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Abstract

This paper develops a systematic treatment of monotonicity-based dualities for Markov
processes taking values in partially ordered sets. We show that every Markov process that
takes values in a finite partially ordered set and whose generator can be represented in
monotone maps has a pathwise dual, which in the special setting of attractive spin systems
has been discovered earlier by Gray. This dual simplifies a lot in the special case that the
space is a lattice and all monotone maps satisfy an additivity condition. This leads to a
unified treatment of several well-known dualities, including Siegmunds dual for processes
with a totally ordered state space, duality of additive spin systems, and a duality due to
Krone for the two-stage contact process. It is well-known that additive spin systems can
be constructed using a graphical representation involving open paths. We show that more
generally, every additive Markov process can be formulated in terms of open paths on a
suitably chosen underlying space. However, in order for the process and its dual to be
representable on the same underlying space, one needs to assume that the state space is a
distributive lattice. In the final section, we show how our results can be generalized from
finite state spaces to interacting particle systems with finite local state spaces.
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1 Introduction

The problem of systematically finding Markov processes that are dual to each other has inter-
ested a large number of researchers. In [SL95, SL97, Sud00], a systematic treatment is given
of dualities for nearest-neighbor interacting particle systems where the duality function is of a
special “local” form (more precisely, it is the product over all sites of the underlying space of a
function depending on one coordinate only). In [GKRV09, CGGR15], dual Markov processes
are linked to different representations of the same Lie algebra. The paper [JK14] investigates
different notions of duality, distinguishing in particular the usual modern definition of Markov
process duality from stronger, “pathwise” concepts.

In the present paper, we systematically investigate the link between Markov process du-
ality and order theory. This unified treatment includes some of the oldest known forms of
Markov process duality. Building on earlier work, Siegmund [Sie76] proved that (almost)
every monotone Markov process taking values in a totally ordered set has a dual, which is
also a monotone Markov process, taking values in (almost) the same set. Examples of such
dualities (for example between Brownian motion with reflection and absorption at the origin)
were known at least 28 years earlier; see [JK14] and also [Lig85, Section II.3] for a (short)
historical overview.

Moving away from totally ordered spaces, spin systems are Markov processes taking values
in the set of all subsets of a countable underlying space. Such a set of subsets, equipped with
the order of set inclusion, is a partially ordered set. It was known since the early 1970ies
that certain spin systems such as the contact and voter models have duals. Harris [Har78]
showed that the essential feature of these models is that they are additive and that there
is a percolation picture behind each additive system. The idea was further formalized in
Griffeath’s monologue [Gri79] where the term “percolation substructure” was coined. Some
years later, Gray [Gra86] introduced a more general, but also more complicated duality for
spin systems that are monotone but not necessarily additive, which includes the dualities of
additive systems as a special case.

The main contribution of the present paper is that we replace the specific examples of
partially ordered sets mentioned above (totally ordered sets respectively the set of all subsets
of another set) by a general partially ordered set. For technical simplicity, we will mostly
concentrate on finite spaces, but we also show how the theory can be generalized to infinite
products of finite partially ordered sets, which allows our results to be applied to interacting
particle systems. Widening the view to general partially ordered sets leads to a number of
new insights. In particular, we will see that:

I Siegmund’s duality for monotone processes taking values in totally ordered spaces and
Harris’ duality for additive spin systems are based on the same principle. Indeed, both
are special cases of a general duality for additive processes taking values in a lattice (in
the order-theoretic meaning of the word).

II Additive processes taking values in a general lattice (in our new, more general formu-
lation) can always be constructed in terms of a percolation substructure. If the lattice
is moreover distributive, then the process and its dual can be represented in the same
percolation substructure and the duality has a graphical interpretation.

III Gray’s duality for monotone spin systems can be generalized to monotonically repre-
sentable Markov processes taking values in general partially ordered spaces. Here,
“monotonically representable” is a somewhat stronger concept than monotonicity, as
discovered by [FM01] and independently by D.A. Ross (unpublished).

The rest of the paper is organized as follows. In Section 2, we state our main results. In
Subsections 2.1–2.3, we develop a general strategy for finding pathwise duals, based on invari-
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ant subspaces, and determine the invariant subspaces associated with additive and monotone
maps, respectively, that form the basis for our dualities. In Subsections 2.4 and 2.5 we then
state our main results, which are a general duality for additively representable Markov pro-
cesses (Theorem 7, corresponding to Point I above), and general duality for monotonically
representable Markov processes (Theorem 9, corresponding to Point III above). In Subsec-
tion 2.6, we present the results from Point II above and in Subsection 2.7 we mention some
open problems.

Section 3 is dedicated to examples. In Subsections 3.1 and 3.2, we show that Siegmund’s
duality for monotone processes taking values in totally ordered spaces and Harris’ duality
for additive spin systems, respectively, are both special cases of the duality for additively
representable systems introduced in Subsection 2.4. In Subsection 3.3, we show that a nice
duality for the two-stage contact process discovered by Krone [Kro99] also fits into this general
scheme. In Subsection 3.4, we show that Gray’s [Gra86] duality for monotone spin systems
is a special case of the general duality for monotonically representable Markov processes from
Subsection 2.5. In Subsection 3.5, finally, we apply the duality of Subsection 2.5 to derive a new
duality, announced in [SS14], for particle systems with cooperative branching and coalescence.

Section 4 is dedicated to proofs. Up to this point, all results are for processes with finite
state spaces only. In Section 5, we generalize our results to infinite product spaces, which
are the typical setting of interacting particle systems. We conclude the paper with a short
appendix recalling some basic facts from order theory.

2 Main results

2.1 Duality and pathwise duality

We recall that a (time-homogeneous) Markov process with measurable state space S is a
stochastic process X = (Xt)t≥0 taking values in S, defined on an underlying probability space
(Ω,F ,P) with expectation denoted by E, such that

E
[
f(Xu)

∣∣ (Xs)0≤s≤t
]

= Pu−tf(Xt) a.s. (0 ≤ t ≤ u), (2.1)

for each bounded measurable f : S → R, where (Pt)t≥0 is a collection of probability kernels
called the transition probabilities of X, and Ptf(x) :=

∫
Pt(x, dy)f(y).

Let X = (Xt)t≥0 and Y = (Yt)t≥0 be Markov processes with state spaces S and T ,
respectively, and let ψ : S × T → R be a measurable function. Then one says that X and Y
are dual to each other with respect to the duality function ψ, if

E
[
ψ(Xt, Y0)

]
= E

[
ψ(X0, Yt)

]
(t ≥ 0) (2.2)

for arbitrary deterministic initial statesX0 and Y0. If (2.2) holds for deterministic initial states,
then it also holds for random initial states provided Xt is independent of Y0, X0 is independent
of Yt, and the integrals are well-defined. Note that since we require (2.2) to hold for arbitrary
initial conditions, Markov process duality is in fact a property of the transition kernels of two
Markov processes, rather than of two concrete processes (Xt)t≥0 and (Yt)t≥0. Possibly the first
place where duality of Markov processes is defined in this general way is [Lig85, Def. II.3.1],
although the term duality was used much earlier for specific duality functions.

It is often possible to construct Markov processes by means of a stochastic flow. Let S
be a metrizable space and let (Xs,t)s≤t be a collection of random maps Xs,t : S → S, such
that almost surely, for each x ∈ S, the value Xs,t(x) as a function of both s and t is cadlag,
i.e., right-continuous with left limits (denoted by Xs−,t, Xs,t−, etc.). 1 We call (Xs,t)s≤t a
stochastic flow if

1More formally, we require that there exist four functions Xs,t, Xs−,t, Xs,t−, and Xs−,t− such that Xs−,t =
limu↑s Xu,t and Xs,t = limu↓s Xu−,t, and likewise with t replaced by t−, and with the roles of the first and
second variable interchanged.
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(i) Xs,t = Xs−,t = Xs,t− = Xs−,t− a.s. for deterministic s ≤ t.

(ii) Xs,s is the identity map and Xt,u ◦Xs,t = Xs,u (s ≤ t ≤ u).

We say that (Xs,t)s≤t has independent increments if

(iii) Xt0,t1 , . . . ,Xtn−1,tn are independent for any t0 < · · · < tn.

If (Xs,t)s≤t is a stochastic flow with independent increments and X0 is an S-valued random
variable, independent of (Xs,t)s≤t, then for any s ∈ R, setting

Xt := Xs,s+t(X0) (t ≥ 0) (2.3)

defines a Markov process (Xt)t≥0 with cadlag sample paths. Many well-known Markov pro-
cesses can be constructed in this way, based on a stochastic flow with independent increments.
Examples are interacting particle systems that can be constructed from Poisson processes that
form their graphical representation, or diffusion processes that can be constructed as strong
solutions to a stochastic differential equation, relative to a (multidimensional) Brownian mo-
tion.

Let (Xs,t)s≤t and (Ys,t)s≤t be stochastic flows with independent increments, acting on
metrizable spaces S and T , respectively, and let ψ : S × T → R be a function. Then we will
say that (Xs,t)s≤t and (Ys,t)s≤t are dual to each other with respect to the duality function ψ,
if

(i) (Xt0,t1 ,Y−t1,−t0), . . . , (Xtn−1,tn ,Y−tn,−tn−1) are independent for any t0 < · · · < tn.

(ii) For each x ∈ S, y ∈ T , and s ≤ u, the function [s, u] 3 t 7→ ψ
(
Xs,t−(x),Y−u,−t(y)

)
is

a.s. constant.

Condition (i) implies in particular that (Xs,t)s≤t and (Ys,t)s≤t have independent increments
but also says that Xs,t and Y−t,−s use, in a sense, the same randomness, i.e., the direction
of time for the second flow is reversed with respect to the first flow. Setting t = s, u in
Condition (ii) shows that

ψ
(
x,Y−u,−s(y)

)
= ψ

(
Xs,u(x), y

)
a.s., (2.4)

which in view of (2.3) implies that the Markov processes X and Y associated with the stochas-
tic flows (Xs,t)s≤t and (Ys,t)s≤t are dual. Note that in Condition (ii), we take Xs,t−(x) to be
left-continuous in t, which is in general necessary to get a sensible definition.

If two Markov processes X and Y can be constructed from stochastic flows that are dual in
the sense defined above, then, loosely following terminology introduced in [JK14], we say that
X and Y are pathwise dual to each other. Although this seems a priori a much stronger con-
cept, many (though not all) well-known Markov process dualities can be realized as pathwise
dualities. In particular, this will be true for all dualities discussed in the present paper.

Sometimes (such as in [AS05]) it may be useful to consider the case where the equality
in (2.2) is replaced by a ≤ (respectively ≥) sign. If this is the case, then we say that X is
a subdual (respectively superdual) of Y (with duality function ψ). Likewise, if the function
[s, u] 3 t 7→ ψ

(
Xs,t−(x),Y−u,−t(y)

)
is a.s. nonincreasing (respectively nondecreasing), then

we speak of pathwise subduality (respectively superduality).

2.2 Random mapping representations

Starting here, throughout the remainder of Section 2 as well as Sections 3 and 4, we will only
be concerned with (continuous-time) Markov processes with finite state spaces. In the present
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subsection, we show how stochastic flows for such processes can be constructed from Poisson
noise and how this leads to a standard way to construct pathwise duals.

For any two sets S, T , we let F(S, T ) denote the space of all functions f : S → T . If S, T
are finite sets, then any linear operator A : F(T,R) → F(S,R) is uniquely characterized by
its matrix (A(x, y))x∈S, y∈T through the formula

Af(x) =
∑
y∈T

A(x, y)f(y)
(
x ∈ S, f ∈ F(T,R)

)
. (2.5)

A linear operator K : F(T,R)→ F(S,R) is a probability kernel from S to T if and only if

K(x, y) ≥ 0 and
∑
z∈T

K(x, z) = 1 (x ∈ S, y ∈ T ). (2.6)

If S is a finite set, then a Markov generator (sometimes called Q-matrix) of a Markov process
with state space S is a matrix (G(x, y))x,y∈S such that

G(x, y) ≥ 0 (x 6= y) and
∑
y∈S

G(x, y) = 0 (x ∈ S). (2.7)

It is well-known that each such Markov generator defines probability kernels (Pt)t≥0 on S
through the formula

Pt := e tG =
∞∑
n=0

1

n!
tnGn (t ≥ 0). (2.8)

The (Pt)t≥0 are the transition kernels of a Markov process X = (Xt)t≥0 with cadlag sample
paths, and the Markov property (2.1) can be reformulated in matrix notation as

P[Xu = y | (Xs)0≤s≤t] = Pu−t(Xt, y) a.s. (0 ≤ t ≤ u, y ∈ S). (2.9)

We wish to construct the Markov process X from a stochastic flow. To this aim, we write the
generator in the form

Gf(x) =
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ S, f ∈ F(S,R)), (2.10)

where G ⊂ F(S, S) is a set whose elements are maps m : S → S and (rm)m∈G are nonnegative
constants. Loosely following terminology from [LPW09], we call (2.10) a random mapping
representation for G. It is not hard to see that each Markov generator (on a finite set S) can
be written as in (2.10). Random mapping representations are far from unique, although in
practical situations, there are usually only a handful which one would deem “natural”.

Given a random mapping representation for its generator, there is a standard way to
construct a stochastic flow for a Markov process. Let ∆ be a Poisson point subset of G ×R =
{(m, t) : m ∈ G, t ∈ R} with local intensity rmdt, where dt denotes Lebesgue measure.
For s ≤ u, set ∆s,u := ∆ ∩ (G × (s, u]). Then the ∆s,u are a.s. finite sets and, because
Lebesgue measure is nonatomic, two distinct points (m, t), (m′, t′) ∈ ∆s,u have a.s. different
time coordinates t 6= t′. Using this, we can unambiguously define random maps Xs,t : S → S
(s ≤ t) by

Xs,t := mn ◦ · · · ◦m1

if ∆s,t = {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn,
(2.11)

with the convention that Xs,t(x) = x if ∆s,t = ∅. We also define ∆s,u− := ∆ ∩ (G × (s, u)),
and define Xs,t− correspondingly, and similarly for Xs−,t, Xs−,t−. The following lemma is
well-known, but for completeness we will sketch a proof in Section 4.2.
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Lemma 1 (Stochastic flow) The random maps (Xs,t)s≤t form a stochastic flow with inde-
pendent increments, as defined in Subsection 2.1, and the Markov process with generator G
can be constructed in terms of (Xs,t)s≤t as in (2.3).

Let S and T be sets and let ψ : S × T → R be a function. Then we say that two maps
m : S → S and m̂ : T → T are dual with respect to the duality function ψ if

ψ
(
m(x), y

)
= ψ

(
x, m̂(y)

)
(x ∈ S, y ∈ T ). (2.12)

If in (2.12) the equality is replaced by ≤ then we also say that m̂ is subdual to m with respect
to the duality function ψ. Superdual maps are defined in the obvious way. Now imagine that
S and T are finite sets, that G is the generator of a Markov process in S, and that for a given
random mapping representation as in (2.10), all maps m ∈ G have a dual m̂ with respect to
ψ. (In general, such a dual map need not be unique, but we choose one and denote it by m̂.)
Then we claim that the Markov process Y with state space T and generator

Hf(y) :=
∑
m∈G

rm
(
f(m̂(y))− f(y)

)
(y ∈ T, f ∈ F(T,R)) (2.13)

is pathwise dual to X. To see this, we define

∆̂ := {(m̂,−t) : (m, t) ∈ ∆}, (2.14)

which is a Poisson point set on Ĝ × R with Ĝ := {m̂ : m ∈ G}. We use this Poisson point
set to define random maps (Ys,t)s≤t in the same way as in (2.11). The proof of the following
proposition, which can just as well be formulated in terms of sub- or superduality, is entirely
straightforward; for completeness, we give the main steps in Section 4.2.

Proposition 2 (Pathwise duality) Let X and Y be Markov processes with generators G
and H of the form (2.10) and (2.13), respectively, where for each m ∈ G, the map m̂ is a
dual of m in the sense of (2.12). Construct stochastic flows (Xs,t)s≤t and (Ys,t)s≤t for these
Markov processes as above. Then, almost surely, the map Xs−,t− is dual to Y−t,−s for each
s ≤ t. Moreover, the stochastic flow (Ys,t)s≤t is dual to (Xs,t)s≤t with respect to the duality
function ψ, in the sense defined in Subsection 2.1, and the Markov processes X and Y are
pathwise dual w.r.t. ψ.

By grace of Proposition 2, in order to prove that a given Markov process X with generator
G has a pathwise dual Y with respect to a certain duality function ψ, and in order to explicitly
construct such a dual, it suffices to show that G has a random mapping representation (2.10)
such that each map m ∈ G has a dual w.r.t. ψ. In view of this, much of our paper will be
devoted to showing that certain maps have duals with respect to particular duality functions.
Once we have shown this for a suitable class of maps, it is clear how to construct pathwise
duals for Markov processes whose generators are representable in such maps.

In relation to this, we adopt the following definition. Let S be a finite set and let G ⊂
F(S, S) be a set whose elements are maps m : S → S. We say that a Markov generator G is
representable in G if G can be written in the form (2.10) for nonnegative constants (rm)m∈G .

Similar definitions apply to probability kernels. Let S and T be finite sets. We let K(S, T )
denote the space of all probability kernels from S to T . If M is a random variable taking
values in the space F(S, T ), then

K(x, y) := P[M(x) = y] (x ∈ S, y ∈ T ) (2.15)

defines a probability kernel K ∈ K(S, T ). If a probability kernelK is written in the form (2.15),
then, borrowing terminology from [LPW09], we call (2.15) a random mapping representation
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for K. For any set G ⊂ F(S, T ) of maps m : S → T , we say that a probability kernel
K ∈ K(S, T ) is representable in G if there exists a G-valued random variable M such that
(2.15) holds. It is easy to see that each probability kernel from S to T is representable in
F(S, T ) but the representation is again not unique.

We observe that if (Xs,t)s≤t is a stochastic flow with independent increments, then the
transition kernels of the associated Markov process (in the sense of (2.3)) are given by

Pt(x, y) = P[X0,t(x) = y] (t ≥ 0, x, y ∈ S), (2.16)

and this formula gives a random mapping representation for Pt. In view of this and (2.11),
the following lemma, which will be proved in Section 4.2, should not come as a surprise.

Lemma 3 (Representability of generators) Let S be a finite set, let G be a set whose
elements are maps m : S → S, and let X be a Markov process in S with generator G and
transition kernels (Pt)t≥0. Assume that G is closed under composition and contains the identity
map. Then the following statements are equivalent:

(i) G can be represented in G.

(ii) Pt can be represented in G for all t ≥ 0.

2.3 Invariant subspaces

As explained previously we will due to Proposition 2 be interested in Markov processes whose
generators can be represented in maps that have a dual map with respect to a suitable duality
function. In the present subsection, we describe a general strategy for finding such maps, and
for choosing the duality function. The following simple observation shows that in fact, each
map is dual to its inverse image map. For any set S, we let

P(S) := {A : A ⊂ S} (2.17)

denote the set of all subsets of S.

Lemma 4 (Inverse image map) Let S be a set, let m : S → S be a map, and let m−1 :
P(S) → P(S) be the inverse image map defined as m−1(A) := {x ∈ S : m(x) ∈ A}. Then
m−1 is dual to m with respect to the duality function ψ(x,A) := 1{x∈A}.

Combining this with Proposition 2, we see that if the generator G of a Markov process X
with state space S has a random mapping representation of the form (2.10), then the Markov
process Y with state space P(S) and generator H given by

Hf(A) =
∑
m∈G

rm
(
f(m−1(A))− f(A)

) (
A ∈ P(S)

)
(2.18)

is a pathwise dual of X with respect to the duality function ψ from Lemma 4. In practise,
this dual process is not very useful since the state space P(S) is very large compared to S.
The situation is better, however, if P(S) contains a smaller subspace that is left invariant by
all maps m ∈ G. In the present paper, we will be interested in the subspace of all decreasing
subsets of S (where S is a partially ordered set) and the subspace of all principal ideals of S
(where S is a lattice), which leads to a duality for Markov processes that are representable in
monotone maps and additive maps, respectively.

So let S now be a partially ordered set and let us briefly introduce some definitions and
recall some basic facts for partially ordered sets. For any set A ⊂ S we define A↑ := {x ∈
S : x ≥ y for some y ∈ A} ⊃ A. We say that A is increasing if A↑ ⊂ A. We define A↓ and
decreasing sets in the same way for the reversed order. A nonempty increasing set A such
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that for every x, y ∈ A there exists a z ∈ A with z ≤ x, y is called a filter and a nonempty
decreasing set A such that for every x, y ∈ A there exists a z ∈ A with x, y ≤ z is called an
ideal. A principal filter is a filter that contains a minimal element and a principal ideal is
an ideal that contains a maximal element. Equivalently, principal filters are sets of the form
A = {z}↑ and principal ideals are sets of the form A = {z}↓, for some z ∈ S. A finite filter or
ideal is always principal. We will use the notation

Pinc(S) := {A ⊂ S : A is increasing},
P!inc(S) := {A ⊂ S : A is a principal filter},
Pdec(S) := {A ⊂ S : A is decreasing},
P!dec(S) := {A ⊂ S : A is a principal ideal}.

(2.19)

A lattice is a partially ordered set for which the sets of principal filters and principal ideals
are closed under finite intersections. Equivalently, this says that for every x, y ∈ S there exist
(necessarily unique) elements x∨y ∈ S and x∧y ∈ S called the supremum or join and infimum
or meet of x and y, respectively, such that

{x}↑ ∩ {y}↑ =: {x ∨ y}↑ and {x}↓ ∩ {y}↓ =: {x ∧ y}↓. (2.20)

A join-semilattice (respectively meet-semilattice) is a partially ordered set in which x ∨ y
(respectively x ∧ y) are well-defined. A partially ordered set S is bounded from below if it
contains an (obviously unique) element, usually denoted by 0, such that 0 ≤ x for all x ∈ S.
Boundedness from above is defined analogously and the (obviously unique) upper bound is
often denoted by 1. Finite lattices are always bounded from below and above.

Let S and T be partially ordered sets. By definition, a map m : S → T is monotone if it
is a ≤-homomorphism, i.e.,

x ≤ y implies m(x) ≤ m(y) (x, y ∈ S). (2.21)

We denote the set of all monotone maps m : S → T by Fmon(S, T ). If S and T are join-
semilattices that are bounded from below, then, generalizing terminology from the theory
of interacting particle systems, we will call a map m : S → T additive if it is a (0,∨)-
homomorphism, i.e.,

m(0) = 0 and m(x ∨ y) = m(x) ∨m(y) (x, y ∈ S). (2.22)

The basis of all dualities discussed in the present paper is the following simple lemma, which
says that a map m is monotone, respectively additive, if and only if its inverse image map
leaves the subspaces of all decreasing subsets, respectively ideals, invariant. Note that since
in a finite lattice, all ideals are principal, part (ii) says in particular that if S and T are finite
join-semilattices that are bounded from below, then m : S → T is additive if and only if
m−1(A) ∈ P!dec(S) for all A ∈ P!dec(T ). The proof of Lemma 5 will be given in Section 4.3.

Lemma 5 (Monotone and additive maps)
(i) Let S and T be partially ordered sets and let m : S → T be a map. Then m is monotone
if and only if

m−1(A) ∈ Pdec(S) for all A ∈ Pdec(T ).

(ii) If S and T are join-semilattices that are bounded from below, then m is additive if and
only if

m−1(A) is an ideal whenever A ⊂ T is an ideal.

9



2.4 Additive systems duality

In the present section, we show how the fact that the inverse image of an additive map leaves
the subspace of principal ideals invariant, leads in a natural way to a duality for Markov
processes that are representable in additive maps.

We start with an abstract definition of a dual for any partially ordered set S. Namely, a
dual of S is a partially ordered set S′ together with a bijection S 3 x 7→ x′ ∈ S′ such that

x ≤ y if and only if x′ ≥ y′. (2.23)

Two canonical ways to construct such a dual are as follows. Example 1: For any partially
ordered set S, we may take S′ := S but equipped with the reversed order, and x 7→ x′ the
identity map. Example 2: If Λ is a set and S ⊂ P(Λ) is a set of subsets of Λ, equipped
with the partial order of inclusion, then we may take for x′ := Λ\x the complement of x and
S′ := {x′ : x ∈ S}.

Returning to the abstract definition, it is easy to see that all duals of a partially ordered
set are naturally isomorphic and that the original partially ordered set is in a natural way the
dual of its dual, which motivates us to write x′′ = x. If S is bouded from below, then S′ is
bounded from above and 0′ = 1. We define a function S × S′ 3 (x, y) 7→ 〈x, y〉 ∈ {0, 1} by

〈x, y〉 := 1{x ≤ y′} = 1{y ≤ x′} (x ∈ S, y ∈ S′). (2.24)

Note that x, y′ ∈ S while y, x′ ∈ S′, so the two signs ≤ in this formula refer to the partial orders
on S and S′, respectively. Since S is the dual of S′, the formal definition of 〈 · , · 〉 is symmetric
in the sense that 〈y, x〉 = 〈x, y〉 for all y ∈ S′ and x ∈ S′′ = S. In the concrete examples of
a dual space given above, 〈 · , · 〉 has the following meanings. In Example 1, 〈x, y〉 = 1{x≤y},
while in Example 2, 〈x, y〉 = 1{x∩y=∅}.

Since our aim is to show how additive systems duality arises naturally from Lemma 5, we
will now let S be a lattice and prove the following lemma here on the spot.

Lemma 6 (Duals of additive maps) Let S be a finite lattice and let S′ be a dual of S
in the sense defined above. Then a map m : S → S is additive if and only if there exists a
(necessarily unique) map m′ : S′ → S′ that is dual to m with respect to the duality function
ψ(x, y) := 〈x, y〉 from (2.24). This dual map m′, if it exists, is also additive.

Proof By Lemma 5, m is additive if and only if m−1(A) ∈ P!dec(S) for all A ∈ P!dec(S). Since
each element A ∈ P!dec(S) can be written in the form A = {x ∈ S : x ≤ y′} for some unique
y ∈ S′, m is additive if and only if for each y ∈ S′ there exists a (necessarily unique) element
m′(y) ∈ S′ such that

m−1
(
{z ∈ S : z ≤ y′}

)
= {x ∈ S : x ≤ (m′(y))′}, (2.25)

i.e., there exists a (necessarily unique) map m′ : S′ → S′ such that

m(x) ≤ y′ if and only if x ≤ (m′(y))′ (x ∈ S, y ∈ S′), (2.26)

which says that 〈m(x), y〉 = 〈x,m′(y)〉, i.e., m′ is dual to m with respect to the duality function
from (2.24).

Since conversely m is dual to m′ with respect to the duality function from (2.24), by what
we have just proved, m′ (having a dual with respect to this duality function) must be additive.

Combining Proposition 2 and Lemma 6, we can write down our first nontrivial result.
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Theorem 7 (Additive systems duality) Let S be a finite lattice and let X be a Markov
process in S whose generator has a random mapping representation of the form

Gf(x) =
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ S), (2.27)

where all maps m ∈ G are additive. Then the Markov process Y in S′ with generator

Hf(y) :=
∑
m∈G

rm
(
f(m′(y))− f(y)

)
(y ∈ S′) (2.28)

is pathwise dual to X with respect to the duality function ψ(x, y) := 〈x, y〉 from (2.24).

In Subsections 3.1 and 3.2 below, we will see that Theorem 7 contains both Siegmund’s
duality and the well-known duality of additive interacting particle systems as special cases.
Moreover, in Section 3.3, we will see that a duality for the two-stage contact process discovered
by Krone [Kro99] also fits into this general scheme.

2.5 Monotone systems duality

In the present section, we show how the fact that the inverse image of a monotone map
leaves the subspace of decreasing subsets invariant can be used to construct duals of general
monotone Markov processes. These dual processes are more complicated than in the case of
additively representable processes, but we will stay as close as possible to the formalism of
the previous subsection, so that Theorem 7 will be a special case of a more general theorem
to be formulated here.

Theorem 7 is based on the fact that if m is an additive map, then its inverse image maps
the space of principal ideals into itself, and each principal ideal A ∈ P!dec(S) can be encoded in
terms of the unique element y ∈ S′ such that A = {y′}↓. In our present setting, we will encode
a general decreasing set A ∈ Pdec(S) in terms of a set B ⊂ S′ such that A = {y′ : y ∈ B}↓.
This means that we will use the duality function

φ(x,B) := 1{x ≤ y′ for some y ∈ B} (x ∈ S, B ⊂ S′). (2.29)

For a given A ∈ Pdec(S), there are usually more ways to choose a set B ⊂ S′ such that
A = {y′ : y ∈ B}↓ and as a result we see that for a given monotone map m there are at least
two natural ways to define a dual map with respect to the duality function φ from (2.29).

As before, we assume that S is a finite partially ordered set and we let S′ (together with
the map x 7→ x′) denote a dual of S in the sense defined in (2.23). Contrary to the latter part
of the previous subsection, we no longer assume that S is a lattice. For any set A ⊂ S we
write A′ := {x′ : x ∈ A} and we let

Amax := {x ∈ A : x is a maximal element of A} = {x ∈ A :6 ∃y ∈ A, y 6= x s.t. x ≤ y} (2.30)

denote the set of maximal elements of A. Similarly, we let Amin denote the set of minimal
elements of a set A. For any monotone m : S → S, we can uniquely define maps m† : P(S′)→
P(S′) and m∗ : P(S′)→ P(S′) by

m†(B)′ := (m−1(B′
↓
))max and m∗(B)′ :=

⋃
x∈B

(m−1({x′}↓))max (2.31)

(B ∈ P(S′)). The next lemma shows that both m† and m∗ are dual to m with respect to
the duality function φ from (2.29). In addition, both m† and m∗ each have a special property
justifying their definitions.
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Lemma 8 (Duals of monotone maps) Let S be a finite partially ordered set and let
m ∈ Fmon(S, S). Then m† and m∗ are dual to m with respect to the duality function φ from
(2.29). Moreover,

m†(B) = m†(B)min = m∗(B)min

(
B ∈ P(S′)

)
, (2.32)

and
m∗(B ∪ C) = m∗(B) ∪m∗(C)

(
B,C ∈ P(S′)

)
. (2.33)

The proof of Lemma 8 is straightforward but a bit tedious, and for this reason we postpone
it till Section 4.4. Combining Proposition 2 and Lemma 8, we can write down our second
nontrivial result.

Theorem 9 (Monotone systems duality) Let S be a finite partially ordered set and let X
be a Markov process in S whose generator has a random mapping representation of the form

Gf(x) =
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ S), (2.34)

where all maps m ∈ G are monotone. Then the P(S′)-valued Markov processes Y † and Y ∗

with generators

H†f(B) :=
∑
m∈G

rm
(
f(m†(B))− f(B)

)
,

H∗f(B) :=
∑
m∈G

rm
(
f(m∗(B))− f(B)

)
,

(
B ∈ P(S′)

)
(2.35)

are pathwise dual to X with respect to the duality function φ from (2.29).

We note that if a map m : S → S is monotone, then it is also monotone with respect to
the reversed order on S. As a result, the inverse image map m−1 also maps increasing subsets
into increasing subsets. This naturally leads to the duality function (compare (2.29))

φ̃(x,B) := 1{x ≥ y′ for some y ∈ B} (x ∈ S, B ⊂ S′). (2.36)

In analogy with (2.31), we may define maps m◦ : P(S′)→ P(S′) and m• : P(S′)→ P(S′) by

m◦(B)′ := (m−1(B′
↑
))min and m•(B)′ :=

⋃
x∈B

(m−1({x′}↑))min. (2.37)

As a direct consequence of Lemma 8, applied to the reversed order on S, we obtain the
following lemma.

Lemma 10 (Alternative duals of monotone maps) Let S be a finite partially ordered set
and let m ∈ Fmon(S, S). Then m◦ and m• are dual to m with respect to the duality function
φ̃ from (2.36). Moreover,

m◦(B) = m◦(B)max = m•(B)max

(
B ∈ P(S′)

)
, (2.38)

and
m•(B ∪ C) = m•(B) ∪m•(C)

(
B,C ∈ P(S′)

)
. (2.39)

We will mostly focus on the maps m† and m∗ from (2.31) since these are most closely
related to the additive systems duality from the previous subsection. The next lemma, which
will be proved in Section 4.4, shows that the dual processes of Theorem 9 reduce to the dual
of Theorem 7 if all maps occurring in (2.34) are additive and the dual process Y = Y † or
= Y ∗ is started in a singleton, i.e., a state of the form Y0 = {y} for some y ∈ S′.
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Lemma 11 (Relation between additive and monotone duals) Let S be a finite lattice
and let m : S → S be additive. Let m′ be the dual map from Lemma 6 and let m∗ and m† be
as in (2.31). Then

m∗(B) = {m′(y) : y ∈ B} and m†(B) = m∗(B)min

(
B ∈ P(S′)

)
. (2.40)

In Subsection 3.4, we will show that if X is a monotone spin system, then the dual process
Y • coincides with Gray’s [Gra86] dual process. Here Y • denotes the process with generator
H• which is defined analogously as H†, H∗ in (2.35), but with the dual map m• from (2.37)
instead of m†,m∗. As a more concrete application of this sort of dualities, in Subsection 3.5,
we use Theorem 9 to derive a new duality, announced in [SS14], for particle systems with
cooperative branching.

If the generator of a Markov process can be written in the form (2.34) where all maps
m ∈ G are monotone, then we say that G is monotonically representable. By the remarks at
the end of Subsection 2.2, if the generator of a Markov process is monotonically representable,
then the same is true for its transition kernels (Pt)t≥0. It turns out that being monotonically
representable is a stronger concept than being monotone in the traditional meaning of that
term, which we now explain.

For S and T finite partially ordered sets a probability kernel K from S to T is called
monotone if

f ∈ Fmon(S,R) implies Kf ∈ Fmon(S,R), (2.41)

where as before Kf(x) :=
∑

yK(x, y)f(y). It is easy to see that each monotonically rep-
resentable probability kernel is also monotone, but it is known that there exist kernels that
are monotone yet not monotonically representable. See [FM01, Example 1.1] for an example
where S = T = P(Λ) with Λ a set containing just two elements. (Note that what we call
monotonically representable is called realizably monotone in [FM01].) On the positive side,
we cite the following result from [KKO77, FM01].

Proposition 12 (Sufficient conditions for monotone representability) Let S, T be
finite partially ordered sets and assume that at least one of the following conditions is satisfied:

(i) S is totally ordered.

(ii) T is totally ordered.

Then any monotone probability kernel from S to T is monotonically representable.

Proof The sufficiency of (i) was proved in [KKO77] and also follows as a special case of
[FM01, Thm 4.1], where it is shown that the statement holds more generally if S has a tree-
like structure. The sufficiency of (ii) is proved in [FM01, Example 1.2].

The question how to determine whether a given probability kernel (or Markov generator)
can be represented in the set of additive maps was already mentioned in [Har78], but we do not
know about any results in this direction. Cursory contemplation suggests that this problem
is at least as difficult as monotone representability.

2.6 Percolation substructures

If Λ is a finite set, then the set S := P(Λ) of all subsets of Λ, equipped with the order of set
inclusion, is a finite lattice. For lattices of this form, there exists a simple way to characterize
additive maps m : S → S and this naturally leads to a representation of additive Markov
processes in S, and their duals, in terms of a form of oriented percolation on Λ × R, where
the second coordinate plays the role of time [Har78, Gri79]. In the present subsection, we
investigate whether this picture remains intact if S is replaced by a more general lattice. For
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distributive lattices, the answer is largely positive. In Subsection 3.3 below, we apply the
results of the present subsection to give a percolation representation for the two-stage contact
process and its dual, which are interacting particle systems with a state space of the form
{0, 1, 2}Λ [Kro99].

By definition, a lattice S is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (x, y, z ∈ S). (2.42)

If Λ is a finite set and S ⊂ P(Λ) is closed under intersections and unions and contains ∅
and Λ as elements, then S is a distributive lattice with ∅ and Λ as lower and upper bounds.
In particular, if Λ is a partially ordered set, then this applies to S := Pdec(Λ). Birkhoff’s
representation theorem ([Bir37]; see, e.g., [DP02, Thm 5.12] for a modern reference) says that
conversely, each distributive lattice is of this form. Note that in particular, if Λ is equipped
with the trivial order i 6≤ j for all i 6= j, then Pdec(Λ) = P(Λ).

In view of this, let Λ be a finite partially ordered set, and let S := Pdec(Λ) be the lattice
of decreasing subsets of Λ. Let Λ′ denote the set Λ equipped with the reversed order. Then
S′ := Pdec(Λ

′) = Pinc(Λ), together with the complement map x 7→ x′ := xc, is a dual of the
lattice S in the sense defined in (2.23). The following lemma will be proved in Section 4.5.

Lemma 13 (Characterization of additive maps) There is a one-to-one correspondence
between, on the one hand, additive maps m : S → S and, on the other hand, sets M ⊂ Λ× Λ
such that for all i, j, ı̃, ̃ ∈ Λ

(i) (i, j) ∈M and i ≤ ı̃ implies (̃ı, j) ∈M ,

(ii) (i, j) ∈M and j ≥ ̃ implies (i, ̃) ∈M .
(2.43)

This one-to-one correspondence comes about by identifying M with the additive map m defined
by

m(x) := {j ∈ Λ : (i, j) ∈M for some i ∈ x} (x ∈ S). (2.44)

If m′ : S′ → S′ is the dual of m (in the sense of Lemma 6) and M ′ is the corresponding subset
of Λ′ × Λ′, then M and M ′ are related by

M ′ =
{

(j, i) : (i, j) ∈M
}
. (2.45)

Using Lemma 13, we can represent the stochastic flow of an additive Markov process with
values in a general distributive lattice in terms of open paths in a “percolation substructure”
in the sense of [Gri79]. Let X be a Markov process whose generator G has a random mapping
representation of the form (2.10) where all maps m ∈ G are additive maps m : S → S, with
S = Pdec(Λ) as before. As in Section 2.2, we construct a Poisson point set ∆ on G×R and use
this to define a stochastic flow (Xs,t)s≤t as in (2.11). We also set ∆′ := {(m′,−t) : (m, t) ∈ ∆}
(compare (2.14)) and use this Poisson set to define the dual stochastic flow (Ys,t)s≤t as in
Proposition 2.

Plotting space-time Λ × R with time upwards, for each (m, t) ∈ ∆, let M be the set
corresponding to m in the sense of Lemma 13, draw an arrow from (i, t) to (j, t) for each i 6= j
such that (i, j) ∈M , and place a “blocking symbol” at (i, t) whenever (i, i) 6∈M . Examples
of such graphical representations are given in Figures 1 and 2 below. By definition, an open
path in such a graphical representation is a cadlag function γ : [s, u]→ Λ such that:

(i) If γt− 6= γt for some t ∈ (s, u], then there is an arrow from (γt−, t) to (γt, t).

(ii) If there is a blocking symbol at (γt, t) for some t ∈ (s, u], then γt− 6= γt.
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In words, an open path may jump using arrows and cannot stay at the same site if there is
a blocking symbol at such a site. For i, j ∈ Λ and s ≤ u, we write (i, s)  (j, u) if there is
an open path γ that leads from (i, s) to (j, u), i.e., γs = i and γu = j. The following lemma,
whose formal proof will be given in Section 4.5, gives the promised percolation representation
of additive Markov processes in S = Pdec(Λ), and their duals. Moreover, formula (2.48) gives
a graphical interpretation of the pathwise duality of Theorem 7. Note that in the present
setting, the duality function takes the form ψ(x, y) = 1{x⊂yc} = 1{x∩y=∅}.

Lemma 14 (Percolation representation) Almost surely, for all s ≤ t and x ∈ S,

Xs,u(x) = {j ∈ Λ : (i, s) (j, u) for some i ∈ x}, (2.46)

and the left-continuous version of the dual stochastic flow is a.s. given by

Ys−,u−(y) = {j ∈ Λ : (j,−u) (i,−s) for some i ∈ y} (s ≤ u, y ∈ S′). (2.47)

Moreover, for deterministic times s ≤ u, a.s.

1{Xs,t−(x) ∩Y−u,−t(y) = ∅} = 1{(i, s) 6 (j, u) ∀ i ∈ x, j ∈ y} (s ≤ t ≤ u). (2.48)

By Birkhoff’s representation theorem, Lemmas 13 and14 apply to additive processes taking
values in general distributive lattices. For nondistributive lattices, the picture is not as nice,
but we can still show that each additive process has a percolation representation. The next
lemma will be proved in Section 4.5.

Lemma 15 (Additive maps on general lattices) Let S be a finite lattice. Then S is (0,∨)-
isomorphic to a join-semilattice of sets, i.e., there exists a finite set Λ and a set T ⊂ P(Λ)
such that ∅ ∈ T and T is closed under unions, and S ∼= T . Moreover, if T is such a join-
semilattice of sets, then each additive map m : T → T can be extended to an additive map
m : P(Λ)→ P(Λ).

By Lemma 15, if G is the generator of a Markov process X in T , and X is additive in the
sense that G has a random mapping representation of the form (2.10) where all maps m ∈ G
are additive, then we can extend X to a Markov process in P(Λ) with generator of the form

Gf(x) =
∑
m∈G

rm
(
f(m(x))− f(x)

) (
x ∈ P(Λ)

)
. (2.49)

This extended process leaves T invariant, and by Lemma 15, it has a percolation representation
of the form (2.46). If S is nondistributive, however, then T can never be chosen such that it is
also closed under intersections, which means that {xc : x ∈ T} is not (0,∨)-isomorphic to S′,
and the parts of Lemma 14 referring to the dual process break down. Of course, the extended
process (2.49) has a dual that can be interpreted in terms of open paths, but it is unclear if
the extended process can ever be chosen in such a way that it leaves a subspace invariant that
is (0,∨)-isomorphic to S′.

2.7 Some open problems

The problem how to decide whether a given Markov generator can be represented in monotone
or additive maps has already been mentioned in the text. These problems have been open for
a long time and appear to be hard.

We have also only partially resolved the question whether additive systems taking values
in a nondistributive lattice have a “nice” percolation representation together with their dual.
If S is a nondistributive lattice, then by Lemma 15, S is (0,∨)-isomorphic to a join-semilattice
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of sets, but by Birkhoff’s theorem such a join-semilattice of sets can never be closed under
intersections. This also means that we cannot simultaneously represent the dual lattice S′ as
a join-semilattice of sets on the same space, so that the duality map x 7→ x′ is the complement
map. However, to get a useful percolation representation of S and S′ together, it would suffice
to represent S and S′ as join-semilattice of sets on the same space in such a way that the
duality map 〈x, y〉 takes the form 1{x∩y=∅}. It is not clear if this can be done.

A more urgent question is perhaps if all this abstract theory “is actually good for anything”.
Additive systems duality is clearly a very useful tool, and as the two-stage contact process
shows (see Section 3.3 below), one sometimes needs more general lattices than the Boolean
algebra {0, 1}Λ. Our general approach to constructing percolation representations for such
lattices seems to be new. The more general but also more complicated duality for monotone
systems, that are not necessarily additive, has so far found few applications, although Gray
[Gra86] did use it to prove nontrivial statements and we used it in our previous work [SS14]
to derive a useful subduality for systems with cooperative branching.

For many additive systems including the contact process, using duality, it is fairly easy to
prove that starting from an arbitrary translation invariant initial law, the law of the system
converges to a convex combination of the upper invariant law and the delta measure on the
zero configuration; see [Lig85, Thm III.5.18]. As far as we know, it is an open problem to
generalize these techniques to monotone systems that are not additive, such as the systems with
cooperative branching discussed in Section 3.5 below. We hope that our present systematic
treatment of monotone systems duality can contribute to such an undertaking.

In this context, we mention one more open problem. In Section 5.4 below, we generalize
Theorem 9 about monotone systems duality to infinite underlying spaces. We only show,
however, that the dual process is well-defined started from finite initial states. It is an open
problem to construct the dual process with infinite initial states, as would be needed, e.g., to
study invariant laws of the dual process.

3 Examples

3.1 Siegmund’s duality

In this subsection, we show that for finite state spaces, Siegmund’s duality [Sie76] is a special
case of Theorem 7 which gives a pathwise dual for additive Markov processes taking values in
a finite lattice.

Let S = {0, . . . , n} (n ≥ 2) be a finite totally ordered set with at least two elements, and
let S′ denote the same space, equipped with the reversed order, which is a dual of S in the
sense defined in Section 2.4. Since x∨ y equals either x or y for each x, y ∈ S, it is easy to see
that a map m : S → S is additive if and only if m is monotone and m(0) = 0. By Lemma 6,
for each such map there exists a unique map m′ : S → S that is dual to m with respect to
the duality function ψ(x, y) = 1{x≤y}. This map m′ is additive viewed as a map on S′, i.e.,
m′ is monotone and m′(n) = n. Theorem 7 now gives us the following result. We note that
Siegmund’s result [Sie76] applies more generally to processes taking values in a real interval,
which includes, e.g., a duality between Brownian motions on [0,∞) with absorption at 0 and
those with reflection at 0.

Theorem 16 (Pathwise Siegmund’s duality) Let S = {0, . . . , n} (n ≥ 2) be a finite
totally ordered set and let X be a Markov process in S whose generator has a random mapping
representation of the form

Gf(x) =
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ S), (3.1)
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where all maps m ∈ G are monotone and satisfy m(0) = 0. Then the Markov process Y in S′

with generator

Hf(y) :=
∑
m∈G

rm
(
f(m′(y))− f(y)

)
(y ∈ S′) (3.2)

is pathwise dual to X with respect to the duality function ψ(x, y) := 1{x≤y}.

A Markov process X taking values in a partially ordered set S is called monotone if its
transition kernels Pt are monotone for each t ≥ 0. If S = {0, . . . , n} is totally ordered, then
by Proposition 12, it follows that Pt is monotonically representable for each t ≥ 0, and by
Lemma 3 the same is true for the generator G. If 0 is a trap (i.e., the rate of jumps away
from 0 is zero), then each random mapping representation for G involves only maps satisfying
m(0) = 0. Since each pathwise dual is also a dual in the classical sense (2.2), Theorem 16
allows us to conclude:

Proposition 17 (Siegmund’s duality) Let S = {0, . . . , n} (n ≥ 2) be a finite totally ordered
set and let X be a monotone Markov process in S for which 0 is a trap. Then there exists a
monotone Markov process Y in S for which n is a trap, such that

P[Xt ≤ Y0] = P[X0 ≤ Yt] (t ≥ 0) (3.3)

for arbitrary deterministic initial states X0 and Y0.

It is easy to see that (3.3) determines the transition probabilities of Y uniquely, even
though there usually is more than one way to represent the generators of X and Y in terms
of monotone maps and hence to construct a coupling that realizes the pathwise duality of
Theorem 16.

3.2 Additive interacting particle systems

Additive particle systems in the classical sense of [Har78, Gri79] are additively representable
Markov processes X with state space of the form S = P(Λ) where Λ is a countable set.
Concentrating on finite Λ for the moment, this is a special case of the set-up from Section 2.6,
where the set Λ from Lemmas 13 and 14 is equipped with the trivial order, so that Pdec(Λ) =
P(Λ), and the conditions (2.43) are void. In this case, (2.44) simply defines a one-to-one
correspondence between additive maps m : S → S and sets M ⊂ Λ×Λ, and Lemma 14 shows
that X and its dual Y can be represented in terms of the same percolation substructure and
are pathwise dual in the sense of (2.48).

To illustrate this on a concrete example, let us look at voter models which have a generator
of the form

Gvoterf(x) :=
∑
i,j∈Λ

rij
(
f
(
votij(x)

)
− f

(
x
)) (

x ∈ P(Λ)
)
, (3.4)

where we define voter model maps votij : P(Λ)→ P(Λ) by

votij(x) :=

{
x ∪ {j} if i ∈ x,
x\{j} if i 6∈ x,

(
x ∈ P(Λ), i, j ∈ Λ

)
. (3.5)

The map votij corresponds (in the sense of (2.44)) to the set Mij ⊂ Λ × Λ given by Mij =
{(k, k) : k ∈ Λ, k 6= j} ∪ {(i, j)}, which is represented by an arrow from i to j and simultane-
ously a blocking symbol at j.

By Lemma 13, the dual map vot′ij corresponds to the set M ′ = {(k, k) : k ∈ Λ, k 6=
j} ∪ {(j, i)}, which through (2.44), M ′ defines the dual map

rwji(y) :=

{
(y\{j}

)
∪ {i} if j ∈ y,

y if j 6∈ y,
(
y ∈ P(Λ), i, j ∈ Λ

)
, (3.6)
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Xt

X0

Y0

Yt

Figure 1: Graphical representation of a voter model and its dual.

which is represented by an arrow from j to i and simultaneously a blocking symbol at j. We
interpret rwji as a coalescing random walk map, i.e., when rwji is applied, if there is a particle
at j, then this particle jumps to i, coalescing with any particle that may already be present.

By Theorem 7, the voter model X is pathwise dual to the system of coalescing random
walks Y with generator

Grwf(y) :=
∑
i,j∈Λ

rij
(
f
(
rwji(y)

)
− f

(
y
)) (

y ∈ P(Λ)
)
, (3.7)

and by Lemma 14, the stochastic flows associated with X and Y can be represented in terms
of open paths in a percolation substructure. In Figure 1, we have drawn an example of such
a percolation substructure, together with a voter model (in the upward time direction) and
system of coalescing random walks (with time running downwards). In the picture for the dual
process Y , we have reversed the direction of all Poisson arrows, in line with formula (2.45) for
the dual of an additive map.

3.3 Krone’s duality

Steve Krone [Kro99] has studied a two-stage contact process, which is a Markov process with
state space of the form S = {0, 1, 2}Λ. The main interest is in the case Λ = Zd but the
construction works in the same way if Λ is finite. If x(i) = 0, 1, or 2, then he interprets
this as the site i being occupied by no individual, a young individual, or an adult individual,
respectively. For each i, j ∈ Λ, consider the maps ai, bij , ci, di, ei defined by

grow up ai(x)(k) := 2 if k = i, x(i) = 1, := x(k) otherwise,

give birth bij(x)(k) := 1 if k = j, x(i) = 2, x(j) = 0, := x(k) otherwise,

young dies ci(x)(k) := 0 if k = i, x(i) = 1, := x(k) otherwise,

death di(x)(k) := 0 if k = i, := x(k) otherwise,

grow younger ei(x)(k) := 1 if k = i, x(i) = 2, := x(k) otherwise.

(3.8)

Except for the last one, all these maps have natural biological interpretations. For example,
the map bij has the effect that if i is occupied by an adult individual and j is empty, then
the adult individual at i gives birth to a young individual at j. Applying the map ci with an
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appropriate rate models the commonly observed fact that young individuals die at a higher
rate than adults.

We set S′ := S and define a map S 3 x 7→ x′ ∈ S′ by

x′(i) := 2− x(i) (i ∈ Λ). (3.9)

Then S′, together with the map x 7→ x′, is a dual of S in the sense of (2.23). The set S, being
the product of totally ordered sets, is a distributive lattice and so we can apply Theorem 7 to
find pathwise duals of additive Markov processes in S. Our choice of the dual space S′ means
that the duality function ψ(x, y) = 〈x, y〉 from (2.24) takes the form

ψ(x, y) = 1{x ≤ y′} = 1{x(i) + y(i) ≤ 2 ∀ i ∈ Λ}. (3.10)

The good news is that the maps in (3.8) are all additive.

Lemma 18 (Additive maps) The maps in (3.8) are all additive and their dual maps with
respect to the duality function in (3.10) are given by

a′i = ai, b′ij = bji, c′i = ei, d′i = di, e′i = ci. (3.11)

Lemma 18 can be checked by straightforward, but somewhat lengthy considerations.
Things become easier if we construct a percolation representation for two-stage contact pro-
cesses. We equip Λ with the trivial order, we view {0, 1} as a totally ordered set with two
elements, and we equip Λ× {0, 1} with the product order. Then

S ∼= Pdec

(
Λ× {0, 1}

)
and S′ ∼= Pinc

(
Λ× {0, 1}

)
, (3.12)

where for the duality map we now take the complement map x 7→ x′ := xc so that in this new
representation the duality function takes the usual form ψ(x, y) = 1{x∩y=∅}. To compare this
with our earlier representation of the process, note that for x ∈ Pdec(Λ× {0, 1}) and i ∈ Λ,

{σ : (i, σ) ∈ x} = ∅, {0}, or {0, 1}, (3.13)

which we interpret as x(i) = 0, 1, or 2 in our previous representation of S. Likewise, for
y ∈ Pinc(Λ× {0, 1}) and i ∈ Λ,

{σ : (i, σ) ∈ y} = ∅, {1}, or {0, 1}, (3.14)

which we interpret as y(i) = 0, 1, or 2 in our previous representation of S′.
An example of a percolation representation for a two-stage contact process and its dual

are shown in Figure 2. Here, the maps from (3.8) are represented as follows:

ai arrows between (i, 0) and (i, 1) (in both directions conforming to the rules of Lemma 13),

bij arrow from (i, 1) to (j, 0),

ci blocking symbol at (i, 0), arrow from (i, 1) to (i, 0),

di blocking symbols at (i, 0) and (i, 1),

ei blocking symbol at (i, 1), arrow from (i, 1) to (i, 0).
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Figure 2: Graphical representation of a two-stage contact process and its dual.

3.4 Gray’s duality

Gray [Gra86] proved a general duality for monotone spin systems that need, in general, not
be additive. Although Gray’s formulation of the duality differs considerably from ours, in the
present subsection, we will show that his dual is a special case of the process with generator
H•, which is defined as in Theorem 9 but with the dual maps m∗ replaced by the analogous
maps m• from Lemma 10.

Gray considers spin systems, which are Markov processes with state space S := {0, 1}Λ
and generator of the form

Gf(x) =
∑
i∈Λ

βi(x)
(
f(x ∨ εi)− f(x)

)
+
∑
i∈Λ

δi(x)
(
f(x ∧ (1− εi))− f(x)

)
, (3.15)

where εi(j) := 1{i=j}. Gray’s emphasis is on the case Λ = Z but the arguments are the same
for finite Λ. Gray assumes that his systems are attractive, which means that the function
βi : S → [0,∞) is monotone and the function δi : S → [0,∞) is anti-monotone, i.e., −δi is
monotone. He then proves the following fact.

Lemma 19 (Attractive spin systems are monotonically representable) Let G be of
the form (3.15) and assume that for each i ∈ Λ, the function βi is monotone and δi is anti-
monotone. Then there exists a set G of monotone maps m : S → S and nonnegative constants
(rm)m∈G such that G has the form

Gf(x) =
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ S). (3.16)

Using the random mapping representation (3.16) of G in terms of monotone maps, Gray
then constructs a Poisson point set ∆ whose elements are pairs (m, t) with m ∈ G and t ∈ R,
and uses this to define a stochastic flow (Xs,t)s≤t as in (2.11).2 Gray then defines an [s, u]-path
from x to y (with x, y ∈ S) to be a cadlag function π : [s, u]→ S with π(s) = x and π(u) = y,
such that:3

2See formulas (10)–(12) of [Gra86]. His notation for Xs,t(x) is ξ(s, t, x).
3Gray does not state his definition entirely correctly. In his definition of minimality, he also includes,

probably inadvertently, the condition that π̃(s) = x.
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(i) Xt,t′(π(t)) ≥ π(t′) for all s ≤ t ≤ t′ ≤ u.

(ii) π is minimal in the sense that if a cadlag function π̃ : [s, u]→ S with π̃(u) = y satisfies
(i) and π̃(t) ≤ π(t) for all t ∈ [s, u], then π = π̃.

Next, for each s ≤ u, he defines random maps from S to P(S) by

ζs,u(y) :=
{
x ∈ S : there exists an [s, u]-path from x to y

}
(y ∈ S). (3.17)

With this notation, Theorem 1 in [Gra86] reads:

Theorem 20 (Gray’s duality) For each x, y ∈ S and s ≤ u, one has y ≤ Xs,u(x) if and
only if z ≤ x for some z ∈ ζs,u(y).

To relate this to our work, for each monotone map m : S → S, let m• denote the dual
map defined in (2.37), where for S′ we choose the set S equipped with the reversed order, i.e.,

m•(B) :=
⋃
x∈B

(m−1({x}↑))min

(
B ∈ P(S)

)
, (3.18)

where on the right-hand side {x}↑ and the minimum are taken with respect to the order on
S. Set ∆• := {(m•,−t) : (m, t) ∈ ∆} and use this Poisson set to define a stochastic flow
(Y•s,t)s≤t that by Proposition 2 and Lemma 10 is dual to (Xs,t)s≤t with respect to the duality

function φ̃ from (2.36). Then Theorem 20 is an immediate consequence of this duality and
the following fact, that will be proved in Section 4.7.

Proposition 21 (Reformulation of Gray’s dual) For each y ∈ S and s ≤ u, one has
ζs,u(y) = Y•−u,−s

(
{y}
)
.

Note that the duality of (Y•s,t)s≤t to (Xs,t)s≤t with respect to the duality function from
(2.36) implies that for each x, y ∈ S and s ≤ t,

1{x ≥ z for some z ∈ Y•−t,−s({y})} = 1{Xs,t(x) ≥ z for some z ∈ {y}}, (3.19)

which by Proposition 21 implies Gray’s result Theorem 20.

3.5 Cooperative branching

In the present subsection, we consider a more concrete example of an interacting particle
system that is monotone but not additive and to which Theorem 9 applies. We will give a
concrete description of the dual process with generator H∗ from (2.35) and make optimal use
of the fact that some of the maps involved are additive.

Denoting elements of {0, 1}n as finite words made up of the letters 0 and 1, consider the
maps a, b, c, d, e acting on {0, 1}2, {0, 1}3, {0, 1}2, {0, 1}1, and {0, 1}2, respectively, defined as
follows.

voter move a(10) := 00, a(01) := 11, a(x) := x otherwise,

cooperative branching b(110) := 111, b(x) := x otherwise,

coalescing RW c(11) := 01, c(10) := 01, c(x) := x otherwise,

death d(1) := 0, d(x) := x otherwise,

exclusion e(10) := 01, e(01) := 10, e(x) := x otherwise.

(3.20)

These maps can be lifted to a larger space of the form {0, 1}Λ with Λ any finite set as follows.
For each ordered triple (i, j, k) ∈ Λ3 such that i, j, k ∈ Λ are all different from each other,
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let x(ijk) denote the word obtained by writing x(i), x(j), and x(k) after each other, and let
bijk : {0, 1}Λ → {0, 1}Λ be the map defined by(

bijkx
)
(ijk) := b

(
x(ijk)

)
and

(
bijkx

)
(m) := x(m) for m 6∈ {i, j, k}. (3.21)

We define aij , cij , di, and eij in a similar way, by lifing the map a, c, d, and e to {0, 1}Λ.
The map aij corresponds to the voter model map votji (note the order of the indices) from

(3.5) and the map cij coincides with the coalescing random walk map rwij from (3.6). The
death map di corresponds to deaths of particles at i and eij corresponds to exclusion model
dynamics, where the states of the sites i and j are interchanged. The map bijk describes the
situation where two particles at i, j are both needed to produce a third particle at k; such
maps have been used to model, e.g., sexual reproduction. In [Nob92, Neu94], particle systems
whose generators can be represented in the maps bijk, di, and eij are studied, while [SS14] is
concerned with systems that involve the maps bijk and cij .

We set S := {0, 1}Λ. Here, we will only consider finite Λ. The extension to infinite Λ such
as Λ = Z, considered in [Nob92, Neu94, SS14], will be treated in Section 5.4. Choose S′ := S,
x′ := 1− x, so that S′ is a dual of S as in the sense of (2.23). With this choice, the function
〈 · , · 〉 from (2.24) becomes

〈x, y〉 = 1{x ≤ y′} = 1{x ∧ y = 0} (x, y ∈ S). (3.22)

We start by observing that the maps aij , cij , di, and eij are additive and hence have duals in
the sense of Lemma 6.

Lemma 22 (Additive maps) For each i, j ∈ Λ such that i 6= j, the maps aij , cij , di, and
eij are additive and their dual maps in the sense of Lemma 6 are given by

a′ij = cij , c′ij = aij , d′i = di, and e′ij = eij . (3.23)

The maps bijk, on the other hand, are not additive, but only monotone. Sticking to our
choice S′ := S and x′ := 1− x, we fall back on the duality function φ from (2.29), which now
reads

φ(x,B) = 1{x ≤ y′ for some y ∈ B} = 1{x ∧ y = 0 for some y ∈ B} (3.24)(
x ∈ S, B ∈ P(S)

)
. Our next aim is to determine the dual map b∗ijk defined in (2.31). We

start with the map b from (3.20). We observe that

(
b−1
(
{x}↓

))
max

=

{
{100, 010} if x = 110,

{x} otherwise.
(3.25)

By (2.31), taking into account that x′ := 1− x, it follows that

b∗
(
{x}
)

=

{
{011, 101} if x = 001,

{x} otherwise.
(3.26)

In order to find a more convenient expression for b∗, we define maps b(1), b(2) : {0, 1}3 →
{0, 1}3 by

b(1)(001) := 011, b(1)(x) := x otherwise,

b(2)(001) := 101, b(2)(x) := x otherwise.
(3.27)

Then, using (2.33), we see that for any B ⊂ {0, 1}3,

b∗(B) = {b(1)(x) : x ∈ B} ∪ {b(2)(x) : x ∈ B} = b(1)(B) ∪ b(2)(B), (3.28)
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where b(1)(B) and b(2)(B) denote the images of B under the maps b(1) and b(2), respectively.
Similarly, lifting these maps to the larger space S = {0, 1}Λ in the same way as before,

b∗ijk(B) = b
(1)
ijk(B) ∪ b(2)

ijk(B)
(
B ∈ P(S)

)
. (3.29)

Lemma 11 tells us that a∗ij(B) = a′ij(B), where a′ij(B) denotes the image of B under the map
a′ij , and similarly for the additive maps cij , di, and eij . Using also Lemma 22, we see that

a∗ij(B) = cij(B), c∗ij(B) = aij(B), d∗i (B) = di(B), and e∗ij(B) = eij(B). (3.30)

By Lemma 8, the maps a∗ij , b
∗
ij , . . . in (3.29) and (3.30) are dual to aij , bij , . . . with respect

to the duality function φ from (3.24), so Proposition 2 tells us how to construct a pathwise
dual for a Markov process whose generator is represented in these maps.

It is instructive to do this in a concrete example. Let us consider a process X with a
generator of the form

Gf(x) :=
∑
ijk

rijk
(
f(bijk(x))− f(x)

)
+
∑
ij

sij
(
f(cij(x))− f(x)

)
, (3.31)

where the first sum runs over all ordered triples (i, j, k) ∈ Λ3 such that i, j, k ∈ Λ are all
different from each other, the second sum runs over all (i, j) ∈ Λ2 with i 6= j, and rijk and
sij are nonnegative rates. The process X is a process of particles performing cooperative
branching and coalescing random walk dynamics such as studied in [SS14].

By Proposition 2, Lemma 8, (3.29), and (3.30), the process X is pathwise dual with respect
to the function φ from (3.24) to the P(S)-valued process Y ∗ = (Y ∗t )t≥0 with generator

H∗f(B) :=
∑
ijk

rijk
(
f
(
b
(1)
ijk(B) ∪ b(2)

ijk(B)
)
− f(B)

)
+
∑
ij

sij
(
f(aij(B))− f(B)

)
. (3.32)

We can think of the set-valued process (Y ∗t )t≥0 as an evolving collection of voter-model
configurations. With rate sij , the voter map aij is applied to all configurations y ∈ Y ∗t
simultaneously. With rate rijk, we apply both of the maps b

(1)
ijk and b

(2)
ijk to each configuration

y ∈ Y ∗t , and collect all different outcomes in a new collection of voter-model configurations.
Since each pathwise dual is also a (normal) dual, we conclude that if X and Y are processes

with generators as in (3.31) and (3.32) deterministic initial states X0 and Y0, then

P
[
Xt ∧ y = 0 for some y ∈ Y0

]
= P

[
X0 ∧ y = 0 for some y ∈ Yt

]
(t ≥ 0), (3.33)

or equivalently

P
[
Xt ∧ y 6= 0 ∀y ∈ Y0

]
= P

[
X0 ∧ y 6= 0 ∀y ∈ Yt

]
(t ≥ 0). (3.34)

Using (3.30), it is straightforward to extend this duality so that the generator of X also
includes application of the maps di and eij with certain rates as in [Nob92, Neu94].

4 Proofs

4.1 Overview

In this section, we provide the proofs for all facts stated so far without proof or reference.
Lemma 1, Proposition 2, Lemma 3, and Lemma 4 are proved in Section 4.2. Lemma 5 is
proved in Section 4.3 while Lemma 6 has already been proved “on the spot” in Section 2.4.
Theorem 7 follows directly from Proposition 2 and Lemma 6. Section 4.4 contains the proofs
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of Lemma 8 and the later Lemma 11. The preceding Theorem 9 follows directly from Propo-
sition 2 and Lemma 8, and, as already pointed out in the text, Lemma 10 follows by applying
Lemma 8 to the reversed order. Proposition 12 has been cited in the text from [KKO77, FM01].
Lemmas 13, 14, and 15 are proved in Section 4.5. As explained in the text preceding it, The-
orem 16 follows from Theorem 7. It has also already been explained that Proposition 17
follows from Theorem 7. Lemma 18 is proved in Section 4.6, which also contains the proof
of the later Lemma 22, while the preceding Lemma 19 and Proposition 21 are proved in Sec-
tion 4.7. Theorem 20, finally, is cited from [Gra86] and as explained in the text also follows
from Proposition 2, Lemma 10, and Proposition 21.

4.2 Markov process duality

In this section we prove Lemma 1 and Proposition 2 about the Poisson construction of Markov
processes with finite state spaces and pathwise duality, as well as Lemma 3 about repre-
sentability of Markov generators and semigroups and the simple observation Lemma 4 about
the inverse image map.
Proof of Lemma 1 Recall the definition of a stochastic flow from Section 2.1. The fact
that (Xs,t)s≤t forms a stochastic flow follows immediately from its definition via the Poisson
point sets ∆. More precisely, defining ∆s−,t := ∆ ∩ (G × [s, u]), ∆s,t− := ∆ ∩ (G × (s, u)),
∆s−,t− := ∆ ∩ (G × [s, u)) and constructing Xs−,t etc. correspondingly we see that prop-
erty (i) holds a.s. Since ∆s,s = ∅ the map Xs,s is the identity map, and the flow property
Xt,u ◦ Xs,t = Xs,u follows directly from the composition structure in definition (2.11). The
independence of the increments (property (iii)) follows since for any t0 < · · · < tn the Poisson
sets ∆t0,t1 ,∆t1,t2 , . . . ,∆tn−1,tn are independent.

Now let X be defined as in (2.3). From the definition of the stochastic flow it is clear that
X has cadlag sample paths. Since for each 0 ≤ t ≤ u, the Poisson set ∆s+t,s+u is independent
of (X0,∆s,s+t), using also translation invariance, the Markov property (2.9) follows as long as
we show that for each t ≥ 0, the probability kernel Pt has the random mapping representation

Pt(x, y) = P[X0,t(x) = y] (t ≥ 0, x, y ∈ S). (4.1)

Let r :=
∑

m∈G rm. If r = 0 the statement is trivial. Otherwise, define a probability kernel
K by

K(x, y) := r−1
∑
m∈G

rm1{m(x) = y} (x, y ∈ S). (4.2)

Write ∆0,t = {(ms, s) : s ∈ Γ} where Γ is a Poisson point set on (0, t] with intensity r and
conditional on Γ, the maps (ms)s∈Γ are i.i.d. with law r−1rm. Then, using the definition of
the Poisson distribution, we see that

P[X0,t(x) = y] = e−rt
∞∑
k=0

(rt)k

k!
Kk(x, y). (4.3)

On the other hand, since G = r(K − 1) where 1 denotes the identity matrix,

Pt = e tG =
∞∑
n=0

(rt)n

n!
(K − 1)n =

∞∑
n=0

(rt)n

n!

n∑
k=0

(
n

k

)
(−1)n−kKk

=

∞∑
k=0

(rt)k

k!
Kk

∞∑
n=k

(−rt)n−k

(n− k)!
,

(4.4)

which agrees with the right-hand side of (4.3).

Proof of Proposition 2 If

∆t−,u− = {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn, (4.5)
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then
Xt−,u− := mn ◦ · · · ◦m1 and Y−u,−t := m̂1 ◦ · · · ◦ m̂n, (4.6)

so repeated application of (2.12) implies that Xt−,u− is dual to Y−u,−t. Using the semigroup
property, it follows that the expression

ψ
(
Xs,t−(x),Y−u,−t(y)

)
= ψ

(
Xt−,u− ◦Xs−,t−(x), y

)
= ψ

(
Xs,u−(x), y

)
(4.7)

is constant as a function of t ∈ [s, u]. For any t0 < · · · < tn, the pairs

(Xt0,t1 ,Y−t1,−t0), . . . , (Xtn−1,tn ,Y−tn,−tn−1)

are functions of the restrictions of the Poisson point process ∆ to disjoint sets G × (t0, t1]
etc., and therefore independent, completing the proof that the stochastic flows (Xs,t)s≤t and
(Ys,t)s≤t are dual in the sense defined in Section 2.1. In particular, this proves that the Markov
processes X and Y are pathwise dual as defined in Section 2.1.

Proof of Lemma 3 If G can be represented in G, then we can construct a stochastic flow
(Xs,t)s≤t based on such a random mapping representation as in (2.11). By the fact that G
is closed under composition and contains the identity map, it follows that Xs,t ∈ G for each
s ≤ t, so (2.16) proves that Pt can be represented in G for all t ≥ 0.

Assume, conversely, that Pt can be represented in G for all t ≥ 0. Then, for each t ≥ 0, we
can find a probability distribution πt on G such that

Pt(x, y) =
∑
m∈G

πt(m)1{m(x) = y} (x, y ∈ S). (4.8)

Since G is the generator of (Pt)t≥0,

lim
t↓0

t−1
∑
m∈G

πt(m)1{m(x) = y} = G(x, y) (x, y ∈ S, x 6= y). (4.9)

Let m ∈ G satisfy m 6= 1, i.e., m is different from the identity map. Then we can find x 6= y
such that m(x) 6= y. Now (4.9) shows that t−1πt(m) ≤ G(x, y), so using compactness we can
find a sequence of times tn ↓ 0 such that the limit

rm := lim
n→∞

t−1
n πtn(m) (4.10)

exists for every m ∈ G′ := {m ∈ G : m 6= 1}. Using (4.9), it follows that

G(x, y) =
∑
m∈G′

rm1{m(x) = y} (x, y ∈ S, x 6= y). (4.11)

Using also that G is a Markov generator, this is easily seen to imply (2.10), i.e., we have found
a random mapping representation of G in terms of maps in G.

Proof of Lemma 4 This is immediate from the observation that

ψ
(
m(x), A

)
= 1{m(x) ∈ A} = 1{x ∈ m−1(A)} = ψ

(
x,m−1(A)

)
.
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4.3 Monotone and additive maps

In this section we prove Lemma 5, which characterizes montone and additive maps in terms
of their inverse images.

Proof of Lemma 5 (i) If S and T are partially ordered sets, m : S → T is monotone,
and A ⊂ T is decreasing, then for each x, y ∈ S with x ≤ y and y ∈ m−1(A), we have
m(x) ≤ m(y) ∈ A by the fact that m is monotone and hence m(x) ∈ A or equivalently
x ∈ m−1(A) by the fact that A is decreasing. This shows that

m−1(A) ∈ Pdec(S) for all A ∈ Pdec(T ). (4.12)

Conversely, if (4.12) holds, and x, y ∈ S satisfy x ≤ y, then m−1({y}↓) is a decreasing set
containing y, so x ∈ m−1({y}↓) or equivalently m(x) ≤ m(y), proving that m is monotone.

(ii) We use the fact that if S is a join-semilattice, then a set A ⊂ S is an ideal if and only
if A is nonempty, decreasing, and x, y ∈ A imply x ∨ y in A (see Lemma 35 in the appendix).
Now let S and T be join-semilattices that are bounded from below. Assume that m : S → T
is additive and that A ∈ P!dec(T ) is an ideal. Since additive functions are monotone, by what
we have just proved, m−1(A) is decreasing. Since A is nonempty and decreasing, it contains
0, and since m(0) = 0 we have 0 ∈ m−1(A), which shows that m−1(A) is nonempty. Finally, if
x, y ∈ m−1(A), then by additivity and the fact that A is an ideal, m(x∨y) = m(x)∨m(y) ∈ A,
so x ∨ y ∈ m−1(A), which completes the proof that m−1(A) is an ideal.

Assume, conversely, that m : S → T has the property that m−1(A) is an ideal whenever
A ⊂ T is an ideal. Then, since m−1({0}) is nonempty and decreasing, we have 0 ∈ m−1({0})
and hence m(0) = 0. For each y ∈ S, the set m−1({m(y)}↓) is a decreasing set containing y, so
x ≤ y implies x ∈ m−1({m(y)}↓) or equivalently m(x) ≤ m(y), showing that m is monotone.
Since x ≤ x ∨ y and y ≤ x ∨ y, this implies that m(x) ∨m(y) ≤ m(x ∨ y) for each x, y ∈ S.
To get the opposite inequality, we observe that m−1({m(x) ∨m(y)}↓) is an ideal containing
x and y, so using the properties of ideals also x ∨ y ∈ m−1({m(x) ∨m(y)}↓) which says that
m(x ∨ y) ≤ m(x) ∨m(y).

4.4 Monotone systems duality

In this section we prove Lemmas 8 and 11 that form the basis of Section 2.5 about monotone
systems duality.

To prepare for the proof of Lemma 8, we make the following general observation on sets of
maximal and minimal elements. If A ⊂ S is finite, then there exists to any x ∈ A a maximal
element y ∈ A with y ≥ x (see Lemma 34 in the appendix). Therefore, we have (Amax)↓ ⊃ A
and similarly (Amin)↑ ⊃ A for each A ∈ P(S), so in particular

(Amax)↓ = A
(
A ∈ Pdec(S)

)
and (Amin)↑ = A

(
A ∈ Pinc(S)

)
. (4.13)

(In particular, this also holds if A = ∅ since ∅min = ∅ = ∅max and ∅↑ = ∅ = ∅↓.) In view of
(4.13), we can “encode” a set A ∈ Pdec(S) by describing its set of maximal elements, or more
generally by any subset B ⊂ S such that A = B↓.

Proof of Lemma 8 Through the bijection x 7→ x′, the monotone map m : S → S naturally
gives rise to a monotone map n : S′ → S′ defined by

n(x) := m(x′)′ (x ∈ S′). (4.14)

In terms of the map n, the definitions (2.31) take the simpler form

m†(B) := n−1(B↑)min and m∗(B) :=
⋃
x∈B

n−1({x}↑)min (4.15)
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(B ∈ P(S′)). Instead of showing that m† and m∗ are dual to m with respect to the duality
function in (2.29), we may equivalently show that m† and m∗ are dual to n with respect to
the duality function

φ̃(x,B) := 1{x′ ∈ B′↓} = 1{x ∈ B↑}
(
x ∈ S′, B ∈ P(S′)

)
. (4.16)

Letting ] = † or ∗, this means that we must show that

n(x) ∈ B↑ if and only if x ∈ m](B)↑
(
x ∈ S′, B ∈ P(S′)

)
. (4.17)

Since the event in the left-hand side of this equation is {x ∈ n−1(B↑)}, this is equivalent to

m](B)↑ = n−1(B↑)
(
B ∈ P(S′)

)
. (4.18)

Since n is monotone, Lemma 5 tells us that n−1(A) ∈ Pinc(S
′) for each A ∈ Pinc(S

′). Therefore,
by (4.13) applied to the increasing set A = n−1(B↑), we see that

m†(B)↑ =
(
n−1(B↑)min

)↑
= m−1(B↑)

(
B ∈ P(S′)

)
, (4.19)

proving that m† satisfies (4.18). Similarly, for the map m∗, applying (4.13) to the increasing
sets A = n−1({x}↑) with x ∈ B, we have for B ∈ P(S′)

m∗(B)↑ =
( ⋃
x∈B

n−1({x}↑)min

)↑
=
⋃
x∈B

(
n−1({x}↑)min

)↑
=
⋃
x∈B

n−1({x}↑) = n−1(B↑), (4.20)

which shows that also m∗ satisfies (4.18).
It remains to prove the properties (2.32) and (2.33). It is clear from (4.15) that

m†(B) = m†(B)min and m∗(B ∪ C) = m∗(B) ∪m∗(C)
(
B,C ∈ P(S′)

)
. (4.21)

Formula (4.18) tells us that

m†(B)↑ = n−1(B↑) = m∗(B)↑, (4.22)

Taking minima on both sides, using the facts that m†(B) = m†(B)min and (A↑)min = Amin

for any A ⊂ S, we see that m†(B) = (m∗(B))min for B ∈ P(S′).

Proof of Lemma 11 By Lemma 6, we have

m−1({y′}↓) = {x ∈ S : m(x) ≤ y′} = {x ∈ S : 〈m(x), y〉 = 1}

= {x ∈ S : 〈x,m′(y)〉 = 1} = {m′(y)′}↓ (y ∈ S′).
(4.23)

It follows that (m−1({y′}↓))max = {m′(y)′}, so by (2.31), we see that m∗(B) = {m′(y) : y ∈ B}
(B ∈ P(S)). The fact that m†(B) = m∗(B)min has already been proved in (2.32).

4.5 Percolation representations

In this section we prove Lemmas 13, 14, and 15, that show that each additive system taking
values in a lattice has a percolation representation, and if the lattice is moreover distributive,
then the process and its dual can be represented in the same percolation substructure.

Proof of Lemma 13 We start by showing that if M ⊂ Λ × Λ satisfies (2.43), then (2.44)
defines an additive map m : Pdec(Λ) → Pdec(Λ). To see that m maps Pdec(Λ) into itself, we
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note that ̃ ≤ j and j ∈ m(x) implies (i, j) ∈ M for some i ∈ x which by (2.43) (ii) implies
that (i, ̃) ∈M and hence ̃ ∈ m(x). We see from (2.44) that

m(x) =
⋃
i∈x

m
(
{i}
) (

x ∈ Pdec(Λ)
)
, (4.24)

which is easily seen to imply that m is additive.
We next show that if m is defined via M as in (2.44), then we can recover M from m since

M =
{

(i, j) ∈ Λ× Λ : j ∈ m
(
{i}↓

)}
. (4.25)

To see this, note that (i, j) ∈M implies by (2.44) j ∈ m
(
{i}↓

)
since i ∈ {i}↓. This proves the

inclusion ⊂ in (4.25). Conversely, if j ∈ m
(
{i}↓

)
, then by (2.44) there must exist some ı̃ ≤ i

such that (̃ı, j) ∈M , which by (2.43) (i) implies (i, j) ∈M and shows ⊃ in (4.25).
To see that every additive map from Pdec(Λ) into itself is of the form (2.44), let m be such

a map. We will show that m is of the form (2.44) where M is given by (4.25). Indeed, if M
is given by (4.25), then M satisfies (2.43) (i) by the monotonicity of m, namely if (i, j) ∈ M
and i ≤ ı̃ then j ∈ m

(
{i}↓

)
⊂ m

(
{ı̃}↓

)
, which implies (̃ı, j) ∈ M . Property (2.43) (ii) holds

due to the fact that m
(
{i}↓

)
∈ Pdec(Λ) so j ∈ m

(
{i}↓

)
implies ̃ ∈ m

(
{i}↓

)
for any ̃ ≤ j.

To see that m is given by (2.44), first define n by (2.44). We claim that for any i ∈ Λ,

n
(
{i}↓

)
=
{
j : (̃ı, j) ∈M for some ı̃ ≤ i

}
=
{
j : (i, j) ∈M

}
= m

(
{i}↓

)
. (4.26)

Indeed, in the second equality, we have ⊂ by (2.43) (i) and ⊃ by choosing ı̃ = i, while the
third equality is immediate from (4.25). It follows that m = n on sets of the form {x}↓. Since
both m and n are additive, it follows that they agree on Pdec(Λ).

It remains to prove (2.45). Recall that S := Pdec(Λ) and that S′ := Pdec(Λ
′) = Pinc(Λ),

which together with the map x 7→ x′ := xc is a dual to S. Then the duality function takes
the form 〈x, y〉 = 1{x ∩ y = ∅} and two additive maps m : S → S and m′ : S′ → S′ are dual

if and only if

1{m(x) ∩ y = ∅} = 1{x ∩m′(y) = ∅}
(
x ∈ Pdec(Λ), y ∈ Pinc(Λ)

)
. (4.27)

We observe that if M satisfies (2.43) and M ′ is given by (2.45), then M ′ satisfies (2.43) with
respect to the reversed order, i.e., with respect to the order on Λ′. In view of this, it suffices
to show that if m : S → S is defined in terms of M as in (2.44) and similarly m′ : S′ → S′ is
defined in terms of M ′, then m and m′ are dual in the sense of (4.27). Indeed,

m(x) ∩ y = ∅ ⇔ {j ∈ Λ : (i, j) ∈M for some i ∈ x} ∩ y = ∅
⇔ {(i, j) ∈M : i ∈ x, j ∈ y} = ∅
⇔ x ∩ {i ∈ Λ : (j, i) ∈M ′ for some j ∈ y} = ∅ ⇔ x ∩m′(y) = ∅.

(4.28)

Proof of Lemma 14 The left- and right-hand side of (2.46) both equal x when s = u and
for fixed s ∈ R, both sides change only at times u when (m,u) ∈ ∆ for some m ∈ G. If just
before time u, both sides are equal to some y ∈ Pdec(Λ), then at time u, using the definition
of open paths, we see that the left- and right-hand side of (2.46) equal

m(y) and {j ∈ Λ : (i, j) ∈M for some i ∈ y}, (4.29)

respectively. In view of this, (2.46) follows by induction from (2.44). The proof of (2.47) is the
same: we first observe that equality holds at u = s and then check that the equation remains
true when we increase u while keeping s fixed, where

m′(y) = {j ∈ Λ : (i, j) ∈M ′ for some i ∈ y}, (4.30)
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with M ′ as in (2.45).
Let us write (i, s)  (j, u−) if there is an open path “from (i, s) to (j, u−)”, where in

the definition of an open path, we replace the time interval (s, u] by (s, u). In the same way,
we can give a meaning to (i, s−)  (j, u) and (i, s−)  (j, u−), where arrows and blocking
symbols at the end of the time interval have an effect, or not, depending on whether we want
our definition to be left- or right-continuous in s or u. Then formulas (2.46) and (2.47) have
obvious analogues where right-continuity in a variable is replaced by left-continuity, or vice
versa. Now (2.48) follows from the observation that

Xs,t−(x) ∩Y−u,−t(y) = ∅ ⇔ 6 ∃i, j, k such that i ∈ x, j ∈ y, (i, s) (k, t−) (j, u−)

⇔ (i, s) 6 (j, u) ∀ i ∈ x, j ∈ y a.s.,
(4.31)

where in the last step we have used a.s. continuity at the deterministic time u.

Proof of Lemma 15 Let S be a finite lattice. Then we claim that the map4

x 7→
(
{x}↑

)c
(4.32)

is a (0,∨)-homomorphism from S into the lattice of sets Pdec(S). Indeed,(
{0}↑

)c
= ∅ and

(
{x ∨ y}↑

)c
=
(
{x}↑ ∩ {y}↑

)c
=
(
{x}↑

)c ∪ ({y}↑)c. (4.33)

Since x 6= y implies {x}↑ 6= {y}↑, the map in (4.32) is one-to-one and as a result a (0,∨)-
isomorphism to its image, proving that each finite lattice is (0,∨)-isomorphic to a join-
semilattice of sets.

Now let Λ be a finite set and let T ⊂ P(Λ) be a join-semilattice of sets, i.e., ∅ ∈ T and T
is closed under unions. We claim that each m : T → T can be extended to an additive map
m : P(Λ)→ P(Λ). We will actually prove a somewhat stronger statement. Assume moreover
that Λ is partially ordered and that T ⊂ Pdec(Λ). Then we will show that m : T → T can
be extended to an additive map m : Pdec(Λ) → Pdec(Λ). In particular, equipping Λ with
the trivial order, this includes the statement in Lemma 15 as a special case. The following
argument was suggested to us by László Csirmaz.

Assume that x ∈ Pdec(Λ) and x 6∈ T . Then T := {y, x ∪ y : y ∈ T} ⊂ Pdec(Λ) is (∅,∪)-
closed and contains x. By the finiteness of S, the claim will follow by induction if we can
prove that m can be extended to an additive map m : T → Pdec(Λ).

For y ∈ T , we define

m(y) :=m(y),

m(x ∪ y) :=m(y) ∪
⋂
{m(z) : x ⊂ z ∈ T}

=
⋂
{m(y) ∪m(z) : x ⊂ z ∈ T}

=
⋂
{m(y ∪ z) : x ⊂ z ∈ T}.

(4.34)

Note that since Pdec(Λ) is closed under finite intersections, the last line in (4.34) defines an
element of Pdec(Λ). We need to show that (4.34) is a good definition, i.e.,

(i) If y ∈ T and x ∪ y ∈ T , then
⋂
{m(y ∪ z) : x ⊂ z ∈ T} = m(x ∪ y).

(ii) If y, y′ ∈ T and x ∪ y = x ∪ y′, then⋂
{m(y ∪ z) : x ⊂ z ∈ T} =

⋂
{m(y′ ∪ z) : x ⊂ z ∈ T}.

4Alternatively, one may consider the map x 7→
(
{x}↑ ∩ Λ

)c
where Λ is the set of meet-irreducible elements

of S. As a result of Birkhoff’s representation theorem, one can prove that this map is onto, and as a result sets
up an isomorphism between the lattices S and Pdec(Λ), if and only if S is distributive.
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Indeed, in (i), the inclusion ⊃ follows from the monotonicity of m, while the inclusion ⊂
follows by setting z = x ∪ y. Property (ii) follows from the observation that

x ∪ y = x ∪ y′ and x ⊂ z ∈ T imply y ∪ z = y′ ∪ z. (4.35)

To show that m is additive, we must prove that

(i) If y, y′ ∈ T , then m(y ∪ y′) = m(y) ∪m(y′).

(ii) If y, y′ ∈ T , then m
(
(x ∪ y) ∪ y′

)
= m(x ∪ y) ∪m(y′).

(iii) If y, y′ ∈ T , then m
(
(x ∪ y) ∪ (y′ ∪ x)

)
= m(x ∪ y) ∪m(y′ ∪ x).

Property (i) follows from the additivity of m. Properties (ii) and (iii) say that for y, y′ ∈ T ,

m(y ∪ y′ ∪ x) = m(x ∪ y) ∪m(y′) = m(x ∪ y) ∪m(x ∪ y′), (4.36)

which is easily seen to follow from our definition m(x ∪ y) := m(y) ∪
⋂
{m(z) : x ⊂ z ∈ T} as

well as from the additivity of m.

4.6 Examples of dual maps

In this section we prove Lemmas 18 and 22 by verifying that the maps there are really dual
to each other as claimed.

Proof of Lemma 18 The easiest way to see this is from the graphical representation (see
Figure 2). First, one represents the maps ai, bij , ci, di, and ei by arrows and blocking symbols
as described at the end of Section 3.3, and checks that this really corresponds to the maps in
(3.8) with the interpretation of the two-stage contact process as a set-valued process in the
forward time direction (3.13). The dual maps a′i, b

′
ij , c
′
i, d
′
i, and e′i can then be found according

to the recipe “reverse the arrows, keep the blocking symbols” (as is clear from Figure 2 and
which also corresponds to (2.45)). Using the interpretation of the dual set-valued process
(3.14), this yields (3.11).

Proof of Lemma 22 As in the proof of Lemma 18, we use the graphical representation. The
maps aij , cij , di, and eij can be represented in terms of arrows and blocking symbols as:

i j
aij

i j
cij

i

di

i j
eij

According to the recipe “reverse the arrows, keep the blocking symbols”, the dual maps are
given by:

i j
a′ij

i j
c′ij

i

d′i

i j
e′ij

Comparing the pictures, we see that

a′ij = cij , c′ij = aij , d′i = di, and e′ij = eij .
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4.7 Gray’s duality

In this section, we prove Proposition 21, which shows that Gray’s dual for general monotone
spin systems is a special case of the dual Y • from Section 2.5. For completeness, we also prove
Lemma 19 which says that attractive spin systems are monotonically representable. We start
with a simple preparatory lemma.

Lemma 23 (Monotone real functions) Let S be a finite partially ordered set. Then
f ∈ Fmon(S,R) if and only if f can be written as

f(x) =
∑

A∈Pinc(S)

rA1{x∈A} (x ∈ S) (4.37)

for real constants (rA)A∈Pinc(S) satisfying rA ≥ 0 for all A 6= ∅, S.

Proof If f ∈ F(S,R) is monotone, then5 f−1([r,∞)) ∈ Pinc(S) for all r ∈ R. Let f(S) :=
{f(x) : x ∈ S} be the image of S under f . Since S is finite, so is f(S) and we may write
f(S) = {r1, . . . , rn} with r1 < · · · < rn. The sets Ak := {x ∈ S : f(x) ≥ rk} are increasing
and

f(x) = r11{x∈S} +

n∑
k=2

(rk − rk−1)1{x∈Ak}. (4.38)

This proves that every f ∈ Fmon(S,R) can be written in the form (4.37). Conversely, if f is
of the form (4.37), then it is a sum of monotone functions, so f ∈ Fmon(S,R).

Proof of Lemma 19 It suffices to prove that the first term in (3.15) is monotonically repre-
sentable. The same arguments applied to the second term and S equipped with the reversed
order then prove the general statement.

Since each βi is monotone and nonnegative, by Lemma 23, for each i ∈ Λ we can find some
set Ai whose elements are increasing, nonempty subsets of S, as well as nonnegative constants
(ri,A)A∈Ai , such that

βi(x) =
∑
A∈Ai

ri,A1{x ∈ A}. (4.39)

For each i ∈ Λ and A ∈ Ai, define a map mi,A by

mi,A(x) :=

{
x ∨ εi if x ∈ A,
x otherwise.

(4.40)

Then the first term in (3.15) can be written as∑
i∈Λ

∑
A∈Ai

ri,A
(
f(mi,A(x))− f(x)

)
, (4.41)

which is the desired representation in monotone maps.

Proof of Proposition 21 For any s ≤ u and B ∈ P(S), let us write

ζs,u(B) :=
⋃
y∈B

ζs,u(y). (4.42)

We will show that Y•−u,−s(B) = ζs,u(B). In particular, setting B = {y} then yields the
statement in Proposition 21. Thus, in light of the definition of Gray’s dual in (3.17), we claim
that for any s ≤ u and B ∈ P(S), a.s.

Y•−u,−s(B) =
{
z ∈ S : there exists an [s, u]-path π from z to some y ∈ B

}
. (4.43)

5Let S and T be partially ordered sets. If a map m : S → T is monotone, then it is also monotone with
respect to the reversed orders on S and T . In view of this and Lemma 5 (i), a map m : S → T is monotone if
and only if m−1(A) ∈ Pinc(S) for all A ∈ Pinc(T ).
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As in (2.11), we order the elements of ∆s,u according to the time they occur:

∆s,u := {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn. (4.44)

Then condition (i) in the definition of an [s, u]-path in Section 3.4 is equivalent to

(i)’ mk

(
π(tk−)

)
≥ π(tk) for all k = 1, . . . , n,

(i)” t 7→ π(t) is nondecreasing on [s, t1), . . . , [tn−1, tn), [tn, u].

If π would strictly increase at some time tk−1 < t < tk (with t0 := s and tn+1 := u), then we
could make it smaller on [t, tk), violating minimality (see (ii) in the definition of an [s, u]-path),
so we see that an [s, u]-path π must actually satisfy

t 7→ π(t) is constant on [s, t1), . . . , [tn−1, tn), [tn, u]. (4.45)

Condition (i)’ says that π(tk−) ∈ m−1
k ({π(tk)}↑), which again by minimality implies that

π(tk−) ∈
(
m−1
k

(
{π(tk)}↑

))
min

⇔ π(tk−) ∈ m•({π(tk)}) (k = 1, . . . , n), (4.46)

where we have also used (3.18). By induction, decreasing s wile keeping u fixed, it follows
that ζs,u(B) ⊂ Y•−u,−s(B).

Conversely, one can verify that any cadlag function π : [s, u] → S satisfying (4.45) and
(4.46) is an [s, u]-path. This means that the function [s, u] 3 t 7→ ζt,u is constant between the
times t1, . . . , tn and satisfies

ζtk−,u(B) =
⋃

z∈ζtk,u(B)

(
m−1
k

(
{z}↑

))
min

. (4.47)

Again using (3.18), it follows that [s, u] 3 t 7→ ζt,u is the right-continuous modification of
[s, u] 3 t 7→ Y•−u,−t, proving (4.43).

5 Infinite product spaces

5.1 Introduction

In Sections 2.4 and 2.5, we have shown that Markov processes with finite state spaces have
pathwise duals if their generator can be represented in additive or monotone maps, respectively.
In most of the applications, such as those in Sections 3.2–3.5, the state space is of the product
form TΛ where T is a finite partially ordered set and Λ is another finite set that we will call the
underlying space. One is usually interested in the case that the underlying space is large, so
it is natural to take the limit and consider infinite Λ; this is the setting of interacting particle
systems as treated, e.g., in Liggett’s classical book [Lig85]. For the study of interacting particle
systems, it is important that dual processes are available also in the infinite setting. The aim
of the present section is to show how, under suitable technical assumptions, such duals can
indeed be constructed.

In Sections 5.2 and 5.3, we show how the Poisson construction of Markov processes of
Lemma 1 generalizes to interacting particle systems. In the finite setting, we sometimes used
the term graphical representation for the Poisson point set ∆ of Lemma 1 and we will continue
to do so in the infinite setting. For additively representable processes, there is a natural way
of drawing ∆ in terms of arrows and blocking symbols as explained in Section 2.6. Originally,
the word graphical representation was used for such pictures only, which can also be used
to construct cancellative particle systems as explained in [Gri79]. Nowadays, more general
graphical representations that also may involve other symbols are a standard tool in the
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study of interacting particle systems that need not be additive or cancellative. This asks for a
unified treatment of such constructions and, in particular, a proof that under suitable technical
conditions, they yield a well-defined process. It seems hard, however, to find a reference for
general results of this sort. We base our treatment on the lecture notes [Swa11].

Once the construction of such processes is settled, in Section 5.4 we turn our attention to
interacting particle systems that can be represented in terms of monotone maps. We show
that the dual set-valued processes constructed in Section 2.5 are well-defined also when the
underlying space is infinite, provided that they are started in a “finite” initial state, i.e., a
finite set whose elements are configurations that are nonzero at finitely many lattice points
only. For such finite initial states, we show that the dual process a.s. remains finite for all
times and is pathwise dual to the monotonically representable interacting particle system.

In Section 5.5, we assume moreover that the local state space in each point of the underlying
space is a lattice and that the interacting particle system is additively representable. Under
these assumptions, we show that the additive dual of Section 2.4 is well-defined also in the
infinite setting and pathwise dual to the additively represented interacting particle system.
Under weak additional technical assumptions, this dual process can also be started in infinite
initial states. The question whether monotone duals in the sense of Section 2.5 can also be
started in infinite initial states is left as an open problem.

5.2 Poisson construction of particle systems

Let T be a finite set, let Λ be countably infinite, and let S := TΛ be the space of all collections
(x(i))i∈Λ with x(i) ∈ T for all i ∈ Λ. Let m : TΛ → TΛ be a function. We say that a point
j ∈ Λ is m-relevant for i ∈ Λ if

∃x, y ∈ TΛ s.t. m(x)(i) 6= m(y)(i) and x(k) = y(k) ∀k 6= j, (5.1)

i.e., changing the value of x in j may change the value of m(x) in i. We will use the notation

Ri(m) :=
{
j ∈ Λ : j is m-relevant for i

}
. (5.2)

We note that below, property (ii) may fail even if (i) holds, if m(x)(i) depends on the tail
behavior of (x(j))j∈Λ. (For example, if T = {0, 1}, it may happen that m(x)(i) = 1 if x(j) = 1
for infinitely many j’s and m(x)(i) = 0 otherwise; in such a case Ri(m) = ∅.)

Lemma 24 (Continuous maps) A map m : TΛ → TΛ is continuous with respect to the
product topology on TΛ if and only if for each i ∈ Λ, the following two conditions are satisfied.

(i) The set Ri(m) is finite.

(ii) If x, y ∈ TΛ satisfy x(j) = y(j) for all j ∈ Ri(m), then m(x)(i) = m(y)(i).

Proof Fix i ∈ Λ. We will show that the map x 7→ m(x)(i) is continuous if and only if (i) and
(ii) hold. Let (αj)j∈Λ be strictly positive constants such that

∑
j∈Λ αj <∞. Then the metric

d(x, y) :=
∑
j∈Λ

αj1{x(j) 6= y(j)} (x, y ∈ TΛ) (5.3)

generates the product topology on TΛ. By Tychonoff’s theorem, TΛ is compact, so the function
x 7→ m(x)(i) is uniformly continuous. Since the target space T is finite, this means that there
exists an ε > 0 such that d(x, y) < ε implies m(x)(i) = m(y)(i). Since

∑
j∈Λ αj < ∞, there

exists some finite Λ′ ⊂ Λ such that
∑

j∈Λ\Λ′ αj < ε. It follows that

(ii)’ If x, y ∈ TΛ satisfy x(j) = y(j) for all j ∈ Λ′, then m(x)(i) = m(y)(i).
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We conclude from this that Ri(m) ⊂ Λ′, proving (i). If this is a strict inclusion, then we can
inductively remove those points from Λ′ that are not elements of Ri(m) while preserving the
property (ii)’, until in a finite number of steps we see that (ii) holds.

Conversely, if (i) and (ii) hold and xk → x pointwise, then by (i) there exists some n such
that xk = x on Ri(m) and hence by (ii) m(xk)(i) = m(x)(i) for all k ≥ n.

For any map m : TΛ → TΛ, let

D(m) :=
{
i ∈ Λ : ∃x ∈ TΛ s.t. m(x)(i) 6= x(i)

}
(5.4)

denote the set of underlying space points whose values can possibly be changed by m. We say
that a map m : TΛ → TΛ is local if m is continuous with respect to the product topology and
D(m) is finite. Note that

Ri(m) = {i}
(
i 6∈ D(m)

)
. (5.5)

For i ∈ D(m), the set Ri(m) can be any finite subset of Λ, including the empty set.
We will only be interested in Markov processes whose generators can be represented in

terms of local maps. Thus, we assume that G is a set whose elements are local maps m : TΛ →
TΛ, and we consider Markov processes with formal generator of the form

Gf(x) =
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ S), (5.6)

where (rm)m∈G be nonnegative constants. In general, we will need to impose summability
conditions (as stated below) on the rates (rm)m∈G for such a Markov process to be well-
defined.

As in Section 2.2, we let ∆ be a Poisson point subset of G × R = {(m, t) : m ∈ G, t ∈ R}
with local intensity rmdt, and for s ≤ u, we set ∆s,u := ∆∩ (G × (s, u]). Unlike in Section 2.2,
it will usually be too restrictive to assume that the sets ∆s,u are a.s. finite, so we can no longer
simply concatenate the elements of ∆s,u as in (2.11). Instead, we assume that

K0 := sup
i

∑
m∈G
D(m)3i

rm <∞, (5.7)

which guarantees that for each i ∈ Λ and s < u, the set ∆s,u contains only finitely many maps
that have the potential to change the state of the underlying space point i. Next, we define a
path of potential influence to be a cadlag function γ : [s, u]→ Λ such that

(i) if γt− 6= γt for some t ∈ (s, u], then there exists some m ∈ G
such that (m, t) ∈ ∆, γt ∈ D(m) and γt− ∈ Rγt(m),

(ii) for each (m, t) ∈ ∆ with t ∈ (s, u] and γt ∈ D(m),
one has γt− ∈ Rγt(m).

(5.8)

We write (i, s)  (j, u) to denote the presence of a path of potential influence with γ(s) = i
and γ(u) = j. If T = {0, 1} so that TΛ ∼= P(Λ), and all maps in G are additive, then paths of
potential influence are the open paths in the percolation representation of ∆ involving arrows
and blocking symbols (see Sections 2.6 and 3.2), but the present setting is clearly much more
general.

Lemma 25 (Exponential bound) Assume that the rates (rm)m∈G satisfy (5.7) and that

K := sup
i∈Λ

∑
m∈G
D(m)3i

rm
(
|Ri(m)| − 1

)
<∞. (5.9)
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Then, for each j ∈ Λ, one has

E
[∣∣{i ∈ Λ : (i, s) (j, u)}

∣∣] ≤ eK(u−s) (0 ≤ s ≤ u). (5.10)

Assuming moreover that

K1 := sup
i∈Λ

∑
m∈G
D(m)3i

rm|Ri(m)| <∞, (5.11)

the set {
(m, t) ∈ ∆s,u : (i, t) (j, u) for some i ∈ D(m)

}
(5.12)

is a.s. finite for all s < u and j ∈ Λ.

Proof (sketch) Let ζt := {i ∈ Λ : (i, u− t)  (j, u)}. Choose finite Λn ↑ Λ with j ∈ Λn, let
 n denote the presence of a path of potential influence that stays in Λn, and set ζnt := {i ∈
Λn : (i, u− t) n (j, u)}. Then (ζnt )t≥0 is a set-valued Markov process that jumps

A 7→ Λn ∩
( ⋃
i∈A
Ri(m)

)
(5.13)

with rate rm. Note that by (5.5), the set
⋃
i∈ARi(m) equals A when A ∩ D(m) = ∅. Letting

Hn denote the generator of the process (ζnt )t≥0 and letting f denote the function f(A) := |A|,
it is easy to check that Hnf(A) ≤ Kf(A), where K is the constant from (5.9). It follows that
∂
∂te
−KtE[|ζnt |] ≤ 0. Letting Λn ↑ Λ, this proves (5.10).
To get also (5.12), note that in view of (5.13), the process ζ jumps A 7→

⋃
i∈ARi(m) with

rate rm. Couple ζt with a process ζt ⊂ ζ̃t that instead jumps as

A 7→ A ∪
⋃
i∈A
Ri(m) (5.14)

with rate rm. The condition (5.11) guarantees that the expected size of this process grows at
most exponentially with rate K1. Since ζ̃t (unlike ζt) is nondecreasing in t, its finiteness at
time u implies that it must be finite for all 0 ≤ t ≤ u, which gives us (5.12).

Conditions (5.7), (5.9) and (5.11) can be combined in the condition

sup
i∈Λ

∑
m∈G
D(m)3i

rm
(
|Ri(m)|+ 1

)
<∞. (5.15)

Under this summability condition on the rates, Lemma 25 guarantees that the Poisson set ∆
defines an a.s. unique Markov process. More precisely, in analogy with (2.11), let Γ be any
finite subset of ∆s,u such that

Γ ⊃
{

(m, t) ∈ ∆s,u : (i, t) (j, u) for some i ∈ D(m)
}
. (5.16)

We unambiguously define random maps Xs,u : TΛ → TΛ (s ≤ u) by

Xs,u(x)(j) := mn ◦ · · · ◦m1(x)(j)

with Γ = {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn.
(5.17)

(Here, we implicitly use property (ii) of Lemma 24, which says that all information needed
to determine m(x)(i) is contained in (x(j))j∈Ri(m).) By (5.12), the set on the right-hand side
of (5.16) is a.s. finite, and by our definition of a path of potential influence, including more
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points in this set has no effect on the state of the underlying space point j at time u, which
shows that Xs,u is well-defined.

As we sometimes already did in the finite setting, we continue to call the Poisson point set
∆ used in the construction of the maps (Xs,u)s≤u a graphical representation. In pictures, we
plot the underlying space Λ horizontally, time upwards, and indicate the presence of a point
(m, t) ∈ ∆ by drawing a symbol (e.g., composed of arrows and blocking symbols) indicating
the nature of the map m and the sites affected by m (i.e., those in D(m) and

⋃
i∈D(m)Ri(m)).

To make full use of graphical representations, one needs to know that just as in the finite
case (Lemma 1), they define Markov processes whose generator is given by (5.6). This will be
proved in the next section.

5.3 Generator construction of particle systems

Let E be a compact metrizable space, let C(E) denote the Banach space of continuous real
functions on E, equipped with the supremum norm ‖f‖ := supx∈E |f(x)|, and let M1(E)
denote the space of probability measures on E, equipped with the topology of weak conver-
gence. By definition, a continuous transition probability on E is a collection (Pt(x,dy))t≥0 of
probability kernels on E such that

(i) (x, t) 7→ Pt(x, · ) is a continuous map from E × [0,∞) into M1(E),

(ii)

∫
E
Ps(x,dy)Pt(y,dz) = Ps+t(x, dz) and P0(x, · ) = δx (x ∈ E, s, t ≥ 0),

where δx denotes the delta-measure at x. Each continuous transition probability defines a
strongly continuous semigroup (Pt)t≥0 on the Banach space C(E) by

Ptf(x) :=

∫
E
Pt(x,dy)f(y)

(
f ∈ C(E)

)
. (5.18)

Such a semigroup, arising from a continuous transition probability as above, is called a Feller
semigroup. By definition, the generator of a strongly continuous semigroup, defined on a
general Banach space, is the operator G defined by

Gf := lim
t↓0

t−1
(
Ptf − f

)
, (5.19)

where the domain D(G) of G consists of all f for which the limit exists w.r.t. the norm on
the Banach space (in our case the supremum norm). By the Hille-Yosida theorem, such a
generator is a closed linear operator. A linear operator G is called closable if there exists a
linear operator G, called the closure of G, such that {(f,Gf) : f ∈ D(G)} is the closure of
{(f,Gf) : f ∈ D(G)}. We cite the following fact from [EK86, Thms 4.2.2 and 4.2.7]. Below,
one says that G satisfies the positive maximum principle if and only if Gf(x) ≤ 0 whenever
f ∈ D(G), f(x) ≥ 0 and f assumes its maximum over E in x.

Proposition 26 (Generators of Feller semigroups) A linear operator G on C(E) is
closable and its closure generates a Feller semigroup if and only if:

(i) (1, 0) lies in the closure of {(f,Gf) : f ∈ D(G)}.

(ii) D(G) is dense in C(E).

(iii) G satisfies the positive maximum principle.

(iv) The range of λ−G is dense in C(E) for some λ > 0.
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Returning to the set-up of the previous section, we equip TΛ with the product topology,
making it into a compact metrizable space. For any continuous function f : TΛ → R and
i ∈ Λ, we define

δf(i) := sup
{
|f(x)− f(y)| : x, y ∈ TΛ, x(j) = y(j) ∀j 6= i

}
. (5.20)

Note that δf(i) measures how much f(x) can change if we change x only in the point i. We
call δf the variation of f and we define a space of functions of ‘summable variation’ by

Csum = Csum(TΛ) :=
{
f ∈ C(TΛ) :

∑
i

δf(i) <∞
}
. (5.21)

Theorem 27 (Poisson and generator constructions) Under the summability condition
(5.15), the generator G in (5.6) with domain D(G) := Csum is well-defined and its closure
generates a Feller semigroup (Pt)t≥0. Moreover,∑

i∈Λ

δPtf(i) ≤ eKt
∑
i∈Λ

δf(i)
(
t ≥ 0, f ∈ Csum

)
, (5.22)

where K is the constant from (5.9). Let ∆ be a Poisson point subset of G × R with local
intensity rmdt, and define random maps (Xs,u)s≤u as in (5.17). Then

P[Xs,u(x) ∈ · ] = Pu−s(x, · ) (s ≤ u, x ∈ TΛ). (5.23)

Proof We only sketch the main steps in the proof; for the details, we refer to [Swa11].
Taking (5.23) as the definition of (Pt)t≥0, the first step is to verify that (Pt)t≥0 is a continuous
transition probability. The semigroup property (ii) is straightforward. To prove also the
continuity property (i), it suffices to show that

(xn, tn) −→
n→∞

(x, t) implies X−tn,0(xn)(i) −→
n→∞

X−t,0(x)(i) a.s. (i ∈ Λ), (5.24)

which is easily seen to follow from the finiteness of the set in (5.12).
Letting G denote the (full) generator of (Pt)t≥0, the next step is to verify that Csum ⊂ D(G)

and Gf is given by the right-hand side of (5.6) for such f . For functions that depend on finitely
many coordinates, one can check directly from the definition that

lim
t↓0

t−1
(
Ptf − f) =

∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ S). (5.25)

For f ∈ Csum, one can check that∑
m∈M

rm
∣∣f(m(x))− f(x)| ≤ K0

∑
i∈Λ

δf(i), (5.26)

where K0 is the constant from (5.7). This shows that the right-hand side of (5.6) is well-
defined. A little argument shows that each f ∈ Csum can be approximated by fn depending
on finitely many coordinates such that ‖fn− f‖ → 0 and ‖Gfn−Gf‖ → 0, which shows that
G coincides on Csum with the operator G defined in (5.6).

To prove (5.22), let x, y ∈ TΛ differ only at the underlying space point i and let f ∈ Csum.
Then ∣∣Ptf(x)− Ptf(y)

∣∣ ≤ E
[∣∣f(X0,t(x))− f(X0,t(y))

∣∣]
≤
∑
j∈Λ

P
[
X0,t(x)(j) 6= X0,t(x)(j)

]
δf(j) ≤

∑
j∈Λ

P
[
(i, 0) (j, t)

]
δf(j). (5.27)
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By (5.10), it follows that∑
i∈Λ

δPt(i) ≤
∑
i,j∈Λ

P
[
(i, 0) (j, t)

]
δf(j) ≤ eKt

∑
i∈Λ

δf(i). (5.28)

To show that the closure of G is the full generator of (Pt)t≥0, we check the conditions
(i)–(iv) of Proposition 26. The conditions (i)–(iii) are simple and left to the reader. Using
formula (5.22), one can check that for each λ > K and f ∈ Csum, the function

p :=

∫ ∞
0

e−λtPtf dt. (5.29)

satisfies p ∈ Csum and (λ−G)p = f . This shows that the range of λ−G contains Csum, which
is dense in C(TΛ), completing the proof.

Remark 1 If the constant K from (5.9) is negative, then (5.22) can be used to show that the
law of the Markov process with semigroup (Pt)t≥0 converges exponentially fast to a unique
invariant law.

Remark 2 Liggett’s classical result [Lig85, Thm I.3.9] gives sufficient conditions for the closure
of an operator G on the Banach space C(TΛ) to generate a Feller semigroup. Liggett writes
his generators in the form

Gf(x) =
∑
C∈K

∫
C(x, dy)

(
f(y)− f(x)

)
, (5.30)

where K is a countable collection of finite measure kernels C on TΛ, i.e., for fixed x ∈ TΛ,
C(x, · ) is a finite measure on TΛ that measures the intensity of jumps from x. Liggett assumes
that all kernels C ∈ K are local, in the following sense. For any measure kernel C on TΛ,
write

D(C) :=
{
i ∈ Λ : C

(
x, {y : y(i) 6= x(i)}

)
> 0 for some x ∈ TΛ

}
(5.31)

for the set of lattice points whose value can possibly be changed by the application of C.
Then we say that C is local if x 7→ C(x, · ) is continuous w.r.t. weak convergence of finite
measures and D(C) is finite.6 In particular, if each kernel C ∈ K is deterministic, i.e.,
C(x,dy) = rmδm(x)(dy) for some local map m : TΛ → TΛ and constant rm ≥ 0, then
this includes our set-up. The conditions of [Lig85, Thm I.3.9] are similar to our condition
(5.15), although it seems that for deterministic kernels, they do not completely agree with our
condition. Also the conditions of Liggett’s [Lig85, Thm I.4.1], proving exponential ergodicity
for interacting particle systems, are similar, but not quite identical to the condition K < 0
mentioned in Remark 1 above.

Remark 3 Although the classical result [Lig85, Thm I.3.9] can be used to show that the closure
of a generator of the form (5.6) generates a Feller semigroup, this does not immediately imply
that the construction based on the graphical representation as in (5.17) is well-defined, nor,
indeed, that it yields (through (5.23)) the same Feller semigroup. In some special cases, in
particular, for additive particle systems as in Section 3.2, one may alternatively argue using
approximation with finite systems, invoking [Lig85, Cor. I.3.14], but in general one needs
Lemma 25 and Theorem 27 or equivalent results. Except for [Swa11], we do not know a good
reference for these facts.

6Liggett labels his kernels by finite subsets of Λ, i.e., he writes
∑

Γ

∫
CΓ . . . where the sum runs over all

finite sets Γ ⊂ Λ and CΓ is a local probability kernel such that D(C) ⊂ Γ. This particular way of labeling is
not essential for his result.
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Remark 4 Let X0 be a TΛ-valued random variable, independent of the graphical representa-
tion ∆, let (Xs,u)s≤u be the random maps defined in (5.17), and set

Xt := X0,t(X0) (t ≥ 0). (5.32)

Then, using the fact that the restrictions of a Poisson point set to disjoint parts of space are
independent, it is easy to see that

P
[
Xu ∈ ·

∣∣ (Xs)0≤s≤t
]

= Pu−t(Xt, · ) a.s. (0 ≤ t ≤ u), (5.33)

i.e., (Xt)t≥0 is a Markov process with semigroup (Pt)t≥0.

5.4 Monotone particle system duality

In the present section, we generalize Theorem 9 to monotonically representable interacting
particle systems with state space of the form S = TΛ, where T is a finite partially ordered set
and Λ is countable. For reasons that will become clear below, we assume that T is bounded
from above with upper bound denoted by 1. We equip TΛ with the product order x ≤ y iff
x(i) ≤ y(i) for all i ∈ Λ. Then TΛ is also bounded from above, with upper bound 1 given by
1(i) := 1 (i ∈ Λ). If T ′ is a dual of T as defined in Section 2.4, then T ′Λ is in a natural way a
dual of TΛ, where we define the map x 7→ x′ in a pointwise way as x′(i) := (x(i))′. Since T is
bounded from above, T ′ is bounded from below with lower bound 0 := 1′. We also write 0 to
denote the constant function 0(i) := 0 (i ∈ Λ) that is the lower bound of T ′.

For any x ∈ T ′Λ and B ∈ P
(
T ′Λ
)
, we let

supp(x) := {i ∈ Λ : x(i) 6= 0},

supp(B) := {i ∈ Λ : x(i) 6= 0 for some x ∈ B} =
⋃
x∈B

supp(x) (5.34)

denote the “support” of x and B, respectively. We let

T ′
Λ
loc :=

{
x ∈ T ′Λ : |supp(x)| <∞} (5.35)

denote the set of finitely supported x ∈ T ′Λ, and write Pfin

(
T ′Λloc

)
for the set of finite subsets

of T ′Λloc. Equivalently,

Pfin

(
T ′

Λ
loc

)
=
{
B ∈ P

(
T ′

Λ)
: |supp(B)| <∞

}
. (5.36)

As the state spaces for the processes Y ∗ and Y † from Theorem 9, we will choose

P∗ := Pfin(T ′
Λ
loc) and P† := {B ∈ P∗ : B = Bmin}. (5.37)

Note that these sets are countable, so the dual processes will be continuous-time Markov
chains. For any local map m : TΛ → TΛ and B ∈ P∗, we define m†(B) and m∗(B) as in
(2.31), i.e.,

m†(B)′ := (m−1(B′
↓
))max and m∗(B)′ :=

⋃
x∈B

(m−1({x′}↓))max, (5.38)

where we use the notation B′ := {y′ : y ∈ B}. We define φ as in (2.29), i.e.,

φ(x,B) := 1{x ∈ B′↓} = 1{x ≤ y′ for some y ∈ B}
(
x ∈ S, B ∈ P∗

)
. (5.39)
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Lemma 28 (Duals of monotone local maps) Let T be a finite partially ordered set that is
bounded from above, let Λ be countable, and let m : TΛ → TΛ be a local map that is monotone.
Then the maps m∗ and m† defined in (5.38) map the space P∗ into itself, and are dual to m
with respect to the duality function φ from (5.39). Moreover, (2.32) and (2.33) hold for all
B,C ∈ P∗. In particular, by (2.32), m† maps P∗ into P†.

Proof Let us say that a set A ⊂ P(T ′Λ) is locally defined if there exists a finite set Γ ⊂ Λ
and a set C ⊂ T ′Γ such that

A = C × T ′Λ\Γ. (5.40)

For a set of this form, by Lemma 34(
C × T ′Λ\Γ

)
min

= Cmin × {0} and
((
C × T ′Λ\Γ

)
min

)↑
= C↑min × {0}

↑ ⊃ C × T ′Λ\Γ, (5.41)

where 0 here denotes the minimal element of T ′Λ\Γ. In particular, this shows that for any
locally defined increasing set A,

Amin ∈ P∗ and (Amin)↑ = A. (5.42)

Also, obviously, B ∈ P∗ implies that B↑ is locally defined. The proof of Lemma 8 now carries
over without a change, where we use that since m is a local map, the map n : T ′Λ → T ′Λ

defined in (4.14) has the property that

A locally defined implies n−1(A) locally defined
(
A ∈ P(T ′

Λ
)
)
. (5.43)

Let G be a collection of monotone local maps m : TΛ → TΛ, let (rm)m∈G be nonnegative
rates satisfying the summability condition (5.15), and let ∆ be a graphical representation for
the interacting particle system X with generator G as in (5.6), i.e., ∆ is a Poisson point subset
of G × R = {(m, t) : m ∈ G, t ∈ R} with local intensity rmdt. Using ∆, we unambiguously
define random maps (Xs,u)s≤u as in (5.17), which can be used to construct an interacting
particle system X = (Xt)t≥0 as in (5.32).

To show that X is pathwise dual to the continuous-time Markov chains Y ∗ and Y † with
countable state spaces P∗ and P†,, respectively, and generators H∗ and H† as in (2.35), we
need to construct stochastic flows for Y ∗ and Y †. As in (2.14), we define

∆∗ := {(m∗,−t) : (m, t) ∈ ∆} and ∆† := {(m†,−t) : (m, t) ∈ ∆}. (5.44)

For s ≤ u and ] = ∗ or †, let ∆]
s,u := {(m, t) ∈ ∆] : s < t ≤ u}. We would like to define Y]

s,u

as the concatenation of all maps in ∆]
s,u, ordered by the time at which they apply, but just as

for the forward process we run into the problem that ∆]
s,u a.s. has infinitely many events and

we need to show that only finitely many of those are actually needed.
It turns out that this is indeed all right, and in fact guaranteed by the same condition

(5.15) that guarantees that the forward process is well-defined. The proof (that we are about
to give) is not difficult, but needs some notation, which is made more complicated by the
fact that to obtain a right-continuous dual process, we need left-continuous modifications of
certain objects that have already been introduced for the forward process.

Let us write (j, t−) (i, u−) to indicate the presence of a path of potential influence from
j to i that starts just before time t and ends just before time u (i.e., events at time t are
taken into account but events at time u are not). Next, for any i ⊂ Λ and s ≤ u ∈ R, we let
(compare (5.12))

∆s,(i,u) :=
{

(m, t) ∈ ∆ : s ≤ t < u, (j, t−) (i, u−) for some j ∈ D(m)
}

(5.45)
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denote the set of points in the Poisson set ∆ that are relevant for Xs−,u−(x)(i), and we set

∆∗(i,s),u :=
{

(m∗,−t) : (m, t) ∈ ∆−u,(i,−s)
}
, (5.46)

and define ∆†(i,s),u similarly. We note that by Lemma 25 and our summability assumption

(5.15), the sets ∆]
(i,s),u with ] = ∗ or † are a.s. finite for all s ≤ u and i ∈ Λ.

Lemma 29 (Well-definedness of the dual processes) Let ] = ∗ or †, B ∈ P], s ≤ t, and
let Γ be any finite set such that ⋃

i∈supp(B)

∆]
(i,s),t ⊂ Γ ⊂ ∆]

s,t. (5.47)

Then
Y]
s,t(B) := m]

n ◦ · · · ◦m
]
1(B)

with Γ =
{

(m1, t1), . . . , (mn, tn)
}
, t1 < · · · < tn.

(5.48)

unambiguously defines a set Y]
s,t(B) ∈ P]. Moreover,

E
[∣∣supp

(
Y]
s,t(B)

)∣∣] ≤ |supp(B)
∣∣eK(t− s), (5.49)

where K is the constant in (5.9).

Proof Fix B ∈ P] and s ∈ R, and for t ≥ s, set

ζt :=
{
j ∈ Λ : (j, (−t)−) (i, (−s)−) for some i ∈ supp(B)

}
, (5.50)

where as in (5.45), (j, (−t)−)  (i, (−s)−) indicates the presence of a path of potential
influence from j to i that starts just before time −t and ends just before time −s. By
Lemma 25,

E
[
|ζt|
]
≤ |supp(B)

∣∣eK(t− s) (t ≥ s). (5.51)

We have seen in the proof of Lemma 25 (compare (5.13)) that for each (m,−t) ∈ ∆, the
set-valued Markov process ζ jumps from its present state A as

A 7→
⋃
i∈A
Ri(m). (5.52)

We will show that for any B ∈ P],

supp
(
m](B)

)
⊂

⋃
i∈supp(B)

Ri(m) (5.53)

and
supp(B) ∩ D(m) = ∅ implies m](B) = B. (5.54)

Using (5.53), we see by induction that regardless of how we choose the set Γ in (5.47), it will
be true that

supp
(
Y]
s,t(B)

)
⊂ ζt (s ≤ t), (5.55)

so (5.49) follows from (5.51). By (5.54), the definition in (5.48) does not depend on the choice
of Γ in (5.47).

In view of this, it remains to prove (5.53) and (5.54). We start with the former. By (2.32),
which by Lemma 28 holds for all B ∈ P∗, we have m](B) ⊂ m∗(B) (B ∈ P∗), so it suffices
to prove (5.53) for m∗ only. By (2.33), which by Lemma 28 holds for all B ∈ P∗, both the
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left- and right-hand side of (5.53) are additive as a function of B, so it suffices to prove the
statement for one-point sets of the form B = {x} with x ∈ T ′Λloc. In this case,

m∗
(
{x}
)

= n−1
(
{x}↑

)
min

, (5.56)

where n is defined in terms of m as in (4.14). In other words, this says that

m∗
(
{x}
)

=
{
y ∈ T ′Λ : m(y′)′ ≥ x

}
min

=
{
y ∈ T ′Λ : m(y′) ≤ x′

}
min

. (5.57)

For each k ∈ supp
(
m∗
(
{x}
))

there exists a z ∈ m∗
(
{x}
)

such that z(k) 6= 0. Define y by
y(k) := 0 and y(j) = z(j) for all j 6= k. Then, by (5.57), m(z′) ≤ x′ but m(y′) 6≤ x′ by the
minimality of z. It follows that k ∈ Ri(m) for some i such that x′(i) 6= 1, proving that

supp
(
m∗({x})

)
⊂

⋃
i∈supp({x})

Ri(m). (5.58)

To prove also (5.54), we observe that supp(B) ∩ D(m) = ∅ implies m−1(B′↓) = B′↓ and
hence, by (5.38)

m†(B)′ := (B′
↓
)max which implies m†(B) = (B↑)min = Bmin = B (B ∈ P†) (5.59)

and similarly

m∗(B) :=
⋃
x∈B

({x}↑)min =
⋃
x∈B
{x} = B (B ∈ P∗). (5.60)

Using Lemma 29, it is straightforward to check that (Y]
s,u)s≤u is a stochastic flow with

independent increments and that if B0 is a P]-valued random variable, independent of the
Poisson set ∆], then

Y ]
t := Y]

0,t(B0) (t ≥ 0) (5.61)

defines an (obviously nonexplosive) Markov process (Y ]
t )t≥0 with countable state space P] and

generator H] as in (2.35) for ] = ∗ or †.

Proposition 30 (Pathwise duality for monotone particle systems) Let T be a finite
partially ordered set that is bounded from above, let Λ be countable, and let X be an interacting
particle system whose generator has a random mapping representation of the form (5.6), where
all local maps m ∈ G are monotone and the rates satisfy the summability condition (5.15). Let
∆ be a graphical representation for X and define a stochastic flow (Xs,u)s≤u as in (5.17). For

] = ∗ or †, define a Poisson set ∆] as in (5.44) and use this to define random maps (Y]
s,u)s≤u

on the space P] from (5.37) as in (5.48). Then (Y]
s,u)s≤u is a stochastic flow that is dual to

(Xs,u)s≤u with respect to the duality function φ in (5.39), in the sense defined in Section 2.1.
In particular, for each s < u, x ∈ TΛ, and B ∈ P], the function

[s, u] 3 t 7→ 1{Xs,t−(x) ≤ z for some z ∈ Y]
−u,−t(B)} (5.62)

is a.s. constant.

Proof This follows just as in the proof of Proposition 2, using Lemma 28, which says that m]

is dual to m with respect to the duality function φ in (5.39), and Lemmas 25 and 29, which
show that only finitely many points of the Poisson set ∆s,u are needed to define Xs,t−(x) and

Y]
−u,−t(B) for all t ∈ [s, u].
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5.5 Additive particle systems

In the present subsection, specializing from the set-up of the previous section, we look at
interacting particle systems that are defined by additive local maps and whose state space is
of the form TΛ with T a finite lattice. As before, we equip TΛ with the product order; then
TΛ is also a lattice, where (x∨y)(i) = x(i)∨y(i) and (x∧y)(i) = x(i)∧y(i). We let T ′ denote
a dual of T so that T ′Λ is in a natural way a dual of TΛ. We recall from (2.24) that

〈x, y〉 := 1{x ≤ y′} = 1{y ≤ x′} (x ∈ TΛ, y ∈ T ′Λ). (5.63)

The following lemma generalizes Lemmas 6 and 11 to infinite product spaces.

Lemma 31 (Additive local maps) Let T be a finite lattice, let T ′ be its dual, and let Λ be
a countable set. Then, for each additive local map m : TΛ → TΛ there exists a unique additive
local map m′ : T ′Λ → T ′Λ such that

〈m(x), y〉 = 〈x,m′(y)〉 (x ∈ TΛ, y ∈ T ′Λ), (5.64)

where 〈 · , · 〉 is as defined in (2.24). For ] = ∗ or †, let m] : P] → P] be defined as in (5.38).
Then

m∗(B) = {m′(y) : y ∈ B} and m†(B) = m∗(B)min (5.65)

for all B ∈ P∗ resp. B ∈ P†.
Proof Let Λ̃ := D(m)∪

⋃
i∈D(m)Ri(m). Then Λ̃ is a finite set by the definition of a local map

and Lemma 24. Moreover, by the same lemma, there exists an additive map m̃ : T Λ̃ → T Λ̃

such that

m(x)(i) =

{
m̃
(
(x(j))j∈Λ̃

)
(i) if i ∈ Λ̃,

x(i) otherwise.
(5.66)

By Lemma 6, m̃ has a unique dual map m̃′, which is also additive. Lifting this map to the
larger space yields a local map m′ as in (5.64). Since knowing 〈x,m′(y)〉 for all x ∈ TΛ

determines m′(y) uniquely, such a map is unique.
The proof of formula (5.65) is the same as in the finite case (Lemma 11).

Let G be a collection of additive local maps m : TΛ → TΛ and let (rm)m∈G be nonnegative
rates. For each m ∈ G, let m′ denote the dual map as in Lemma 31. We will be interested
in the interacting particle systems X and Y with state space TΛ and T ′Λ, respectively, and
generators

Gf(x) =
∑
m∈G

rm
(
f(m(x))− f(x)

)
(x ∈ TΛ, f ∈ F(TΛ,R)),

Hf(y) =
∑
m∈G

rm
(
f(m′(y))− f(y)

)
(y ∈ T ′Λ, f ∈ F(T ′

Λ
,R)).

(5.67)

Note that the random mapping representation of the dual generator H satisfies the summa-
bility condition (5.15) if and only if

sup
i∈Λ

∑
m∈G
D(m′)3i

rm
(
|Ri(m′)|+ 1

)
<∞. (5.68)

We let ∆ be a graphical representation for X, i.e., a Poisson point subset of G × R =
{(m, t) : m ∈ G, t ∈ R} with local intensity rmdt, and for s ≤ u, set ∆s,u := ∆ ∩ (G × (s, u]).
Since S is a finite lattice, it is bounded from below. In analogy with (5.34), for any x ∈ TΛ,
we write supp(x) := {i ∈ Λ : x(i) 6= 0}, and similar to (5.35), we define

TΛ
loc :=

{
x ∈ TΛ : |supp(x)| <∞}. (5.69)

We make the following observation.
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Lemma 32 (Finite and infinite initial states) Let s ≤ u and let Γk be finite sets such
that Γk ↑ ∆s,u. If the rates (rm)m∈G satisfy the summability condition (5.15), then we can
unambiguously define a random map Xs,u : TΛ → TΛ by requiring that for all k large enough,

Xs,u(x)(j) := mn ◦ · · · ◦m1(x)(j)

with Γk = {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn.
(5.70)

Similarly, if the dual summability condition (5.68) is satisfied, then we can unambiguously
define a random map Xs,u : TΛ

loc → TΛ
loc such that (5.70) holds for all k large enough.

Proof If the rates (rm)m∈G satisfy the summability condition (5.15), then the statement
follows from Lemma 25. (See (5.17).)

To prove the second statement, we may equivalently show that if the rates (rm)m∈G satisfy
the summability condition (5.15), then the dual process Y with generator H as in (5.67) is
well-defined as a T ′Λloc-valued process. In analogy with (2.14), set

∆′ :=
{

(m′,−t) : (m, t) ∈ ∆
}
. (5.71)

By formula (5.65), the map m∗ maps the space of all singleton-sets {y} with y ∈ T ′Λloc into
itself, and

m∗
(
{y}
)

= {m′(y)} (y ∈ T ′Λloc). (5.72)

In view of this, the maps (Y∗s,u)s≤u defined in Lemma 29 also map such singletons into single-
tons. Defining ∆′(i,s),u similar to (5.46), by grace of Lemma 29, we can unambiguously define

maps (Ys,u)s≤u on the space T ′Λloc by

Ys,u(y) := m′n ◦ · · · ◦m′1(y)

with Γ =
{

(m1, t1), . . . , (mn, tn)
}
, t1 < · · · < tn,

(5.73)

where Γ is any finite set such that ⋃
i∈supp(y)

∆′(i,s),u ⊂ Γ ⊂ ∆′s,u. (5.74)

In particular, Γ = Γk for k large enough will do.

Lemma 32 tells us that under mild technical assumptions, an additively representable
interacting particle system X has the property that X0 ∈ TΛ

loc implies that a.s. Xt ∈ TΛ
loc for

all t ≥ 0. Indeed, a sufficient condition for X to be well-defined as a TΛ
loc-valued process is

that its rates (rm)m∈G satisfy the dual summability condition (5.68), which is the condition
under which we have shown that the dual process Y is well-defined as a T ′Λ-valued process.
If both the forward and dual summability conditions (5.15) and (5.68) are satisfied, then both
processes can be constructed for arbitrary initial states.

Proposition 33 (Duality for additive particle systems) Let T be a finite lattice and
let Λ be a countable set. Let G be a collection of additive local maps m : TΛ → TΛ and let
(rm)m∈G be nonnegative rates satisfying the summability condition (5.15). Let (Xs,t)s≤t and
(Ys,t)s≤t be the stochastic flows defined in (5.70) and (5.73), acting on the state spaces TΛ

and T ′Λloc, respectively, which correspond to Markov processes X and Y with generators G and
H as in (5.67). Then (Xs,t)s≤t and (Ys,t)s≤t are dual with respect to the duality function

ψ(x, y) := 〈x, y〉, in the sense defined in Section 2.1. In particular, for each x ∈ TΛ, y ∈ T ′Λloc,
and s ≤ u, the function

[s, u] 7→ 〈Xs,t−(x),Y−u,−t(y)〉 (5.75)

is a.s. constant. If moreover the dual summability condition (5.68) is satisfied, then the same
statements hold for the stochastic flow (Ys,t)s≤t on the larger state space T ′Λ (instead of T ′Λloc).
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Proof As explained in the proof of Lemma 32, by (5.65), for y ∈ T ′Λloc, the dual map Ys,t

is a special case of the dual map Y∗s,t from the previous subsection, so the result follows
from Proposition 30. If moreover the dual summability condition (5.68) is satisfied, then by
Lemma 32, Ys,t is also well-defined on T ′Λ. For any y ∈ T ′Λ, we can find yn ∈ T ′Λloc that
increase to y. It is not hard to see that this implies that Ys,t(yn) increases to Ys,t(y) and
hence, for all t ∈ [s, u],

〈Xs,t−(x),Y−u,−t(yn)〉 = 1{Y−u,−t(yn) ≤ X′s,t−(x)} ↓ 〈Xs,t−(x),Y−u,−t(y)〉 (5.76)

so the limit is a.s. constant as a function of t.

A A bit of lattice theory

In this appendix we collect some elementary properties of partially ordered sets and lattices
that are used in the paper.

Let S be a any set. Recall that a relation ≤ on S is called a partial order if it satisfies the
axioms

(i) x ≤ x (x ∈ S).

(ii) x ≤ y and y ≤ x implies x = y (x, y ∈ S).

(iii) x ≤ y ≤ z implies x ≤ z (x, y ∈ S).

A partially ordered set (also called poset) is a set with a partial order defined on it. A total
order is a partial order such that moreover

(iv) x ≤ y or y ≤ x (or both) (x, y ∈ S).

Increasing and decreasing sets and the notation A↑ and A↓ have already been defined in
Section 2.3.

By definition, a minimal element of a set A ⊂ S is an x ∈ A such that {y ∈ A : y ≤ x} =
{x}. Maximal elements are minimal elements for the reversed order. The following simple
observation is well-known.

Lemma 34 (Maximal elements) Let S be a partially ordered set and let A ⊂ S be finite.
Then, for every x ∈ A there exists a maximal element y ∈ A such that y ≥ x.

Proof Either x is a maximal element or there exists some x′ ∈ A, x′ 6= x, such that x′ ≥ x.
Continuing this process, using the finiteness of A, we arrive after a finite number of steps at
a maximal element.

In particular, Lemma 34 shows that every nonempty finite A ⊂ S has a maximal element.
Applying this to the reversed order, we see that A also contains a minimal element.

Let S be a partially ordered set and A ⊂ S. An upper bound of A is an element x ∈ S
such that y ≤ x for all y ∈ A. Note that in general x does not have to be an element of A. If
there exists an element x ∈ A that is an upper bound of A, then such an element is necessarily
unique. (Indeed, imagine that x′ ∈ A is also an upper bound for A, then x′ ≤ x and x ≤ x′.)

If A is decreasing and there exists an element x ∈ A that is an upper bound of A, then
A = {x}↓. Indeed, the fact that x is an upper bound means that A ⊂ {x}↓ while by the
facts that x ∈ A and A is decreasing, we have A ⊃ {x}↓. A least upper bound of A is an
element x ∈ S that is an upper bound of A and that satisfies x ≤ x′ for any (other) upper
bound x′ of A. Note that

⋂
x∈A{x}↑ is the set of all upper bounds of A, which is an increasing

set. Thus, a least upper bound of A is an element x ∈
⋂
x′∈A{x′}↑ that is a lower bound of
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⋂
x′∈A{x′}↑. By our earlier remarks, such an element is unique. Also, since

⋂
x′∈A{x′}↑ is an

increasing set, if there exists an element x ∈
⋂
x′∈A{x′}↑ that is a lower bound of

⋂
x′∈A{x′}↑,

then
⋂
x′∈A{x′}↑ = {x}↑.

A partially ordered set S is a join-semilattice if and only if for each y, z ∈ S, the set {y, z}
has a least upper bound. Equivalently, this says that there exists an element x ∈ {y}↑ ∩ {z}↑
that is a lower bound of {y}↑ ∩ {z}↑. By our earlier remarks, such an element is unique and
one must in fact have {y}↑∩{z}↑ = {x}↑. We denote this unique element by x =: y∨z and call
it the supremum or join of x and y. Note that this (more traditional) definition of suprema
and join-semilattices is equivalent to the definition in (2.20). Infima and meet-semilattices are
defined in the same way, but with respect to the reversed order.

Each finite join-semilattice S is clearly bounded from above, since
∨
x∈S x is an upper

bound; similarly finite meet-semilattices are bounded from below.
As already mentioned in Section 2.3, if S is a partially ordered set, then a nonempty

increasing set A ⊂ S such that for every x, y ∈ A there exists a z ∈ A with z ≤ x, y is called a
filter and a nonempty decreasing set A such that for every x, y ∈ A there exists a z ∈ A with
x, y ≤ z is called an ideal.

The following lemma characterizes ideals in join-semilattices. An analogue statement holds
for filters. In a lattice-theoretic setting, this lemma is often taken as the definition of an ideal.

Lemma 35 (Ideals in join-semilattices) Let S be a join-semilattice and let A ⊂ S. Then
A is an ideal if and only if A is nonempty, decreasing, and x, y ∈ A imply x ∨ y in A.

Proof Let A be nonempty and decreasing. If x, y ∈ A imply x ∨ y in A, then for every
x, y ∈ A there is an element of A, namely x ∨ y, such that x ∨ y ≥ x, y, showing that A is an
ideal. Conversely, if A is an ideal, then for every x, y ∈ A there is an element z ∈ A such that
z ≥ x, y and hence z ≥ x ∨ y, which by the fact that A is decreasing proves that x ∨ y ∈ A.

As already mentioned in Section 2.3, a principal filter is a filter that contains a minimal
element and a principal ideal is an ideal that contains a maximal element. We state the
following facts for ideals only; applying them to the reversed order yields analogue statements
for filters.

Lemma 36 (Principal ideals) Let S be a partially ordered set and let A ⊂ S. Then:

1. If A is an ideal, then A contains at most one maximal element.

2. A is a principal ideal if and only if there exists some z ∈ S such that A = {z}↓.

If A is moreover finite, then the following conditions are equivalent:

(i) A is a principal ideal.

(ii) A is an ideal.

(iii) A is decreasing and contains a unique maximal element.

Proof 1. If A is an ideal and x, y ∈ A are maximal, then there exists some z ∈ A such that
z ≥ x, y and hence x = z = y by the definition of maximality.

2. Let A be a principal ideal with maximal element z. Then {z}↓ ⊂ A by the fact that A is
decreasing. The inclusion {z}↓ ⊃ A follows by observing that if x ∈ A, then by the definition
of an ideal there exists some y ∈ A with y ≤ x, z, and hence y = z by the maximality of z,
so x ≤ y = z. Conversely, it is straightforward to check that each set of the form {z}↓ is a
principal ideal.

The implications (i)⇒(ii) and (i)⇒(iii) are trivial. Assume that A ⊂ S is finite. Then
(ii)⇒(i) by Lemma 34. We claim that moreover (iii)⇒(i). Let z be the unique maximal
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element of A. By 2, it suffices to prove that A = {z}↓. Since A is decreasing, we have
{z}↓ ⊂ A. To prove the other inclusion, we observe that for any x ∈ A, by Lemma 34, there
exists a maximal element y ∈ A such that y ≥ x. By assumption, z is the unique maximal
element of A, so y = z and hence x ≤ z, proving that x ∈ {z}↓.
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