈ {i1, . . . , iλ(ω)},
xj otherwise,

(x ∈ SN ). (1.25)
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Let Π be a Poisson point set on{
(ω, i, t) : ω ∈ Ω′, i ∈ [N ]〈λ(ω)〉, t ∈ R

}
(1.26)

with intensity

q(dω)
1{λ(ω)≤N}

N 〈λ(ω)〉 dt. (1.27)

Since q is a finite measure, the set Πs,u := {(ω, i, t) ∈ Π : s < t ≤ u} is a.s. finite for each
−∞ < s ≤ u <∞, so we can order its elements as

Πs,u =
{

(ω1, i1, t1), . . . , (ωn, in, tn)
}

with t1 < · · · < tn (1.28)

and use this to define
Xs,u = mωn,in ◦ · · · ◦mω1,i1 (1.29)

In words, Π is a list of triples (ω, i, t). Here ω represents some external input that tells us that
we need to apply the map ~γ[ω]. The coordinates where and the time when this map needs to
be applied are given by i and t, respectively. It is easy to see that the random maps (Xs,u)s≤u
form a stochastic flow, i.e.,

Xs,s = 1 and Xt,u ◦Xs,t = Xs,u (s ≤ t ≤ u), (1.30)

where 1 denotes the identity map. Moreover (Xs,u)s≤u has independent increments in the
sense that

Xt1,t2 , . . . ,Xtk−1,tk are independent (1.31)

for each t1 < · · · < tk. It is well-known (see, e.g., [SS18, Lemma 1]) that if X(0) is an
SN -valued random variable, independent of the Poisson set Π, then setting

X(t) := X0,t

(
X(0)

)
(t ≥ 0) (1.32)

defines a Markov process X = (X(t))t≥0 with values in SN . Note that (X(t))t≥0 has piecewise
constant sample paths, which are right-continuous because of the way we have defined Πs,u.

We now formulate our result about the mean-field limit of Markov processes as defined in
(1.32). For any x ∈ SN , we define an empirical measure µ{x} on S by

µ{x} :=
1

N

∑
i∈[N ]

δxi . (1.33)

Below, µ⊗n := µ ⊗ · · · ⊗ µ denotes the product measure of n copies of µ. The expectation
E[µ] of a random measure µ on a Polish space S is defined in the usual way, i.e., E[µ] is the
deterministic measure defined by

∫
φ dE[µ] := E[

∫
φ dµ] for any bounded measurable φ : S →

R.

Theorem 1.5 (Mean-field limit) Let S be a Polish space, let Ω′,q, λ, and ~γ be as above, and
assume (1.23). For each N ∈ N+, let (X(N)(t))t≥0 be Markov processes with state space SN

as defined in (1.32), and let µNt := µ{X(N)(t)} denote their associated empirical measures.
Let d be any metric on P(S) that generates the topology of weak convergence. Fix some
(deterministic) µ0 ∈ P(S) and assume that (at least) one of the following two conditions is
satisfied.
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(i) P
[
d(µN0 , µ0) ≥ ε] −→

N→∞
0 for all ε > 0, and (1.24) holds.

(ii)
∥∥E[(µN0 )⊗n]− µ⊗n0

∥∥ −→
N→∞

0 for all n ≥ 1, where ‖ · ‖ denotes the total variation norm.

Then
P
[

sup
0≤t≤T

d(µNNt, µt) ≥ ε
]
−→
N→∞

0 (ε > 0, T <∞), (1.34)

where (µt)t≥0 is the unique solution to the mean-field equation (1.22) with initial state µ0.

Condition (ii) is in particular satisfied if XN
1 (0), . . . , XN

N (0) are i.i.d. with common law µ0.
Note that in (1.34), we rescale time by a factor N .

It is instructive to demonstrate the general set-up on our concrete example of a particle
system with cooperative branching and deaths. As before, we have S = {0, 1}. We choose for
Ω′ a set with just two elements, say Ω′ = {1, 2}, and we set q({1}) := α ≥ 0 and q({2}) := 1.
We let λ(1) := 3, λ(2) := 1, and define ~γ[1] : S3 → S3 and ~γ[2] : S → S by

~γ[1](x1, x2, x3) :=
(
x1 ∨ (x2 ∧ x3), x2, x3

)
and ~γ[2](x1) := 0. (1.35)

Then the particle system in (1.32) has the following description. Let us say that a site i is
occupied at time t if Xi(t) = 1. Then, with rate α, three sites (i1, i2, i3) ∈ [N ]〈3〉 are selected
at random. If the sites i2 and i3 are both occupied, then the particles at these sites cooperate
to produce a third particle at i1, provided this site is empty. In addition, with rate 1, a site i
is selected at random, and any particle that is present there dies.

It is not hard to see that for our choice of Ω′,q, λ, and ~γ, the mean-field equation (1.22)
simplifies to (1.15), Note that since γ2[1] and γ3[1] are the identity map, they drop out of
(1.22), so only γ1[1] = cob and γ1[2] = dth remain. Since γ1[2](x1) = 0 regardless of the value
of x1, we can choose for K1(1) the empty set and view γ1[2] = dth as a function dth : S0 → S.

Solutions of (1.15) take values in the probability measures on S = {0, 1}, which are uniquely
characterized by their value at 1. Rewriting (1.15) in terms of pt := µt({1}) yields the equation

∂
∂tpt = αp2

t (1− pt)− pt (t ≥ 0). (1.36)

This equation can also be found in [Nob92, (1.11)], [Neu94, (1.2)], [BW97, (3.1)], [FL17, (4)],
and [BCH18, (2.1)]. It is not hard to check that for α < 4, the only fixed point of (1.36) is
zlow := 0, while for α ≥ 4, there are additional fixed points

zmid := 1
2 −

√
1
4 −

1
α and zupp := 1

2 +
√

1
4 −

1
α . (1.37)

If α < 4, then solutions to (1.36) converge to zlow regardless of the initial state. On the other
hand, for α ≥ 4, solutions to (1.36) with p0 > zmid converge to the upper fixed point zupp

while solutions to (1.36) with p0 < zmid converge to the lower fixed point zlow. In particular,
if α > 4, then zlow and zupp are stable fixed points while zmid is an unstable fixed point
separating the domains of attraction of zlow and zupp.

1.4 A recursive tree representation

In this subsection we formally introduce Finite Recursive Tree Processes (FRTPs) and state
the random mapping representation of solutions to the mean-field equation (1.4) anticipated
in (1.7).

10



For d ∈ N+, let Td denote the space of all finite words i = i1 · · · in (n ∈ N) made up
from the alphabet {1, . . . , d}, and define T∞ similarly, using the alphabet N+. If i, j ∈ Td with
i = i1 · · · im and j = j1 · · · jn, then we define the concatenation ij ∈ Td by ij := i1 · · · imj1 · · · jn.
We denote the length of a word i = i1 · · · in by |i| := n and let ∅ denote the word of length zero.
We view Td as a tree with root ∅, where each vertex i ∈ Td has d children i1, i2, . . ., and each
vertex i = i1 · · · in except the root has precisely one ancestor

←
i := i1 · · · in−1. For each rooted

subtree of Td, i.e., a subtree U ⊂ Td that contains ∅, we let ∂U := {i ∈ Td :
←
i ∈ U, i 6∈ U}

denote the boundary of U relative to Td. We write

Td(n) := {i ∈ Td : |i| < n} and ∂Td(n) = {i ∈ Td : |i| = n} (n ≥ 1), (1.38)

and use the convention ∂∅ := {∅}, so that (1.38) holds also for n = 0.
We return to the set-up of Subsection 1.1, i.e., S and Ω are Polish spaces, r is a nonzero

finite measure on Ω, and γ : Ω× SN+ → S and κ : Ω→ N are measurable functions such that
(1.2) holds. We fix some d ∈ N+ ∪ {∞} such that κ(ω) ≤ d for all ω ∈ Ω and set T := Td.
Let (ωi)i∈T be an i.i.d. collection of Ω-valued r.v.’s with common law |r|−1r. Fix n ≥ 1 and
assume that

(i) the (Xi)i∈∂T(n)
are i.i.d. with common law µ and independent of (ωi)i∈T(n)

,

(ii) Xi := γ[ωi](Xi1, . . . , Xiκ(ωi)) (i ∈ T(n)).
(1.39)

Then it is easy to see that the law of X∅ is given by Tn(µ), where Tn is the n-th iterate of
the operator in (1.1). We call the collection of random variables(

(ωi)i∈T(n)
, (Xi)i∈T(n)∪∂T(n)

)
(1.40)

a Finite Recursive Tree Process (FRTP). We can think of (Xi)i∈T(n)∪∂T(n)
as a generalization

of a Markov chain, where time has a tree-like structure.
We now aim to give a similar representation of the semigroup (Tt)t≥0 from (1.6). To do

this, we let (σi)i∈T be i.i.d. exponentially distributed random variables with mean |r|−1. We
interpret σi as the lifetime of the individual with index i and let

τ∗i :=
n−1∑
m=1

σi1···im and τ †i := τ∗i + σi (i = i1 · · · in). (1.41)

denote the times when the individual i is born and dies, respectively. Then

Tt :=
{
i ∈ T : τ †i ≤ t

}
and ∂Tt =

{
i ∈ T : τ∗i ≤ t < τ †i

}
(t ≥ 0) (1.42)

are the random subtrees of T consisting of all individuals that have died before time t and
its boundary, which consists of all individuals that are alive at time t. If the function κ from
(1.2) is bounded, then we can choose T := Td with d < ∞. Now it is easy to check that
(∂Tt)t≥0 is a continuous-time branching process where each particle is with rate |r| replaced
by d new particles. In particular, Tt is a.s. finite for each t > 0. On the other hand, when κ is
unbounded, we need to choose T := T∞, and this has the consequence that Tt is a.s. infinite
for each t > 0. Nevertheless, under the assumption (1.3), it turns out that only a finite subtree
of Tt is relevant for the state at the root X∅, as we explain now.
Let S be the random subtree of T defined as

S :=
{
i1 · · · in ∈ T : im ≤ κ(ωi1···im−1) ∀1 ≤ m ≤ n

}
, (1.43)

11



and for each subtree U ⊂ S, let ∇U := {i ∈ S :
←
i ∈ U, i 6∈ U} denote the outer boundary of U

relative to S, where again we use the convention that ∇U := {∅} if U is the empty set. Then,
under condition (1.3),

St := Tt ∩ S and ∇St =
{
i ∈ S : τ∗i ≤ t < τ †i

}
(t ≥ 0) (1.44)

are a.s. finite for all t ≥ 0. Indeed, (∇St)t≥0 is a branching process where for each individual
i, with Poisson rate r(dω), an element ω ∈ Ω is selected and i is replaced by new individuals
i1, . . . , iκ(ω). The condition on the rates (1.3) guarantees that this branching process has
finite mean and in particular does not explode, so that St is a.s. a finite subtree of S.

Let (ωi)i∈T be i.i.d. with common law |r|−1r, independent of the lifetimes (σi)i∈T. For any
finite rooted subtree U ⊂ S and for each (xi)i∈∇U = x ∈ S∇U, we can inductively define xi for
i ∈ U by

xi := γ[ωi](xi1, . . . , xiκ(ωi)) (i ∈ U). (1.45)

Then the value x∅ we obtain at the root is a function of (xi)i∈∇U. Let us denote this function
by GU : S∇U → S, i.e.,

GU
(
(xi)i∈∇U

)
:= x∅, with (xi)i∈U defined as in (1.45). (1.46)

We can think of GU as the “concatenation” of the maps (γ[ωi])i∈U. We will in particular be
interested in the random maps

Gt := GSt (t ≥ 0) (1.47)

with St as in (1.44). For our running example of a system with cooperative branching and
deaths, these definitions are illustrated in Figure 1.

Let (Ft)t≥0, defined as

Ft := σ
(
∇St, (ωi, σi)i∈St

)
(t ≥ 0). (1.48)

be the natural filtration associated with our evolving marked tree, that contains information
about which individuals are alive at time t, as well as the random elements ωi and lifetimes σi
associated with all individuals that have died by time t. In particular, Gt is measurable w.r.t.
Ft. The following theorem is a precise formulation of the random mapping representation of
solutions of the mean-field equation (1.4), anticipated in (1.7).

Theorem 1.6 (Recursive tree representation) Let S and Ω be Polish spaces, let r be a
nonzero finite measure on Ω, and let γ : Ω×SN+ → S and κ : Ω→ N be measurable functions
satisfying (1.2) and (1.3). Let (ωi)i∈S be i.i.d. with common law |r|−1r and let (σi)i∈S be an
independent i.i.d. collection of exponentially distributed random variables with mean |r|−1. Fix
t ≥ 0 and let Gt and Ft be defined as in (1.47) and (1.48). Conditional on Ft, let (Xi)i∈∇St
be i.i.d. S-valued random variables with common law µ. Then

Tt(µ) = the law of Gt
(
(Xi)i∈∇St

)
, (1.49)

where Tt is defined in (1.6).

Recalling the definition of Gt, we can also formulate Theorem 1.6 as follows. With
(ωi, σi)i∈S as above, fix t > 0 and let (Xi)i∈St∪∇St be random variables such that

(i) Conditional on Ft, the r.v.’s (Xi)i∈∇St are i.i.d. with common law µ,

(ii) Xi = γ[ωi]
(
Xi1, . . . , Xiκ(ωi)

)
(i ∈ St).

(1.50)
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Figure 1: A particular realization of the branching process ∇St for a system with cooperative
branching and deaths. The random map GSt is the concatenation of random maps attached
to the vertices of the family tree St of the individuals alive at time t. In this example,
∇St = {22, 23, 313, 322, 323, 332} and the maps cob and dth are as defined in (1.13).

Then (1.49) says that the state at the root X∅ has law Tt(µ). This is a continuous-time
analogue of the FRTP (1.39).

In our proofs, we will first prove Theorem 1.6 and then use this to prove Theorem 1.5
about the mean-field limit of interacting particle systems. Recall that these particle systems
are constructed from a stochastic flow (Xs,t)s≤t as in (1.32). To find the empirical measure
of X(t) = X0,t(X(0)), we pick a site i ∈ [N ] at random and ask for its type Xi(t) which via
X0,t is a function of the initial state X(0). When N is large, Xi(t) does not depend on all
coordinates (Xj(0))j∈[N ] but only on a random subset of them, and indeed one can show that
the map that gives Xi(t) as a function of these coordinates approximates the map Gt from
Theorem 1.6, in an appropriate sense. The heuristics behind this are explained in some more
detail in Subsection 4.1 below.

Remark 1.7 Another way to write (1.49) is

µt = E
[
TGt(µ0)

]
(t ≥ 0), (1.51)

where TGt is defined as in (1.12) for the random map Gt and (µt)t≥0 is a solution to (1.4).
One can check that (∇St, Gt)t≥0 is a Markov process. Let us informally denote this process by
(Gt)t≥0 and its state space by G. Then equation (1.49) can be understood as a (generalized)
duality relationship between (Gt)t≥0 and (µt)t≥0 with (generalized) duality function H : G ×
P(S)→ P(S) given by

H(g, µ) := Tg(µ). (1.52)
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With this definition, using the fact that G0 is the identity map, (1.51) reads

µt = H(G0, µt) = E[H(Gt, µ0)] (1.53)

and we can obtain a family of usual (real-valued) dualities by integrating against a test func-
tion φ.

1.5 Recursive tree processes

Recall the definition of the operator T in (1.1) and the semigroup (Tt)t≥0 in (1.6). It is clear
from (1.4) that for a measure ν ∈ P(S), the following two conditions are equivalent:

(i) Tt(ν) = ν (t ≥ 0) and (ii) T (ν) = ν. (1.54)

We call such a measure ν a fixed point of the mean-field equation (1.4). Condition (ii) is
equivalent to saying that a random variable X with law ν satisfies

X
d
= γ[ω](X1, . . . , Xκ(ω)), (1.55)

where
d
= denotes equality in distribution, X1, X2, . . . are i.i.d. copies of X, and ω is an inde-

pendent Ω-valued random variable with law |r|−1r. Equations of this type are called Recursive
Distributional Equations (RDEs).

FRTPs as in (1.39) are consistent in the sense that if (Xi)i∈∂T(n)
are as in (1.39), then for

any 1 ≤ m ≤ n,

(i) the (Xi)i∈∂T(m)
are i.i.d. with common law Tn−m(µ)

and independent of (ωi)i∈T(m)
,

(ii) Xi := γ[ωi](Xi1, . . . , Xiκ(ωi)) (i ∈ T(m)).

(1.56)

The following lemma states a similar consistency property in the continuous-time setting.

Lemma 1.8 (Consistency) Fix t > 0 and let (Xi)i∈St∪∇St be as in (1.50).
Then, for each s ∈ [0, t],

(i) conditional on Fs, the r.v.’s (Xi)i∈∇Ss are i.i.d. with common law Tt−s(µ),

(ii) Xi = γ[ωi]
(
Xi1, . . . , Xiκ(ωi)

)
(i ∈ Ss),

(1.57)

where (Tt)t≥0 is defined in (1.6).

Using the consistency relation (1.56) and Kolmogorov’s extension theorem, it is not hard
to see that if ν solves the RDE (1.54), then it is possible to define a stationary recursive process
on an infinite tree such that each vertex has law ν. This was already observed in [AB05]. The
following lemma is a slight reformulation of their observation.

Lemma 1.9 (Recursive Tree Process) Let ν be a solution to the RDE (1.54). Then there
exists a collection (ωi, Xi)i∈T of random variables whose joint law is uniquely characterized by
the following requirements.

(i) (ωi)i∈T is an i.i.d. collection of Ω-valued r.v.’s with common law |r|−1r.

(ii) For each finite rooted subtree U ⊂ T, the r.v.’s (Xi)i∈∂U are i.i.d. with common
law ν and independent of (ωi)i∈U.

(iii) Xi = γ[ωi]
(
Xi1, . . . , Xiκ(ωi)

)
(i ∈ T).

(1.58)
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We call a collection of random variables (ωi, Xi)i∈T as in Lemma 1.9 the Recursive Tree
Process (RTP) corresponding to the map γ and the solution ν of the RDE (1.54). We can view
such an RTP as a generalization of a stationary backward Markov chain. For most purposes,
we will only need the random variables ωi, Xi with i ∈ S, the random subtree defined in (1.43).
The following proposition shows that by adding independent exponential lifetimes to an RTP,
we obtain a stationary version of (1.57).

Proposition 1.10 (Continuous-time RTP) Let (ωi, Xi)i∈T be an RTP corresponding to a
solution ν of the RDE (1.54), and let (σi)i∈T be an independent i.i.d. collection of exponentially
distributed random variables with mean |r|−1. Then, for each t ≥ 0,

(i) conditional on Ft, the r.v.’s (Xi)i∈∇St are i.i.d. with common law ν,

(ii) Xi = γ[ωi]
(
Xi1, . . . , Xiκ(ωi)

)
(i ∈ S).

(1.59)

At the end of Subsection 1.3 we have seen that in our example of a system with cooperative
branching, the RDE (1.54) has three solutions when the branching rate satisfies α > 4, two
solutions for α = 4, and only one solution for α < 4. For α > 4, the solutions to the RDE
are νlow, νmid, and νupp, where we let ν... denote the probability measure on {0, 1} with mean
ν...({1}) = z... (. . . = low,mid,upp) as defined around (1.37). By Lemma 1.9, each of these
solutions to the RDE defines an RTP.

1.6 Endogeny and bivariate uniqueness

In [AB05, Def 7], an RTP (ωi, Xi)i∈T corresponding to a solution ν of the RDE (1.54) is called
endogenous if X∅ is a.s. measurable w.r.t. the σ-field generated by the random variables
(ωi)i∈T. In Lemma 5.3 below, we will show that this is equivalent to X∅ being a.s. measurable
w.r.t. the σ-field generated by the random variables S and (ωi)i∈S, where S is the random
tree defined in (1.43). Aldous and Bandyopadhyay have shown that endogeny is equivalent to
bivariate uniqueness, which we now explain.

Let Psym(Sn) denote the space of probability measures on Sn that are symmetric with
respect to permutations of the coordinates. Let πm : Sn → S denote the projection on the
m-th coordinate, i.e., πm(x1, . . . , xn) := xm, and let µ(n) ◦ π−1

m denote the m-th marginal of a
measure µ(n) ∈ P(Sn). For any µ ∈ P(S), we define

P(Sn)µ :=
{
µ(n) ∈ P(Sn) : µ(n) ◦ π−1

m = µ ∀1 ≤ m ≤ n
}

(1.60)

to be the set of probability measures on Sn whose one-dimensional marginals are all equal to
µ, and we denote Psym(Sn)µ := Psym(Sn) ∩ P(Sn)µ. Finally, we define a “diagonal” set

Sndiag :=
{

(x1, . . . , xn) ∈ Sn : x1 = · · · = xn
}

(1.61)

and given a measure µ ∈ P(S), we let µ(n) denote the unique element of P(Sn)µ ∩ P(Sndiag),
i.e.,

µ(n) := P
[
(X, . . . ,X) ∈ ·

]
, where X has law µ. (1.62)

Recall the definition of the n-variate map T (n) in (1.9). The following theorem has been proved
in [MSS18, Thm 1], and in a slightly weaker form in [AB05, Thm 11]. Below,⇒ denotes weak
convergence of probability measures.

Theorem 1.11 (Endogeny and n-variate uniqueness) Let ν be a solution of the RDE
(1.54). Then the following statements are equivalent.
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(i) The RTP corresponding to ν is endogenous.

(ii) (T (n))m(µ) =⇒
m→∞

ν(n) for all µ ∈ P(Sn)ν and n ≥ 1.

(iii) ν(2) is the only fixed point of T (2) in the space Psym(S2)ν .

We remark that bivariate uniqueness as introduced in [AB05] refers to ν(2) being the only
fixed point of T (2) in the space P(S2)ν . The equivalences in the above theorem tells us that
bivariate uniqueness already follows from the weaker condition (iii) since it implies (ii), which
implies n-variate uniqueness for any n ≥ 1.

We will prove a continuous-time extension of Theorem 1.11, relating endogeny to solutions
of the n-variate mean-field equation

∂
∂tµ

(n)
t = |r|

{
T (n)(µ

(n)
t )− µ(n)

t

}
(t ≥ 0), (1.63)

where we have replaced T in (1.4) by T (n) and we write µ
(n)
t to remind ourselves that this is

a measure on Sn, rather than on S.
This equation has the following interpretation. As in Subsection 1.3, let (Xs,u)s≤u be a

stochastic flow on SN constructed from a Poisson point set Π. Let (X1(0), . . . , Xn(0)) be a
random variable with values in Sn, independent of (Xs,u)s≤u. Then setting(

X1(t), . . . , Xn(t)
)

:=
(
X0,t(X

1(0)), . . . ,X0,t(X
n(0))

)
(t ≥ 0) (1.64)

defines a Markov process (X1(t), . . . , Xn(t))t≥0 that consists of n Markov processes with initial
states X1(0), . . . , Xn(0) that are coupled in such a way that they are constructed using the
same stochastic flow. Applying Theorem 1.5 to this n-variate Markov process, we see that the
mean-field equation for the n-variate process takes the form (1.63).

We note that if µ
(n)
t solves the n-variate mean-field equation, then any m-dimensional

marginal of µ
(n)
t solves the m-variate mean-field equation. Also, solutions to (1.63) started in

an initial condition µ
(n)
0 ∈ Psym(Sn) satisfy µ

(n)
t ∈ Psym(Sn) for all t ≥ 0. Finally, it is easy

to see that µ
(n)
0 ∈ P(Sndiag) implies µ

(n)
t ∈ P(Sndiag) for all t ≥ 0.

We now formulate a continuous-time extension of Theorem 1.11. Note that in view of
(1.54), a measure ν(2) is a fixed point of the bivariate mean-field equation (i.e., (1.63) with
n = 2) if and only if it is a fixed point of T (2). Therefore, the equivalence of points (i) and
(iii) from Theorem 1.11 immediately implies an analogue statement in the continuous-time
setting.

Theorem 1.12 (Endogeny and the n-variate mean-field equation) Under the assump-
tions of Theorem 1.11, the following conditions are equivalent.

(i) The RTP corresponding to ν is endogenous.

(ii) For any µ
(n)
0 ∈ P(Sn)ν and n ≥ 1, the solution (µ

(n)
t )t≥0 to the n-variate equation (1.63)

started in µ
(n)
0 satisfies µ

(n)
t =⇒

t→∞
ν(n).

Theorem 1.12 motivates us to study the bivariate mean-field equation in our example of a
particle system with cooperative branching. Recall that in this example, G := {cob, dth} with
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cob and dth as in (1.13), and π is defined in (1.14). In line with (1.15) we write the bivariate
mean-field equation as

∂
∂tµ

(2)
t = α

{
Tcob(2)(µ

(2)
t )− µ(2)

t

}
+
{
Tdth(2)(µ

(2)
t )− µ(2)

t

}
. (1.65)

For simplicity, we restrict ourselves to symmetric solutions, i.e., solutions that take values
in Psym({0, 1}2). For any probability measure µ(2) ∈ Psym({0, 1}2), we let µ(1) denote its
one-dimensional marginals, which are equal by symmetry. We let νlow, νmid, νupp denote the
probability measures on {0, 1} with mean ν...({1}) = z... (. . . = low,mid, upp) as defined
around (1.37).

Proposition 1.13 (Bivariate equation for cooperative branching) For α > 4, the
bivariate mean-field equation (1.65) has precisely four fixed points in Psym({0, 1}2), namely

ν
(2)
low, ν

(2)
mid, ν

(2)
mid, and ν(2)

upp. (1.66)

which are uniquely characterized by their respective marginals νlow, νmid, νmid, νupp, as well as

the fact that ν
(2)
low, ν

(2)
mid, and ν

(2)
upp are concentrated on {0, 1}2diag = {(0, 0), (1, 1)}, but ν

(2)
mid is

not.
For any µ

(2)
0 ∈ Psym({0, 1}2), the solution to (1.65) started in µ

(2)
0 converges as t→∞ to

one of the fixed points in (1.66), the respective domains of attraction being{
µ

(2)
0 : µ

(1)
0 ({1}) < zmid

}
,
{
µ

(2)
0 : µ

(1)
0 ({1}) = zmid, µ

(2)
0 6= ν

(2)
mid

}
,{

ν
(2)
mid

}
, and

{
µ

(2)
0 : µ

(1)
0 ({1}) > zmid

}
.

(1.67)

For α = 4, there are two fixed points ν
(2)
low and ν

(2)
upp with respective domains of attraction{

µ
(2)
0 : µ

(1)
0 ({1}) < zmid

}
and

{
µ

(2)
0 : µ

(1)
0 ({1}) ≥ zmid

}
, (1.68)

while for α < 4 all solutions converge to ν
(2)
low.

Combining Proposition 1.13 with Theorem 1.12, we see that the RTPs corresponding to
νlow and νupp are endogenous, but for α > 4, the RTP corresponding to νmid is not. As is clear
from [AB05, Table 1], few examples of nonendogenous RTPs were known at the time. Contrary
to what is stated in [AB05, Table 1], frozen percolation on the binary tree is now known to be
nonendogenous [RST19], but until recently few “natural” examples of nonendogenous RTPs
have appeared in the literature. In fact, the RTP corresponding to νmid seems to be one of the
simplest nontrivial examples of a nonendogenous RTP discovered so far. Another nice class
of nonendogenous RTPs has recently been described in [MS18].

1.7 The higher-level mean-field equation

Following [MSS18, formula (1.1)], if S is a Polish space and g : Sk → S is a measurable map,
then we define a measurable map ǧ : P(S)k → P(S) by

ǧ := the law of g(X1, . . . , Xk),
where (X1, . . . , Xk) are independent with laws µ1, . . . , µk.

(1.69)

17



Note that in this notation, the map Tg : P(S) → P(S) from (1.12) is given by Tg(µ) =
ǧ(µ, . . . , µ). As in [MSS18, formula (4.2)], we define a higher-level map Ť : P(P(S)) →
P(P(S)) by

Ť (ρ) := the law of γ̌[ω](ξ1, ξ2, . . .), (1.70)

where ω is an Ω-valued random variable with law |r|−1r and (ξi)i≥1 are i.i.d. P(S)-valued
random variables with law ρ. Iterates of the map Ť have been studied in [MSS18, Section 4].
We will be interested in the higher-level mean-field equation

∂
∂tρt = |r|

{
Ť (ρt)− ρt

}
(t ≥ 0). (1.71)

A measure ρ ∈ P(P(S)) is the law of a random probability measure ξ on S. We denote the
n-th moment measure of such a random measure ξ by

ρ(n) := E
[
ξ ⊗ · · · ⊗ ξ] where ξ has law ρ. (1.72)

(Here E[ · ] denotes the expectation of a random measure; see the remark above Theorem 1.5.)
Our notation for moment measures is on purpose similar to our earlier notation for solutions
to the n-variate equation, because of the following proposition.

Proposition 1.14 (Moment measures) If (ρt)t≥0 solves the higher-level mean-field equa-

tion (1.71), then its n-th moment measures (ρ
(n)
t )t≥0 solve the n-variate equation (1.63).

Similarly to Proposition 1.14, it has been shown in [MSS18, Lemma 2] that Ť (ρ)(n) =
T (n)(ρ(n)), and this formula holds even for n = ∞. In view of this, as discussed in Sub-
section 1.1, the higher-level map Ť is effectively equivalent to the ∞-variate map T (∞) :
Psym(S∞) → Psym(S∞). It follows from Proposition 1.14 that if ρ solves the higher-level
RDE

Ť (ρ) = ρ, (1.73)

then its n-th moment measures solve the n-variate RDE T (n)(ρ(n)) = ρ(n), with T (n) as in
(1.9).

If X is an S-valued random variable defined on some probability space (Ω,F ,P) andH ⊂ F
is a sub-σ-field, then P[X ∈ · |H] is a random probability measure1 on S. As a consequence,
the law of P[X ∈ · |H] is an element of P(P(S)). In the following theorem, which is based on
[Str65, Thm 2] and which in its present form we cite from [MSS18, Thm 13], we use the fact
that each Polish space S has a metrizable compactification S [Bou58, §6 No. 1, Theorem 1].
Moreover, we naturally identify P(S) with the space of all probability measures on S that are
concentrated on S.

Theorem 1.15 (The convex order for laws of random probability measures) Let
S be a Polish space, let S be a metrizable compactification of S, and let Ccv

(
P(S)

)
denote

the space of all convex continuous functions φ : P(S) → R. Then, for ρ1, ρ2 ∈ P(P(S)), the
following statements are equivalent.

(i)

∫
φ dρ1 ≤

∫
φ dρ2 for all φ ∈ Ccv

(
P(S)

)
.

(ii) There exists an S-valued random variable X defined on some probability space (Ω,F ,P)
and sub-σ-fields H1 ⊂ H2 ⊂ F such that ρi = P

[
P[X ∈ · |Hi] ∈ ·

]
(i = 1, 2).

1Here we use that since S is Polish, regular versions of conditional expectations exist.
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If ρ1, ρ2 ∈ P(P(S)) satisfy the equivalent conditions of Theorem 1.15, then we say that
they are ordered in the convex order and denote this as ρ1 ≤cv ρ2. It follows from [MSS18,
Lemma 15] that ≤cv is a partial order; in particular, ρ1 ≤cv ρ2 and ρ2 ≤cv ρ1 imply ρ1 = ρ2.

Recall that in Subsection 1.1, we defined P(P(S))µ, which is
{
ρ ∈ P(P(S)) : ρ(1) = µ

}
.

We define µ ∈ P(P(S))µ by µ := P[δX ∈ · ], where X has law µ. It is easy to see that the n-th
moment measures of µ are given by (1.62), so our present notation is consistent with earlier
notation introduced there. By [MSS18, formula (4.7)], the measures δµ, µ are the extremal
elements of P(P(S))µ w.r.t. the convex order, i.e.,

δµ ≤cv ρ ≤cv µ
(
ρ ∈ P(P(S))µ

)
. (1.74)

The following proposition is a continuous-time version of [MSS18, Prop 3].

Proposition 1.16 (Extremal solutions in the convex order) If (ρit)t≥0 (i = 1, 2) are
solutions to the higher-level mean-field equation (1.71) such that ρ1

0 ≤cv ρ
2
0, then ρ1

t ≤cv ρ
2
t

for all t ≥ 0. If ν solves the RDE (1.54), then ν solves the higher-level RDE (1.73) and there
exists a solution ν of (1.73) such that

ρt =⇒
t→∞

ν where (ρt)t≥0 solves (1.71) with ρ0 = δν . (1.75)

Here ⇒ denotes weak convergence of measures on P(S), equipped with the topology of weak
convergence. Any solution ρ ∈ P(P(S))ν to the higher-level RDE (1.73) satisfies

ν ≤cv ρ ≤cv ν. (1.76)

The following result, which we cite from [MSS18, Prop. 4], describes the higher-level RTPs
associated with the solutions ν and ν of the higher-level RDE.

Proposition 1.17 (Higher-level RTPs) Let ν be a solution of the RDE (1.54) and let ν
and ν as in (1.76) be the corresponding minimal and maximal solutions to the higher-level
RDE, with respect to the convex order. Let (ωi, Xi)i∈T be an RTP corresponding to γ and ν
and set

ξi := P
[
Xi ∈ · | (ωij)j∈T

]
(i ∈ T). (1.77)

Then (ωi, ξi)i∈T is an RTP corresponding to γ̌ and ν. Also, (ωi, δXi
)i∈T is an RTP corre-

sponding to γ̌ and ν.

Proposition 1.17 gives a more concrete interpretation of the solutions ν and ν to the
higher-level RDE from (1.76). Indeed, if (ωi, Xi)i∈T is an RTP corresponding to ν, then

ν = P
[
δX∅ ∈ ·

]
, (1.78)

which corresponds to “perfect knowledge” about the state X∅ of the root, while

ν = P
[
P
[
X∅ ∈ · | (ωi)i∈T

]
∈ ·
]

(1.79)

corresponds to the knowledge about X∅ that is contained in the random variables (ωi)i∈T.
Since X∅ is a measurable function of (ωi)i∈T if and only if its conditional law given (ωi)i∈T
equals δX∅ , it follows from (1.78) and (1.79) that the RTP corresponding to ν is endogenous
if and only if ν = ν.
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It is instructive to demonstrate the general theory on our concrete example of a system
with cooperative branching and deaths. Recall that for α > 4, the mean-field equation (1.15)
has three fixed points νlow, νmid, νupp. We denote the corresponding minimal and maximal
solutions to the higher-level RDE in the sense of (1.76) by ν... and ν... (. . . = low,mid,upp).
The following theorem lifts the results from Proposition 1.13 about the bivariate equation
to a higher level. Indeed, using the theorem below, it is easy to see that the measures

ν
(2)
low, ν

(2)
mid, ν

(2)
mid and ν

(2)
upp from Proposition 1.13 are in fact the second moment measures of

the measures νlow, νmid, νmid and νupp.

Theorem 1.18 (Higher-level equation for cooperative branching) Let νlow, νmid, and
νupp denote the fixed points of the mean-field equation (1.15) defined above Proposition 1.13.
Then we have for the corresponding minimal and maximal solutions to the higher-level RDE
that

νlow = νlow, νupp = νupp, but νmid 6= νmid (α > 4). (1.80)

For α > 4, the higher-level RDE (1.73) has four solutions, namely

νlow, νmid, νmid, and νupp. (1.81)

Any solution (ρt)t≥0 to the higher-level mean-field equation (1.71) converges as t→∞ to one
of the fixed points in (1.81), the respective domains of attraction being{

ρ0 : ρ
(1)
0 ({1}) < zmid

}
,
{
ρ0 : ρ

(1)
0 ({1}) = zmid, ρ0 6= νmid

}
,{

νmid

}
, and

{
ρ0 : ρ

(1)
0 ({1}) > zmid

}
.

(1.82)

For α = 4, there are two fixed points νlow and νupp with respective domains of attraction{
ρ0 : ρ

(1)
0 ({1}) < zmid

}
and

{
ρ0 : ρ

(1)
0 ({1}) ≥ zmid

}
, (1.83)

while for α < 4 all solutions converge to νlow.

Since a probability measure µ ∈ P({0, 1}) is uniquely characterized by µ({1}) ∈ [0, 1],
there is a natural identification P({0, 1}) ∼= [0, 1]. Let ĉob and d̂th denote the higher-level
maps ǧ corresponding to g = cob, dth, which using the identification P({0, 1}) ∼= [0, 1] we
view as maps ĉob : [0, 1]3 → [0, 1] and d̂th : [0, 1]0 → [0, 1]. One can check that

d̂th(∅) = 0 and ĉob(η1, η2, η3) = η1 + (1− η1)η2η3

(
η1, η2, η3 ∈ [0, 1]

)
. (1.84)

Identifying P(P({0, 1})) ∼= P[0, 1], we can identify the measures νlow, νmid, νmid, and νupp

with probability laws on [0, 1]. Letting η denote a random variable with law ν ∈ P[0, 1], the
higher-level RDE, written in the form (1.55), then reads

η
d
= χ ·

(
η1 + (1− η1)η2η3

)
, (1.85)

where η1, η2, η3 are independent copies of η and χ is an independent Bernoulli random variable
with P[χ = 1] = α/(α+1). Theorem 1.18 says that for α > 4, this equation has four solutions.
Three “trivial” solutions νlow, νmid, νupp that correspond to Bernoulli η with parameters

P[η = 1] = z, P[η = 0] = 1− z with z = zlow, zmid, zlow, (1.86)
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Figure 2: Numerical data for the distribution function F (η) := νmid([0, η]) of the nontrivial
solution νmid to the RDE (1.85).

and a “nontrivial” solution νmid for which P[0 < η < 1] > 0. In view of Proposition 1.17, we
can interpret this nontrivial solution (viewed as a probability law on [0, 1]) as

νmid = P
[
P[X∅ = 1 | (ωi)i∈T

]
∈ ·
]
, (1.87)

where (ωi, Xi)i∈T is the RTP corresponding to νmid. The following lemma summarizes some
elementary facts about the law νmid. We note that by solving the n-variate RDE for n ≥ 3,
one should in principle be able to calculate higher moments of νmid, although the formulas
quickly become unwieldy.

Lemma 1.19 (Nontrivial solution of the higher-level RDE) Let α > 4 and let η be a
random variable with law νmid. Then

E[η] = zmid = 1
2 −

√
1
4 −

1
α ,

E[η2] = 1
2zmid − 1

2 + 1
2

√
13z2

mid − 6zmid + 1 + 4
α .

(1.88)

Moreover,
P[η = 0] = zmid and P[η = 1] = 0. (1.89)

It is not too hard to obtain numerical data for νmid, see Figure 2. These data suggest
that apart from the atom in 0, the measure νmid has a smooth density with respect to the
Lebesgue measure, but we have no proof for this. We have tried to find an explicit formula
for the density but have not been successful.

1.8 Lower and upper solutions

In this and the next subsection we collect a few further results on endogeny and the uniqueness
of solutions to RDEs. In the present subsection, we show that the endogeny of the RTPs
corresponding to νlow and νupp follows from a general principle, discovered in [AB05], that says
that RDEs that are defined by monotone maps always have a minimal and maximal solution
with respect to the stochastic order, and that the RTPs corresponding to these solutions are
always endogenous.

Let S be a compact metrizable space that is equipped with a partial order ≤ that is closed
in the sense that {

(x, y) ∈ S2 : x ≤ y
}

(1.90)
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is a closed subset of S2, equipped with the product topology. Recall that a function f from
one partially ordered space into another is monotone if x ≤ y implies f(x) ≤ f(y), and a
subset A of a partially ordered space is increasing if A 3 x ≤ y implies y ∈ A. It is known
that for two probability measures µ1, µ2 ∈ P(S), the following statements are equivalent:

(i) µ1(A) ≤ µ2(A) for all closed increasing A ⊂ S.

(ii)

∫
f dµ1 ≤

∫
f dµ2 for all bounded continuous monotone f : S → R.

(iii) Two random variables X1, X2 with laws µ1, µ2 can be coupled such that X1 ≤ X2 a.s.

The equivalence of (ii) and (iii) is proved in [Lig85, Thm II.2.4]. The equivalence of (i) and
(iii) holds more generally for Polish spaces, see [KKO77, Thm 1 (ii) and (vi)]. In the general
setting of Polish spaces, the implications (iii)⇒(i) and (iii)⇒(ii) are trivial, but the implication
(ii)⇒(i) needs the additional assumption of monotone normality, see [HLL18, Prop. 3.6 and
3.11].

If µ1, µ2 satisfy the above conditions, then one says that they are stochastically ordered,
denoted as µ1 ≤ µ2. This defines a partial order on P(S); in particular, by Lemma 6.2 below,
µ1 ≤ µ2 ≤ µ1 implies µ1 = µ2.

The proposition below is a variant of [AB05, Lemma 15]. As in our usual setting, we assume
that S and Ω are Polish spaces, r is a nonzero finite measure on Ω, and γ : Ω× SN+ → S and
κ : Ω → N are measurable functions such that (1.2) and (1.3) hold. If S is equipped with a
partial order, then we equip Sk with the product partial order. Recall that Proposition 1.3
gives sufficient conditions for T to be continuous w.r.t. the topology of weak convergence.

Proposition 1.20 (Lower and upper solutions to RDE) Assume that S is compact
and equipped with a closed partial order. Assume that S has minimal and maximal elements,
denoted by 0 and 1. Assume γ[ω] is monotone for each ω ∈ Ω and that the operator T in (1.1)
is continuous w.r.t. the topology of weak convergence. Then there exists solutions νlow, νupp

to the RDE (1.54) that are minimal and maximal with respect to the stochastic order, in the
sense that any solution ν to the RDE (1.54) must satisfy

νlow ≤ ν ≤ νupp, (1.91)

where ⇒ denotes weak convergence. Moreover, if (µlow
t )t≥0 and (µupp

t )t≥0 denote the solutions
to the mean-field equation (1.4) with initial states µlow

0 = δ0 and µupp
0 = δ1, then

µlow
t =⇒

t→∞
νlow and µupp

t =⇒
t→∞

νupp. (1.92)

Finally, the RTPs corresponding to νlow and νupp are endogenous.

We can view the solutions νlow and νupp to the RDE (1.54) as mean-field versions of the
lower and upper invariant laws of monotone particle systems; compare [Lig85, Thm III.2.3].

In our example of a system with cooperative branching, the maps cob and dth are mono-
tone, so Proposition 1.20 is applicable. Since the measures we called νlow and νupp before
are the t → ∞ limits of the solutions of the mean-field equation started in δ0 and δ1, our
earlier notation agrees with the more general notation of Proposition 1.20. The endogeny of
the RTPs corresponding to νlow and νupp, which before we proved based on an analysis of
the bivariate equation, using Proposition 1.13 and Theorem 1.11, alternatively follows from
Proposition 1.20.
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1.9 Conditions for uniqueness

In the present subsection, we prove some results of varying generality that allow one to con-
clude that a given RDE has a unique solution. In our example of a system with cooperative
branching and deaths, this happens if and only if α < 4. We will see that there are some
general results that can be applied to prove uniqueness in the whole regime α < 4. We also
make a connection with a general duality for monotone particle systems described in [SS18].
Although duality plays only a minor role in our paper, the original motivation for the work
that led to it was to understand this duality in the mean-field limit.

We return to our usual set-up from Subsection 1.1 with S and Ω Polish spaces and γ, κ
and r satisfying (1.2) and (1.3). We also recall the random subtrees St ⊂ S ⊂ T defined in
(1.43) as well as the fact that St for any t ≥ 0 are a.s. finite by (1.3). The tree S is the family
tree of the branching process (∇St)t≥0. In view of this, by well-known facts about branching
processes, S is a.s. finite if and only if∫

Ω
r(dω) (κ(ω)− 1) < 0 or

∫
Ω
r(dω) (κ(ω)− 1) = 0 while r

(
{ω : κ(ω) 6= 1}

)
> 0. (1.93)

Recall that Gt = GSt , where for any finite subtree U ⊂ S that contains the root, GU : S∇U → S
is the map defined in (1.46). If S is a.s. finite, then ∇St = ∅ for t sufficiently large and hence
Gt : S∇St → S is eventually constant.

More generally, if U is finite subtree of S that contains the root ∅, then we say that U is
a root determining subtree if the map GU : S∇U → S is constant. Note that this can happen
even if ∇U 6= ∅. It is easy to see that if V ⊂ U and V is root determining, then the same
is true for U. We say that U is a minimal root determining subtree if U is root determining
but there exists no V ⊂ U with V 6= U that is root determining. By our previous remark, it
suffices to check this for such V that differ from U by a single element.

Lemma 1.21 (Root determining subtrees) The following conditions are equivalent:

(i) There a.s. exists a t <∞ such that Gs is constant for all s ≥ t.

(ii) S a.s. contains a root determining subtree.

(iii) S a.s. contains a minimal root determining subtree.

If U is a subtree of S, then we denote by ΞU the set of all x = (xi)i∈U∪∇U that satisfy
(1.45). We say that U is uniquely determined if x, y ∈ ΞU imply xi = yi (i ∈ U). The following
lemma is inspired by [AB05, Lemma 14] who showed that (i) implies that the RDE (1.54) has
a unique solution and the corresponding RTP is endogenous.

Lemma 1.22 (Uniquely determined subtrees) Between the following four conditions,
one has the implications (i)⇒(ii)⇒(iii)⇒(iv) and (ii)⇒(v). If S is finite, then moreover
(iii)⇒(ii), and if S = {0, 1}, then (ii)⇒(i).

(i) S a.s. contains a finite, uniquely determined subtree that contains the root ∅.

(ii) The equivalent conditions of Lemma 1.21 are satisfied.

(iii) S is a.s. uniquely determined.

(iv) The RDE (1.54) has at most one solution and any corresponding RTP is endogenous.
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Figure 3: A minimal root determining subtree. In this example, X∅ = 0 regardless of the
values of X22, X23, X313, X322, X323, X332.

(v) The RDE (1.54) has a solution ν that is globally attractive in the sense that any solution
(µt)t≥0 to (1.4) satisfies ‖µt − ν‖ −→

t→∞
0, where ‖ · ‖ denotes the total variation norm.

The following lemma illustrates these ideas on our example of a system with cooperative
branching and deaths. Below, |U∩{i2, i3}| denotes the cardinality of U∩{i2, i3}. See Figure 3
for an example.

Lemma 1.23 (The uniqueness regime) Let S = {0, 1} and G := {cob, dth}, and let π
be as in (1.14). Then (1.93) is satisfied if and only if α ≤ 1

2 , while conditions (i)–(iii) of
Lemma 1.22 are satisfied if and only if α < 4. Moreover, a finite subtree U ⊂ S is a minimal
root determining subtree if and only if

i1 ∈ U and
∣∣U ∩ {i2, i3}∣∣ = 1 for each i ∈ U with γ[ωi] = cob. (1.94)

Lemma 1.23 shows that in our example of a system with cooperative branching and deaths,
the conditions of Lemma 1.21 are in fact equivalent to uniqueness of solutions to the RDE.
As the next lemma shows, this is a consequence of monotonicity.

Lemma 1.24 (Uniqueness for monotone systems) Assume that S is a finite partially
ordered set that contains a minimal and maximal element, and assume that γ[ω] is monotone
for each ω ∈ Ω. Then the RDE (1.54) has a unique solution if and only if the equivalent
conditions of Lemma 1.21 are satisfied.

In the remainder of this subsection, we focus on the case that S = {0, 1} and γ[ω] is
monotone for all ω ∈ Ω, which allows us to make a connection to a general duality for
monotone particle systems described in [SS18]. Recall that a set A ⊂ {0, 1}k is increasing if
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A 3 x ≤ y implies y ∈ A. A minimal element of A is an y ∈ A such that A 3 x ≤ y implies
x = y. If K is a nonempty finite set and G : {0, 1}K → {0, 1} is a monotone map, then the
inverse image G−1({1}) is an increasing set. We set

YG :=
{
y ∈ {0, 1}K : y is a minimal element of G−1({1})

}
. (1.95)

Then
G(x) = 1 if and only if x ≥ y for some y ∈ YG. (1.96)

These formulas remain true when K = ∅, provided we define {0, 1}∅ := {∅} and we let
YG := {∅} if G(∅) = 1 and YG := ∅ if G(∅) = 0.

Recall from Section 1.4 that (∇St, Gt)t≥0 is a Markov process. If S = {0, 1} and γ[ω] is
monotone for all ω ∈ Ω, then the random map Gt : {0, 1}∇St → {0, 1} is monotone for each
t ≥ 0. In view of this, by (1.96), Gt is uniquely characterized by YGt and hence (∇St, YGt)t≥0

is a Markov process too. For a system with cooperative branching and deaths, this process
has been defined before in [Mac17, Section I.2.1.2]. As explained in more detail there, it can
be seen as the mean-field limit of a general dual for monotone particle systems described in
[SS18, Section 5.2].

Let S = {0, 1}, let γ[ω] be monotone for all ω ∈ Ω, and let U be a subtree of S that
contains the root ∅. Borrowing terminology from percolation theory, we say that O is a open
subtree of U if ∅ ∈ O ⊂ U ∪∇U and

Ai :=
{
j ∈ [κ(ωi)] : ij ∈ O

}
satisfies 1Ai

∈ Yγ[ωi] ∀i ∈ O ∩ U, (1.97)

where we use the convention that 1Ai
:= ∅ if κ(ωi) = 0.

Lemma 1.25 (Open subtrees) Assume that S = {0, 1} and γ[ω] is monotone for all ω ∈ Ω.
Then

νupp({1}) =P
[
there exists an open subtree of S

]
,

νlow({1}) =P
[
there exists a finite open subtree of S

]
.

(1.98)

If moreover γ[ω](0, . . . , 0) = 0 for each ω ∈ Ω, then

YGt =
{
y ∈ {0, 1}∇St : ∃ open subtree O of St s.t. y = 1O∩∇St

}
. (1.99)

We note that formula (1.98) can be generalized to more general finite partially ordered
sets S, see Lemma 6.16 below. Again, it will be useful to illustrate our definitions on the
concrete example of a system with cooperative branching and death. To make the example
more interesting, we add a birth map bth : S0 → S, which is defined similarly to the death
map as

bth(∅) := 1. (1.100)

The following lemma describes open subtrees for a system described by the maps cob, dth, bth;
see Figure 4 for an illustration.

Lemma 1.26 (Systems with cooperative branching, deaths, and births) Let S =
{0, 1}, G := {cob, dth, bth}, with

π
(
{cob}

)
:= α ≥ 0, π

(
{dth}

)
:= 1, and π

(
{bth}

)
:= β ≥ 0. (1.101)

Let U be a subtree of S that contains the root and let O ⊂ U ∪ ∇U satisfy ∅ ∈ O. Then O is
an open subtree of U if and only if for all i ∈ O ∩ U,

γ[ωi] 6= dth and {i1, i2, i3} ∩O = {i1} or {i2, i3} if γ[ωi] = cob. (1.102)
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Figure 4: An open subtree of St for a system with cooperative branching, deaths, and births,
represented by the maps cob and dth from (1.13) and bth from (1.100). In this example, if
X22, X23, and X313 are 1, then the state at the root X∅ is also 1.

We can think of open subtrees as a generalization of the open paths from oriented percola-
tion. Outside of a mean-field setting, using ideas from [SS18, Section 5.2], one can characterize
the upper invariant law of quite general monotone particle system in terms of “open structures”
that in general are neither paths nor trees.

2 Discussion

This section is divided into four subsections. In Subsection 2.1, we discuss the relation of
our work to [BCH18], who in parallel to our work have studied Moran models that generalize
our running example of a system with cooperative branching and deaths. In Subsection 2.2,
we compare our results and methods with the existing literature on mean-field limits. In
Subsection 2.3, we state open problems and we conclude in Subsection 2.4 with an outline of
the proofs.

2.1 A Moran model with frequency-dependent selection

Let bra : {0, 1}2 → bra be the branching map defined as

bra(x1, x2) := x1 ∨ x2

(
x1, x2 ∈ {0, 1}

)
. (2.1)

Consider a system with S = {0, 1}, G := {cob, bra, dth, bth}, with rates

π
(
{cob}

)
:= γ, π

(
{bra}

)
:= s, π

(
{dth}

)
:= uν0, and π

(
{bth}

)
:= uν1. (2.2)
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γ ≥ 0, s > 0, ν0, ν1 ≥ 0 with ν0 + ν1 = 1, and u > 0. If (µt)t≥0 solves the corresponding
mean-field equation (1.11), then pt := µt({1}) solves the ODE (compare (1.36))

∂
∂tpt = γp2

t (1− pt) + spt(1− pt)− uν0pt + uν1(1− pt) (t ≥ 0). (2.3)

This equation has an interpretation in terms of a Moran model describing a fixed population
of N individuals which can be of two types, 0 and 1, where type 1 is fitter than type 0. The
parameter γ is the frequency dependent selection rate, s is the selection rate, u is the mutation
rate, and ν0, ν1 are mutation probabilities. The frequency dependent selection is of a type that
is especially appropriate to describe an advantageous, (partially) recessive gene in a diploid
population.

In parallel to our work, Moran models of this form have been studied by Ellen Baake,
Fernando Cordero, and Sebastian Hummel in [BCH18]. A notational difference between their
work and the discussion here is that they denote the fitter type by 0, so their [BCH18, formula
(2.1)] is our (2.3) rewritten in terms of y(t) = 1− pt and with the roles of ν0 and ν1 reversed.
They prove that (2.3) describes the mean-field limit of a class of Moran models [BCH18,
Prop. 2.7] and that in the limit N → ∞, the genealogy of a single individual is described by
an Ancestral Selection Graph (ASG) At, which in our notation corresponds to

At :=
(
∇St,St, (ωi, σi)i∈St

)
, (2.4)

i.e., this is the random tree with maps attached to its branch points depicted in Figure 1.
The authors of [BCH18] define a duality function H(At, p) which corresponds to the duality

function in (1.52) after the identification µ({1}) = p. (Here we have slightly rephrased things
compared to the different conventions in [BCH18], where 0 denotes the fitter type and y is
the frequency of the unfit type.) In [BCH18, Lemma 4.1], they show that H(At, p) can be
calculated by concatenating the higher-level maps γ̌[ωi] with i ∈ St. For example, the equation
in [BCH18, Lemma 4.1 (4)] can be rewritten in terms of p = 1− y as p = ĉob(p1, p2, p3) with
ĉob as in (1.84).

In [BCH18, Section 2.5], it is shown that the ASG At can be simplified a lot, while retaining
all information necessary to calculate the duality function H(At, p). This is done in two steps.

In the first step, the ASG is pruned. This is a process in which parts of the tree that are
irrelevant for the map Gt are cut off. In particular, if the function Gt is constant, then the
pruned Gt consists of a single edge ending in one of the maps dth or bth. In the remaining
case, the pruned ASG is a finite tree where each branch point is marked with one of the maps
cob and bra.

In the second step, the pruned ASG is stratified. The tree is divided into regions, which
are the connected components after cutting the tree at the branch points marked with cob.
These regions are replaced by single nodes marked by an integer indicating how many leaves
they contain.

The result of this is a simplified process, the stratified ASG Tt, which contains all necessary
information about the ASG At in the sense that there exists a function H(Tt, p) such that
H(Tt, p) = H(At, p) [BCH18, Thm 2.22]. In particular, solutions of (2.3) can be represented
as pt = E[H(Tt, p0)] ([BCH18, Thm 2.25] (compare (1.51)).

One can now check (compare Lemma 5.5 below) that ρt := P[H(Tt, p) ∈ · ] solves the
higher-level mean-field equation with initial state ρ0 = δp, where we use the identification
P({0, 1}) ∼= [0, 1]. In [BCH18, Lemma 6.1], it is observed that Mt := H(Tt, p0) is a bounded
sub- or supermartingale for each p0 ∈ [0, 1] and hence converges to an a.s. limit H∞(p0). In
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[BCH18, Thm 2.27], it is proved that if p0 is not an unstable fixed point of (2.3), then H∞(p0)
is a Bernoulli random variable with parameter limt→∞ pt.

Our Propositions 1.16 and 1.17 imply that if p0 is a fixed point of (2.3), then H∞(p0) is
a Bernoulli random variable if and only if the RTP corresponding to p0 is endogenous. Thus,
[BCH18, Thm 2.27] implies that for the model in (2.2), RTPs corresponding to stable fixed
points are always endogenous. Since all stable fixed points of (2.3) are in fact lower or upper
solutions, this alternatively also follows from our Proposition 1.20.

2.2 Mean-field limits

If N Markov processes interact in a way that is symmetric under permutations of the N
coordinates, then it is frequently possible to obtain a nontrivial limit as N → ∞. Such
limits are generally called mean-field limits. In the mean-field limit, the individual processes
behave asymptotically independently, but with transition probabilities that depend on the
average behavior of all processes. For systems of interacting diffusions, this principle was
demonstrated by McKean in his analysis of the Vlasov equation [McK66]. Consequently,
mean-field limits are also called McKean-Vlasov limits. There exists an extensive literature
on the topic. Most work has focused on interacting diffusions, but jump processes have also
been studied [ST85, ADF18]. An elementary introduction to mean-field limits for interacting
particle systems is given in [Swa17, Chapter 3].

In a biological setting, well-mixing populations converge in the mean-field limit to the
solution of a deterministic ODE. Similarly, spatial populations with strong local mixing can
be expected to converge, after an appropriate rescaling, to the solution of a determinstic PDE.
For interacting particle systems whose dynamics have an exclusion process component with a
large rate, this intuition was made rigorous by De Masi, Ferrari and Lebowitz [DFL86, Thm 2].
They state their theorem only for processes whose state space S consists of two points, and
only prove the theorem for one particular one-dimensional example, but sketch how the proof
should be adapted to the general case. In [DN94, Thm 1], a version of the theorem is stated
where S can be any finite set; it is claimed that the proof is again the same.

In our running example of a particle system with cooperative branching and deaths, the
limiting PDE takes the form

∂
∂tpt(x) = 1

2
∂2

∂x2
pt(x) + αpt(x)2

(
1− pt(x)

)
− pt(x) (t ≥ 0, x ∈ R). (2.5)

This PDE was used in [Nob92] to derive asymptotic properties of the associated spatial particle
system with strong mixing. We can view (2.5) as a spatial version of the ODE (1.36); in
particular, if p0(x) = p0 does not depend on x, then pt = pt(x) solves (1.36).

The intuition behind (2.5), and more general PDEs of this type, is easily explained. In the
strong mixing limit, the genealogy of a single site should be described by a branching process
as in Figure 1 where in addition, each particle has a position in R, which moves according to
an independent Brownian motion. Convergence to the PDE should then follow from, on the
one hand, convergence of the genealogies to a system of branching Brownian motions with
random maps attached to their branching events, and, on the other hand, a representation in
the spirit of Theorem 1.6 of solutions of the PDE (2.5) in terms of such a system of branching
Brownian motions.

The proof of [DFL86, Thm 2] is indeed based on this sort of dual approach, although one
would wish that they had given a more explicit statement of the stochastic representation of
solutions of their general PDE. Our proof of Theorem 1.5 follows the same strategy, i.e., we
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first prove the stochastic representation of solutions to the mean-field equation (Theorem 1.6)
and then use this to prove our convergence result (Theorem 1.5).

2.3 Open problems

In the present paper, we have adapted results from [AB05, MSS18] about discrete-time Re-
cursive Tree Processes and endogeny to the continuous-time setting, and applied our general
results on a concrete system with cooperative branching and deaths. Among other things, we
proved that for α > 4, the RTPs corresponding to νlow and νupp are endogenous but the RTP
corresponding to νmid is not. The proof was based on an analysis of the bivariate mean-field
equation. Here, it was convenient to be able to analyse a differential equation, as an analysis
of the associated discrete-time bivariate evolution would have been possible, but more messy.

Our work leaves a number of questions unanswered, both in the general setting and more
specifically for our running example with G := {cob, dth} and π as in (1.14). Concerning the
latter, we pose the following questions.

Open Problem 1 Not every measure µ(n) ∈ Psym

(
{0, 1}n

)
is the n-th moment measure

of a measure ρ ∈ P
(
P({0, 1})

)
. Determine all symmmetric solutions of the n-variate

RDE, for general n ≥ 3, and their domains of attraction.

Open Problem 2 Same as Open Problem 1 but without the symmetry assumption and
for general n ≥ 2.

Open Problem 3 Prove that apart from the atom at zero, the law νmid, viewed as a
probability law on [0, 1], has a smooth density with respect to the Lebesgue measure.

Open Problem 4 Determine the asymtotics of the distribution function F of νmid near
0 and 1.

Open Problem 5 For the more general model in (2.2), is it true that unstable fixed
points of the mean-field equation that separate the domains of attraction of two stable
fixed points correspond to nonendogenous RTPs? Is the picture for the higher-level RDE
the same?

Partly inspired by our concrete example, we ask the following problems in the general setting.

Open Problem 6 Can (1.3) be relaxed to allow for branching processes (∇St)t≥0 that
are nonexplosive but have infinite mean?

Question 7 Are there general results linking the (in)stability of fixed points of the
mean-field equation to (non)endogeny of the related RTP?

Question 8 In our example, the higher-level RDE has two solutions νmid and νmid

with mean νmid, of which the former is stable and the latter is unstable. Is this a
general phenomenon in the nonendogenous case? Can one prove nonendogeny of an
RTP corresponding to a solution ν of the RDE by showing that ν is unstable?

Question 9 Are there examples of higher-level RDEs that have solutions ρ 6∈ {ν, ν}?

Open Problem 10 Is the higher-level RTP (ωi, ξi)i∈S from Proposition 1.17 always
endogenous?
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We note that Jon Warren [War06] has given a partial answer to Question 8 in the special
case of RTPs on the binary tree with the property that γ[ω](x1, x2) is a symmetric function
of x1 and x2 for each ω. Warren’s methods are closely related to the recent work of Johnson,
Podder, and Skerman [JPS19], who characterize endogeny in terms of a multitype branching
process of pivotal vertices.

2.4 Outline of the proofs

In the remainder of the paper, we prove all results stated so far, except for Theorems 1.11 and
1.15 as well as Proposition 1.17, which we cite from [MSS18, Thm 1, Thm 13, and Prop 4].

In Section 3 we prove Theorem 1.1, Propositions 1.2 and 1.3, and Lemma 1.4, which state
elementary properties of solutions of the mean-field equations (1.22) and (1.4), as well as
Theorem 1.6, which gives a stochastic representation of solutions of the mean-field equation in
terms of finite recursive tree processes. In Section 4, we use this stochastic representation to
prove Theorem 1.5 about convergence of finite systems to a solution of the mean-field equation.

In Section 5, we prove our main results about RTPs with continuous time, which are
largely analogous to known results from the discrete-time setting. Basic results are Lemma 1.8
and Proposition 1.10, as well as Lemma 1.9 which deals with discrete time and is a slight
reformulation of known results. Following [AB05], Theorem 1.12 links the n-variate equation
to endogeny, while Propositions 1.14 and 1.16 are concerned with the higher-level equation,
and closely follow ideas from [MSS18].

In Section 6 we prove some additional results about RTPs, first Proposition 1.20, which
generalizes [AB05, Lemma 15] and shows that upper and lower solutions of a monotonous RDE
are always endogenous, and then Lemmas 1.21, 1.22, 1.24, and 1.25 which give conditions for
uniqueness in a general setting and then more specifically for monotone systems.

In Section 7, finally, we have collected all proofs that deal specifically with our running
example of a system with cooperative branching and deaths. The first such result is Propo-
sition 1.13 about the bivariate equation, which is a two dimensional ODE for which by el-
ementary means we find all fixed points and their domains of attraction. By combining
Proposition 1.13 with ideas involving the convex order we then prove the much stronger The-
orem 1.18 which gives all fixed points and domains of attraction for the higher-level equation.
The picture is then completed by the proofs of Lemma 1.19, which gives some properties of
the nontrivial fixed point of the higher-level equation, as well as Lemmas 1.23 and 1.26 which
illustrate ideas from Section 6 in the concrete set-up of our example.

3 The mean-field equation

In this section, we prove Theorems 1.1 and 1.6, which state that the mean-field equation
(1.4) has a unique solution and can be represented in terms of a random tree generated by
a branching process, with random maps attached to its vertices. In addition, we also prove
Propositions 1.2 and 1.3, as well as Lemma 1.4.

In Subsection 3.1, we start with some preliminaries, showing, in particular, that the integral
in (1.16) is well-defined, and Lemma 1.4, which says that mean-field equations of the form
(1.22) can be rewritten in the simpler form (1.4).

Next, in Subsection 3.2, we prove uniqueness of solutions of (1.4), which yields the unique-
ness parts of Theorem 1.1. To prove existence, in Subsection 3.3, we show that the right-hand
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side of (1.49) solves (1.4), which not only completes the proof of Theorem 1.1 but also yields
the stochastic representation that is Theorem 1.6.

The proofs of Propositions 1.2 and 1.3, finally, can be found in Subsection 3.4.

3.1 Preliminaries

Recall that we interpret the mean-field equation (1.4) as in (1.16), where, by (1.12),

〈Tγ[ω](µ), φ〉 =

∫
S
µ(dx1) · · ·

∫
S
µ(dxk)φ

(
γ[ω](x1, . . . , xk)

)
(ω ∈ Ωk, k ≥ 1). (3.1)

Since by assumption, γ[ω](x1, . . . , xk) is jointly measurable in ω and x1, . . . , xk, the right-hand
side of (3.1) is measurable as a function of ω and hence the integral in (1.16) is well-defined.

Proof of Lemma 1.4 Recall from Subsection 1.3 that the basic ingredients that go into the
equation (1.22) are the measure space (Ω′,q) and function λ, as well as, for each ω ∈ Ω′ and
1 ≤ i ≤ λ(ω), the function γi[ω] and set Ki(ω). Also, κi(ω) := |Ki(ω)|. In terms of these
basic ingredients we need to define Ω, r, κ, and γ as in Subsection 1.1 so that (1.22) takes the
simpler form (1.4).

Since we want to replace the integral and sum in (1.22) by a single integral, we put

Ω :=

∞⋃
l=1

Ω′l × [l], (3.2)

where as before Ω′l := {ω ∈ Ω′ : λ(ω) = l} and [l] := {1, . . . , l}, and we equip Ω with the
measure

r
(
A× {k}

)
:= q(A) (A ⊂ Ω′l measurable, 1 ≤ k ≤ l). (3.3)

In general, Ω need not be a Polish space, as required in Subsection 1.1. We will fix this
problem at the end of our proof, but for the sake of the presentation we neglect it for the
moment being. We define κ : Ω → N as in Subsection 1.1 by κ(ω, i) := κi(ω), where the
right-hand side is the function from Subsection 1.3. We write

Ki(ω) =
{
j1, . . . , jκi(ω)

}
with j1 < · · · < jκi(ω). (3.4)

Since γi[ω](x1, . . . , xλ(ω)) depends only on coordinates in Ki(ω), there exists a function γ[ω, i] :

Sκ(ω,i) → S such that

γi[ω](x1, . . . , xλ(ω)) = γ[ω, i](xj1 , . . . , xjκ(ω,i)) (x ∈ Sλ(ω)). (3.5)

Note that Tγi[ω] = Tγ[ω,i] by (1.12). As in (1.2), we can associate γ[ω, i] with a function that is

defined on SN+ but depends only on the first κ(ω, i) coordinates. We take this as our definition
of the function γ : Ω× SN+ → S from Subsection 1.1. It follows from (1.20) that γ[ω, i](x) is
jointly measurabe as a function of (ω, i) and x.

Replacing the integral and sum in (1.22) by a single integral over r as defined in (3.3),
using the fact that Tγi[ω] = Tγ[ω,i] we see that (1.22) can be rewritten as

∂
∂tµt =

∫
Ω
r(dω)

{
Tγ[ω,i](µt)− µt

}
, (3.6)
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which coincides with (1.4). The condition that r should be a finite measure translates to
(1.23) (i), while the condition (1.3), written in terms of q, becomes (1.23) (ii). Moreover, if q
satisfies (1.24), then r satisfies (1.19).

We still have to fix the problem that Ω, as defined in (3.2), is in general not a Polish space.
There are several possible ways to fix this.2 The solution we will choose is to replace Ω by the
Polish space

Ω :=

∞⋃
l=1

Ω′l × [l], (3.7)

were Ω′l denotes the closure of Ω′l in Ω′. We view r as a measure on Ω that is concentrated
on Ω and extend κ and γ in a measurable way to the larger space, which is possible since Ω
is a measurable subset of Ω. Since r is concentrated on Ω, it does not matter how we extend
κ and γ as this has no effect on (3.6).

3.2 Uniqueness

In the present section, we prove that under the assumption (1.3), solutions to (1.4) are unique,
which settles the uniqueness part of Theorem 1.1.

Below, we letM(S) denote the space of all finite signed measures on S. The total variation
norm has already been mentioned several times. There are two conventional definitions, which
differ by a factor 2. We will use the definition

‖µ‖ := 1
2 sup
|f |≤1

∣∣∣ ∫ f dµ
∣∣∣ (

µ ∈M(S)
)
, (3.8)

where the supremum runs over all measurable functions f : S → [−1, 1]. If X,Y are S-valued
random variables, then it is easy to see that ‖µ−ν‖ ≤ P[X 6= Y ]. Conversely, it is well-known
[Lin92, page 19] that if µ, ν ∈ P(S), then it is possible to couple S-valued random variables
X,Y in such a way that

‖µ− ν‖ = P[X 6= Y ]. (3.9)

Lemma 3.1 (Lipschitz continuity) Let g : Sk → S be measurable and let Tg be defined as
in (1.12). Then ∥∥Tg(µ)− Tg(ν)

∥∥ ≤ k‖µ− ν‖ (
µ, ν ∈ P(S)

)
. (3.10)

Moreover, if T is defined as in (1.1), then∥∥T (µ)− T (ν)
∥∥ ≤ (|r|−1

∫
Ω

r(dω)κ(ω)
)
‖µ− ν‖

(
µ, ν ∈ P(S)

)
. (3.11)

Proof By (3.9) we can find an S2-valued random variable (X,Y ) such that ‖µ− ν‖ = P[X 6=
Y ]. Let (X1, Y1), . . . , (Xk, Yk) be i.i.d. copies of (X,Y ). Then, by (1.12),∥∥Tg(µ)− Tg(ν)

∥∥=
∥∥P[g(X1, . . . , Xk) ∈ ·

]
− P

[
g(Y1, . . . , Yk) ∈ ·

]∥∥
≤P
[
g(X1, . . . , Xk) 6= g(Y1, . . . , Yk)

]
≤

k∑
i=1

P[Xi 6= Yi] = k‖µ− ν‖.

(3.12)

2For example, we can strengthen our assumptions on λ in the sense that {ω : λ(ω) = l} is a Gδ-set for each
l ∈ N+, or we can relax our assumptions on Ω allowing it to be a Lusin space, instead of just a Polish space,
throughout.
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This proves (3.10). Formula (3.11) follows by integrating over ω.

Our next lemma gives equivalent formulations of the mean-field equation (1.4), that will
also be useful in the next subsection where we prove existence of solutions. Below, we interpret
an integral of a measure-valued integrand in the usual way, i.e.,

∫ t
0 ds µs denotes the measure

defined by 〈 ∫ t

0
ds µs, φ

〉
:=

∫ t

0
ds 〈µs, φ〉 (3.13)

for any bounded measurable φ : S → R. We say that a class Φ of functions is measure-
determining if two finite measures µ, ν that satisfy 〈µ, φ〉 = 〈ν, φ〉 for all φ ∈ Φ must be
equal.

Lemma 3.2 (Equivalent formulations of the mean-field equation) Assume (1.3). Let
Φ be a measure-determining class of bounded measurable functions φ : S → R. Let [0,∞) 3
t 7→ µt ∈ P(S) be measurable. Then of the following conditions, (i) implies (ii) and (iii). If
[0,∞) 3 t 7→ µt ∈ P(S) is continuous with respect to the total variation norm, then all three
conditions are equivalent.

(i) For each φ ∈ Φ, the function t 7→ 〈µt, φ〉 is continuously differentiable and
∂
∂t〈µt, φ〉 = |r|

{
〈T (µt), φ〉 − 〈µt, φ〉} (t ≥ 0).

(ii) µt = µ0 + |r|
∫ t

0
ds
{
T (µs)− µs} (t ≥ 0).

(iii) µt = e−|r|tµ0 + |r|
∫ t

0
ds e−|r|s T (µt−s) (t ≥ 0).

Proof Integrating the equation in (i) from time 0 until time t, we see that (i) implies 〈µt, φ〉 =
〈µ0, φ〉+ |r|

∫ t
0 ds

{
〈T (µs), φ〉 − 〈µs, φ〉} (t ≥ 0) for all φ ∈ Φ. Since Φ is measure-determining,

this must hold for all bounded measurable φ, proving the implication (i)⇒(ii). Also, we can
equivalently write the equation in (i) as

∂
∂t

(
e|r|t〈µt, φ〉

)
= |r|e|r|t 〈T (µt), φ〉 (t ≥ 0). (3.14)

Integrating from time 0 until time t and using that Φ is measure-determining now yields

e|r|tµt = µ0 + |r|
∫ t

0
ds e|r|s T (µs). (3.15)

Multiplying by e−|r|t and substituting s 7→ t − s in the integral then yields the equation in
(iii).

If t 7→ µt ∈ P(S) is continuous with respect to the total variation norm, then Lemma 3.1
together with (1.3) imply that also t 7→ T (µt) ∈ P(S) is continuous with respect to the total
variation norm. It follows that t 7→ 〈µt, φ〉 and t 7→ 〈T (µt), φ〉 are continuous for each bounded
measurable φ : S → R. As a result, the right-hand side of (ii), integrated against any bounded
measurable φ, is continuously differentiable as a function of t, and (ii) implies (i). By the
same argument, rewriting (iii) as (3.15) and differentiating, we see that (iii) implies (i).

We now prove the promised uniqueness of solutions to (1.4). Proposition 1.2, which will
be proved in Subsection 3.4 below, shows that the constant L from (3.17) is not optimal and
can be replaced by the constant K from (1.18).
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Lemma 3.3 (Uniqueness) Let Φ be a measure-determining class of bounded measurable
functions φ : S → R. Let (µt)t≥0 and (νt)t≥0 be functions taking values in the probability
measures on S such that for each φ ∈ Φ, the functions t 7→ 〈µt, φ〉 and t 7→ 〈νt, φ〉 are
continuously differentiable and solve (1.16). Then

‖µt − νt‖ ≤ eLt‖µ0 − ν0‖ (t ≥ 0), (3.16)

where

L :=

∫
Ω

r(dω)
(
κ(ω) + 1

)
. (3.17)

Proof Equation (ii) of Lemma 3.2 implies that

‖µt − νt‖≤‖µ0 − ν0‖+ |r|
∥∥∥∫ t

0
ds
{
T (µs)− µs} −

∫ t

0
ds
{
T (νs)− νs}

∥∥∥
≤‖µ0 − ν0‖+ |r|

∫ t

0
ds
∥∥T (µs)− T (νs)

∥∥+ |r|
∫ t

0
ds ‖µs − νs‖

≤‖µ0 − ν0‖+ L

∫ t

0
ds ‖µs − νs‖,

(3.18)

where L = |r|+
∫

Ω r(dω)κ(ω) using (3.11) of Lemma 3.1. The claim now follows from Gron-
wall’s lemma [EK86, Thm A.5.1].

3.3 The stochastic representation

In this section, we prove the following proposition, that settles the existence part of Theo-
rem 1.1. Together with Lemma 3.3, this completes the proof of Theorem 1.1 and at the same
time also proves Theorem 1.6.

We work in our usual set-up where S and Ω are Polish spaces, κ : Ω→ N is measurable, γ
is as in Subsection 1.1, and r is a nonzero finite measure on Ω satisfying (1.3). We fix T as in
Section 1.4 and let (ωi)i∈T be i.i.d. with common law |r|−1r. We let (σi)i∈T be an independent
i.i.d. collection of exponentially distributed random variables with mean |r|−1 and define S,
St, ∇St, and Gt as in (1.43), (1.44), and (1.47).

Proposition 3.4 (Recursive tree representation) For any µ0 ∈ P(S), setting

µt := E
[
TGt(µ0)

]
(t ≥ 0) (3.19)

defines a solution (µt)t≥0 to the mean-field equation (1.4). Moreover, [0,∞) 3 t 7→ µt is
continuous with respect to the total variation norm.

To prepare for the proof of Proposition 3.4, we need one lemma. Recall that |i| denotes
the length of a word i, i.e., |i1 · · · in| := n. Let

St,(n) := St ∩ S(n) with S(n) := {i ∈ S : |i| < n} (n ≥ 1). (3.20)

Fix µ0 ∈ P(S) and using notation as in (1.46), set

µt,(n) := E
[
TGt,(n)(µ0)

]
with Gt,(n) := GSt,(n) (t ≥ 0, n ≥ 1), (3.21)

and set µt,(0) := µ0 (t ≥ 0). The following lemma is a “cut-off” version of Proposition 3.4.
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Lemma 3.5 (Representation with cut-off) The measures (µt,(n))t≥0 defined in (3.21)
satisfy

µt,(n) = e−|r|tµ0 + |r|
∫ t

0
ds e−|r|s T (µt−s,(n−1)) (n ≥ 1, t ≥ 0). (3.22)

Proof Let (Yi)i∈T be i.i.d. with common law µ0, independent of (ωi, σi)i∈T. Set

Xi := Yi (i ∈ ∇St,(n)), (3.23)

and define (Xi)i∈St,(n) inductively by

Xi := γ[ωi](Xi1, . . . , Xiki) (i ∈ St,(n)). (3.24)

Then X∅ = Gt,(n)

(
(Xi)i∈∇St,(n)

)
and hence, in the same way as (1.49) is equivalent to (1.51),

µt,(n) = P[X∅ ∈ · ]. (3.25)

Conditioning on σ∅ and then also on ω∅, we see that

P[X∅ ∈ · ] =

∫ ∞
0

P
[
σ∅ ∈ ds

]
P
[
X∅ ∈ ·

∣∣σ∅ = s
]

=

∫ ∞
t
|r|e−|r|s ds µ0 +

∫ t

0
|r|e−|r|s ds P

[
X∅ ∈ ·

∣∣σ∅ = s
]

= e−|r|tµ0 +

∫ t

0
|r|e−|r|s ds |r|−1

∫
Ω

r(dω)P
[
X∅ ∈ ·

∣∣σ∅ = s, ω∅ = ω
]
,

(3.26)

where we have used that ω∅ is independent of σ∅ with law |r|−1r. We see from this that

P[X∅ ∈ · ] = e−|r|tµ0 +

∫ t

0
e−|r|s ds

∫
Ω

r(dω)P
[
γ[ω](X1, . . . , Xκ(ω)) ∈ ·

∣∣σ∅ = s, ω∅ = ω
]

= e−|r|tµ0 +

∫ t

0
e−|r|s ds |r|T (µt−s,(n−1)),

(3.27)
where we have used (1.1) and the observation that conditional on σ∅ = s and ω∅ = ω, the
random variables X1, . . . , Xκ(ω) are i.i.d. with common law µt−s,(n−1).

Proof of Proposition 3.4 The condition (1.3) guarantees that (∇St)t≥0 is a finite mean
branching process; more precisely, by standard theory,

E
[
|∇St|

]
= eKt with K :=

∫
Ω
r(dω) (κ(ω)− 1). (3.28)

Fix µ0 ∈ P(S) and define µt and µt,(n) as in (3.19) and (3.22). Then the total variation norm
distance between these measures can be bounded by∥∥µt,(n) − µt

∥∥ ≤ P
[
St,(n) 6= St

]
, (3.29)

which tends to zero as n → ∞ since St is a.s. finite by (3.28). In fact, since P[Ss,(n) 6= Ss] ≤
P[St,(n) 6= St] for all s ≤ t, we have that

sup
0≤s≤t

∥∥µs,(n) − µs
∥∥ −→
n→∞

0 ∀t <∞. (3.30)
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Using this and the Lipschitz continuity of T with respect to the total variation norm (Lemma
3.1), we can let n→∞ in (3.22) to obtain

µt = e−|r|tµ0 + |r|
∫ t

0
ds e−|r|t T (µt−s) (t ≥ 0). (3.31)

Since ∥∥µt+ε − µt∥∥ ≤ P
[
St+ε 6= St

]
, (3.32)

using the fact that the branching process (∇St)t≥0 a.s. does not jump at deterministic times,
we see that [0,∞) 3 t 7→ µt is continuous with respect to the total variation norm. Using this
and (3.31), we see from Lemma 3.2 that (µt)t≥0 solves the mean-field equation (1.4).

3.4 Continuity in the initial state

In this subsection, we prove Propositions 1.2 and 1.3.

Proof of Proposition 1.2 It follows from Theorem 1.6 and Lemma 3.1 that∥∥Tt(µ)− Tt(ν)
∥∥ =

∥∥E[TGt(µ)− TGt(ν)]
∥∥

≤ E
[∥∥E[TGt(µ)− TGt(ν) | Ft]

∥∥] ≤ E
[
|∇St| ‖µ− ν‖

]
= eKt‖µ− ν‖,

(3.33)

where Ft is the filtration defined in (1.48).

Proposition 1.3 follows from the following two lemmas.

Lemma 3.6 (Continuity of T ) Under the condition (1.19), the operator T in (1.1) is
continuous w.r.t. the topology of weak convergence.

Proof If µn ∈ P(S) converge weakly to a limit µ∞, then by Skorohod’s representation theorem
there exists random variables Xn with laws µn that converge a.s. to a limit X∞ with law

µ∞. Let
(
(Xn

i )n∈N∪{∞}

)
i≥1

be i.i.d. copies of such a sequence (Xn)n∈N∪{∞} and let ω be an

independent random variable with law |r|−1r. Then by (1.19),

γ[ω](Xn
1 , . . . , X

n
κ(ω)) −→n→∞ γ[ω](X∞1 , . . . , X∞κ(ω)) a.s. (3.34)

and hence T (µn) converges weakly to T (µ∞) by (1.1).

Lemma 3.7 (Continuity in the initial state) Assume that the operator T in (1.1) is
continuous w.r.t. the topology of weak convergence. Then the same is true for the operators
Tt (t ≥ 0) defined in (1.6).

Proof We need to show that solutions of the mean-field equation (1.4) are continuous in their
initial state, in the sense that if (µkt )t≥0 (k ∈ N ∪ {∞}) are started in initial states such that
µk0 ⇒ µ∞0 , then µkt ⇒ µ∞t for all t ≥ 0.

To see this, inductively define µkt,(n) as in (3.22) with µ0 replaced by µk0. Using the conti-

nuity of T , by induction, we see that µkt,(n) ⇒ µ∞t,(n) as k → ∞ for all n ≥ 1 and t ≥ 0. By

(3.29), for each bounded continuous φ : S → R, the quantity 〈µkt,(n), φ〉 converges to 〈µkt , φ〉
uniformly in k ∈ N ∪ {∞}, which allows us to conclude that 〈µkt , φ〉 → 〈µ∞t , φ〉 as k →∞ for
all t ≥ 0.
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4 Approximation by finite systems

4.1 Main line of the proof

In this section, we prove Theorem 1.5. The basic idea, which already goes back to [DFL86], is
that in the mean-field limit, the genealogy of a site converges to a branching process, and sites
are independent in the limit. More precisely, consider n sites, sampled uniformly at random
from [N ]. To find out what their states are at time t, we follow the sites back until the last
time when a random map is applied that has the potential to change the state of one of our
sites. At this point, we stop following that given site but replace it by the sites that are
relevant for the outcome of the map at the given site, and we continue in this way. When N
is large, the new sites that are added in each step are with high probability sites we have not
been following before, so that in the limit we obtain a branching process with random maps
attached to its branch points. Making this idea precise yields the following proposition, that
will be proved in Subsection 4.2 below.

Proposition 4.1 (State at sampled sites) For each N ∈ N+ let (X(N)(t))t≥0 be a process
as in Theorem 1.5 started in a deterministic initial state X(N)(0). Fix t ≥ 0 and let Tt be
defined as in (1.6) but with the mean-field equation (1.4) replaced by (1.22). Fix n ≥ 1 and
let I1, . . . , In be i.i.d. uniformly distributed on [N ] and independent of XN (t). Then∥∥∥P[(X(N)

I1
(Nt), . . . , X

(N)
In

(Nt)
)
∈ ·
]
− Tt(µN0 )⊗ · · · ⊗ Tt(µN0 )︸ ︷︷ ︸

n times

∥∥∥ −→
N→∞

0, (4.1)

where ‖ · ‖ denotes the total variation norm, and the convergence in (4.1) is uniform w.r.t.
the initial state X(N)(0).

Proposition 4.1 allows us to control the mean and variance of µNNt, which is enough to prove
the convergence of µNNt to µt for fixed times t. To boost this up to pathwise convergence, we
use the following lemma, that will be proved in Subsection 4.3 below.

Lemma 4.2 (Tightness in total variation) For each N ∈ N+ let (X(N)(t))t≥0 be a process
as in Theorem 1.5 started in a deterministic initial state X(N)(0), and let µNt := µ

{
X(N)(t)

}
denote the empirical measure of X(N)(t). Then there exist random processes (τNt )t≥0 such
that τN : R→ R is a.s. nondecreasing with τN0 = 0 and

(i) P
[

sup
0≤t≤T

|τNt − t| ≥ ε
]
−→
N→∞

0 (ε > 0, T <∞),

(ii) ‖µNNt − µNNs‖ ≤ L(τNt − τNs ) (0 ≤ s ≤ t) a.s.,

where ‖ · ‖ denotes the total variation norm and L :=

∫
Ω
q(dω)λ(ω).

In Subsection 4.4, we will derive Theorem 1.5 from Proposition 4.1, Lemma 4.2, and some
abstract considerations.

4.2 The state at sampled sites

In this subsection we prove Proposition 4.1. We start with two preparatory lemmas.
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Let (XN
s,t)s≤t be the stochastic flow defined in (1.29), where we have made the dependence

on N explicit. Let I be uniformly distributed on [N ] and independent of (XN
s,t)s≤t. For each

t ≥ 0, let M̃N
t : S[N ] → S be defined as (note the factor N rescaling the speed of time):

M̃N
t (x) := XN

−Nt,0(x)I . (4.2)

Let Gt : S∇St → S be the random map defined in (1.47), where Ω, r, γ and κ from Subsec-
tion 1.1 are defined in terms of the “ingredients” Ω′,q, γi[ω] and Ki(ω) from Subsection 1.3,
see the proof of Lemma 1.4 in Subsection 3.1. Let (Ii)i∈T be i.i.d. uniformly distributed on
[N ] and independent of (∇St, Gt)t≥0. For each t ≥ 0, let MN

t : S[N ] → S be defined as

MN
t (x) := Gt

(
(xIi)i∈∇St

)
. (4.3)

The following lemma says that for large N , the map in (4.2) can be approximated by the map
in (4.3).

Lemma 4.3 (Coupling of maps) For each t ≥ 0, it is possible to couple the random maps
M̃N
t and MN

t with N ∈ N+ in such a way that

P
[
M̃N
t 6= MN

t

]
−→
N→∞

0. (4.4)

Proof The essence of the proof can be summarized as follows: since for large N , sampling
with or without replacement from [N ] is almost the same, the genealogy of a given site is
approximately given by a branching process. In spite of this simple idea, the proof is quite
long, mainly because we have to take care of a lot of definitions, such as the way Ω, r, γ and
κ are defined in terms of Ω′,q, γi[ω] and Ki(ω) in the proof of Lemma 1.4.

We start by recalling that the random map Gt from (1.47) can be seen as the concatenation
of random maps assigned to the branch points of a branching process. We then embed this
branching process in the set [N ] and prove that what we obtain is a good approximation for
the genealogy of a given site.

We observe that in order to construct the map Gt : S∇St → S from (1.47), it suffices to
know (

St, (ωi)i∈St
)
, (4.5)

where St is defined in (1.44). Indeed, from the information in (4.5) we can determine ∇St,
since

∇St =
{
ik : i ∈ St, 1 ≤ k ≤ κ(ωi), ik 6∈ St

}
, (4.6)

and the map Gt : S∇St → S is obtained by concatenating the maps γ[ωi] with i ∈ St according
to the tree structure of St.

The object in (4.5) is in fact a Markov chain as a function of t. Starting from the initial
state S0 = ∅ and ∇S0 = {∅}, its evolution is as follows: Independently for each i ∈ ∇St, with
rate |r|, we add i to St and assign to it a value ωi chosen according to the probability law
|r|−1r.

We will be interested in the process in (4.5) in the special case when Ω, r, κ, and γ are
defined in terms of Ω′,q, λ, Ki(ω), and γi[ω] as in the proof of Lemma 1.4. In this case,
elements of Ω are pairs (ω, n) where ω ∈ Ω′ and 1 ≤ n ≤ λ(ω), so we denote the process in
(4.5) as (

St, (ωi, ni)i∈St
)
, (4.7)
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where ωi ∈ Ω′ and 1 ≤ ni ≤ λ(ωi). The set ∇St is now given by

∇St =
{
ik : i ∈ St, 1 ≤ k ≤ κni

(ωi), ik 6∈ St
}
. (4.8)

Defining r as in (3.3), the process in (4.5) now evolves in such a way that independently for
each i ∈ ∇St, with rate |r|, we add i to St and assign values (ωi, ni) to it that are chosen
according to the probability law |r|−1r.

Let α ∈ [N ] be fixed. Our next aim is to “embed” the process from (4.7) in the set [N ],
in such a way that it approximates the genealogy of the site α. To this aim, we define, for
each time, a random function ψNt : St ∪ ∇St → [N ]. Initially, we set ψN0 (∅) := α. We let
the function ψNt evolve in a Markovian way together with the process in (4.7) in the following
way. Recall that when we add an element i to St and assign values (ωi, ni) to it, this element
is at the same time removed from ∇St and replaced by new elements i1, . . . , iκni

(ωi). We
assign labels ψNt (ik) (k = 1, . . . , κni

(ωi)) to these new elements as follows. First, we choose
(Il)l=1,...,λ(ωi) in such a way that Ini

:= ψNt (i) and

(Il)l 6=ni
are i.i.d. uniformly chosen from [N ], (4.9)

and next, we set ψNt (ik) := Ijk , where as in (3.4), we order the elements of Kni
(ωi) ⊂

{1, . . . , λ(ωi)} as

Kni
(ωi) =

{
j1, . . . , jκni (ωi)

}
with j1 < · · · < jκni (ωi). (4.10)

Note that this has the effect that if ni is an element of Kni
(ωi), say ni = jk, then the

corresponding element ik gets the same label as i, i.e., ψNt (ik) = ψNt (i). Otherwise, we assign
new i.i.d. labels to all new elements of ∇St.

Using the function ψNt that embeds the process in (4.7) in the set [N ], we define a function
φNt : SN → S∇St by

φNt (x)i := xψNt (i) (i ∈ ∇St). (4.11)

We now consider the maps

M̃N
t (x) := X−Nt,0(x)α and MN

t (x) := Gt ◦ φNt (x) (x ∈ SN ), (4.12)

where α = ψN0 (∅) ∈ [N ] is the label initially assigned to the root. We claim that∥∥P[M̃N
t ∈ · ]− P

[
MN
t ∈ · ]

∥∥ −→
N→∞

0, (4.13)

where ‖ · ‖ denotes the total variation norm. In particular, if α is chosen uniformly distributed
in [N ] and independent of everything else, then (ψNt (i))i∈∇St are i.i.d. uniformly distributed
in [N ] and independent of the map Gt, so (4.13) implies (4.4).

To prove (4.13), we construct a process similar to the process in (4.7), together with an
embedding in [N ], that describes the true genalogy of the site α, and show that the error we
make by replacing this true genealogy by the process we had before is small. We denote this
process as (

S̃t, (ωi, ni)i∈S̃t , ψ̃
N
t

)
. (4.14)

At each time, ∇S̃t is defined in terms of this process in the same way as ∇St is defined in
(4.8). We also define G̃t and φ̃Nt : SN → S∇S̃t as before, i.e., G̃t is the concatenation of the
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random maps γni
[ωi] with i ∈ S̃t according to the tree structure of S̃t, and φ̃Nt : SN → S∇S̃t is

defined in terms of ψ̃Nt as in (4.11).
Recall that M̃N

t (x) = XN
−Nt,0(x)α. As for our previous process we start with S̃0 = ∅,

∇S̃0 = {∅}, and ψ̃N (∅) = α. In Subsection 1.3, the stochastic flow (XN
s,t)s≤t is constructed

from a Poisson point set Π. We will construct the process in (4.14) in terms of Π in such a
way that

G̃t ◦ φ̃Nt (x) = M̃N
t (x) (t ≥ 0), (4.15)

which expresses the fact that the process in (4.14) describes the “true genealogy” of the site α.
The Poisson set Π consists of triples (ω, i, t) which express the fact that at time t the

random map ~γ[ω] should be applied to the coordinates i = (i1, . . . , iλ(ω)). Note that we are

interested in XN
−Nt,0(x)α, which means that we look at negative times and need to rescale

time by a factor N . For each (ω, i,−Nt) ∈ Π and j ∈ ∇S̃t such that ψ̃Nt (j) = il for some
1 ≤ l ≤ λ(ω), we update the process in (4.14) as follows:

(i) We remove j from ∇S̃t and add it to S̃t.

(ii) We set ωj := ω and nj := l.

(iii) We add j1, . . . , jκl(ω) to S̃t.

(iv) We define ψ̃Nt (jk) := ijk (k = 1, . . . , κl(ω)), where Kl(ω) = {j1, . . . , jκl(ω)} as in (3.4).

It is straightforward to check that these rules guarantee that (4.15) holds and hence the
process in (4.14) describes the true genealogy of the site α. As some more explanation, we
can add the following: we follow a site β back in time till the first time when a map is applied
that has the possibility to change the value of β. From that moment on, we follow back all
sites that are relevant for the outcome of the map at β, and we number them according to
the convention in (3.4). This defines a family structure, i.e., i = i1i2i3 is the i3-th child of the
i2-th child of the i1-th child of the original site α. The map ψ̃Nt applied to i tells us where this
ancestor lives in the set [N ]. There may be some overlap, i.e., it is possible that ψ̃Nt (i) = ψ̃Nt (j)
for some i, j ∈ S̃t ∪∇S̃t. For i, j ∈ ∇S̃t, however, the probability that two ancestors live at the
same site in [N ] tends to zero as N →∞, as we will see in a moment.

In view of (4.15), to prove (4.13), it suffices to prove that the Markov process in (4.14) is
close in total variation distance to the process with S̃t and ψ̃Nt replaced by St and ψNt . Since
the latter process is nonexplosive by (3.28), it suffices to prove convergence for the processes
stopped at the first time when the cardinality of ∇̃St resp. ∇St exceeds a certain value, and
then at the end send this value to infinity. We will prove convergence of the stopped processes
in a number of steps, by making small changes in the jump rates. Here we use the fact that if
the transition kernels of two continuous-time Markov chains are close in total variation norm,
uniformly in the starting point, then by standard arguments the two processes can be coupled
so that their laws at fixed time are close in total variation norm.

Let Ψ̃N
t := ψ̃Nt (∇S̃t) denote the image of ∇S̃t under the map ψ̃Nt . As a first step, we change

the dynamics of the (stopped) process from (4.14) in such a way that elements (ω, i,−Nt) ∈ Π
have no effect if {i1, . . . , iλ(ω)} intersects Ψ̃N

t in more that one point. Then the modified process
is still Markovian; we claim the change in jump rates compared to the original process is of
order N−1. Indeed, for fixed l, if i1, . . . , il are chosen uniformly without replacement from [N ],
then the probability that one, resp. two or more of them lie in a set A of fixed cardinality is
of order N−1 resp. N−2 as N → ∞. Taking into account the fact that we rescale time by a
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factor N , as well as the summability condition (1.23) (i), this translates into a change in jump
rates of order N−1 for the modified process, stopped at the first time when the cardinality of
∇S̃t exceeds a fixed value.

Recall that by (4.15), XN
−Nt,0(x)α is a function only of (xβ)β∈Ψ̃Nt

. The modified process we

have just constructed has the property that ψ̃Nt : ∇S̃t → Ψ̃N
t is a bijection, i.e., each element

β ∈ Ψ̃N
t corresponds only to a single place (ψNt )−1(β) in the family tree. The dynamics of the

modified process can be described as follows:

(i) Independently for each β ∈ Ψ̃N
t , with rates described by the measure r from (3.3), we

choose a pair (ω, n) with 1 ≤ n ≤ λ(ω).

(ii) If λ(ω) > N , we do nothing.

(iii) Otherwise, we choose (β′k)k=1,...,λ(ω) such that β′n := β and (β′k)k 6=n are drawn from
[N ]\{β} without replacement.

(iv) If some of the (β′k)k 6=n are elements of Ψ̃N
t , we do nothing.

(v) Otherwise, we remove β from Ψ̃N
t and add (βjk)1≤k≤κn(ω) to Ψ̃N

t , where Kn(ω) =
{j1, . . . , jκn(ω)} with j1 < · · · < jκn(ω).

(vi) If j = (ψ̃Nt−)−1(β) is the place of β in the family tree immediately prior to time t, then we

assign to each new element of Ψ̃N
t a place in the family tree by setting (ψ̃Nt−)−1(βjk) := jk.

Note that the measure r from (3.3) occurs naturally here, since each λ(ω)-tuple of sites in [N ]
can contain a given site β in λ(ω) different ways, as its 1st, 2nd,. . . , λ(ω)-th member.

Removing the restrictions in points (ii) and (iv) above, and performing sampling without
replacement instead of sampling with replacement in point (iii), we only make changes in
the transition rates of order N−1, and arrive at a process whose family tree evolves as the
process in (4.7) and where to new members of the family tree, sites in [N ] are assigned chosen
uniformly with replacement, as described by the process ψNt .

In the proof of Lemma 4.3, we have seen that in the mean-field limit N →∞, the genealogy
of a single site can be approximated by a branching process with random maps attached to
its branch points. Similarly, the genealogy of n randomly chosen sites can be approximated
by n independent branching processes, which leads to the following extension of Lemma 4.3.

Lemma 4.4 (The genealogy of multiple sites) Let (XN
s,t)s≤t be the stochastic flow defined

in (1.29) and let I1, . . . , In be i.i.d. uniformly distributed on [N ], independent of (XN
s,t)s≤t. Let

Ω, r, γ and κ be defined in terms of Ω′,q, γi[ω] and Ki(ω) as in the proof of Lemma 1.4. Fix t ≥
0 and let (∇Sit, Git) (i = 1, . . . , n) be i.i.d. copies of the random set and map defined in (1.44)
and (1.47). Conditional on (∇Sit, Git)i=1,...,n, let (Iij)

i=1,...,n

j∈∇Sit
be i.i.d. uniformly distributed on

[N ]. Define M̃N
t : SN → Sn and MN

t : SN → Sn by

M̃N
t (x)i := XN

−Nt,0(x)Ii and MN
t (x)i := Git

(
(xIij

)j∈∇Sit

)
. (4.16)

Then M̃N
t and MN

t can be coupled such that P
[
M̃N
t 6= MN

t

]
−→
N→∞

0.

Proof The proof is the same as the proof of Lemma 4.3, except that instead of following back
the genealogy of one site, one follows the genealogies of n sites. By the same arguments as
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given in the proof of Lemma 4.3, when N is large, with high probability, the genealogies do
not intersect, and hence can be approximated by independent branching processes. Although
writing down all objects involved is notationally complicated, no new ideas are needed so we
omit the details.

Proof of Proposition 4.1 Let x := X(N)(0) be the (deterministic) initial state and using
notation as in (1.33) let µN0 = µ{x} denote its empirical measure. Define maps M̃N

t and MN
t

as in Lemma 4.4. Then
(
X

(N)
I1

(Nt), . . . , X
(N)
In

(Nt)
)

has law M̃N
t (x) while the coordinates of

MN
t (x) are i.i.d. with a law that by Theorem 1.6 equals Tt(µ

N
0 ). In view of this, the claim

follows from Lemma 4.4.

4.3 Tightness in total variation

In this subsection we prove Lemma 4.2.

Proof of Lemma 4.2 The process (X(N)(t))t≥0 is defined in (1.32) in terms of a stochastic
flow which is in turn defined in terms of a Poisson set Π. Elements of Π are triples (ω, i, s)
which tell us that at time s the map ~γ[ω] should be applied to the coordinates i = (i1, . . . , iλ(ω)).
We let

τNt :=
1

NL

∑
(ω,i,s)∈Π: 0<s≤Nt

λ(ω) (t ≥ 0), (4.17)

where L :=
∫

Ωq(dω)λ(ω), which is finite by (1.23). Then (i) follows from a functional law
of large numbers. Since for any s ≤ t, the fraction of sites in [N ] that changes its type is
bounded from above by L(τNt − τNs ), in view of (3.9), we obtain also (ii).

4.4 Convergence to the mean-field equation

In this subsection, we prove Theorem 1.5. The proof is split into a number of lemmas. We
start by proving convergence at fixed times. This part of the proof is based on Proposition 4.1.
At the end of the proof, we use Lemma 4.2 to obtain pathwise convergence.

Lemma 4.5 (Expectation of test functions) Let Ω′,q, λ, and ~γ be as in Subsection 1.3,
and assume (1.23). Let (Tt)t≥0 denote the semigroup defined as in (1.6) but with the mean-
field equation (1.4) replaced by (1.22). For each N ∈ N+, let (X(N)(t))t≥0 be Markov processes
with state space SN as defined in (1.32), and let µNt = µ{X(N)(t)} denote their associated
empirical measures. Then

sup
|φ|≤1

P
[∣∣〈µNNt, φ〉 − 〈Tt(µN0 ), φ〉

∣∣ ≥ ε] −→
N→∞

0 (ε > 0, t ≥ 0), (4.18)

where the supremum runs over all measurable functions φ : S → [−1, 1].

Proof Fix t ≥ 0. Let φ : S → [−1, 1] be measurable. Let I1 and I2 be uniformly distributed
on [N ] and independent of each other and of XN (t). Since

〈µNNt, φ〉 =
1

N

N∑
i=1

φ
(
X

(N)
i (Nt)

)
, (4.19)
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we see that
E
[
〈µNNt, φ〉

]
=E

[
φ
(
X

(N)
I1

(Nt)
)]
,

E
[
〈µNNt, φ〉2

]
=E

[
φ
(
X

(N)
I1

(Nt)
)
φ
(
X

(N)
I2

(Nt)
)]
.

(4.20)

Assume for the moment that X(N)(0) is deterministic. Then applying Proposition 4.1 with
n = 1, 2 we find that

sup
|φ|≤1

∣∣∣E[〈µNNt, φ〉]− 〈Tt(µN0 ), φ〉
∣∣∣ −→
N→∞

0,

sup
|φ|≤1

∣∣∣E[〈µNNt, φ〉2]− 〈Tt(µN0 ), φ〉2
∣∣∣ −→
N→∞

0,
(4.21)

where we take the supremum over all measurable φ : S → [−1, 1]. It follows that

sup
|φ|≤1

Var
(
〈µNNt, φ〉

)
= sup
|φ|≤1

(
E
[
〈µNNt, φ〉2

]
− E

[
〈µNNt, φ〉

]2) −→
N→∞

0, (4.22)

and hence (4.18) follows by Chebyshev’s inequality. To obtain (4.18) more generally when
X(N)(0) is random, we condition on the initial state to get, for each ε > 0 and measurable
ψ : S → [−1, 1].∫

P[X(N)(0) ∈ dx]P
[∣∣〈µNNt, ψ〉 − 〈Tt(µN0 ), ψ〉

∣∣ ≥ ε ∣∣X(N)(0) = x
]

≤
∫

P[X(N)(0) ∈ dx] sup
|φ|≤1

P
[∣∣〈µNNt, φ〉 − 〈Tt(µN0 ), φ〉

∣∣ ≥ ε ∣∣X(N)(0) = x
]
.

(4.23)

Since the integrand on the right-hand side does not depend on ψ and tends to zero in a
bounded pointwise way as a function of x ∈ SN , (4.18) follows.

Our next aim is to prove that if in addition to the assumptions of Lemma 4.5, condition
(i) or (ii) of Theorem 1.5 is satisfied, then

P
[
d(µNNt, Tt(µ0)) ≥ ε

]
−→
N→∞

0 (ε > 0, t ≥ 0), (4.24)

where d is any metric on P(S) that generates the topology of weak convergence. Applying the
following well-known fact to the Polish space P(S), we see that if (4.24) holds for one such
metric, then it holds for all of them.

Lemma 4.6 (Convergence in probability) Let Xn be random variables taking values in
a Polish space S, let x ∈ S be deterministic, and let d be a metric generating the topology on
S. Then one has

P
[
d(Xn, x) ≥ ε

]
−→
n→∞

0 (ε > 0), (4.25)

if and only if
P
[
Xn ∈ · ] =⇒

n→∞
δx, (4.26)

where ⇒ denotes weak convergence of probability measures on S.

Proof It is easy to see that (4.25) implies E[φ(Xn)] → φ(x) for all bounded continuous φ :
S → R, so (4.25) implies (4.26). Conversely, if (4.26) holds, then by Skorohod’s representation
theorem it is possible to couple the random variables Xn such that Xn → x a.s., which implies
(4.25).

The following lemma gives sufficient conditions for the type of convergence of (4.24).
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Lemma 4.7 (Convergence to a deterministic measure) Let S be a Polish space, let
µ ∈ P(S) be deterministic, and let µN be random variables with values in P(S). Let d be a
metric on P(S) generating the topology of weak convergence. Then the following conditions
are equivalent.

(i) P
[
d(µN , µ) ≥ ε

]
−→
N→∞

0 for all ε > 0.

(ii) P
[∣∣〈µN , φ〉 − 〈µ, φ〉∣∣ ≥ ε] −→

N→∞
0 for all ε > 0 and bounded continuous φ : S → R.

(iii) E
[ n∏
i=1

〈µN , φi〉
]
−→
N→∞

n∏
i=1

〈µ, φi〉 for all bounded continuous functions φ1, . . . , φn (n ≥ 1).

Proof We equip P(S) with the topology of weak convergence, making it into a Polish space.
Then by Lemma 4.6, condition (i) is equivalent to

(i)’ P[µN ∈ · ] =⇒
N→∞

δµ.

We will prove (i)’⇒(ii)⇒(iii)⇒(i)’.
(i)’⇒(ii). By Skorohod’s representation theorem, (i)’ implies that the µN can be coupled

such that µN =⇒
N→∞

µ a.s., which implies (ii).

(ii)⇒(iii). Without loss of generality we may assume that the φi’s take values in [−1, 1].
Since the function (x1, . . . , xn) 7→

∏n
i=1 xi is continuous, (ii) implies that

P
[∣∣ n∏
i=1

〈µN , φi〉 −
n∏
i=1

〈µ, φi〉
∣∣ ≥ ε] −→

N→∞
0 (4.27)

for all ε > 0 and bounded continuous φ1, . . . , φn. Since moreover |
∏n
i=1〈µN , φi〉| ≤ 1, this

implies (iii).
(iii)⇒(i)’. Since S is Polish, it has a metrizable compactification, i.e., there exists a

compact metrizable space S such that S is a dense subset of S and the topology on S is the
induced topology from S [Cho69, Theorem 6.3]. It is known that this implies that S is a
Gδ-subset of S [Bou58, §6 No. 1, Theorem. 1]. In particular, S is a Borel measurable subset of
S and we can identify P(S) with the space of probability measures on S that are concentrated
on S. If we equip P(S) with the topology of weak convergence, then the induced topology on
P(S) is also the topology of weak convergence (this follows, e.g., from [EK86, Thm 3.3.1]),
and in fact P(S) (being compact by Prohorov’s theorem) is a metrizable compactification of
P(S).

We view µN and µ as probability measures on S. Since S is compact, so are P(S) and
P(P(S)), so by going to a subsequence if necessary, we can assume that the laws P[µN ∈ · ]
converge weakly to some limit ρ ∈ P(P(S)). Since the restriction to S of a continuous function
φ : S → R is a bounded continuous function on S, condition (ii) implies that∫

P(S)
ρ(dν)

n∏
i=1

〈ν, φi〉 =

n∏
i=1

〈µ, φi〉 (4.28)

for general n ≥ 1 and continuous functions φi : S → R (i = 1, . . . , n). By the Stone-Weierstrass
theorem, the linear span of functions of the form ν 7→

∏n
i=1〈µ, φi〉 is dense in the space of

continuous functions on P(S), and hence (4.28) implies ρ = δµ.

We now prove (4.24) under either of the conditions (i) and (ii) of Theorem 1.5.
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Lemma 4.8 (Continuity argument) In addition to the assumptions of Lemma 4.5, assume
that condition (i) of Theorem 1.5 is satisfied. Then (4.24) holds.

Proof Fix t ≥ 0. In view of Lemma 4.7 (ii), it suffices to show that

P
[∣∣〈µNNt, φ〉 − 〈Tt(µ0), φ〉

∣∣ ≥ ε] −→
N→∞

0 (ε > 0) (4.29)

for any bounded continuous φ : S → R. By Lemma 4.5, it suffices to show that

P
[∣∣〈Tt(µN0 ), φ〉 − 〈Tt(µ0), φ〉

∣∣ ≥ ε] −→
N→∞

0 (ε > 0). (4.30)

By the second part of condition (i), Lemma 1.4, and Proposition 1.3, the operator Tt is
continuous w.r.t. weak convergence. In view of this, (4.30) is implied by the first part of
condition (i).

Lemma 4.9 (Moment argument) In addition to the assumptions of Lemma 4.5, assume
that condition (ii) of Theorem 1.5 is satisfied. Then (4.24) holds.

Proof Fix t ≥ 0. In view of Lemma 4.7 (iii), it suffices to show that

E
[ n∏
i=1

〈µNNt, φi〉
]
−→
N→∞

n∏
i=1

〈Tt(µ0), φi〉 (4.31)

for all n ≥ 1 and bounded continuous functions φi : S → R, i = 1, . . . , n. Without loss of
generality we may assume that the φi’s take values in [−1, 1]. Let X(N)(t) be as in Theorem 1.5
and let I1, . . . , In be i.i.d. uniformly distributed on [N ] and independent of XN (t). Then

E
[ n∏
i=1

〈µNNt, φi〉
]

= E
[ n∏
i=1

φi
(
X

(N)
Ii

(Nt)
)]
. (4.32)

By Proposition 4.1 applied to the process conditioned on X(N)(0), there exist εN → 0 such
that ∥∥∥P[(X(N)

I1
(Nt), . . . , X

(N)
In

(Nt)
)
∈ ·
∣∣X(N)(0)

]
− Tt(µN0 )⊗n

∥∥∥ ≤ εN . (4.33)

In view of (3.8), it follows that∣∣∣E[ n∏
i=1

φi
(
X

(N)
Ii

(t)
)∣∣∣X(N)(0)

]
−

n∏
i=1

〈Tt(µN0 ), φi〉
∣∣∣ ≤ εN . (4.34)

Combining this with (4.32), taking the expectation, we obtain that∣∣∣E[ n∏
i=1

〈µNNt, φi〉
]
− E

[ n∏
i=1

〈Tt(µN0 ), φi〉
]∣∣∣ ≤ εN . (4.35)

In view of this, to prove (4.31), it suffices to show that

E
[ n∏
i=1

〈Tt(µN0 ), φi〉
]
−→
N→∞

n∏
i=1

〈Tt(µ0), φi〉. (4.36)
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If µ ∈ P(S) is deterministic, then Theorem 1.6 tells us that

〈Tt(µ), φ〉 = E
[
φ ◦Gt

(
(Xj)j∈∇St

)]
, (4.37)

where ∇St and Gt are as in (1.44) and (1.47) and (Xj)j∈T are i.i.d. with law µ. Conditional

on µN0 , let (Xi
j)
i=1,...,n
j∈T be i.i.d. with common law µN0 . Let (∇Sit, Git) (i = 1, . . . , n) be i.i.d. and

distributed as the random variables in (1.44) and (1.47), independent of µN0 and (Xi
j)
i=1,...,n
j∈T .

Then (4.37) implies that

E
[ n∏
i=1

〈Tt(µN0 ), φi〉
]

= E
[ n∏
i=1

φi ◦Git
(
(Xi

j)j∈∇Sit

)]
. (4.38)

If we replace the expectation on the right-hand side by a conditional expectation given
(∇Sit, Git)i=1,...,n, then this is the integral of a measurable [−1, 1]-valued function with re-
spect to the expectation of a product measure of the form (µN0 )⊗m, where m =

∑n
i=1 |∇Sit|.

Condition (ii) of Theorem 1.5 allows us to replace the integral w.r.t. E[(µN0 )⊗m] by the integral
w.r.t. µ⊗m0 at the cost of a small error. Thus,

E
[ n∏
i=1

φi ◦Git
(
(Xi

j)j∈∇Sit

) ∣∣∣ (∇Sit, Git)i=1,...,n

]
= E

[ n∏
i=1

φi ◦Git
(
(X̃i

j)j∈∇Sit

) ∣∣∣ (∇Sit, Git)i=1,...,n

]
+RN ,

(4.39)

where the (X̃i
j)
i=1,...,n
j∈T are i.i.d. with common law µ0 and independent of (∇Sit, Git)i=1,...,n, and

RN is a random error term that by condition (ii) can be estimated as

|RN | ≤ εNm with m =

n∑
i=1

|∇Sit|, (4.40)

where limN→∞ ε
N
m = 0 for each m. Note that moreover |RN | ≤ 2 since the φi’s take values

in [−1, 1]. Integrating over the randomness of (∇Sit, Git)i=1,...,n, using bounded convergence,
(4.37) and (4.38), (4.36) follows.

With Lemmas 4.8 and 4.9 proved, most of the work needed for proving Theorem 1.5 is
done. The only remaining task is to improve the convergence at fixed times in (4.24) to
pathwise convergence as in (1.34). Our first aim is to show that the condition (1.34) does not
depend on the choice of the metric d. This follows from the following lemma, applied to the
Polish space P(S).

Lemma 4.10 (Convergence in path space) Let S be a Polish space and let d be a metric
generating the topology on S. Let DS [0,∞) be the space of cadlag functions x : [0,∞) → S,
equipped with the Skorohod topology. Let Xn = (Xn(t))t≥0 be random variables with values in
DS [0,∞) and let x : [0,∞)→ S be a continuous function. Then one has

P
[

sup
0≤t≤T

d
(
Xn(t), x(t)

)
≥ ε
]
−→
n→∞

0 (ε > 0, T <∞), (4.41)

if and only if
P
[
Xn ∈ · ] =⇒

n→∞
δx, (4.42)

where ⇒ denotes weak convergence of probability measures on DS [0,∞).
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Proof It is well-known that DS [0,∞) is a Polish space [EK86, Sect. 3.5]. Let dS be the metric
generating the topology on DS [0,∞) defined in [EK86, (5.2) of Chapter 3]. Then it is easy to
see that for all δ > 0 there exist ε > 0 and T <∞ such that

sup
0≤t≤T

d
(
y(t), x(t)

)
≤ ε implies dS(y, x) ≤ δ (x, y ∈ DS [0,∞)). (4.43)

In view of this, (4.41) implies

P
[
dS

(
Xn, x

)
≥ ε
]
−→
n→∞

0 (ε > 0), (4.44)

which by Lemma 4.6 implies (4.42). Conversely, if (4.42) holds, then by Skorohod’s represen-
tation theorem it is possible to couple the random variables Xn such that dS(Xn, x)→ 0 a.s.
By the continuity of x and [EK86, Lemma 3.10.1], this implies that

sup
0≤t≤T

d
(
Xn(t), x(t)

)
−→
n→∞

0 a.s. (T <∞), (4.45)

which implies (4.41).

Before the proof of Theorem 1.5 we need one more lemma.

Lemma 4.11 (Weak convergence and convergence in total variation norm) Let S
be a Polish space. Then there exists a metric d on P(S) such that d generates the topology of
weak convergence and d(µ, ν) ≤ ‖µ− ν‖ (µ, ν ∈ P(S)), where ‖ · ‖ denotes the total variation
norm.

Proof Let r be a metric generating the topology on S. Replacing r(x, y) by r(x, y) ∧ 1 if
necessary we can assume without loss of generality that r ≤ 1. Let L be the space of all
functions φ : S → R such that |φ(x) − φ(y)| ≤ r(x, y) (x, y ∈ S), i.e., these are Lipschitz
continuous functions with Lipschitz constant ≤ 1. Then

d(µ, ν) := sup
φ∈L

∣∣∣ ∫ φ dµ−
∫
φ dν

∣∣∣ (4.46)

is the 1-Wasserstein metric on P(S), which is known to generate the topology of weak con-
vergence. Let L′ := {φ ∈ L : supx∈S |φ(x)| ≤ 1}. Since r ≤ 1, each function φ ∈ L can be
written as φ = 1

2φ
′ + c with φ′ ∈ L′ and c ∈ R. In view of this and (3.8),

d(µ, ν) = 1
2 sup
φ∈L′

∣∣∣ ∫ φ dµ−
∫
φ dν

∣∣∣ ≤ 1
2 sup
|φ|≤1

∣∣∣ ∫ φ dµ−
∫
φ dν

∣∣∣ = ‖µ− ν‖. (4.47)

Proof of Theorem 1.5 Lemmas 4.8 and 4.9 show that either of the conditions (i) and (ii)
implies (4.24). We will use Lemma 4.2 to improve (4.24) to pathwise convergence as in (1.34).
By Lemma 4.10 it suffices to prove (1.34) for one particular metric d on P(S) that generates
the topology of weak convergence. We will choose a metric d as in Lemma 4.11.

Set µt := Tt(µ0) (t ≥ 0) denote the solution to the mean-field equation (1.22) with initial
state µ0. Lemma 4.2 implies that

P
[
‖µNNs − µNNt‖ ≥ L|t− s|+ ε

]
−→
N→∞

0 (ε > 0, s, t ≥ 0). (4.48)
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Taking the limit N →∞, using the fact that d(µ, ν) ≤ ‖µ− ν‖ and (4.24), it follows that

d(µs, µt) ≤ L|t− s| (s, t ≥ 0). (4.49)

Since for any s, t ≥ 0,

d(µNNs, µs) ≤ ‖µNNs − µNNt‖+ d(µNNt, µt) + d(µt, µs), (4.50)

using Lemma 4.2, (4.24), and (4.49), we see that for each T > 0 and t ∈ [0, T ],

P
[
∃s ∈ [0, T ] s.t. d(µNNs, µs) ≥ 2L|t− s|+ ε

]
−→
N→∞

0 (ε > 0). (4.51)

Combining this with the fact that by (4.24), for any n ≥ 1,

P
[

sup
k=0,...,n

d(µNN(k/n)T , µ(k/n)T ) ≥ ε
]
−→
N→∞

0 (ε > 0), (4.52)

we find that
P
[

sup
t∈[0,T ]

d(µNNt, µt) ≥ L/n+ ε
]
−→
N→∞

0 (ε > 0, n ≥ 1). (4.53)

Since ε and n are arbitrary, this implies (1.34).

5 Recursive Tree Processes

In this section, we prove our main results about RTPs with continuous time. For completeness,
we also prove Lemma 1.9 which deals with discrete time and says that each solution to the
RDE (1.54) gives rise to an RTP. This is done in Subsection 5.1

Our basic results about continuous-time RTPs are Lemma 1.8 and Proposition 1.10.
Lemma 1.8 describes the evolution of the law of the process

{Xi : i ∈ ∇St−s}0≤s≤t, (5.1)

that is constructed by assigning independent values Xi to elements i ∈ ∇St and then cal-
culating backwards. Proposition 1.10 says that adding exponential lifetimes to the elements
of an RTP yields a stationary version of the process in (5.1). These results are proved in
Subsection 5.2.

In Subsection 5.3, we prove continuous-time analogues of known discrete-time results re-
lated to endogeny. Following [AB05], Theorem 1.12 links the n-variate mean-field equation
to endogeny, while Propositions 1.14 and 1.16 are concerned with the higher-level mean-field
equation, and closely follow ideas from [MSS18].

5.1 Construction of RTPs

Proof of Lemma 1.9 For each finite subtree U ⊂ T that contains the root, we can construct
random variables (ωi)i∈U and (Xi)i∈U∪∂U such that the (ωi)i∈U are independent with common
law |r|−1r, the (Xi)i∈∂U are i.i.d. with common law ν and independent of the (ωi)i∈U, and the
(Xi)i∈U are inductively defined by

Xi = γ[ωi]
(
Xi1, . . . , Xiκ(ωi)

)
(i ∈ U). (5.2)
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The joint law of (ωi)i∈U and (Xi)i∈U∪∂U is a probability law PU on ΩU × SU∪∂U. Since Ω and
S are Polish spaces, we can apply Kolmogorov’s extension theorem. The statement of the
lemma then follows provided we can show that the laws PU are consistent in the sense that
if V ⊂ U is another subtree that contains the root, then the projection of PU on ΩV × SV∪∂V

equals PV. It suffices to prove this when U and V differ by one element only, say U = V ∪ {i}
where i ∈ ∇V. It follows from (5.2) and the fact that ν solves the RDE (1.54) that Xi has
law ν and is independent of (Xj)j∈∇V\{i}, and from this we see that the projection of PU is
indeed PV.

It will be useful in what follows to have a somewhat stronger version of Lemma 1.9 that
applies also to certain random subtrees U ⊂ T. Let T denote the set of all finite subtrees
U ⊂ T such that either ∅ ∈ U or U = ∅. Let us define a stopping tree to be a random variable
U with values in T such that

{U = V} is measurable w.r.t. σ
(
(ωi)i∈V

)
for all V ∈ T . (5.3)

In the special case that κ ≡ 1 and T = N, a stopping tree is just a stopping time w.r.t. the
filtration generated by ω∅,ω1,ω11, . . ..

Lemma 5.1 (RTPs and stopping trees) Let (ωi, Xi)i∈T be an RTP corresponding to a
map γ and a solution ν to the RDE (1.54), and let U ⊂ T be a stopping tree. Then conditional
on U, the random variables (Xi)i∈∂U are i.i.d. with common law ν and independent of (ωi)i∈U.

Proof For each fixed V ∈ T , by Lemma 1.9, conditional on (ωi)i∈V, the random variables
(Xi)i∈∂V are i.i.d. with common law ν. By (5.3), it follows that conditional on the event
{U = V} and (ωi)i∈V, the random variables (Xi)i∈∂V are i.i.d. with common law ν. Since this
holds for all V ∈ T , and since U ∈ T a.s., the claim follows.

5.2 Continuous-time RTPs

In this subsection, we prove Lemma 1.8 and Proposition 1.10. We work in our usual set-up
as described above Proposition 3.4. We start with a preparatory lemma that says that if we
condition on the σ-field Ft defined in (1.48), then the subtrees of S rooted at i ∈ ∇St are i.i.d.
with the same distribution as S. To formulate this properly, we need some notation.

We call the object (
S, (ωi, σi)i∈S

)
. (5.4)

a marked branching tree. For each i ∈ S, let Si describe the subtree of S that is rooted at i,
i.e.,

Si := {j ∈ T : ij ∈ S}. (5.5)

We set ωi
j := ωij (i, j ∈ T), so that ωi

j is the random element of Ω that “belongs” to j ∈ Si.
Fix t ≥ 0. For each i ∈ ∇St, let σi,tj describe the lifetime of an individual j ∈ Si after time t,
i.e.,

σi,t∅ := σi − (t− τ∗i ) and σi,tj := σij (∅ 6= j ∈ Si), (5.6)

where t− τ∗i is the age of the individual i at time t.

Lemma 5.2 (Memoryless property) For each t ≥ 0, conditional on the σ-field Ft, the
marked branching trees (

Si, (ωi
j, σ

i,t
j )j∈Si

)
i∈∇St (5.7)

are i.i.d. with the same distribution as the marked branching tree in (5.4).
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Proof Let T be as defined above (5.3). Then, for each V ∈ T , the event {St = V} is
measurable w.r.t. the σ-field generated by the random variables

(ωi, σi)i∈V and (1{σi>t−τ∗i })i∈∇V. (5.8)

Note that here ∇V = {ij : i ∈ V, j ≤ κ(ωi)} is measurable w.r.t. the σ-field generated
by (ωi)i∈V while for each i ∈ ∇V, the random variable τ∗i is measurable w.r.t. the σ-field
generated by (σi)i∈V.

Conditional on {St = V} and the random variables in (5.8), the random variables (ωi)i∈T\V
are still i.i.d. with their original law and independent of (σi)i∈T\V. The latter are also still
independent of each other and the (σi)i∈T\(V∪∇V) still have their original law, but the laws of
(σi)i∈∇V are changed since conditioning on {St = V} entails conditioning on σi > t − τ∗i for
each i ∈ ∇V.

Since this holds for each V ∈ S, we see that if we condition on Ft as in (1.48), then under
the conditional law the random variables ωi and σi with i ∈ T\St are still independent, and
all of these random variables still have their original law, except the σi with i ∈ ∇St, whose
laws are conditioned on the events σi > t− τ∗i . From this observation, using the memoryless
property of the exponential distribution, the claim of the lemma follows.

For each s ≥ 0 and i ∈ ∇Ss, within the marked branching tree
(
Si, (ωi

j, σ
i,s
j )j∈Si

)
rooted at

i, we define the birth and death times τ i,∗j and τ i,†j as in (1.41), with σj replaced by σi,sj , and

we use this to define Si,st and ∇Si,st (t ≥ 0) as in (1.44). Finally, we define Gi,s
t = GSi,st

as in

(1.46) and (1.47).

Proof of Lemma 1.8 We fix a marked branching tree as in (5.4) and times 0 ≤ s ≤ t.
Conditional on Ft, we assign i.i.d. (Xi)i∈∇St with common law µ0 to the leaves of St and
define (Xi)i∈St inductively as in (1.50).

We observe that ∇St is given by the disjoint union

∇St =
⋃

i∈∇Ss

{ij : j ∈ ∇Si,st−s}. (5.9)

Conditioning on Ft is the same as first conditioning on(
∇Ss, (ωj, σj)j∈Ss

)
, (5.10)

and then conditioning on (
∇Si,st−s, (ωi

j, σ
i,s
j )

j∈Si,st−s

)
i∈∇Ss , (5.11)

which by Lemma 5.7 are conditionally independent given the random variable in (5.10). Set

X i
j := Xij (j ∈ Si,st−s ∪∇S

i,s
t−s, i ∈ ∇Ss). (5.12)

Then
Xi = X i

∅ = Gi,s
t−s
(
(X i

j)j∈∇Si,st−s

)
. (5.13)

In view of this, by Theorem 1.6, conditional on the the random variable in (5.10), i.e., condi-
tional on Fs, the random variables (Xi)i∈∇Ss are i.i.d. with common law µt−s, where (µs)s≥0

denotes the solution of the mean-field equation (1.4) with initial state µ0.

Proof of Proposition 1.10 Since (σi)i∈T and (ωi, Xi)i∈T are independent, the conditional
law of (ωi, Xi)i∈T given (σi)i∈T is the same as the unconditional law. We claim that under
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the conditional law given (σi)i∈T, the random finite subtree St is a stopping tree in the sense
of (5.3). Indeed, St = V if and only if for each i ∈ V and j ∈ N+ (resp. j ∈ [d], depending on
how T is chosen), one has ij ∈ V if and only if

(i) j ≤ κ(i) and (ii) τ †ij ≤ t. (5.14)

Here the event in (i) is clearly measurable w.r.t. σ((ωi)i∈V) while under the conditional law
given (σi)i∈T, (ii) is just a deterministic condition. We can therefore apply Lemma 5.1 to
conclude that conditional on (σi)i∈T, St, and (ωi)i∈St , the random variables (Xi)i∈∂St are i.i.d.
with common law ν.

We observe that
∇St =

{
ij : i ∈ St, ij 6∈ St, j ≤ κ(ωi)

}
(5.15)

is a function of St, and (ωi)i∈St . Therefore, if we condition on Ft = σ(∇St, (ωi, σi)i∈St), the
random variables (Xi)i∈∇St are i.i.d. with common law ν. This proves (1.59) (i). Condition
(1.59) (ii) is also clearly fulfilled by the definition of an RTP.

5.3 Endogeny, bivariate uniqueness, and the higher-level equation

In this subsection, we prove Theorem 1.12 and Propositions 1.14 and 1.16.
Recall that an RTP (ωi, Xi)i∈T is endogenous if X∅ is measurable with respect to the σ-

field generated by the random variables (ωi)i∈T. In general, if X is a random variable taking
values in a Polish space and F is a sub-σ-field, then it is not hard to see that X is a.s. equal to
a F-measurable function if and only if the conditional law P[X ∈ · |F ] is a.s. a delta-measure.
In view of this, the following lemma implies that an RTP is endogenous if and only if X∅ is
a.s. measurable w.r.t. the σ-field generated by the random variables S and (ωi)i∈S.

Lemma 5.3 (Relevant randomness) Let (ωi, Xi)i∈T be an RTP corresponding to a solution
ν of the RDE (1.54). Let F be the σ-field generated by the random variables (ωi)i∈T and let
F be the σ-field generated by the random variables S and (ωi)i∈S. Then

P[X∅ ∈ · |F ] = P[X∅ ∈ · |F ] a.s. (5.16)

Proof Since F is generated by F and the random variables (ωi)i∈T\S, formula (5.16) says

that conditional on on F , the random variables (ωi)i∈T\S are independent of X∅. Let U(n) be

deterministic finite rooted subtrees of T that increase to T. Let F (n)
be the σ-field generated

by (ωi)i∈U(n) and let F (n) be the σ-field generated by S ∩ U(n) and (ωi)i∈S∩U(n) . Conditional
on F (n), the state at the root X∅ is a deterministic function of (Xi)i∈∇(S∩U(n)). Therefore,
by point (ii) in the definition of an RTP in Lemma 1.9, X∅ is conditionally independent of
(ωi)i∈(T\S)∩U(n) given F (n), or equivalently,

P[X∅ ∈ A |F
(n)

] = P[X∅ ∈ A |F (n)] a.s. (5.17)

for each measurable A ⊂ S. Letting n → ∞, using martingale convergence, we arrive at
(5.16).

The following lemma prepares for the proof of Theorem 1.12.

51



Lemma 5.4 (Successful coupling) Let (ωi, Xi)i∈T be an endogenous RTP corresponding to
a solution ν of the RDE (1.54) and let (σi)i∈T be an independent i.i.d. collection of exponential
random variables with mean |r|−1. Furthermore, let (Yi)i∈T be an i.i.d. collection of S-valued
random variables with common law ν, independent of (ωi, Xi, σi)i∈T. For each t > 0, define
random variables (Xt

i )i∈St∪∇St by

(i) Xt
i := Yi (i ∈ ∇St)

(ii) Xt
i = γ[ωi]

(
Xt

i1, . . . , X
t
iκ(ωi)

)
(i ∈ St).

(5.18)

Then
Xt

∅ −→
t→∞

X∅ in probability. (5.19)

Proof The following argument is a continuous-time version of the proofs of [AB05, Thm 11 (c)]
and [MSS18, Lemma 6]. Let Ft be the filtration defined in (1.48). We add a final element
F∞ := σ(

⋃
t≥0Ft) to the filtration, which is the σ-algebra generated by the random tree S

and the random variables (ωi, σi)i∈S. Let f, g : S → R be bounded and measurable functions.
Since X∅ and Xt

∅ are conditionally independent and identically distributed given Ft, we have

E[f(X∅)g(Xt
∅)] = E

[
E[f(X∅)|Ft]E[g(Xt

∅)|Ft]
]

= E
[
E[f(X∅)|Ft]E[g(X∅)|Ft]

]
−→
t→∞

E
[
E[f(X∅)|F∞]E[g(X∅)|F∞]

]
= E[f(X∅)g(X∅)],

(5.20)

where we used the martingale convergence and in the last equality also endogeny and Lemma
5.3. Since (5.20) holds in particular for any bounded continuous f and g, we conclude that
the law of (X∅, X

t
∅) converges weakly to the law of (X∅, X∅), which implies (5.19).

Proof of Theorem 1.12 If (ii) holds, then ν(2) is the only fixed point in P(S2)ν of the
bivariate mean-field equation. Since a measure is a fixed point of the bivariate mean-field
equation if and only if it is a fixed point of the map T (2), by Theorem 1.11, it follows that the
RTP corresponding to ν is endogenous.

Assume, conversely, that the RTP corresponding to ν is endogenous. Consider a collection

(Y 1
i , . . . , Y

n
i )i∈T of i.i.d. Sn-valued random variables with common law µ

(n)
0 , independent of

the RTP (ωi, Xi)i∈T and the exponential lifetimes (σi)i∈T. For each 1 ≤ m ≤ n and t > 0,
define random variables (Xm,t

i )i∈St∪∇St by

(i) Xm,t
i := Y m

i (i ∈ ∇St)

(ii) Xm,t
i = γ[ωi]

(
Xm,t

i1 , . . . , Xm,t
iκ(ωi)

)
(i ∈ St).

(5.21)

Then, by Theorem 1.6 applied to the n-variate map γ(n), we see that (X1,t
∅ , . . . , Xn,t

∅ ) has law

µ
(n)
t . By endogeny we get from Lemma 5.4 that

(X1,t
∅ , . . . , Xn,t

∅ ) −→
t→∞

(X∅, . . . , X∅) in probability. (5.22)

This completes the proof since the right-hand side of (5.22) has law ν(n) as defined in (1.62).

Proof of Proposition 1.14 The fact that (ρt)t≥0 solves the higher-level mean-field equation
(1.71) means that

∂
∂t〈ρt, φ〉 =

∫
Ω

r(dω)
{
〈Tγ̌[ω](ρt), φ〉 − 〈ρt, φ〉

}
(t ≥ 0), (5.23)
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for any bounded measurable φ : P(S) → R. In particular, we can apply this to functions of
the form

φ(µ) =

∫
S
µ(dx1) · · ·

∫
S
µ(dxn) f(x1, . . . , xn), (5.24)

where f : Sn → R is bounded and measurable. Then

〈ρt, φ〉 =

∫
Sn
ρ

(n)
t (dx) f(x) and 〈Tγ̌[ω](ρt), φ〉 =

∫
Sn

(
Tγ̌[ω](ρt)

)(n)
(dx) f(x), (5.25)

where (Tγ̌[ω](ρt))
(n) denotes the n-th moment measure of Tγ̌[ω](ρt). By [MSS18, Lemma 2],(

Tγ̌[ω](ρt)
)(n)

= Tγ(n)[ω](ρ
(n)
t ). (5.26)

Inserting this into (5.23), we see that (ρ
(n)
t )t≥0 solves the n-variate mean-field equation.

The following lemma prepares for the proof of Proposition 1.16.

Lemma 5.5 (Conditional law of the root) Let (ωi, Xi)i∈T be an RTP corresponding to a
solution ν of the RDE (1.54), let (σi)i∈T be an independent i.i.d. collection of exponentially
distributed random variables with mean |r|−1, and let (Ft)t≥0 be the filtration defined in (1.48).
Then the measures

ρt := P
[
P[X∅ ∈ · |Ft] ∈ ·

]
(t ≥ 0) (5.27)

solve the higher-level mean-field equation (1.71) with initial state ρ0 = δν .

Proof Conditional on Ft, the map Gt : S∇St → S is a deterministic map, and (Xi)i∈∇St are
i.i.d. with common law ν. Therefore, applying [MSS18, Lemma 8] to the case that the σ-fields
Hk there are all trivial and the probability measure P there is replaced by the conditional law
given Ft, we see that

TǦt(δν) =P
[
P[Gt

(
(Xi)i∈∇St

)
∈ ·
∣∣Ft] ∈ · ∣∣Ft]

=P
[
P[X∅ ∈ ·

∣∣Ft] ∈ · ∣∣Ft] (5.28)

Now by Theorem 1.6,

ρt := E[TǦt(δν)] = P
[
P[X∅ ∈ ·

∣∣Ft] ∈ · ] (t ≥ 0) (5.29)

solves the higher-level mean-field equation (1.71) with initial state ρ0 = δν .

Proof of Proposition 1.16 Let (ρit)t≥0 (i = 1, 2) be solutions to the higher-level mean-field
equation (1.71) such that ρ1

0 ≤cv ρ
2
0. Define ρit,(n) as in (3.22), with T replaced by the higher-

level map Ť from (1.73). It has been shown in [MSS18, Prop 3] that Ť is monotone w.r.t. the
convex order, so by induction we obtain from (3.22) that ρ1

t,(n) ≤cv ρ
2
t,(n) for all n ≥ 1 and

t ≥ 0. Letting n→∞, using (3.30), we see that ρ1
t ≤cv ρ

2
t for all t ≥ 0.

Let ν be a solution of the RDE (1.54). It has been shown in [MSS18, Prop. 3] that ν
solves the higher-level RDE (1.73) and there exists a (necessarily unique) solution ν of (1.73)
such that (1.76) holds. It has moreover been shown in [MSS18, Prop. 4] that ν is given by
(1.79). In view of this, to complete the proof, it suffices to show that the solution (ρt)t≥0 to
the higher-level mean-field equation (1.71) with initial state ρ0 = δν converges to the measure
in (1.79).
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We apply Lemma 5.5. As in the proof of Lemma 5.4, we add a final element F∞ :=
σ(
⋃
t≥0Ft) to the filtration, which is the σ-algebra generated by the random tree S and the

random variables (ωi, σi)i∈S. Then, by martingale convergence,

P[X∅ ∈ · |Ft] =⇒
t→∞

P[X∅ ∈ · |F∞] a.s., (5.30)

and hence the measures ρt in (5.27) satisfy

ρt =⇒
t→∞

P
[
P[X∅ ∈ · |F∞] ∈ ·

]
, (5.31)

where⇒ denotes weak convergence of probability measures on P(S), which is in turn equipped
with the topology of weak convergence of probability measures on S. Since the exponentially
distributed random variables (σi)i∈T are independent of the RTP (ωi, Xi)i∈T, we have

P[X∅ ∈ · |F∞] = P[X∅ ∈ · |F ] = P[X∅ ∈ · |(ωi)i∈T], (5.32)

where as in Lemma 5.3 F denotes the σ-field generated by the random variables S and (ωi)i∈S
and the last equality follows from that lemma. Inserting this into (5.31) we see that ρt
converges weakly to ν as defined in (1.79).

6 Further results

In this section, we prove some additional results about RTPs. In Subsection 6.1, we prove
Proposition 1.20 about the upper and lower solutions of a monotonous RDE. In Subsection 6.2
we prove Lemmas 1.21, 1.22, and 1.24 which give conditions for uniqueness of solutions to an
RDE. Subsection 6.3 is devoted to the proof of Lemma 1.25.

6.1 Monotonicity

In this subsection, we prove Proposition 1.20. We start with a number of simple lemmas.

Lemma 6.1 (A continuous monotone function) Let S be a compact metrizable space
that is equipped with a closed partial order in the sense of (1.90), and let d be a metric that
generates the topology. Then

f(x, y) := inf
{
d(x′, y′) : x′ ≤ x, y′ ≥ y

}
(x, y ∈ S) (6.1)

defines a continuous function f : S2 → [0,∞) such that f(x, y) = 0 if and only if x ≥ y and
moreover f(x, y) is decreasing in x and increasing in y.

Proof Since for any (x, y), (x′, y′) ∈ S2,∣∣d(x, y)− d(x′, y′)
∣∣ ≤ d(x, x′) + d(y, y′), (6.2)

the function d : S2 → [0,∞) is continuous. Assume that (xn, yn) ∈ S2 converge to a limit
(x, y). Since the infimum of a family of continuous functions is upper semi-continuous, we
have

lim sup
n→∞

f(xn, yn) ≤ f(x, y). (6.3)
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To prove that f is actually continuous, assume the converse. Then there exists a sequence
such that

lim inf
n→∞

f(xn, yn) ≤ f(x, y)− ε. (6.4)

for some ε > 0. By the definition of f , there exist x′n ≤ xn and y′n ≥ yn such that d(x′n, y
′
n) ≤

f(xn, yn) + ε/2. Since S is compact, we can select a subsequence such that (6.4) still holds
and the (x′n, y

′
n) converge to a limit (x′, y′). Since the partial order is closed in the sense of

(1.90), we have x′ ≤ x and y′ ≥ y, so

f(x, y) ≤ d(x′, y′) = lim
n→∞

d(x′n, y
′
n) ≤ ε/2 + lim inf

n→∞
f(xn, yn), (6.5)

which contradicts (6.4). We conclude that f : S2 → [0,∞) is continuous.
If x ≥ y, then setting (x′, y′) = (x, x) shows that f(x, y) = 0. Conversely, if f(x, y) = 0

then there exist xn ≤ x and yn ≥ y such that d(xn, yn)→ 0. Using the compactness of S, by
going to a subsequence, we can assume that the (xn, yn) converge to a limit (z, z). Since the
partial order is closed in the sense of (1.90), y ≤ z ≤ x and hence x ≥ y.

If x ≤ x∗ and y ≥ y∗, then

f(x∗, y∗) := inf
{
d(x′, y′) : x′ ≤ x∗, y′ ≥ y∗

}
≤ inf

{
d(x′, y′) : x′ ≤ x, y′ ≥ y

}
= f(x, y) (6.6)

since the second infimum is taken over a smaller set, showing that f(x, y) is decreasing in x
and increasing in y.

Lemma 6.2 (Comparison principle) Let S be a compact metrizable space that is equipped
with a partial order that is closed in the sense of (1.90). Let X,Y be S-valued random variables
such that X ≤ Y a.s. and P[X ∈ · ] ≥ P[Y ∈ · ]. Then X = Y a.s.

Proof of Lemma 6.2 Set fz(x) := f(z, x) with f as in Lemma 6.1. Then, for each z ∈ S,
fz : S → [0,∞) is continuous and monotone increasing, and fz(x) = 0 if and only if x ≤ z.
Let

S2
< :=

{
(x, y) ∈ S2 : x ≤ y, x 6= y

}
. (6.7)

We will prove the lemma by showing that if X,Y are S-valued random variables such that
P[(X,Y ) ∈ S2

<] > 0, then E[fz(X)] < E[fz(Y )] for some z ∈ S contradicting P[X ∈ · ] ≥
P[Y ∈ · ]. For each z ∈ S and δ > 0, we define an open set Oz,δ ⊂ S2 by

Oz,δ := {(x, y) ∈ S2 : fz(y)− fz(x) > δ}. (6.8)

Since for each (x, y) ∈ S2
<, one has fx(x) = 0 but fx(y) > 0, we see that⋃

{Oz,δ : z ∈ S, δ > 0} ⊃ S2
<. (6.9)

We now use the inner regularity of measures on Polish spaces w.r.t. compacta, which follows
from the regularity and tightness of any probability measure on a Polish space [Par05, Thm. 1.2
and 3.2]. Thus, we can find a compact set K ⊂ S2

< such that P[(X,Y ) ∈ K] > 0. Since K is
compact, it is covered by finitely many sets of the form (6.8), so there must exists a z ∈ S and
δ > 0 such that P[(X,Y ) ∈ Oz,δ] > 0. Since fz is monotone increasing and X ≤ Y it follows
that E[fz(X)] < E[fz(Y )].
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Lemma 6.3 (Compatibility of the stochastic order) Assume that S is equipped with a
partial order that is closed in the sense of (1.90). Then the stochastic order on P(S) is closed
with respect to the topology of weak convergence.

Proof We need to show that if µ1
n ≤ µ2

n for all n ∈ N and the µin ∈ P(S) converge weakly as
n→∞ to a limit µi∞ (i = 1, 2), then µ1

∞ ≤ µ2
∞. Since µ1

n ≤ µ2
n, for each n, we can couple Xi

n

with laws µin (i = 1, 2) such that X1
n ≤ X2

n. Since µ1
n and µ2

n converge as n → ∞, the joint
laws of (X1

n, X
2
n) are tight, so by going to a subsequence we may assume that they converge.

Then, by Skorohod’s representation theorem, we can couple the random variables (X1
n, X

2
n)

for different n in such a way that they converge a.s. to a limit (X1
∞, X

2
∞). Since the partial

order on S is closed, we have X1
∞ ≤ X2

∞ a.s., proving that µ1
∞ ≤ µ2

∞.

Lemma 6.4 (Monotonicity of T ) Assume that S is equipped with a partial order that is
closed and that γ[ω] is monotone for all ω ∈ Ω. Then the operator T in (1.1) is monotone
w.r.t. the stochastic order.

Proof If µ1 ≤ µ2, then we can couple random variables X1 and X2 with laws µ1, µ2 such
that X1 ≤ X2. Let (X1

i , X
2
i )i≥1 be i.i.d. copies of (X1, X2). Then

γ[ω](X1
1 , . . . , X

1
κ(ω)) ≤ γ[ω](X2

1 , . . . , X
2
κ(ω)) (6.10)

for all ω ∈ Ω and hence T (µ1) ≤ T (µ2) by (1.1).

In practice, Lemma 6.4 is the usual way to prove monotonocity of a map of the form (1.1).
Nevertheless, it is known that there are maps of the form (1.1), in particular, probability
kernels, that are monotone yet cannot be represented in terms of monotone maps [FM01,
Example 1.1].

Lemma 6.5 (Monotonicity in the initial state) Assume that S is equipped with a partial
order that is closed and that the operator T in (1.1) is monotone w.r.t. the stochastic order.
Then solutions (µit)t≥0 (i = 1, 2) of the mean-field equation (1.4) started in initial states
µ1

0 ≤ µ2
0 satisfy µ1

t ≤ µ2
t (t ≥ 0).

Proof Inductively define µit,(n) as in (3.22) with µ0 replaced by µi0 (i = 1, 2). Then µ1
t,(n) ≤

µ2
t,(n) for all n ≥ 1 and t ≥ 0. Letting n → ∞, we see as in the proof of Proposition 3.4 that

µit,(n) ⇒ µit as n→∞. By Lemma 6.3, we conclude that µ1
t ≤ µ2

t (t ≥ 0).

In the next two lemmas we need to assume compactness of S.

Lemma 6.6 (Increasing limits) Assume that S is a compact metrizable space equipped with
a partial order that is closed. Then every increasing sequence in S converges to a limit.

Proof Let (xn)n∈N be a sequence in S such that xn ≤ xn+1 for all n ∈ N. By compactness,
it suffices to prove that all subsequential limits are the same. Let (xm)m∈M and (xk)k∈K be
subsequences that converge to limits x and x′, respectively. For all k ∈ K, let k− := sup{m ∈
M : m ≤ k}. Then xk− ≤ xk for all k ∈ K and letting k → ∞, using the compatibility
condition (1.90), we see that x ≤ x′. The same argument gives x′ ≤ x and hence x = x′.

Lemma 6.7 (Increasing limits in the stochastic order) Assume that S is a compact
metrizable space equipped with a partial order that is closed. Then every sequence in P(S) that
is increasing in the stochastic order converges weakly to a limit.
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Proof Let (µn)n≥0 be increasing in the stochastic order. Then, for each n ≥ 1, we can couple
random variables Xn−1 and Xn with laws µn−1 and µn such that P[Xn−1 ≤ Xn] = 1. Let
Kn(x,dy) := P[Xn ∈ dy |Xn−1 = x] and let (Yn)n≥0 be a time-inhomogeneous Markov chain
with initial law µ0 and transition kernels P[Yn ∈ dy |Yn−1 = x] = Kn(x,dy). Then Yn−1 ≤ Yn
a.s. for all n ≥ 1 and hence the Yn a.s. increase to a limit Y∞ by Lemma 6.6. It follows that
the µn converge weakly to the law of Y∞.

We now turn to the proof of Proposition 1.20.

Lemma 6.8 (Lower and upper solutions) All conclusions of Proposition 1.20 except for
the statement about endogeny hold when the assumption that γ[ω] is monotone for all ω ∈ Ω
is replaced by the weaker condition that T is monotone.

Proof The proof is similar to the proof of [AB05, Lemma 15], which in turn is based on
well-known principles [Lig85, Thm III.2.3]. By symmetry, it suffices to prove the statement
for νlow.

Since for each s ≥ 0, (µlow
s+t)t≥0 solves (1.4) with initial state µlow

s ≥ δ0, we conclude from
Lemmas 6.4 and 6.5 that µlow

s+t ≥ µlow
t for each s ≥ 0 and hence t 7→ µlow

t is increasing w.r.t.
the stochastic order. By Lemma 6.7, it follows that µlow

t ⇒ νlow for some probability measure
νlow on S. Since µlow

s+t ⇒ νlow for all s ≥ 0, using Lemma 3.7 and the continuity of T , we see
that νlow is a fixed point of the mean-field equation (1.4) and hence solves the RDE (1.54).

If ν is any solution of the RDE (1.54), then µlow
t ≤ ν for all t ≥ 0 by Lemma 6.5 and the

fact that ν is a fixed point of (1.4). Letting t→∞, using Lemma 6.3, we see that νlow ≤ ν.

Lemma 6.9 (Random maps applied to extremal elements) Under the assumptions of
Proposition 1.20, if (ωi)i∈T are i.i.d. with common law |r|−1r, then there exist random variables
Xupp

∅ and X low
∅ with laws νupp and νlow that are given by the decreasing, resp. increasing limits

Xupp
∅ = lim

U(n)↑S
GU(n)(1, . . . , 1) and X low

∅ := lim
U(n)↑S

GU(n)(0, . . . , 0), (6.11)

where the limit does not depend on the choice of the sequence U(n) ∈ T such that U(n) ↑ S.
Here T denotes the set of all finite subtrees U ⊂ T such that either ∅ ∈ U or U = ∅, and for
each U ∈ T , the random map GU : S∇U → S is defined in (1.46).

Proof By symmetry, it suffices to prove the statement for X low
∅ . Since γ[ω] is monotone for

each ω ∈ Ω, the map GU is monotone for each U ∈ T . Define

XU
∅ := GU(0, . . . , 0) (U ∈ T ). (6.12)

Then XU
∅ ≤ XV

∅ for all U ⊂ V and hence if U(n) ∈ T increase to S, then the XU(n)

∅ increase to
a limit X low

∅ that does not depend on the choice of the sequence U(n).
Let (σi)i∈T be an independent i.i.d. collection of exponential random variables with mean

|r|−1. Define St ∈ T as in (1.44). Then by Theorem 1.6, XSt
∅ has law µlow

t while by what we
have already proved XSt

∅ increases to X low
∅ . Since µlow

t ⇒ νlow, it follows that X low
∅ has law

νlow.

Proof of Proposition 1.20 In view of Lemma 6.8, it only remains to prove the statement
about endogeny. Let (ωi, Xi)i∈T be an RTP corresponding to γ and some solution ν to the
RDE (1.54). Then

X∅ := GU
(
(Xi)i∈∇U

)
≥ XU

∅ (U ∈ T ), (6.13)
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with XU
∅ as in (6.12). So letting U ↑ T, using the fact that the partial order is closed, we obtain

that X∅ ≥ X low
∅ . In particular, if ν = νlow, then since X low

∅ also has law νlow, Lemma 6.2
tells us that X∅ = X low

∅ a.s. Since the latter is measurable w.r.t. the σ-field generated by the
(ωi)i∈T, this proves the endogeny of the RTP corresponding to γ and νlow.

6.2 Conditions for uniqueness

In this subsection, we prove Lemmas 1.21, 1.22, and 1.24.

Proof of Lemma 1.21 If Gt is constant then St is a root determining subtree, proving the
implication (i)⇒(ii). Conversely, if there a.s. exists a root determining subtree U, then, since
St ↑ S, there a.s. exists a (random) t < ∞ such that St ⊃ U and hence Gs is constant for
all s ≥ t. The implication (iii)⇒(ii) is trivial. Conversely, if S contains a root determining
subtree U, then by the finiteness of the latter we can keep removing elements from U as long
as this is still possible while retaining the property that U is root determining.

Proof of Lemma 1.22 (i)⇒(ii): This is clear, since a finite uniquely determined subtree is
root determining.

(ii)⇒(iii): For each i ∈ S, let Si, defined in (5.5), denote the subtree of S that is rooted
at i. Since Si is equally distributed with S, by (ii), for each i ∈ S, there a.s. exists a root
determining subtree Ui ⊂ Si. Since x ∈ ΞS implies xi = GUi

(
(xij)j∈∇Ui

)
and GUi is constant,

it follows that S is a.s. uniquely determined.
(ii)⇒(v): Since GUi is constant, we can define

Xi := GUi

(
(xij)j∈∇Ui

)
, (6.14)

where the right-hand side does not depend on the choice of (xij)j∈∇Ui . It is straightforward
to check that (ωi, Xi)i∈T satisfies conditions (i)–(iii) of Lemma 1.9 and hence is an RTP
corresponding to γ. It follows that ν := P[X∅ ∈ · ] solves the RDE (1.54).

Let (Yi)i∈T be an independent i.i.d. collection of S-valued random variables with common
law µ0, let (σi)i∈T be an independent i.i.d. collection of exponential random variables with
mean |r|−1, and define Xt

∅ := Gt
(
(Yi)i∈∇St

)
. Then Xt

∅ has law µt by Theorem 1.6. Since
Gt = GSt with St ↑ S, we see from (6.14) that P[Xt

∅ 6= X∅] → 0 as t → ∞, proving that
‖µt − ν‖ → 0.

(iii)⇒(iv): We note the following general principle: if S1, S2, S3 are Polish spaces and
(X1, X2) and (X ′1, X3) are random variables taking values in S1 × S2 resp. S1 × S3 such that
X1 and X ′1 are equal in law, then we can couple (X1, X2) and (X ′1, X3) such that X1 = X ′1. To
see this, let µ denote the law of X1, let Ki(x1, dxi) denote a regular version of the conditional
law of Xi given X1 resp. X ′1 (i = 1, 2), and define the joint law of X1, X2, X3 as

P[X1 ∈ A1, X2 ∈ A2, X3 ∈ A3] :=

∫
A1

µ(dx1)

∫
A2

K2(x1, dx2)

∫
A3

K3(x1, dx3), (6.15)

i.e., make X2 and X3 conditionally independent given X1. Applying this general principle,
we see that if ν1, ν2 are solutions to the RDE (1.54), then we can couple the associated RTPs
(ωi, X

1
i )i∈T and (ω′i, X

2
i )i∈T in such a way that ωi = ω′i for all i ∈ T. Since S is a.s. uniquely

determined, it follows that X1
∅ = X2

∅ a.s. and hence ν1 = ν2. The same argument also shows
that any solution to the bivariate RDE is concentrated on the diagonal, which by Theorem 1.11
implies endogeny.
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(iii) and S finite imply (ii): Since V ⊂ U and V root determining imply that U is root
determining, we see that P[Gt not constant] decreases to P[Gt not constant ∀t ≥ 0]. Assume
that this event has positive probability and condition on it. Choose t(n) → ∞. Then there
exist xn, yn ∈ ΞSt(n) such that xn∅ 6= yn∅. Since S is finite, the sequences xn and yn have
subsequences that converge pointwise for each i ∈ S to limits x∞, y∞. It is easy to see that
x∞, y∞ ∈ ΞS. Moreover, x∞∅ 6= y∞∅ . This shows that on the event {Gt not constant ∀t ≥ 0},
the tree S is not uniquely determined.

(ii) and S = {0, 1} imply (i): It suffices to show that each root determining subtree U of
S contains a uniquely determined subtree. For any i ∈ T, let T(i) := {ij : j ∈ T} denote i and
its descendants, and let ΞU,i denote the set of all (xj)j∈(U∪∇U)∩T(i) that satisfy

xj = γ[ωj](xj1, . . . , xjκ(ωj)) (j ∈ U ∩ T(i)). (6.16)

Define (χi)i∈U∪∇U by
χi := {xi : x ∈ ΞU,i} (i ∈ U ∪∇U). (6.17)

We claim that
If V ⊂ U is a subtree, then any x ∈ ΞV that satisfies
xi ∈ χi for all i ∈ ∇V can be extended to an x ∈ ΞU.

(6.18)

Indeed, this follows from the fact that the sets (U∪∇U)∩T(i) for different i ∈ ∇V are mutually
disjoint, which allows us to choose x ∈ ΞU,i independently for each i ∈ ∇V.

Note that χi = S for i ∈ ∇U and |χ∅| = 1 if U is root determining. Let V be the connected
component of {i ∈ U : |χi| = 1

}
that contains ∅. Since S has only two elements, χi = S for

i ∈ ∇V. Using (6.18), it follows that V is uniquely determined.

For completeness, we give three examples to show that the implications (ii)⇒(i), (iii)⇒(ii),
and (v)⇒(ii) do not hold in general. In all of these examples, κ(ω) = 1 for all ω ∈ Ω, which
means S = {∅, 1, 11, 111, . . .} = {1(n) : n ≥ 0}, where 1(n) denotes the word of length n made
from the alphabet {1}. It follows that the operator T from (1.1) is just the linear operator
associated with the transition kernel of a Markov chain. In all our examples, we take γ[ω] = g
for all ω ∈ Ω, where g : S → S is a fixed map.

Example 6.10 ((ii)6⇒(i)) Let S = {0, 1, 2} and g(x) := (x− 1) ∨ 0. Then S a.s. contains a
root determining subtree but S a.s. does not contain a uniquely determined subtree.

Proof The subtree U := {∅, 1} is root determining, since GU(x) = (x − 2) ∨ 0 = 0 for all
x ∈ S∇U = S. On the other hand, if V = {∅, 1, 11, . . . , 1(n)} is a finite subtree of S that
contains the root, then there exist x, y ∈ ΞV with x1(n) = 0 and y1(n) = 1, which shows V is
not uniquely determined.

Example 6.11 ((iii)6⇒(ii)) Let S = N and

g(x) :=

{
0 if x = 0,
x+ 1 if x ≥ 1.

(6.19)

Then S is a.s. uniquely determined but S a.s. contains no root determining subtree.

Proof If x ∈ ΞS satisfies x1(n) = m 6= 0 for some n, then x1(n+k) 6= 0 and x1(n+k) = m− k for
all k ≥ 0, which leads to a contradiction. It follows that ΞS contains a single element, which is
given by x1(n) = 0 for all n ≥ 0. In particular, S is uniquely determined. On the other hand,
for each finite subtree U = {∅, 1, 11, . . . , 1(n−1)} that contains the root, the function GU is of
the form GU(0) = 0 and GU(x) = x+ n (x ≥ 1), which is clearly not constant.
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Example 6.12 ((v)6⇒(ii)) Let S = {0, 1} and g(x) := 1 − x with π({g}) > 0. Then the
RDE (1.54) has a solution ν that is globally attractive in the sense that any solution (µt)t≥0

to (1.4) satisfies ‖µt − ν‖ −→
t→∞

0, where ‖ · ‖ denotes the total variation norm. Nevertheless,

S contains no root determining subtree.

Proof Since the continuous-time Markov chain that jumps from x to 1− x with rate π({g})
is ergodic, the RDE (1.54) has a solution ν that is globally attractive. On the other hand,
if U = {∅, 1, 11, . . . , 1(n−1)} is a finite subtree that contains the root, then GU(x) = x if n is
even and GU(x) = 1− x if n is odd, so GU is not constant.

Proof of Lemma 1.24 By Lemma 1.22, it suffices to prove that if the RDE (1.54) has a
unique solution, then Gt is constant for t large enough. By Proposition 1.20, the RDE (1.54)
has a unique solution if and only if νlow = νupp. Let 0 and 1 denote the minimal and maximal
elements of S. By Lemma 6.9, Gt(0, . . . , 0) and Gt(1, . . . , 1) converge as t→∞ to a.s. limits
with laws νlow and νupp, respectively. Since γ[ω] is monotone for each ω, the maps Gt are
monotone, and hence

Gt(0, . . . , 0) ≤ Gt(x) ≤ Gt(1, . . . , 1) (6.20)

for all x ∈ S∇St . Since S is finite, if the laws of the left- and right-hand sides of (6.20) converge
to the same limit, then limt→∞ P[Gt(0, . . . , 0) = Gt(1, . . . , 1)] = 1, proving that Gt is constant
for t large enough.

6.3 Duality

In this subsection, we prove Lemma 1.25. For a start, we will generalize quite a bit and assume
that S is a finite partially ordered set and that γ[ω] : Sκ(ω) → S is monotone for all ω ∈ Ω,
where Sκ(ω) is equipped with the product partial order. As in Subsection 5.1, we let T denote
the set of all finite subtrees U ⊂ T such that either ∅ ∈ U or U = ∅. For each U ∈ T , we
define GU : S∇U → S as in (1.46), where ∇U := {∅} if U = ∅.

For any U ∈ T , we let ΣU denote the set of all (yi)i∈U∪∇U that satisfy

(yi1, . . . , yiκ(ωi)) is a minimal element of
{
x ∈ Sκ(ωi) : γ[ωi](x) ≥ yi

}
(i ∈ U). (6.21)

Lemma 6.13 (Monotone duality) For any U ∈ T , x ∈ S∇U, and z ∈ S, one has GU(x) ≥ z
if and only if there exists a y ∈ ΣU such that y∅ = z and x ≥ y on ∇U.

Proof Fix z ∈ S. For each U ∈ T , let us write

YU :=
{

(yi)i∈∇U : y ∈ ΣU, y∅ = z
}
. (6.22)

Then we need to show that

GU(x) ≥ z ⇔ ∃y ∈ YU s.t. x ≥ y. (6.23)

The proof is by induction on the number of elements of U. If U = ∅, then GU is the identity
map, YU = {z}, and the statement is trivial.

We will show that if the statement is true for U and if j ∈ ∇U, then the statement is also
true for V := U ∪ {j}. Let x ∈ S∇V and inductively define xi for i ∈ V as in (1.45). By the
induction hypothesis, x∅ ≥ z if and only if

(xi)i∈∇U ≥ y for some y ∈ YU. (6.24)
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Here ∇V = (∇U\{j}) ∪ {j1, . . . , jκ(ωj)} and

YV =
{
y ∈ S∇V : ∃y′ ∈ Σ∇U s.t. yi = y′i ∀i ∈ ∇U\{j}

and (yj1, . . . , yjκ(ωj)) is a minimal element of
{
x ∈ Sκ(ωj) : γ[ωj](x) ≥ yj

}}
.

(6.25)
It follows that (6.24) is equivalent to

(xi)i∈∇V ≥ y for some y ∈ YV, (6.26)

which completes the induction step of the proof.

Lemma 6.14 (Minimal elements) Assume that for all ω ∈ Ω, there do not exist z, z′ ∈ S
and minimal elements y, y′ of {y : γ[ω](y) ≥ z} resp. {y′ : γ[ω](y′) ≥ z′} such that z 6≤ z′ but
y ≤ y′. Fix z ∈ S. For any U ∈ T , define YU as in (6.22) dependent on z. Then

YU =
{
y ∈ S∇U : y is a minimal element of G−1

U ({z})
}
. (6.27)

Proof By Lemma 6.13,

G−1
U
(
{z}
)

=
{
x ∈ S∇U : x ≥ y for some y ∈ YU

}
. (6.28)

In view of this, it suffices to prove that

YU does not contain two elements y, y′ with y 6= y′ and y ≤ y′. (6.29)

The proof is by induction on the number of elements of U. If U = ∅, then ∇U = {∅} and YU
consists of a single element that has y∅ = z, so (6.29) is satisfied. Assume that (6.29) holds
for U and let V := U ∪ {i} for some i ∈ ∇U. Then (6.25) and the assumption of the lemma
imply that (6.29) holds for V.

Lemma 6.15 (Sets with two elements) Assume that S = {0, 1} and that γ[ω](0, . . . , 0) = 0
for all ω ∈ Ω. Then the assumption of Lemma 6.14 is satisfied.

Proof If z 6≤ z′ then we must have z = 1 and z′ = 0, so we must show that there do not exist
minimal elements y, y′ of {y : γ[ω](y) ≥ 1} resp. {y′ : γ[ω](y′) ≥ 0} such that y ≤ y′. Clearly,
{y′ : γ[ω](y′) ≥ 0} = {0, 1}κ(ω) has only one minimal element, which is the configuration
(0, . . . , 0) ∈ {0, 1}κ(ω), so we must show that there does not exist a minimal element y of
{y : γ[ω](y) ≥ 1} such that y ≤ (0, . . . , 0). Equivalently, this says that γ[ω](0, . . . , 0) 6≥ 1
which is satisfied since γ[ω](0, . . . , 0) = 0.

Lemma 6.16 (Lower and upper solutions) Assume that S is a finite partially ordered
set that contains minimal and maximal elements, denoted by 0 and 1. Assume that γ[ω] is
monotone for all ω ∈ Ω. Then, for all z ∈ S,

νupp

(
{x : x ≥ z}

)
=P
[
∃y ∈ ΣS s.t. y∅ = z

]
νlow

(
{x : x ≥ z}

)
=P
[
∃y ∈ ΣS s.t. y∅ = z and {i ∈ S : yi 6= 0} is finite

]
.

(6.30)
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Proof By Lemma 6.13, GU(1, . . . , 1) ≥ z if and only if Σz
U := {y ∈ ΣU : y∅ = z} is not empty.

If U ⊂ V, then Σz
V 6= ∅ implies Σz

U 6= ∅, so the events {Σz
U(n) 6= ∅} decrease to a limit. We

claim that this is the event {Σz
S 6= ∅}. Since the restriction of an element y ∈ Σz

S to U yields
an element of Σz

U, it is clear that{
Σz
U(n) 6= ∅ ∀n

}
⊃ {Σz

S 6= ∅}. (6.31)

Conversely, if for each n there exists some y(n) ∈ Σz
U(n) , then by the finiteness of S we can

select a subsequence of the y(n) that converges pointwise to a limit y. Since y ∈ Σz
S, this

proves the other inclusion. By Lemma 6.9, it follows that

P[Xupp
∅ ≥ z] = P

[
Σz
S 6= ∅

]
. (6.32)

By Lemma 6.13, GU(0, . . . , 0) ≥ z if and only if Σz
U contains an element y such that yi = 0

for all i ∈ ∇U. Since for each ω ∈ Ω, the zero configuration (0, . . . , 0) is the unique minimal
element of {x ∈ Sκ(ω) : γ[ω](x) ≥ 0}, we observe that if y ∈ ΣU satisfies yi = 0 for all i ∈ ∇U,
then y can uniquely by extended to an element of ΣV for any V ⊃ U by putting yi := 0 for
i ∈ (V ∪∇V)\(U ∪∇U). In view of this, by Lemma 6.9,

P[X low
∅ ≥ z] = P

[
∃y ∈ Σz

S s.t. {i ∈ S : yi 6= 0} is finite
]
. (6.33)

Proof of Lemma 1.25 Recall the definition of ΣU in (6.21). We observe that O is an open
subtree of U if and only if its indicator function 1O satisfies 1O ∈ ΣU and 1O(∅) = 1. In view
of this, (1.98) is just a special case of Lemma 6.16. Formula (1.99) follows from Lemmas 6.14
and 6.15 applied to U = St.

7 Cooperative branching

In this section we prove all results that deal specifically with our running example of a system
with cooperative branching and deaths. In Subsection 7.1, we prove Proposition 1.13 about
the bivariate mean-field equation. In Subsection 7.2, we prove Theorem 1.18 and Lemma 1.19
about the higher-level mean-field equation. In Subsection 7.3, finally, we prove Lemmas 1.23
and 1.26 which illustrate the concepts of minimal root determining subtrees and open subtrees
in the concrete set-up of our example.

7.1 The bivariate mean-field equation

In this subsection we prove Proposition 1.13. We identify a measure µ(2) on {0, 1}2 with the
function µ(2) : {0, 1}2 → R defined as µ(2)(0, 0) := µ({(0, 0)}), µ(2)(0, 1) := µ({(0, 1)}), etc.
We parametrize a measure µ(2) ∈ Psym({0, 1}2) by the parameters

p := µ(2)(1, 0) + µ(2)(1, 1) and r := µ(2)(0, 1) + µ(2)(1, 0) + µ(2)(1, 1). (7.1)

We observe that µ(2)(0, 0) = 1 − r, µ(2)(1, 0) = µ(2)(0, 1) = r − p, and hence µ(2)(1, 1) =
1 − (1 − r) − 2(r − p) = 2p − r. It follows that p and r determine µ(2) uniquely and indeed,
the map

Psym({0, 1}2) 3 µ(2) 7→ (p, r) ∈ D :=
{

(p, r) ∈ R2 : 0 ≤ p ≤ 1, p ≤ r ≤ 1 ∧ 2p
}

(7.2)
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is a bijection. Moreover, µ(2) is concentrated on the diagonal {(0, 0), (1, 1)} if and only if

p = r. A function (µ
(2)
t )t≥0 with values in Psym({0, 1}2) gives through (7.1) rise to a function

(pt, rt)t≥0 taking values in D.

Lemma 7.1 (Change of parameters) A function (µ
(2)
t )t≥0 with values in Psym({0, 1}2)

solves (1.65) if and only if the associated function (pt, rt)t≥0 solves

(i) ∂
∂tpt =αp2

t (1− pt)− pt,

(ii) ∂
∂trt =α

[
r2
t − 2(rt − pt)2

]
(1− rt)− rt,

}
(t ≥ 0). (7.3)

Proof As noted in Section 1.6, if µ
(2)
t solves the bivariate mean-field equation, then its one-

dimensional marginals solve the mean-field equation (1.4). Since µ
(2)
t is symmetric, both

marginals are the same. We denote these by µt. Then pt := µt({1}) and the equation we find
for pt is the same as in (1.36).

We will now obtain the equation for the parameter rt. By definitions (1.12) and (1.13) we
have for any µ(2) ∈ P({0, 1}2) that Tcob(2)(µ(2)) is the law of the random variable(

X1
1 ∨ (X1

2 ∧X1
3 ), X2

1 ∨ (X2
2 ∧X2

3 )
)
, (7.4)

where (X1
i , X

2
i ) (i = 1, 2, 3) are i.i.d. with law µ(2). It follows that

Tcob(2)(µ(2))(0, 0) = P
[
(X1

1 , X
2
1 ) = (0, 0)

](
1− P

[
(X1

2 , X
2
2 ) 6= (0, 0)

]
P
[
(X1

3 , X
2
3 ) 6= (0, 0)

]
+P
[
(X1

2 , X
2
2 ) = (0, 1)]P

[
(X1

3 , X
2
3 ) = (1, 0)] + P

[
(X1

2 , X
2
2 ) = (1, 0)]P

[
(X1

3 , X
2
3 ) = (0, 1)]

)
= (1− r)

(
1− r2 + 2(r − p)2

)
.

(7.5)
Similar, but simpler considerations give

Tdth(2)(µ(2))(0, 0) = 1. (7.6)

Equation (1.65) in the point (0, 0) now gives

∂
∂t(1− rt) = ∂

∂tµ
(2)
t (0, 0) = α

{
(1− rt)

(
1− r2

t + 2(rt − pt)2
)
− (1− rt)

}
+
{

1− (1− rt)
}
, (7.7)

which simplifies to the second equation in (7.3).

In view of Lemma 7.1 and the remarks that precede it, Proposition 1.13 follows from the
following proposition.

Proposition 7.2 (Bivariate differential equation) For α > 4, the equation (7.3) has four
fixed points in the space D defined in (7.2), which are of the form

(zlow, zlow), (zmid, zmid), (zmid, rmid), and (zupp, zupp), (7.8)

with zlow, zmid, zupp as in (1.37) and zmid < rmid. Solutions to (7.3) started in D converge to
one of these fixed points, the domains of attraction being

{(p, r) : p < zmid}, {(zmid, zmid)}, {(zmid, r) : r > zmid}, and {(p, r) : p > zmid}, (7.9)

respectively. For α = 4, the equation (7.3) has two fixed points in the space D, which are

(zlow, zlow) and (zmid, zmid) = (zupp, zupp), (7.10)
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with domains of attraction

{(p, r) : p < zmid} and {(p, r) : p ≥ zmid}. (7.11)

For α < 4, (zlow, zlow) is the only fixed point in D and its domain of attraction is the whole
space D.

Proof In Section 1.3 we have found all fixed points of (7.3) (i) and determined their domains
of attraction. It is clear from (7.3) that if z is a fixed point of (7.3) (i), then (z, z) is a fixed
point of (7.3), so (zlow, zlow) and for α ≥ 4 also (zmid, zmid) and (zupp, zupp) are fixed points of
(7.3).

If α ≥ 4 and p0 < zmid or if α < 4 and p0 is arbitrary, then we have seen in Section 1.3
that solutions to (7.3) (i) satisfy pt → 0 = zlow as t → ∞. Since 0 ≤ rt ≤ 2pt, it follows that
also rt → 0. This proves the statements of the proposition about the domain of attraction of
(zlow, zlow) for all values of α.

Let

Pα(p) := αp2(1− p)− p and Rα,p(r) := α
[
r2 − 2(r − p)2

]
(1− r)− r (7.12)

denote the drift functions of pt and rt, respectively. We observe that Rα,p(r) ≤ Pα(r) (p, r ∈ R)
and Pα(r) < 0 for all zupp < r ≤ 1, which implies that

sup
p∈R

Rα,p(r) < 0 (zupp < r ≤ 1). (7.13)

It follows that solutions of (7.3) satisfy

lim sup
t→∞

rt ≤ zupp. (7.14)

If α > 4 and p0 > zmid or if α = 4 and p0 ≥ zmid, we have seen in Section 1.3 that solutions
to (7.3) (i) satisfy pt → zupp as t→∞. Combining this with (7.14) and the fact that pt ≤ rt,
we see that (pt, rt)→ (zupp, zupp).

To complete the proof, we must investigate the long-time behavior of solutions of (7.3)
when α > 4 and p0 = zmid. In this case pt = zmid for all t ≥ 0 and rt takes values in
[zmid, 2zmid] and solves the differential equation

∂
∂trt = Rα,zmid

(rt) (t ≥ 0). (7.15)

It is clear rt = zmid for all t ≥ 0 is a solution. Since zmid < 1/2, in view of (7.2), we must
prove that all solutions with zmid < r0 ≤ 2zmid converge to a nontrivial fixed point. We write

Rα,zmid
(r) = Pα(r)− 2α(r − zmid)2(1− r). (7.16)

Since the first term has a positive slope at r = zmid while the second term has zero slope, we
conclude that Rα,zmid

has a positive slope at r = zmid. Since solutions to (7.3) do not leave
the domain D, we must have Rα,zmid

(2zmid) ≤ 0. Since Rα,zmid
(r) = αr3 + O(r2) as r → ∞,

we must have Rα,zmid
(r) > 0 for r sufficiently large. These observations imply that the cubic

function Rα,zmid
has three zeros rlow < rmid < rup with

rlow = zmid < rmid ≤ 2zmid < rupp, (7.17)

and Rα,zmid
> 0 on (zmid, rmid) and Rα,zmid

< 0 on (rmid, rupp). It follows that solutions to
(7.15) started with zmid < r0 ≤ 2zmid satisfy rt → rmid as t→∞.
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7.2 The higher-level mean-field equation

In this subsection we prove Theorem 1.18 and Lemma 1.19. We start with two preparatory
lemmas.

Lemma 7.3 (Convex order and second moments) Let S be a Polish space S and let

ρ1, ρ2 ∈ P(P(S)) satisfy ρ1 ≤cv ρ2 and ρ
(2)
1 = ρ

(2)
2 . Then ρ1 = ρ2.

Proof This follows from [MSS18, Lemma 14].

In the next lemma, we use the notation µ := P[δX ∈ · ] defined in Subsection 1.7.

Lemma 7.4 (Maximal measure in convex order) Let S be a Polish space and let µ ∈
P(S). Then a measure ρ ∈ P(P(S)) satisfies ρ = µ if and only if ρ(2) = µ(2).

Proof The condition ρ(2) = µ(2) implies that the first moment measure of ρ is µ. By (1.74),
it follows that ρ ≤cv µ, so the statement follows from Lemma 7.3.

Proof of Theorem 1.18 It follows from their definition that the measures νlow, νmid, νupp

and νlow, νmid, νupp solve the higher-level RDE and their first moment measures are νlow, νmid

and νupp, respectively.
By [MSS18, Thm 5], one has ν = ν if and only if the RTP corresponding to ν is endoge-

nous. By Theorem 1.11, endogeny is equivalent to bivariate uniqueness, so we obtain from
Proposition 1.13 that νlow = νlow, νmid 6= νmid, and νupp = νupp.

Since the second moment measures of νlow, νmid, νupp are of the form (1.62), we see that

the measures ν
(2)
low, ν

(2)
mid, ν

(2)
upp from Proposition 1.13 are indeed the second moment measures

of νlow, νmid, νupp.
By Proposition 1.14, the second moment measure of νmid solves the bivariate RDE. Since

νmid 6= νmid, Lemma 7.4 tells us that the second moment measure of νmid is different from

ν
(2)
mid. It follows that the measure ν

(2)
mid from Proposition 1.13 is indeed the second moment

measure of νmid.
Let (ρt)t≥0 be a solution to the higher-level mean-field equation. Assume that α >

4. Then Propositions 1.13 and 1.14 tell us that ρ
(2)
t converges to one of the fixed points

ν
(2)
low, ν

(2)
mid, ν

(2)
mid, ν

(2)
upp, depending on whether

(i) ρ(1)({1}) < zmid, (ii) ρ(1)({1}) = zmid and ρ(2) 6= ν
(2)
mid,

(iii) ρ(2) = ν
(2)
mid, (iv) ρ(1)({1}) > zmid.

(7.18)

By Lemma 7.4, these four cases correspond exactly to the four domains of attraction in (1.82).
To prove that in fact ρt converges to νlow, νmid, νmid, or νupp, respectively, in each of these
cases, by the compactness of P(P({0, 1})), it suffices to prove that if ρtn ⇒ ρ∗ along a sequence
of times tn → ∞, then ρ∗ is the right limit point. In the cases (i), (iii) and (iv) this is clear
from Lemma 7.4.

To prove the statement also in case (ii), let (ρ′t)t≥0 be the solution to the higher-level mean-
field equation started in ρ′0 = δνmid

. Then (1.74) and Proposition 1.16 tells us that ρ′t ≤cv ρt
for all t ≥ 0 and ρ′t ⇒ νmid. Taking the limit tn →∞, using condition (i) of Theorem 1.15, we

conclude that νmid ≤cv ρ∗. Since moreover ν
(2)
mid = ρ

(2)
∗ , we can apply Lemma 7.3 to conclude

that νmid = ρ∗.
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This completes the proof for α > 4. The cases α = 4 and α < 4 are similar, but simpler.

Proof of Lemma 1.19 We note that if η1, η2, η3 ∈ [0, 1], then

1
{ĉob(η1,η2,η3)=1}

= 1{η1+(1−η1)η2η3=1}= 1{η1=1} ∨
(
1{η2=1} ∧ 1{η3=1}

)
,

1
{ĉob(η1,η2,η3)>0}

= 1{η1+(1−η1)η2η3>0}= 1{η1>0} ∨
(
1{η2>0} ∧ 1{η3>0}

)
.

(7.19)

Combining this with (1.13) and Proposition 1.14, we see that if ρ solves the higher-level RDE
(1.73), then ∫

ρ(dη)η, ρ({1}), and ρ((0, 1]) (7.20)

must all solve the RDE (1.54). Applying this to νmid which has
∫
νmid(dη)η = zmid, we see

that
νmid({1}) ∈ {0, zmid, zupp} and νmid((0, 1]) ∈ {0, zmid, zupp}. (7.21)

We first observe that since
∫
νmid(dη)η = zmid, we can have νmid({1}) ≥ zmid only if νmid =

νmid, which we know is not the case, so we conclude that νmid({1}) = 0. If νmid((0, 1]) ≤ zmid

then
∫
νmid(dη)η = zmid forces νmid({1}) = zmid, which we know is not the case, so we conclude

that νmid((0, 1]) = zupp and hence νmid({0}) = 1− zupp = zmid, where the last equality follows
from (1.37).

To calculate
∫
νmid(dη) η2, we use that 1 − ν

(2)
mid(0, 0) = rmid, where rmid is the second

largest solution r of the equation Rα,zmid
(r) = 0, with Rα,zmid

defined as in (7.12). The
smallest solution of the cubic equation Rα,zmid

(r) = 0 is r = zmid. Dividing by (r−zmid) yields
a quadratic equation of which rmid is the smallest solution. Since these are straightforward,
but tedious calculations, we omit them.

7.3 Root-determining and open subtrees

In this subsection we prove Lemmas 1.23 and 1.26.

Proof of Lemma 1.23 Since κ(ω) = 3 if γ[ω] = cob and κ(ω) = 0 if γ[ω] = dth, we see that∫
r(dω)(κ(ω)− 1) = 2α− 1, (7.22)

which is ≤ 1 if and only if α ≤ 1
2 . At the end of Subsection 1.3, we have seen that in our

example the RDE (1.54) has a unique solution if and only if α < 4. By Lemma 1.24 this is
equivalent to condition (ii) of Lemma 1.22. Since S = {0, 1}, Lemma 1.22 tells is that in our
example, conditions (i)–(iii) are equivalent.

We claim that a finite subtree U ⊂ S satisfying (1.94) is uniquely determined and in fact
x ∈ ΞU implies xi = 0 for all i ∈ U. To prove this, let A = {i ∈ U : xi = 0 ∀x ∈ ΞU}. Since U
is finite, if U\A is not empty then we can find some i ∈ U\A such that ij 6∈ A for j = 1, 2, 3.
(Here we take T to be the set of all words made from the alphabet {1, 2, 3}.) If γ[ωi] = dth,
then xi = 0 for all x ∈ ΞU which contradicts the fact that i ∈ U\A. But if γ[ωi] = cob, then
(1.94) and the fact that ij 6∈ A for j = 1, 2, 3 again imply xi = 0 for all x ∈ ΞU, so we see that
U\A must be empty. In particular, this shows that U is root determining.

To see that U is a minimal root determining subtree, assume that V ⊂ U is a smaller one.
Then there must be be some i ∈ V such that γ[ωi] = cob and either i1 6∈ V or V∩{i2, i3} = ∅.
(Here we use that by definition, minimal root determining subtrees contain the root, so V is
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not empty.) But then either i1 ∈ ∇V or {i2, i3} ⊂ ∇V. Define x ∈ ΞV inductively by (1.45)

with xj = 1 for all j ∈ ∇V. Then xi = 1. Either i is the root or its predecessor
←
i satisfies

x←
i

= 1 by (1.94), so by induction we see that xi = 1. Since the all-zero configuration is also
an element of ΞV, this proves that V is not root determining and hence U is minimal.

Proof of Lemma 1.26 We observe that

Ycob =
{
y ∈ {0, 1}3 : y is a minimal element of cob−1({1})

}
=
{
y ∈ {0, 1}3 : cob(y) = 1 and cob(y′) = 0 ∀y′ ≤ y, y′ 6= y

}
=
{

(1, 0, 0), (0, 1, 1)
}
.

(7.23)

Since the set dth−1({1}) = {y ∈ {0, 1}0 : dth(y) = 1} is empty, it has no minimal elements,
and hence Ydth = ∅. On the other hand, bth(y) = 1 for all y ∈ {0, 1}0. In fact, {0, 1}0 = {∅}
is a set with only one element, the empty word, so bth−1({1}) = {∅} and hence the set of its
minimal elements is Ybth = {∅}. Now (1.97) with the convention that 1Ai

:= ∅ if κ(ωi) = 0
says that O is an open subtree of U if and only if:

(i) {j ∈ {1, 2, 3} : ij ∈ O} = {1} or = {2, 3} for each i ∈ O ∩ U such that γ[ωi] = cob,

(ii) ∅ ∈ ∅ for each i ∈ O ∩ U such that γ[ωi] = dth,

(iii) ∅ ∈ {∅} for each i ∈ O ∩ U such that γ[ωi] = bth,

which corresponds to the condition in (1.102).
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