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Abstract

We introduce two partially overlapping classes of pathwise dualities between interacting
particle systems that are based on commutative monoids (semigroups with a neutral ele-
ment) and semirings, respectively. For interacting particle systems whose local state space
has two elements, this approach yields a unified treatment of the well-known additive and
cancellative dualities. For local state spaces with three or more elements, we discover
several new dualities.
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1 Introduction

1.1 Aim of the paper

The use of duality in the study of Markov processes in general, and of interacting particle
systems in particular, has a long history see [Lig85, Section II.3]. While in the past, many
useful dualities have been discovered by ad hoc methods, more recently several authors have
attempted a more systematic search. There are two approaches: the pathwise approach
propagated in, e.g., [CS85, JK14, SS18], and the algebraic approach of [LS95, Sud00, GKRV09,
CGGR15, SSF18]. In the present paper, we use the pathwise approach to treat a number of
known dualities in a unified framework and discover new dualities.

Let R,S, and T be sets and let m : S→ S, n : R→ R, and ψ : S×R→ T be functions.
By definition, we say that the map m is dual to n with respect to the duality function ψ if

ψ
(
m(x), y

)
= ψ

(
x, n(y)

)
(x ∈ S, y ∈ R). (1.1)

We will especially be interested in the case that S and R are product spaces of the form
S = SΛ and R = RΛ where S,R, and Λ are finite sets. We will be interested in finding triples
(S,R, T ) for which the following is true:

For each finite set Λ, there exists a function ψ : SΛ×RΛ → T , a class S of functions
m : SΛ → SΛ, and a class R of functions n : RΛ → RΛ, so that each m ∈ S has a
unique dual map n ∈ R with respect to ψ, and vice versa.

Recall that a monoid is a semigroup that contains a neutral element. For our first result (the
combination of Lemmas 5 and 8 below), we will assume that S,R, and T are commutative
monoids. In this case R = SΛ and S = RΛ also naturally have the structure of a monoid
and S and R will be the classes of monoid homomorphisms from S to S and from R to R,
respectively. For our second result (Lemma 11 below), we will assume that S = R = T is a
semiring. In this case SΛ has the structure of a left module over S and also the structure of
a right module over S. Now S and R will be the classes of maps m : SΛ → SΛ that preserve
the structure of SΛ as a left or right module, respectively.

In Section 5, we will explicitly find all triples (S,R, T ) with S,R, and T having at most
four elements that satisfy the conditions of our main results (Lemmas 5 and 11). There is a
considerable overlap, in the sense that several of the triples (S,R, T ) that satisfy the conditions
of Lemma 5 also satisfy the conditions of Lemma 11, and vice versa. While our main results are
algebraic in nature, our motivation comes from probability theory. We spend the remainder
of this section explaining the motivation of our work and then turn to the purely algebraic
questions.

1.2 Pathwise duality of Markov processes

Our main motivation comes from the theory of interacting particle systems, as we now explain.
Let S be a finite set (typically of the form S = SΛ), let M be a finite set whose elements are
maps m : S→ S, and let (rm)m∈M be nonnegative real constants. One is frequently interested
in continuous-time Markov processes (Xt)t≥0 that evolve according to the following informal
description:

� At the times of a Poisson process with intensity rm, the previous state x of the process
is replaced by the new state m(x).

More precisely, such a process can be constructed as follows. Let µ be the measure on
M defined by µ({m}) := rm, let ` denote the Lebesgue measure on R, let µ ⊗ ` denote the
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product measure on M× R, and let Π be a Poisson subset of M× R with intensity measure
µ⊗ `. For each s, u ∈ R with s ≤ u, define

Π+
s,u :=

{
(m, t) ∈ Π : s < t ≤ u

}
, Π−s,u :=

{
(m, t) ∈ Π : s ≤ t < u

}
, (1.2)

and define random maps by

X±s,u := mn ◦ · · · ◦m1 where Π±s,u =
{

(m1, tt), . . . , (mn, tn)
}

with t1 < · · · < tn. (1.3)

The collection of random maps (X±s,u)s≤u is called a stochastic flow. It is easy to see that X±s,s
is the identity map and that X±t,u ◦X

±
s,t = X±s,u for all s ≤ t ≤ u.

Let X0 be an S-valued random variable, independent of the Poisson set Π. Then one can
prove that for each s ∈ R, setting

X±t := X±s,s+t(X0) (t ≥ 0) (1.4)

defines Markov processes (X−t )t≥0 and (X+
t )t≥0 that fit our informal description above. The

process (X−t )t≥0 has left-continuous sample paths while (X+
t )t≥0 has right-continuous sample

paths. Since at deterministic times, X−t = X+
t almost surely, in practice it does not matter

too much which version of the process we use.
Now assume that R and T are finite sets, that ψ : S×R→ T is a function, and that each

map m ∈ M has a unique dual map m̂ with respect to ψ. Let M̂ := {m̂ : m ∈ M}. Then
setting

Π̂ :=
{

(m̂,−t) : (m, t) ∈ Π
}

(1.5)

defines a Poisson subset of M̂×R. We can use Π̂ to construct stochastic flows (Y−s,u)s≤u and
(Y+

s,u)s≤u precisely in the same way as we did for the Poisson set Π. Then it is easy to see
that

ψ
(
X±s,u(x), y

)
= ψ

(
x,Y∓−u,−s(y)

)
(s ≤ u, x ∈ S, y ∈ R), (1.6)

i.e., the map X+
s,u is dual to Y−−u,−s and likewise X−s,u is dual to Y+

−u,−s. In the theory of
Markov processes, a duality relation between stochastic flows of the form (1.6) is called a
pathwise duality.

1.3 Additive and cancellative duality

We will especially be interested in interacting particle systems, which are Markov processes
with a state space of the form S = SΛ, where S is a finite set, called the local state space, and
Λ is any finite or countably infinite set that is usually called the lattice (not to be confused
with the order theoretic lattices that we will discuss later). Elements of SΛ are functions
x : Λ→ S. For technical simplicity, we will only discuss finite Λ.

Two forms of duality, called additive and cancellative duality, have found widespread
applications in the theory of interacting particle systems [Gri79, Lig85]. To explain these,
let Λ be a finite set and let S = R := {0, 1}Λ and T := {0, 1}. Let ψadd : S × S → T and
ψcanc : S× S→ T be defined by:

ψadd(x,y) :=
∨
i∈Λ

x(i)y(i) and ψcanc(x,y) :=
∑
i∈Λ

x(i)y(i) mod(2). (1.7)

One can prove that a map m : S → S has a dual with respect to ψadd if and only if it is
additive, which means that

m(0) = 0 and m(x ∨ y) = m(x) ∨m(y) (x,y ∈ S), (1.8)
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where 0(i) := 0 (i ∈ Λ) denotes the function that is identically zero. Similarly, a map
m : S→ S has a dual with respect to ψcanc if and only if it is cancellative, which means that

m(0) = 0 and m
(
x + y mod(2)

)
= m(x) +m(y) mod(2) (x,y ∈ S). (1.9)

The duals of additive or cancellative maps, if they exist, are unique and such dual maps are
also additive or cancellative, respectively. A Markov process is called additive or cancellative
if it can be constructed using only maps of the appropriate type. Some of the most studied
interacting particle systems are additive, including the voter model, the contact process, and
the exclusion process [Lig99], and duality is one of the most important tools in their study.
Cancellative duality has succesfully been applied in the study of various nonlinear voter models
[CD91, Han99, SS08] and annihilating branching processes [BDD91]. We are motivated by
the wish to find generalisations of the duality functions in (1.7) to local state spaces S with
three or more elements.

1.4 A new form of duality

As an appetizer for the remainder of the paper, we highlight one particular duality that we
have found as a consequence of our results. Let S := {0, 1, 2} be equipped with the binary
operation ⊕ that is defined by the following addition table:

⊕ 0 1 2

0 0 1 2
1 1 2 1
2 2 1 2

Let R = T := {−1, 0, 1}, equipped with the usual product. Then one can check that S
and R are monoids. Indeed, in Subsection 5.1 below, we list all monoids with at most three
elements. In the notation used there, S = M6 and R ∼= M5. We now fix a finite set Λ and
for x ∈ S, we let x ∈ SΛ denote the function that is constantly x, i.e., x(i) := x (i ∈ Λ).
For y ∈ R, we define y ∈ RΛ similarly. For x,y ∈ SΛ, we define x ⊕ y in a pointwise way,

i.e., (x ⊕ y)(i) := x(i) ⊕ y(i) (i ∈ Λ). For x,y ∈ RΛ, we define the pointwise product x · y
similarly. We define S to be the set of all functions m : SΛ → SΛ such that

m(0) = 0 and m(x⊕ y) = m(x)⊕m(y) (x,y ∈ SΛ). (1.10)

Similarly, we let R denote the set of all functions n : RΛ → RΛ such that

n(1) = 1 and n(x · y) = n(x) · n(y) (x,y ∈ RΛ). (1.11)

We define ψ : S ×R→ R by ψ(0,−1) ψ(0, 0) ψ(0, 1)
ψ(1,−1) ψ(1, 0) ψ(1, 1)
ψ(2,−1) ψ(2, 0) ψ(2, 1)

 :=

 1 1 1
−1 1 1
0 0 1

 (1.12)

which corresponds to the function ψ5 from Subsection 5.3, and we define ψ : SΛ ×RΛ → RΛ

by

ψ(x,y) :=
∏
i∈Λ

ψ
(
x(i),y(i)

)
(x ∈ SΛ, y ∈ RΛ). (1.13)

Then as an immediate consequence of Lemmas 5 and 8 below, we obtain the following result.

Proposition 1 (A new duality) Each map m ∈ S has a unique dual map m̂ with respect
to the duality function ψ defined in (1.13), and this dual map satisfies m̂ ∈ R. Conversely,
for each n ∈ R, there exists a unique m ∈ S such that n is the dual of m with respect to ψ.
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Let M be a subset of S, and let (rm)m∈M be nonnegative rates. Let (Xt)t≥0 be an
interacting particle system that is constructed by applying each map m ∈M at the times of a
Poisson process with intensity rm. By the general principles explained in Subsection 1.2, such
an interacting particle system is pathwise dual to an interacting particle system (Yt)t≥0 that
is constructed by applying each dual map m̂ at the times of Poisson process with intensity
rm. Letting (Xx

t )t≥0 and (Y y
t )t≥0 denote the processes started in the initial states Xx

0 = x
and Y y

0 = y, it is easy to see that

E
[
ψ(Xx

t ,y)
]

= E
[
ψ(x, Y y

t )
] (

x ∈ SΛ, y ∈ RΛ, t ≥ 0). (1.14)

Indeed, this follows by setting Xx
t := X+

0,t(x) and Y y
t := Y−−t,0(y) and taking expectations in

(1.6), using the fact that R is naturally embedded in R.

1.5 Open problems

For all duality functions ψ considered in this paper, it will be true that knowing ψ(x,y) for
all y ∈ RΛ uniquely determines x ∈ SΛ. As a consequence, if (X±)s≤u and (Y±)s≤u are dual
stochastic flows as in Subsection 1.2, then the law of X±0,t(x) is uniquely determined by all
probabilities of the form

P
[
ψ
(
X±0,t(x),y1

)
= z1, . . . ,ψ

(
X±0,t(x),yn

)
= zn

]
, (1.15)

with y1, . . . ,yn ∈ RΛ and z1, . . . , zn ∈ T . By the pathwise duality relation (1.6), the proba-
bility in (1.15) equals

P
[
ψ
(
x,Y∓−t,0(y1)

)
= z1, . . . ,ψ

(
x,Y∓−t,0(yn)

)
= zn

]
. (1.16)

For the duality highlighted in Proposition 1, the situation turns out to be considerably better.
In fact, in this example, one can prove that the law of X±0,t(x) is uniquely determined by all
expectations of the form

E
[
ψ
(
X±0,t(x),y

)]
(1.17)

with y ∈ RΛ. In general, it is not hard to see that each finite monoid T can be represented in
a real algebra. One can then view ψ as a function taking values in this real algebra and define
expectations as in (1.17). However, in this generality it is not true for all dualities that we will
find in the sections to come that the law of X±0,t(x) is uniquely determined by all expectations
of the form (1.17). Therefore, we pose as an open problem to classify all dualities for which
distributional uniqueness holds in this stronger form. A more vaguely formulated problem is
to determine more generally the “minimal” information one needs about probabilities of the
form (1.15) to determine the law of X±0,t(x) uniquely.

Another vaguely formulated open problem concerns further generalisations of our results.
Our main results, Lemmas 5 and 11, are in many ways similar, which leads one to suspect
it may be possible to combine them into one even more general (but presumably even more
abstract) result. At present, we do not know how this should be done.

Finally, we note that Lloyd and Sudbury [LS95, Sud00] have studied general duality func-
tions that can be written as a product over the set Λ as in (1.13). The work in [LS95, Sud00]
is restricted to local state spaces with two elements. They have found useful dualities of the
form (1.14) that do not always come from pathwise dualities of the form (1.6) and that in some
way interpolate between additive and cancellative duality (see also [Swa13, Section 2.7]). Our
present work was motivated by the wish to generalise their work to state spaces with three
and more elements. However, we still do not know if there is an elegant way to do this.
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1.6 Outline

The outline of the paper is as follows. In Sections 2 and 3 we present two approaches to
constructing pathwise duality functions. The first approach is based on commutative monoids
and the second approach on semirings. In Section 4 we discuss some special cases: a class of
duality functions that lie on the intersection of both approaches and duality functions based
on lattices that are a special case of the first approach. In Section 5 we use computer assisted
calculations to find all duality functions that our two approaches yield for local state spaces
with cardinality at most four. This includes both well known duality functions and new
examples. Although the proofs of our results are quite short, for readability, we have moved
them all to Section 6.

2 Dualities based on commutative monoids

2.1 Commutative monoids

By definition, a semigroup is a pair (S,+) where S is a set and + is an associative operation
on S, i.e.,

(i) (x+ y) + z = x+ (y + z) (x, y, z ∈ S).

A semigroup is commutative if moreover

(ii) x+ y = y + x (x, y ∈ S).

A neutral element of a semigroup (S,+) is an element 0 ∈ S such that

(iii) x+ 0 = x = 0 + x (x ∈ S).

It is easy to see that the neutral element, if it exists, is unique. By definition, a monoid is a
semigroup (S,+) that is equipped with a neutral element 0.

If (S,+) and (T,+) are monoids, then a homomorphism from S to T is a function h : S → T
such that

(i) h(x+ y) = h(x) + h(y) (x, y ∈ S),

(ii) h(0) = 0.

We denote the set of all homomorphisms from S to T by H(S, T ). If h ∈ H(S, T ) is a bijection,
then it is easy to see that h−1 ∈ H(T, S). In this case, h is called an isomorphism. A subset
S′ ⊂ S that contains 0 and is closed under addition is called a sub-monoid of S. Then (S′,+)
is itself a monoid with neutral element 0.

If (S,+) is a semigroup and Λ is a set, then we can naturally equip the space SΛ of
functions f : Λ→ S with the structure of a semigroup by setting

(g + h)(i) := g(i) + h(i) (g, h ∈ SΛ, i ∈ Λ). (2.1)

If S is commutative, then so is SΛ, and if S has a neutral element 0, then 0, defined as

0(i) := 0 (i ∈ Λ) (2.2)

is the neutral element of SΛ. The following simple lemma shows that if T is commutative, then
H(S, T ) naturally has the structure of a commutative monoid. We call H(S, T ) the T -adjoint
of the monoid S.

Lemma 2 (Adjoint of a monoid) Let S and T be monoids and assume that T is commu-
tative. Then H(S, T ) is a sub-monoid of SΛ.
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Let S, T be commutative monoids, let S′ := H(S, T ) denote the T -adjoint of S and let
S′′ := H(S′, T ) denote the T -adjoint of the T -adjoint. We claim that there exists a natural
homomorphism from S to S′′. To see this, for each x ∈ S, we define Lx : H(S, T )→ T by

Lx(h) := h(x)
(
x ∈ S, h ∈ H(S, T )

)
. (2.3)

With this definition, the following lemma holds.

Lemma 3 (Adjoint of the adjoint) Let S and T be commutative monoids and let S′ :=
H(S, T ) and S′′ := H(S′, T ). Then the map x 7→ Lx is a homomorphism from S to S′′.

2.2 Duality of commutative monoids

We are now ready for the central definition of this section. Let R,S, and T be commutative
monoids and let ψ : S × R → T be a function. We say that S is T -dual to R with duality
function ψ if the following conditions are satisfied:

(i) ψ(x1, y) = ψ(x2, y) for all y ∈ R implies x1 = x2 (x1, x2 ∈ S),

(ii) H(S, T ) = {ψ( · , y) : y ∈ R},

(iii) ψ(x, y1) = ψ(x, y2) for all x ∈ S implies y1 = y2 (y1, y2 ∈ R),

(iv) H(R, T ) = {ψ(x, · ) : x ∈ S}.

Let S′ := H(S, T ) be the T -adjoint of S and let S′′ := H(S′, T ) be the T -adjoint of the T -
adjoint. Borrowing terminology from the theory of Banach spaces, by definition, we say that
S is T -reflexive if the map x 7→ Lx defined in (2.3) is a bijection (and hence an isomorphism)
from S to S′′. The following proposition links duality in the sense we have just defined to the
concept of the T -adjoint defined in the previous subsection.

Proposition 4 (Monoid duality) Let S,R, and T be commutative monoids and let S′ :=
H(S, T ) and R′ := H(R, T ) be the T -adjoints of S and R. Then:

(a) If S is T -dual to R with duality function ψ, then the map y 7→ ψ( · , y) is an isomorphism
from R to S′ and the map x 7→ ψ(x, · ) is an isomorphism from S to R′. Moreover, S
and R are T -reflexive.

(b) If S is T -reflexive, then S is T -dual to S′ with duality function

ψ(x, h) := h(x) (x ∈ S, h ∈ S′). (2.4)

In Subsection 5.1, we will list all duality functions between monoids of cardinality at most
four. Our examples suggest that such duality functions are not rare. The following lemma
links the duality functions of Proposition 4 to the concept of a dual map as defined in (1.1).

Lemma 5 (Maps having a dual) Let S,R, and T be commutative monoids such that S is
T -dual to R with duality function ψ. Then a map m : S → S has a dual map m̂ : R→ R with
respect to ψ if and only if m ∈ H(S, S). The dual map m̂, if it exists, is unique and satisfies
m̂ ∈ H(R,R).
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2.3 Product spaces

In view of the applications of our results in the theory of interacting particle systems, it is
important to pay special attention to product spaces. We have already seen that if (S,+) is
a commutative monoid with neutral element 0 and Λ is a set, then the product space SΛ has
the structure of a commutative monoid with neutral element 0.

We claim that if S and T are commutative monoids, then there exists a natural isomor-
phism H(SΛ, T ) ∼= H(S, T )Λ. To see this, for each f = (fi)i∈Λ ∈ H(S, T )Λ, we define a function
Ff : SΛ → T by

Ff (x) :=
∑
i∈Λ

fi(xi)
(
x = (xi)i∈Λ ∈ SΛ

)
. (2.5)

Here we take the sum over Λ in T , which is well-defined since T is commutative.

Lemma 6 (Adjoints of product spaces) Let S and T be commutative monoids and let Λ
be a finite set. Then the map f 7→ Ff is an isomorphism from H(S, T )Λ to H(SΛ, T ).

As a simple application of Lemma 6, we obtain a characterisation of H(SΛ, SΛ), or some-
what more generally, the set of homomorphisms between two product monoids SΛ and R∆.

Lemma 7 (Homomorphisms between product spaces) Let S,R be monoids, let Λ,∆
be finite sets, and let m : SΛ → R∆ be a map, with m(x) =

(
mj(x)

)
j∈∆

. Then one has

m ∈ H(SΛ, R∆) if and only if there exists a matrix M = (Mij)i∈Λ, j∈∆ with Mij ∈ H(S,R)
for each i ∈ Λ and j ∈ ∆, such that

mj(x) =
∑
i∈Λ

Mij(xi) (x ∈ SΛ, j ∈ ∆). (2.6)

The following lemma says that any duality between commutative monoids can be “lifted”
to a duality between product spaces. Note that since T is commutative, the sum in (2.7) does
not depend on the summation order.

Lemma 8 (Duality of product spaces) Let S,R, and T be commutative monoids, let Λ
be a finite set, and assume that S is T -dual to R with duality function ψ. Then SΛ is T -dual
to RΛ with duality function

ψ(x,y) :=
∑
i∈Λ

ψ(xi,yi)
(
x ∈ SΛ, y ∈ RΛ

)
. (2.7)

Note that by Lemma 5, a map m : SΛ → SΛ has a dual with respect to the function
ψ defined in (2.7) if and only if m ∈ H(SΛ, SΛ). By Lemma 7, maps m ∈ H(SΛ, SΛ) are
uniquely characterised by a matrix with values in H(S, S).

For example, setting (S,+) := ({0, 1},∨), one can check that S is S-dual to S with duality
function ψ(x, y) := xy. Defining ψ as in (2.7) now yields the additive duality function ψadd

from (1.7). Similarly, setting S := {0, 1} but defining + as addition modulo 2 one can again
check that S is S-dual to S with duality function ψ(x, y) := xy. Defining ψ as in (2.7) now
yields the cancellative duality function ψcanc from (1.7). Note that in both these examples,
when we identify S as a set with {0, 1} in the way we have just done, then the “local” duality
function ψ : S × S → S is the same, but the “global” duality functions ψ : SΛ × SΛ → S are
still different since the sum on S is defined differently in each example.

3 Dualities based on semirings

By definition, a semiring is a triple (S,+, ·) such that:
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(i) (S,+) is a commutative monoid with neutral element 0,

(ii) (S, ·) is a monoid with neutral element 1,

(iii) x · 0 = 0 = 0 · x for all x ∈ S,

(iv) x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z for all x, y, z ∈ S.

Property (iv) is called distributivity. The semiring (S,+, ·) is called commutative if the monoid
(S, ·) is.

Let (S,+, ·) be a semiring and let Λ be a finite set. Then we can equip the monoid (SΛ,+)
with additional structure by defining multiplication by scalars from the left and right as

(x · y)(i) := x · y(i) and (y · x)(i) := y(i) · x (x ∈ S, y ∈ SΛ, i ∈ Λ). (3.1)

One can check that with this definition, SΛ becomes an S-module. In particular, if S is a field,
then SΛ is a linear space over S. Since we will not need the general concepts of S-modules
and linear spaces, we omit their definitions. Let Λ and ∆ be finite sets and let F(SΛ, S∆) be
the set of all functions h : SΛ → S∆. Using the conditions

(i) h(x + y) = h(x) + h(y) (x,y ∈ SΛ),

(ii) h(x · y) = x · h(y) (x ∈ S, y ∈ SΛ),

(iii) h(y · x) = h(y) · x (x ∈ S, y ∈ SΛ),

we define sets of functions by

L(SΛ, S∆) :=
{
h ∈ F(SΛ, S∆) : h satisfies (i) and (ii)

}
,

R(SΛ, S∆) :=
{
h ∈ F(SΛ, S∆) : h satisfies (i) and (iii)

}
.

(3.2)

In other words, L(SΛ, S∆) is the set of homomorphisms h from SΛ to S∆, viewed as a left
S-modules, and likewise R(SΛ, S∆) is the set of homomorphisms h from SΛ to S∆, viewed as a
right S-modules. As before, we let H(SΛ, S∆) denote the set of all homomorphisms h from the
monoid (SΛ,+) into (S∆,+). Note that setting x = 0 in (ii) yields h(0) = h(0·y) = 0·h(y) = 0
so L(SΛ, S∆) ⊂ H(SΛ, S∆) and similarly R(SΛ, S∆) ⊂ H(SΛ, S∆). If S is commutative, then
L(SΛ, S∆) = R(SΛ, S∆). In particular, if S is a field, then L(SΛ, S∆) is the space of linear
functions h : SΛ → S∆. The following lemma is similar to Lemma 7.

Lemma 9 (Maps between product spaces) Let (S,+, ·) be a semiring, let Λ,∆ be finite
sets, and let m : SΛ → S∆ be a map, with m(x) =

(
mj(x)

)
j∈∆

. Then one has m ∈ L(SΛ, S∆)

if and only if there exists a matrix M = (Mij)i∈Λ, j∈∆ with Mij ∈ L(S, S) for each i ∈ Λ and
j ∈ ∆, such that

mj(x) =
∑
i∈Λ

Mij(xi) (x ∈ SΛ, j ∈ ∆). (3.3)

We define a function ψ : SΛ × SΛ → S by

ψ(x,y) :=
∑
i∈Λ

x(i) · y(i) (x,y ∈ SΛ). (3.4)

The following lemma says that this function has properties similar to the duality functions of
Subsection 2.2.

Lemma 10 (Duality function for modules over a semiring) Let S be a semiring, let Λ
be a finite set, and let ψ : SΛ × SΛ → S be defined as in (3.4). Then:
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(i) ψ(x1,y) = ψ(x2,y) for all y ∈ SΛ implies x1 = x2 (x1,x2 ∈ SΛ),

(ii) L(SΛ, S) =
{
ψ( · ,y) : y ∈ SΛ

}
,

(iii) ψ(x,y1) = ψ(x,y2) for all x ∈ SΛ implies y1 = y2 (y1,y2 ∈ SΛ),

(iv) R(SΛ, S) =
{
ψ(x, · ) : x ∈ SΛ

}
.

The following lemma is similar to Lemma 5.

Lemma 11 (Maps having a dual) Let S be a semiring and let Λ be a finite set. Then
a map m : SΛ → SΛ has a dual map m̂ : SΛ → SΛ with respect to the function ψ defined
in (3.4) if and only if m ∈ L(SΛ, SΛ). The dual map m̂, if it exists, is unique and satisfies
m̂ ∈ R(SΛ, SΛ).

In the special case that S = R, the duality function in (3.4) is the standard inner product
on RΛ and m̂ is the adjoint of the linear map m with respect to this inner product. Linear
duality with this duality function has long been used in the study of linear interacting particle
systems; see [Lig85, Chapter IX] for an overview. It has already been pointed out in [Swa13,
Section 2.6] that linear systems duality can be generalised to linear spaces over arbitrary
fields and that in particular, choosing for S the finite field with two elements, one can view
cancellative duality as a special case of linear duality. In fact, applying Lemma 11 to the
semiring ({0, 1},∨, ·) we see that additive duality also fits into the general class of dualities
discussed in the present section.

4 Some special cases

4.1 Semirings generated by the unit element

The duality functions in (2.7) and (3.4) have a similar form. In the present subsection, we will
see that under certain conditions, they coincide. Let (S,+, ·) be a semiring. Recall that 1 ∈ S
denotes the neutral element of the product. We say that 1 generates (S,+) if each x ∈ S with
x 6= 0 is of the form

x = 1 + · · ·+ 1︸ ︷︷ ︸
n times

for some integer n ≥ 1. If 1 generates (S,+), then it is easy to see that (S,+, ·) must be
commutative. If 1 generates (S,+) and Λ,∆ are finite sets, then we claim that L(SΛ, S∆) =
H(SΛ, S∆), i.e., each h ∈ H(SΛ, S∆) satisfies the defining property (ii) of L(SΛ, S∆). For
x = 0 this is clear since h(0) = 0. Otherwise, we can write x = 1 + · · ·+ 1 and observe that

h(x · y) = h
(
(1 + · · ·+ 1) · y

)
= h

(
y + · · ·+ y

)
= h(y) + · · ·+ h(y) = (1 + · · ·+ 1) · h(y) = x · h(y).

(4.1)

The following lemma shows that if 1 generates (S,+), then the semiring-based duality in the
sense of Lemma 11 is a special case of monoid duality as defined in Subsection 2.2.

Lemma 12 (Semirings generated by 1) Assume that (S,+, ·) is a commutative semi-
ring and that 1 generates (S,+). Then (S,+) is (S,+)-dual to (S,+) with duality function
ψ(x, y) := x · y (x, y ∈ S).
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4.2 Lattice duality

A lattice is a partially ordered set (S,≤) with the property that each x, y ∈ S have a least
upper bound x ∨ y and a greatest lower bound x ∧ y. Following [SS18, Subsection 2.4], we
say that a lattice (S∗,≤) is dual to (S,≤) if there exists a bijection S 3 x 7→ x∗ ∈ S∗ such
that x ≤ y if and only if x∗ ≥ y∗ (x, y ∈ S). Clearly, each lattice has a dual, and the dual is
unique up to isomorphism. Each finite lattice has unique minimal and maximal elements. If
(S,≤) is a finite lattice with minimal element 0, then (S,∨) is a monoid with neutral element
0. The following lemma says that the monoids (S,∨) and (S∗,∨) are dual in the sense defined
in Subsection 2.2.

Lemma 13 (Lattice duality) Let T denote the monoid ({0, 1},∨). Let (S,≤) be a finite
lattice and let (S∗,≤) be its dual lattice. Then (S,∨) is T -dual to (S∗,∨) with duality function

ψ(x, y) :=

{
0 if x ≤ y∗,
1 otherwise.

(x ∈ S, y ∈ S∗). (4.2)

Pathwise dualities based on dual lattices were studied in [SS18]. In particular, [SS18,
Lemma 6] is just our Lemma 5 restricted to the special setting of Lemma 13. Additive duality
is a special case of lattice duality, restricted to lattices of the form {0, 1}Λ. As discussed
in [SS18, Subsection 3.3], the duality of the two-stage contact process discovered by Krone
[Kro99] is based on lattices of the form {0, 1, 2}Λ.

5 Examples and discussion

5.1 Monoids with up to four elements

Using the approaches in Sections 2 and 3, one can find duality functions of the form

ψ(x,y) =
∑
i∈Λ

ψ
(
x(i),y(i)

)
(x ∈ SΛ, y ∈ RΛ), (5.1)

where ψ : S × R → T is a “local” duality function and the sum is taken in the commutative
monoid (T,+). Combining Lemmas 5 and 11 with Lemmas 7 and 9, one can find all maps
m : SΛ → SΛ that have a dual with respect to ψ. As explained in Subsection 1.2, interacting
particle systems based on these maps then have a pathwise dual.

In this section, we will systematically find all local duality functions that arise from these
approaches when the spaces R,S, T have cardinality at most four. In the present subsection,
we start by listing all commutative monoids with at most four elements. It turns out there
are, up to isomorphism, 1, 2, 5, and 19 commutative monoids with 1, 2, 3, and 4 elements,
respectively. For those with precisely four elements, we have used [For55] as our source. For a
monoid of cardinality n, we have enumerated its elements 0, . . . , n− 1 where 0 always denotes
the neutral element. To enumerate the other elements we have applied following rules.

1) If a monoid S denotes the addition of commutative semirings, and the neutral element
of the multiplication is the same one in all those semirings, then we have denoted it by 1.

2) If a monoid S possesses an absorbing element (i.e. an element x ∈M such that x+ y =
y + x = x for all y ∈ S), we have denoted it by n− 1.

3) If a monoid S possesses an almost absorbing element (i.e. an element x ∈ M such that
x+ y = y + x = x for y 6= x but x+ x 6= x), we have denoted it by n− 1.
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The remaining elements we have denoted in such a way that they appear increasingly often
in the addition table. Note that rules 2) and 3) can never contradict themselves. We see,
however, several conflicts between rules 1) and 3), where we then have applied rule 1) as
indicated by the order.

We have named the monoids M0, . . . ,M26, where M0 is the one monoid with 1 element,
M1 and M2 are the monoids with 2 elements, M3, . . . ,M7 are the ones with 3 elements and
M8, . . . ,M26 are the ones with 4 elements. Within the group of monoids with n elements we
have ordered the monoids such that the first ones have an absorbing element, then next ones
have an almost absorbing element and the ones without either one form the last group. Within
these groups we have ordered the monoids such that the n−1 appears decreasingly often in the
addition table. If multiple monoids within a group have the same number of (n− 1)-entries in
their addition table they are sorted in such a way that the number of (n−2)-entries decreases
etc.

Below we list the addition tables of M0, . . . ,M7. The addition tables of M8, . . . ,M26 are
given in Appendix A.1.

M0 0

0 0

M1 0 1

0 0 1
1 1 1

M2 0 1

0 0 1
1 1 0

M3 0 1 2

0 0 1 2
1 1 2 2
2 2 2 2

M4 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

M5 0 1 2

0 0 1 2
1 1 0 2
2 2 2 2

M6 0 1 2

0 0 1 2
1 1 2 1
2 2 1 2

M7 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

5.2 Semirings with up to four elements

In Section 3, we studied local duality functions of the form ψ(x, y) = x · y (x, y ∈ S) where
(S,+, ·) is a semiring. In the present subsection, we find all local duality functions of this form
when S has cardinality between two and four.

Recall that if (S,+, ·) is a semiring, then (S,+) is a commutative monoid and (S, ·) is a
monoid. The monoid (S, ·) has an absorbing element, which is the neutral element 0 of (S,+).
It turns out that all monoids with two or three elements that contain an absorbing element
are commutative, but there exist two monoids with four elements that contain an absorbing
element and are non-commutative. We have named these N1 and N2. Their multiplication
tables appear in Appendix A.3. Using a computer, we have found all pairs of monoids (S,R)
so that (S,+) is commutative, (R, ·) contains an absorbing element, S and R have the same
cardinality, which is at most four, and it is possible to identify the elements of S and R in
such a way that (S,+, ·) is a semiring.

Below we list all possible ways to define a multiplication · on the commutative monoids
Mk with k = 1, . . . , 7 such that the (Mk,+, ·) is a semiring. Below each multiplication table,
we have indicated to which monoid (Mk, ·) is isomorphic. Note that each multiplication
table gives rise to a duality function of the form (3.4). The corresponding tables for the
monoids M8, . . . ,M26 are given in Appendix A.3. We have only listed semirings that are not
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isomorphic to each other. In other words, on some of the monoids it may be possible to
define a multiplication in a way that is not listed, but in such a case the resulting semiring is
isomorphic to a semiring that occurs in our list.

(M1, ·) 0 1

0 0 0
1 0 1

mult. ∼= M1

(M2, ·) 0 1

0 0 0
1 0 1

mult. ∼= M1

(M3, ·) 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

mult. ∼= M4

(M4, ·) 0 1 2

0 0 0 0
1 0 0 1
2 0 1 2

mult. ∼= M3

(M4, ·) 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

mult. ∼= M4

(M4, ·) 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

mult. ∼= M4

(M6, ·) 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

mult. ∼= M4

(M7, ·) 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

mult. ∼= M5

5.3 Dualities between commutative monoids

We have used a computer to find all quadruples (R,S, T, ψ) such that R,S, T are commutative
monoids with cardinality at most four and S is T -dual toR with duality function ψ, in the sense
defined in Subsection 2.2. We have proceeded as follows. For each pair (S, T ) of commutative
monoids with at least two elements each, we used a computer to calculate H(S, T ) by brute
force, by checking for every function from S to T whether it is a homomorphism. In all cases
where H(S, T ) has at most four elements, we used a computer to calculate its addition table
and find the commutative monoid from our list that it is isomorphic to. The result of this is
a table of size 26× 26 that lists for each pair (S, T ) the monoid R such that H(S, T ) ∼= R, if
R ∈ {M0, . . . ,M26}. Using this table, we found all triples (R,S, T ) of monoids of cardinality
at most four such that R ∼= H(S, T ) and S ∼= H(R, T ).

For each such triple (R,S, T ) and for each isomorphism R 3 y 7→ fy ∈ H(S, T ), we then
calculated the function ψ : S ×R→ T defined as

ψ(x, y) := fy(x) (x ∈ S, y ∈ R). (5.2)

By Proposition 4, ψ is a duality function if and only if S is T -reflexive, and each duality
function arises in this way. To check that S is T -reflexive, we need to check that the map
x 7→ Lx defined in (2.3) is a bijection (and hence an isomorphism) from S to S′′. Equivalently,
setting L′x(y) := fy(x) (x ∈ S, y ∈ R), this says that the map x 7→ L′x ∈ H(R, T ) is a bijection.
In other words, the function in (5.2) is a duality function if and only if S 3 x 7→ ψ(x, · ) ∈
H(R, T ) is a bijection. Since S ∼= H(R, T ), the sets S and H(R, T ) have the same cardinality,
so the function in (5.2) is a duality function if and only if the functions ψ(x, · ) with x ranging
through S are all different from each other.1

For all triples (R,S, T ) of monoids of cardinality at least two and at most four such that
R ∼= H(S, T ) and S ∼= H(R, T ), and for all choices of the isomorphism R 3 y 7→ fy ∈

1Note that the functions ψ( · , y) with y ranging through R are trivially all different from each other, since
R 3 y 7→ fy ∈ H(S, T ) is an isomorphism.
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H(S, T ), we observed that R and S have the same cardinality and that (5.2) defines a duality
function. In total, in this way, we identified all 110 quadruples (R,S, T, ψ) such that R,S, T
are commutative monoids with cardinality at least two and at most four and S is T -dual to
R with duality function ψ.

A lot of these 110 duality functions are trivially related to each other. We will use the
following reductions to restrict the number of duality functions and then list only those that
are “essentially” different.

� In many of the 110 examples we have found, it turns out that T contains a smaller
sub-monoid T̃ so that the duality function ψ takes values in T̃ . For this reason, we will
only list examples that are minimal in the sense that the function values {ψ(x, y) : x ∈
S, y ∈ R} generate the monoid T .

� If S is T -dual to R with duality function ψ and R 3 y 7→ y′ ∈ R is an isomorphism,
then S is also T -dual to R with the duality function ψ′ defined as ψ′(x, y) := ψ(x, y′)
(x ∈ S, y ∈ R). If several duality functions are related in this way, then we will list only
one of them.

� If S is T -dual to R with duality function ψ, then R is T -dual to S with duality function
ψ† defined as ψ†(y, x) := ψ(x, y) (x ∈ S, y ∈ R). If two duality functions are related in
this way, then we will list only one of them.

After these reductions, we end up with 22 duality functions that are “essentially” different. In
all examples that are minimal in the sense defined above, we observed that the cardinality of
T is not larger than the cardinalities of R and S. The following table lists all duality functions
ψ : S×R→ T where S,R have cardinality two or three and |T | ≤ 3. Those with |S| = |R| = 4
and |T | ≤ 4 are listed in Appendix A.2. Note that the functions listed in these tables are
“local” duality functions that then give rise to a “global” duality function of the form (2.7).

M1
M1 0 1

0 0 0
1 0 1

ψ1 : M1 ×M1 →M1

M2
M2 0 1

0 0 0
1 0 1

ψ2 : M2 ×M2 →M2

M3
M3 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

ψ3 : M3 ×M3 →M3

M4
M4 0 1 2

0 0 0 0
1 0 0 1
2 0 1 1

ψ4 : M4 ×M4 →M1

M5
M6 0 1 2

0 0 0 0
1 0 1 0
2 0 2 2

ψ5 : M5 ×M6 →M5

M6
M6 0 1 2

0 0 0 0
1 0 1 2
2 0 2 2

ψ6 : M6 ×M6 →M6

M7
M7 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

ψ7 : M7 ×M7 →M7
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5.4 Discussion

We have described two ways to construct pathwise duality functions for interacting particle
systems. The first method is based on duality of commutative monoids as described in Subsec-
tion 2.2 and the second method is based on semirings as described in Section 3. As explained
in Subsection 4.1, the two methods partially overlap. By Lemma 12, if (S,+, ·) is a semiring
in which 1 generates (S,+), then ψ(x, y) := x · y is a duality function in the sense of Subsec-
tion 2.2. The duality functions ψ1, ψ2, ψ3, ψ6, ψ7, ψ9, ψ22, ψ24, and ψ26 are of this special form
and hence occur also in our tables of multiplications in semirings.

Interestingly, we have found one more duality function between commutative monoids
that also occurs in our tables of multiplications in semirings. This is ψ23, which also occurs
in Appendix A.3 as the multiplication on M23 that is isomorphic to M11. In this example,
the neutral element of (M23, ·) does not generate (M23,+) ∼= M1×M2. Nevertheless, one can
check that L(M23,M23) = R(M23,M23) = H(M23,M23) and hence by Lemmas 7 and 9 an
analogue statement holds for product spaces.

The cyclic groups C2, C3 and C4 are given by M2,M7 and M26, respectively, i.e. always
by the last monoid in the group of monoids with n elements. The duality functions ψ2, ψ7

and ψ26 correspond to multiplication modulo n. As we already mentioned, they belong to the
duality functions of the special form described by Lemma 12. This follows from the fact that
Cn, equipped with multiplication modulo n, is a semiring that is additively generated by 1.

The cyclic groups C2 and C3, equipped with multiplication modulo 2 and 3, respectively,
are in fact finite fields. The finite field (F4,+, ·) with four elements satisfies (F4,+) ∼= M25

∼=
M2 ×M2 and (F4, ·) ∼= M18. Its multiplication table can be found in Appendix A.3. The unit
element of (F4, ·) does not generate (F4,+) and in fact there exist 12 functions from F4 to itself
that are homomorphisms for (F4,+) but not elements of L(F4,F4) = R(F4,F4). Therefore,
the multiplication in F4 does not correspond to a duality between commutative monoids in
the sense of Subsection 2.2.

The four lattices with 2–4 elements are M1
∼= ({0, 1},∨), M4

∼= ({0, 1, 2},∨), M11
∼=

M1 ×M1, and M15
∼= ({0, 1, 2, 3},∨). Their corresponding duality functions ψ1, ψ4, ψ11 and

ψ15 are hence of the form described in Lemma 13. Note that these duality functions are also
the only ones that map into M1.

Since Mk is Mk-dual to Mk (k = 1, 2), Lemma 8 tells us that M11
∼= M1 ×M1 is M1-dual

to M11
∼= M1 ×M1 and M25

∼= M2 ×M2 is M2-dual to M25
∼= M2 ×M2. The corresponding

duality functions are ψ11 and ψ25 from Appendix A.2. We already encountered ψ11 before
since M11 is a lattice.

If we discard all duality functions between commutative monoids that we have discussed so
far, then we are left with the duality function ψ5 from Subsection 5.3 and the duality functions
ψ10, ψ13, ψ16, ψ17, ψ18, ψ21, ψ235 from Appendix A.2 that do not have an easy “explanation”.
Of these, ψ5, ψ13, ψ16, and ψ18 are dualities between different monoids. These duality functions
map into M5,M3,M5, and M18, respectively. The remaining duality functions ψ10, ψ17, ψ21,
and ψ235 are defined on Mk ×Mk with k = 10, 17, 21, and 23, and map into M3,M5,M5, and
M5 respectively.

Our computer assisted calculations indicate that duality between commutative monoids in
the sense of Subsection 2.2 is not rare, but we are far from a situation where we can classify
all examples. It is interesting that in all cases where R,S, T are commutative monoids with
cardinality at most four such that R ∼= H(S, T ) and S ∼= H(R, T ), it turns out that S is T -dual
to R, which is a priori a stronger statement. It is not clear to us if there is a general truth
behind this or if there are counterexamples with monoids of larger cardinality.

The approaches for finding duality functions described in Sections 2 and 3 have many
similarities and in fact partially yield the same duality functions, as can in many cases be
understood by applying Lemma 12. It is therefore natural to ask if these two approaches can
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be unified in an even more general approach. Since we do not see an immediate answer to
this question we leave it for further research.

6 Proofs

Outline

In this section, we prove our results. Proposition 4 and Lemmas 2, 3, and 5 are proved in
Subsection 6.1. Lemmas 6–8 are proved in Subsection 6.2. Lemmas 9, 10, 11, and 12 are
proved in Subsection 6.3. Lemma 13, finally, is proved in Subsection 6.4.

6.1 General theory

Proof of Lemma 2 It is easy to see that 0 ∈ H(S, T ), so it remains to show that f + g ∈
H(S, T ) for all f, g ∈ H(S, T ). Indeed, for each x, y ∈ S and f, g ∈ H(S, T ),

(f + g)(x+ y) = f(x+ y) + g(x+ y) =
(
f(x) + f(y)

)
+
(
g(x) + g(y)

)
=
(
f(x) + g(x)

)
+
(
f(y) + g(y)

)
= (f + g)(x) + (f + g)(y),

(6.1)

where we have used the commutativity of T in the third step. Since moreover (f + g)(0) =
f(0) + g(0) = 0 + 0 = 0, this shows that f + g ∈ H(S, T ).

Proof of Lemma 3 Since for each x ∈ S,

Lx(f + g) = (f + g)(x) = f(x) + g(x) = Lx(f) + Lx(g),

Lx(0) = 0(x) = 0,
(6.2)

we see that Lx is a homomorphism from S′ to T , i.e., Lx ∈ S′′. The fact that x 7→ Lx is a
homomorphism from S to S′′ now follows by writing

Lx+y(f) = f(x+ y) = f(x) + f(y) = Lx(f) + Ly(f),

L0(f) = f(0) = 0.
(6.3)

Proof of Proposition 4 Assume that S is T -dual to R with duality function ψ. Property (iv)
implies that ψ(x, y1 + y2) = ψ(x, y1) + ψ(x, y2) and ψ(x, 0) = 0, so the map y 7→ ψ( · , y) is
an homomorphism from R to S′. By property (ii), the map y 7→ ψ( · , y) is surjective and by
property (i) it is one-to-one, so we conclude that it is an isomorphism. Since R is T -dual to S
with duality function ψ†(y, x) := ψ(x, y), the same argument shows that the map x 7→ ψ(x, · )
is an isomorphism from S to R′.

If we identify R with S′ using the isomorphism y 7→ ψ( · , y), then we can identify the
function Lx : S′ → T defined in (2.3) with the function Lx : R→ T defined as Lx(y) := ψ(x, y)
(x ∈ S, y ∈ R). This means that the map x 7→ Lx from S to S′′ corresponds to the map
x 7→ ψ(x, · ) from S to R′, which we have just shown to be an isomorphism. This proves that
S is T -reflexive, and by the symmetry between S and R, the same is true for R.

Assume, conversely, that S is T -reflexive. To show that S is T -dual to S′ with the duality
function ψ defined in (2.4), we must show that:

(i) ψ(x, g) = ψ(x, h) for all x ∈ S implies g = h,

(ii) H(S, T ) = {ψ( · , h) : h ∈ S′},

(iii) ψ(x, h) = ψ(y, h) for all h ∈ S′ implies x = y,
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(iv) H(S′, T ) = {ψ(x, · ) : x ∈ S}.

Properties (i) and (ii) are trivial consequences of the definition of the adjoint S′. By the same
argument, if we define ψ′ : S′ × S′′ → T by ψ′(h, L) := L(h) (h ∈ S′, L ∈ S′′), then

(i) ψ(h, L) = ψ′(x,M) for all h ∈ S′ implies L = M ,

(ii) H(S′, T ) = {ψ′( · , L) : L ∈ S′′}.

Since by assumption, S is T -reflexive, we may identify S with S′′. In this identification, we
have ψ′(h, x) = ψ′(h, Lx) = Lx(h) = h(x) = ψ(x, h) so properties (i) and (ii) of the function
ψ′ imply properties (iii) and (iv) of the function ψ.

Proof of Lemma 5 If m ∈ H(S, S) and y ∈ R, then x 7→ ψ
(
m(x), y

)
is a homomorphism

from S to T , so by properties (ii) and (iii) of the definition of a duality function, there exists
a unique element m̂(y) ∈ R such that ψ

(
m(x), y

)
= ψ

(
x, m̂(y)

)
for all x ∈ S. This shows that

m has a unique dual map m̂ : R→ R with respect to the duality function ψ.
Assume, conversely, that m : S → S has a dual map m̂ : R→ R. Then ψ

(
m(x1 +x2), y

)
=

ψ
(
x1 + x2, m̂(y)

)
= ψ

(
x1, m̂(y)

)
+ ψ

(
x2, m̂(y)

)
= ψ

(
m(x1), y

)
+ ψ

(
m(x2), y

)
= ψ

(
m(x1) +

m(x2), y
)

for all x1, x2 ∈ S and y ∈ R, so using property (i) of a duality function we see that
m(x1 + x2) = m(x1) +m(x2) for all x1, x2 ∈ S. Since moreover ψ

(
m(0), y

)
= ψ

(
0, m̂(y)

)
= 0,

this proves that m ∈ H(S, S).
This completes the proof that a map m : S → S has a dual map m̂ : R→ R with respect to

ψ if and only if m ∈ H(S, S), and moreover shows that such a dual map is unique. Since m̂ has
a dual with respect to the duality function ψ†(y, x) := ψ(x, y), namely, the map m : S → S,
by what we have already proved, we must have m̂ ∈ H(R,R).

6.2 Product spaces

Proof of Lemma 6 We first check that Ff ∈ H(SΛ, T ) for all f ∈ H(S, T )Λ. Indeed

� Ff (x + y) =
∑
i∈Λ

fi
(
(x + y)i

)
=
∑
i∈Λ

fi(xi + yi) =
∑
i∈Λ

(
fi(xi) + fi(yi)

)
=
(∑

i∈Λ

fi(xi)
)

+
(∑

i∈Λ

fi(yi)
)

= Ff (x) + Ff (y),

� Ff (0) =
∑
i∈Λ

fi(0i) =
∑
i∈Λ

fi(0) =
∑
i∈Λ

0 = 0.

We next check that f 7→ Ff is a bijection. We first show that it is one-to-one. For each
x ∈ S and i ∈ Λ, let us define xi ∈ SΛ by xij := x if i = j and := 0 otherwise. Then f 6= g
implies fi 6= gi for some i ∈ Λ and hence there exists an x ∈ S such that fi(x) 6= gi(x). Now
Ff (x

i) = fi(x) 6= gi(x) = Fg(xi) which shows that Ff 6= Fg. It remains to show that f 7→ Ff

is surjective. For each F ∈ H(SΛ, T ), we define f ∈ H(S, T )Λ by fi(x) := F (xi) (i ∈ Λ). Then
for each x ∈ SΛ, we have

F (x) = F
(∑

i∈Λ

(xi)
i
)

=
∑
i∈Λ

F ((xi)
i) =

∑
i∈Λ

fi(xi) = Ff (x), (6.4)

which shows that F = Ff .
To complete the proof, we must show that f 7→ Ff is a homomorphism. We denote the

neutral element of H(S, T ) by o and the neutral element of H(S, T )Λ by o. Then

� Ff+g(x) =
∑
i∈Λ

(f + g)i(xi) =
∑
i∈Λ

(fi + gi)(xi) =
∑
i∈Λ

(
fi(xi) + gi(xi)

)
=(∑

i∈Λ

fi(xi)
)

+
(∑

i∈Λ

fi(xi)
)

= Ff (x) + Fg(x),
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� Fo(x) =
∑
i∈Λ

oi(xi) =
∑
i∈Λ

o(xi) =
∑
i∈Λ

0 = 0.

Proof of Lemma 7 This follows from applying Lemma 6 to the maps mj for each j ∈ ∆.

Proof of Lemma 8 We need to check that ψ satisfies conditions (i)–(iv) of the definition of
a duality function. By the symmetry between S and R, it suffices to check conditions (i) and
(ii). For each y ∈ R and i ∈ Λ, let us define yi ∈ RΛ by yij := y if i = j and := 0 otherwise.

Then ψ(x, yi) = ψ(xi, y) so x ∈ SΛ is uniquely determined by the values of ψ(x, yi) for all
y ∈ S and i ∈ Λ, proving that ψ satisfies condition (i). To prove also condition (ii) we must
show that

H(SΛ, T ) = {ψ( · ,y) : y ∈ RΛ}. (6.5)

We observe that ψ(x+x′,y) = ψ(x,y)+ψ(x′,y) and ψ(0,y) = 0, which proves the inclusion
⊃ in (6.5). Conversely, by Lemma 6, each F ∈ H(SΛ, T ) is of the form F (x) =

∑
i∈Λ fi(xi)

for some f = (fi)i∈Λ ∈ H(S, T )Λ. Since S is T -dual to R with duality function ψ, this implies
that there exists an y ∈ RΛ such that fi = ψ( · ,yi) for all i ∈ Λ and hence F (x) = ψ(x,y) for
all x ∈ SΛ, proving the inclusion ⊂ in (6.5).

6.3 Semirings

Proof of Lemma 9 It suffices to prove the claim when ∆ consists of a single element. The
general statement then follows by applying the more elementary claim to the maps mj for
each j ∈ ∆. Thus, we need to show that m ∈ L(SΛ, S) if and only if there exist (Mi)i∈Λ with
Mi ∈ L(S, S) for each i ∈ Λ, such that

m(x) =
∑
i∈Λ

Mi(xi) (x ∈ SΛ). (6.6)

It is straightforward to check that (6.6) defines a map m ∈ L(SΛ, S). To see that each element
m ∈ L(SΛ, S) is of this form, for each x ∈ S and i ∈ Λ, we define xi ∈ SΛ by xij := x if

i = j and := 0 otherwise. Given m ∈ L(SΛ, S), we define Mi : S → S by Mi(x) := m(xi)
(x ∈ S, i ∈ Λ). Then it is straightforward to check that Mi ∈ L(S, S) and m is of the form
(6.6). Since this is very similar to the proof of Lemma 6, we omit the details.

Proof of Lemma 10 By symmetry, it suffices to prove properties (i) and (ii). For each i ∈ Λ,
let ei ∈ SΛ be defined as ei(i) := 1 and ei(j) := 0 for all j ∈ Λ\{i}. Then ψ(x1,y) = ψ(x2,y)
for all y ∈ SΛ implies x1(i) = ψ(x1, ei) = ψ(x2, ei) = x2(i) for all i ∈ Λ and hence x1 = x2,
proving (i). Using the distributive property of the product and the commutativity of the sum,
we see that

ψ(x1 + x2,y) =
∑
i∈Λ

(
x1(i) + x2(i)

)
· y(i) =

∑
i∈Λ

(
x1(i) · y(i) + x2(i) · y(i)

)
=
∑
i∈Λ

x1(i) · y(i) +
∑
i∈Λ

x2(i) · y(i) = ψ(x1, y) + ψ(x2,y) (x1,x2,y ∈ SΛ).
(6.7)

Using the associative and distributive properties of the product, we obtain moreover that

ψ(z · x,y) =
∑
i∈Λ

(
z · x(i)

)
· y(i) =

∑
i∈Λ

z ·
(
x(i) · y(i)

)
= z ·

∑
i∈Λ

x(i) · y(i) = z · ψ(x,y) (6.8)

(x,y ∈ SΛ, z ∈ S). Applying this with z = 0, using the fact that 0 · x = 0 (x ∈ S), we see
that moreover ψ(0,y) = 0 (y ∈ SΛ), so we conclude that L(SΛ, S) ⊃

{
ψ( · ,y) : y ∈ SΛ

}
.
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To prove the reverse inclusion, assume that h ∈ L(SΛ, S). We will prove that h = ψ( · ,y)
with y(i) := h(ei) (i ∈ Λ). Indeed,

h(x) = h
(∑
i∈Λ

x(i) · ei
)

=
∑
i∈Λ

x(i) · h
(
ei
)

= ψ(x,y) (x ∈ SΛ), (6.9)

which concludes our proof.

Proof of Lemma 11 If m ∈ L(SΛ, SΛ) and y ∈ SΛ, then by Lemma 10 (ii), the map
x 7→ ψ

(
m(x),y

)
is an element of L(SΛ, S), so by Lemma 10 (i) and (ii), there exists a unique

element m̂(y) ∈ SΛ such that ψ
(
m(x),y

)
= ψ

(
x, m̂(y)

)
for all x ∈ SΛ. This shows that m

has a unique dual map m̂ with respect to the duality function ψ.
Assume, conversely, that m : SΛ → SΛ has a dual map m̂ : SΛ → SΛ with respect to the

duality function ψ. Then by Lemma 10 (ii),

� ψ
(
m(x1 + x2),y

)
= ψ

(
x1 + x2, m̂(y)

)
= ψ

(
x1, m̂(y)

)
+ψ

(
x2, m̂(y)

)
= ψ

(
m(x1),y

)
+ψ

(
m(x2),y

)
= ψ

(
m(x1) +m(x2),y

)
(x1,x2,y ∈ SΛ)

� ψ
(
m(z · x),y

)
= ψ

(
z · x, m̂(y)

)
= z ·ψ

(
x, m̂(y)

)
= z ·ψ

(
m(x),y

)
= ψ

(
z ·m(x),y

)
(x,y ∈ SΛ, z ∈ S).

Since this holds for all y ∈ SΛ, by Lemma 10 (i), we conclude that m ∈ L(SΛ, SΛ).
This completes the proof that a map m : SΛ → SΛ has a dual map m̂ : SΛ → SΛ with

respect to ψ if and only if m ∈ L(SΛ, SΛ), and moreover shows that such a dual map is unique.
In exactly the same way, using Lemma 10 (iii) and (iv), we see that a map n̂ : SΛ → SΛ has
a dual map n : SΛ → SΛ with respect to the duality function ψ†(y,x) := ψ(x,y) (x,y ∈ SΛ)
if and only if n̂ ∈ R(SΛ, SΛ). Applying this to n̂ = m̂, which has m as a dual map, we see
that m̂ ∈ R(SΛ, SΛ).

Proof of Lemma 12 Immediate from Lemma 10 and the observation that L(SΛ, S) =
R(SΛ, S) = H(SΛ, S).

6.4 Lattices

Proof of Lemma 13 Let {x ≤ y∗} = {y ≤ x∗} denote the set of all (x, y) ∈ S × S∗

such that x ≤ y∗, and let 1{x≤y∗} denote its indicator function. Set R := ({0, 1},∧) and

ψ̃(x, y) := 1{x≤y∗} (x ∈ S, y ∈ S∗). Then we may equivalently prove that S is R-dual

to S∗ with duality function ψ̃. We check conditions (i)–(iv) of our definition of duality of
commutative monoids in Subsection 2.2. By symmetry, it suffices to check conditions (i) and
(ii). Condition (i) follows from the fact that y 7→ y∗ is a bijection and 1{x1≤z} = 1{x2≤z} for
all z ∈ S, and in particular for z = x1, x2, implies x1 ≤ x2 ≤ x1 and hence x1 = x2. To check
condition (ii), we first observe that

1{0≤y∗} = 1 and 1{x1∨x2≤y∗} = 1{x1≤y∗} ∧ 1{x0≤y∗} (x1, x2 ∈ S, y ∈ S∗). (6.10)

Since 1 is the neutral element of R, this shows that ψ( · , y) ∈ H(S,R) for all y ∈ S∗. Assume,
conversely, that h ∈ H(S,R). To complete the proof, we must show that h(x) = 1{x≤z} (x ∈ S)
for some z ∈ S. Since h(0) = 1, the set {x : h(x) = 1} is nonempty, so using the finiteness of
S we can define z :=

∨
{x : h(x) = 1}. We observe that h(x1) = 1 = h(x2) implies

h(x1 ∨ x2) = h(x1) ∧ h(x2) = 1 ∧ 1 = 1. (6.11)

It follows that h(z) = 1 and more generally h(x) = h(x ∨ z) = h(z) = 1 for all x ≤ z.
Conversely, h(x) = 1 implies that x is an element of {x : h(x) = 1} and hence x ≤ z by the
definition of z.
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A Appendix

A.1 Addition tables of commutative monoids of order four

M8 0 1 2 3

0 0 1 2 3
1 1 3 3 3
2 2 3 3 3
3 3 3 3 3

M9 0 1 2 3

0 0 1 2 3
1 1 2 3 3
2 2 3 3 3
3 3 3 3 3

M10 0 1 2 3

0 0 1 2 3
1 1 3 3 3
2 2 3 2 3
3 3 3 3 3

M11 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

M12 0 1 2 3

0 0 1 2 3
1 1 0 2 3
2 2 2 3 3
3 3 3 3 3

M13 0 1 2 3

0 0 1 2 3
1 1 3 1 3
2 2 1 2 3
3 3 3 3 3

M14 0 1 2 3

0 0 1 2 3
1 1 2 2 3
2 2 2 2 3
3 3 3 3 3

M15 0 1 2 3

0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

M16 0 1 2 3

0 0 1 2 3
1 1 0 2 3
2 2 2 2 3
3 3 3 3 3

M17 0 1 2 3

0 0 1 2 3
1 1 2 1 3
2 2 1 2 3
3 3 3 3 3

M18 0 1 2 3

0 0 1 2 3
1 1 2 0 3
2 2 0 1 3
3 3 3 3 3

M19 0 1 2 3

0 0 1 2 3
1 1 2 2 3
2 2 2 2 3
3 3 3 3 2

M20 0 1 2 3

0 0 1 2 3
1 1 3 1 1
2 2 1 2 3
3 3 1 3 3

M21 0 1 2 3

0 0 1 2 3
1 1 3 1 1
2 2 1 0 3
3 3 1 3 3

M22 0 1 2 3

0 0 1 2 3
1 1 3 3 2
2 2 3 3 2
3 3 2 2 3

M23 0 1 2 3

0 0 1 2 3
1 1 3 3 1
2 2 3 0 1
3 3 1 1 3

M24 0 1 2 3

0 0 1 2 3
1 1 2 3 1
2 2 3 1 2
3 3 1 2 3

M25 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

M26 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

A.2 Duality functions for commutative monoids of order four

M9
M9 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

ψ9 : M9 ×M9 →M9

M10
M10 0 1 2 3

0 0 0 0 0
1 0 1 2 2
2 0 2 0 2
3 0 2 2 2

ψ10 : M10 ×M10 →M3

M11
M11 0 1 2 3

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1

ψ11 : M11 ×M11 →M1
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M13
M14 0 1 2 3

0 0 0 0 0
1 0 1 2 2
2 0 0 0 2
3 0 2 2 2

ψ13 : M13 ×M14 →M3

M15
M15 0 1 2 3

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

ψ15 : M15 ×M15 →M1

M16
M20 0 1 2 3

0 0 0 0 0
1 0 1 0 0
2 0 2 0 2
3 0 2 2 2

ψ16 : M16 ×M20 →M5

M17
M17 0 1 2 3

0 0 0 0 0
1 0 1 0 2
2 0 0 0 2
3 0 2 2 2

ψ17 : M17 ×M17 →M5

M18
M24 0 1 2 3

0 0 0 0 0
1 0 1 2 0
2 0 2 1 0
3 0 3 3 3

ψ18 : M18 ×M24 →M18

M21
M21 0 1 2 3

0 0 0 0 0
1 0 2 1 2
2 0 1 0 0
3 0 2 0 2

ψ21 : M21 ×M21 →M5

M22
M22 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

ψ22 : M22 ×M22 →M22

M23
M23 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

ψ23 : M23 ×M23 →M23

M23
M23 0 1 2 3

0 0 0 0 0
1 0 2 1 2
2 0 1 1 0
3 0 2 0 2

ψ235 : M23 ×M23 →M5

M24
M24 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 3

ψ24 : M24 ×M24 →M24

M25
M25 0 1 2 3

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0

ψ25 : M25 ×M25 →M2

M26
M26 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

ψ26 : M26 ×M26 →M26

A.3 Multiplications in semirings of cardinality four

(M8, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

mult. ∼= M14

(M8, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M8, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 3

mult. ∼= M16

(M9, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

mult. ∼= M14

(M10, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

mult. ∼= M13

(M10, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

mult. ∼= M15
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(M11, ·) 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

mult. ∼= M11

(M11, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

mult. ∼= M13

(M11, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

mult. ∼= M14

(M11, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

mult. ∼= M15

(M11, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 3

mult. ∼= M16

(M13, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

mult. ∼= M13

(M13, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

mult. ∼= M15

(M14, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 0 0 1
2 0 0 0 2
3 0 1 2 3

mult. ∼= M8

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 0 0 1
2 0 0 1 2
3 0 1 2 3

mult. ∼= M9

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 0 0 1
2 0 0 2 2
3 0 1 2 3

mult. ∼= M10

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 0 1 1
2 0 1 2 3
3 0 1 3 3

mult. ∼= M13

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 0 1 1
2 0 1 2 2
3 0 1 2 3

mult. ∼= M13

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 3
3 0 3 3 3

mult. ∼= M14

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 1 1 1
2 0 1 1 2
3 0 1 2 3

mult. ∼= M14

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 1 1 3
2 0 1 2 3
3 0 3 3 3

mult. ∼= M15

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 1 1 1
2 0 1 2 3
3 0 1 3 3

mult. ∼= M15

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

mult. ∼= M15

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 0 0 1
2 0 1 2 2
3 0 1 2 3

mult. ∼= N1

(M15, ·) 0 1 2 3

0 0 0 0 0
1 0 1 1 1
2 0 1 2 3
3 0 3 3 3

mult. ∼= N2
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(M17, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M20, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 3

mult. ∼= M13

(M20, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

mult. ∼= M15

(M21, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 0
3 0 3 0 3

mult. ∼= M10

(M22, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

mult. ∼= M15

(M23, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

mult. ∼= M11

(M24, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 3

mult. ∼= M16

(M25, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

mult. ∼= M11

(M25, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 1 3
3 0 3 3 0

mult. ∼= M12

(M25, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

mult. ∼= M18

(M26, ·) 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

mult. ∼= M12
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