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Continuous-time Markov chains

Let S be a countable set. A probability kernel on S is a function
K : S2 → [0, 1] such that

∑
y K (x , y) = 1. We calculate with

kernels as with matrices:

KL(x , z) :=
∑
y

K (x , y)L(y , z) and Kf (x) :=
∑
y

K (x , y)f (y).

Let X = (Xt)t≥0 be a stochastic process taking values in a
countable set S . We assume that the sample paths of X are
piecewise constant and right-continuous. By definition, X is a
(time-homogenous) Markov process if

P
[
Xu ∈ ·

∣∣ (Xs)0≤s≤t
]

= Pu−t(Xt , · ) a.s. (0 ≤ t ≤ u),

where the transition kernels (Pt)t≥0 form a collection of probability
kernels on S such

PsPt = Ps+t and lim
t↓0

Pt = P0 = 1.
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Continuous-time Markov chains

We would like to define (Pt)t≥0 in terms of its generator

G (x , y) := lim
t↓0

t−1
(
Pt(x , y)− 1(x , y)

)
,

where 1(x , y) := 1{x=y} denotes the identity matrix. Such a
generator must satisfy

G (x , y) ≥ 0 (x 6= y) and
∑
y

G (x , y) = 0.

We interpret G (x , y) (x 6= y) as the rate of transitions x 7→ y . We
should have

Px [Xt = y ] = Pt(x , y) = 1(x , y) + tG (x , y) + O(t2) as t ↓ 0,

where Px denotes the law of the process started in X0 = x .
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Generator construction of continuous-time Markov chains

If S is finite, then we can define

Pt = e tG :=
∞∑
n=0

1

n!
tnGn (t ≥ 0).

This works more generally if G is bounded in the sense that

sup
x

∑
y : y 6=x

G (x , y) <∞.

Jan M. Swart Spatial Models in Population Biology



Generator construction of continuous-time Markov chains

Let G be a Markov generator on a countable set S . Then, for each
z ∈ S , there exists a unique minimal solution to the backward
equations

∂
∂t Pt(x , z) =

∑
y

G (x , y)Pt(y , z) (t ≥ 0, x ∈ S).

Moreover, (Pt)t≥0 is a semigroup of subprobability kernels. For
each initial state X0 = x ∈ S , there exists a process X = (Xt)t≥0

with values in S ∪ {∞} such that

Xt =∞ ∀t ≥ τ := inf{t ≥ 0 : Xt =∞},
lim
t↑τ

Xt =∞ if τ <∞,

Px
[
Xu ∈ y

∣∣ (Xs)0≤s≤t
]

= Pu−t(Xt , y) a.s. (y ∈ S , t ≤ u).

If Px [τ =∞] = 1 for all x ∈ S , then X is nonexplosive.
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Example: a finite contact process

Let (Λ,E ) be a finite directed graph with vertex set Λ and set of
directed edges E ⊂ Λ× Λ. Let S = {0, 1}Λ be the space of all
functions x : Λ→ {0, 1}. We interpret x = (x(i))i∈Λ as a particle
configuration where for i ∈ Λ,

x(i) = 0 means the site i is empty,

x(i) = 1 means there is a particle at i .

The contact process with infection rate λ ≥ 0 is a continuous-time
Markov chain X = (Xt)t≥0 with state space S . In each jump, the
number of occupied sites can increase or decrease by one. Let
x ∈ S and j ∈ Λ such that x(j) = 0. Then

G (x , x + δj) := λ
∑

(i ,j)∈E

x(i) and G (x + δj , x) := 1.

We set G (x , y) := 0 if x and y differ in more than one site and
choose G (x , x) such that

∑
y G (x , y) = 0.
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Example: a finite contact process

For each (i , j) ∈ E , define a branching map braij : S → S by

braijx(k) :=

{
x(i) ∨ x(j) if k = j ,

x(k) otherwise.

For each i ∈ Λ, define a death map deathi : S → S by

deathix(k) :=

{
0 if k = i ,

x(k) otherwise.

Fix x . Assume that Xt satisfies for all (i , j) ∈ E resp. i ∈ Λ,

Xt =


braijx with probability λt + O(t2),

deathix with probability t + O(t2),

x with probability 1− λt|E | − t|Λ|+ O(t2).

Then P[Xt = y ] = 1(x , y) + tG (x , y) + O(t2).
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Poisson construction of continuous-time Markov chains

Idea: construct a continuous time Markov chain by applying maps
m : S → S at times of a Poisson process.

Let (Ω,F , µ) be a measurable space with σ-finite, nonatomic
measure µ. Recall that a Poisson point set with intensity µ is a
random subset ω ⊂ Ω such that∣∣ω ∩ A

∣∣ is Poisson distributed with mean µ(A)

whenever A ∈ F , µ(A) <∞, and∣∣ω ∩ A1

∣∣, . . . , ∣∣ω ∩ An

∣∣ are independent

whenever A1, . . . ,An are disjoint. In particular, if ε := µ(A) is
small, then

P
[
|ω ∩ A

∣∣ = 1
]

= ε+ O(ε2), P
[
|ω ∩ A

∣∣ ≥ 2
]

= O(ε2).
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Poisson construction of continuous-time Markov chains

Each generator G has a random mapping representation

G (x , y) =
∑
m∈G

rm
(
1{m(x) = y} − 1{x = y}

)
,

where (rm)m∈G are nonnegative rates and G is a collection of maps
m : S → S . Let ω be a Poisson point set on G × R with intensity

µ
(
{m} × A

)
= rm `(A)

(
A ∈ B(R)

)
,

where B(R) is the Borel-σ-field on R and ` denotes Lebesgue
measure. If

∑
m∈G rm <∞, then we may order the elements of

ωs,t := ω ∩ G × (s, t] =
{

(m1, t1), . . . , (mn, tn)
}

with t1 < · · · < tn.
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Poisson construction of continuous-time Markov chains

Define random maps Xs,t : S → S (s ≤ t) by

Xs,t := mn ◦ · · · ◦m1.

(Poisson construction of Markov processes) Define
maps (Xs,t)s≤t as above in terms of a Poisson point set
ω. Let X0 be an S-valued random variable, independent
of ω. Then

Xt := X0,t(X0) (t ≥ 0)

is a Markov process with generator G.

Remark The sample paths of X are right-continuous. We get
left-continuous paths by defining

Xs,t− in terms of ωs,t− := ω ∩ G × (s, t).
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Example: a finite contact process
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Stochastic flows

The random maps (Xs,t)s≤t form a stochastic flow

Xs,s = 1 and Xt,u ◦ Xs,t = Xs,u

with independent increments, in the sense that

Xt0,t1 , . . . ,Xtn−1,tn

are independent for each t0 < · · · < tn.

Different stochastic flows can define the same Markov process, as
there may be many different ways of writing down a random
mapping representation

Gf (x) =
∑
m∈G

rm
{

f
(
m(x)

)
− f
(
x
)}
,

for a given generator G .

Compare: Different SDE’s can define the same diffusion process.
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Form of the generator

Here we have used that for any function f : S → R,

Gf (x) =
∑
y

G (x , y)f (y)

=
∑
y

∑
m∈G

rm
(
1{m(x) = y} − 1{x = y}

)
f (y)

=
∑
m∈G

rm
{

f
(
m(x)

)
− f
(
x
)}
.

Then, as t ↓ 0,

Ex
[
f (Xt)

]
= f (x) + tGf (x) + O(t2)

=
(

1− t
∑
m∈G

rm
)

f (x) + t
∑
m∈G

rmf
(
m(x)

)
+ O(t2).
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Example: the contact process

Let (Λ,E ) be a finite directed graph. The contact process on
(Λ,E ) with infection rate λ ≥ 0 is the continuous-time Markov
chain X = (Xt)t≥0 with state space {0, 1}Λ and generator

Gf (x) :=λ
∑

(i ,j)∈E

{
f
(
braijx

)
− f (x)

}
+
∑
i∈Λ

{
f
(
deathix

)
− f (x)

}
.

We would like to define contact processes on infinite lattices, e.g.,
Λ = Zd with E = {(i , j) : |i − j | = 1}.
If Λ is infinite, then we equip {0, 1}Λ with the product topology
which corresponds to pointwise convergence

xn → x iff xn(i)→ x(i) ∀i ∈ Λ.

By Tychonoff’s theorem, {0, 1}Λ is a compact space.
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Feller processes

Let S be a compact metrizable space. Let C(S) denote the space
of all continuous functions f : S → R, equipped with the
supremumnorm ‖ · ‖∞, and let M1(S) denote the space of all
probability measures on S , equipped with the topology of weak
convergence.
For any probability kernel K (x , dy) on S and measurable function
f : S → R, we define

Kf (x) :=

∫
S

K (x ,dy)f (y) (x ∈ S).

By definition, a Feller semigroup is a collection of probability
kernels (Pt)t≥0 on S such that:

(i) P0 = 1 and PsPt = Ps+t (s, t ≥ 0),

(ii) S × [0,∞) 3 (x , s) 7→ Ps(x , · ) ∈M1(S) is continuous.
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Feller processes

The generator of a Feller semigroup is the operator G defined as

Gf := lim
t↓0

t−1(Pt f − f ) (∗),

with domain

D(G ) :=
{

f ∈ C(S) : the limit in (∗) exists in the norm ‖ · ‖∞
}
.

The Hille-Yosida theorem gives necessary and sufficient conditions
for an operator G to generate a Feller semigroup.

The domain D(G ) is a dense subspace of C(S). For each
f ∈ D(G ), the function t 7→ Pt f is given by the unique solution to
the backward equation

∂
∂t Pt f = GPt f (t ≥ 0) with P0f = 1.
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Feller processes

Let S be a compact metrizable space and let (Pt)t≥0 be a Feller
semigroup of transition kernels on S .
Then, for each probability law µ on S , there exists a process
(Xt)t≥0 such that

I The sample paths t 7→ Xt are a.s. cadlag, i.e.,
right-continuous with left limits.

I P[X0 ∈ · ] = µ.

I Px
[
Xu ∈ ·

∣∣ (Xs)0≤s≤t
]

= Pu−t(Xt , · ) a.s. (t ≤ u).

Such a process is called a Feller process.
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Poisson construction of Interacting Particle Systems

For any map m : SΛ → SΛ, let

D(m) :=
{

i ∈ Λ : ∃x ∈ SΛ s.t. m(x)(i) 6= x(i)
}

denote the set of lattice points whose values can possibly be
changed by m. By definition, m is a local map if and only if

(i) D(m) is finite,

(ii) m is continuous w.r.t. the product topology.

Say that a site j ∈ Λ is m-relevant for some i ∈ Λ if

∃x , y ∈ SΛ s.t. m(x)(i) 6= m(y)(i) and x(k) = y(k) ∀k 6= j ,

and define

Ri (m) :=
{

j ∈ Λ : j is m-relevant for i
}
.
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Poisson construction of Interacting Particle Systems

Remark A map m : SΛ → SΛ is continuous w.r.t. the product
topology if and only if for each i ∈ Λ:

(i) Ri (m) is finite,

(ii) x(j) = y(j) for all j ∈ Ri (m) implies m(x)(i) = m(y)(i).

Trivially
Ri (m) = {i} if i 6∈ D(m).

In our example:

D(braij) = {j} Rj(braij) = {i , j},
D(deathi ) = {i} Ri (deathi ) = ∅.
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Poisson construction of Interacting Particle Systems

Let G me a collection of local maps m : SΛ → SΛ and let (rm)m∈G
be nonnegative constants. As before, we let ω be a Poisson point
set on G × R with intensity

µ
(
{m} × A

)
= rm `(A)

(
A ∈ B(R)

)
.

For infinite lattices (e.g., for the contact process on Zd) we
typically have

∑
m∈G rm =∞ which means

ωs,t := ω ∩ G × (s, t]

has a.s. infinitely many elements for any s < t. As a result, we
cannot order the elements of ωs,t by their time coordinates.
Nevertheless, for each finite subset ω̃ ⊂ ωs,t , we can still define

Xω̃s,t(x) := mn ◦ · · · ◦m1(x) (x ∈ SΛ, s ≤ t),

where ω̃ = {(m1, t1), . . . , (mn, tn)} with t1 < · · · < tn.
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Poisson construction of Interacting Particle Systems

Theorem Assume that

sup
i∈Λ

∑
m∈G
D(m)3i

rm|Ri (m)| <∞.

Then a.s., for each x ∈ SΛ the limit

Xs,t(x) := lim
ω̃n↑ωs,t

Xω̃n
s,t(x)

exists, does not depend on the sequence of finite sets ω̃n ↑ ωs,t ,
and defines a stochastic flow (Xs,t)s≤t . If X0 is an SΛ-valued
random variable, independent of ω, then

Xt := X0,t(X0) (t ≥ 0)

defines a Feller process with generator

Gf (x) =
∑
m∈G

rm
{

f
(
m(x)

)
− f
(
x
)}
.
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Poisson construction of Interacting Particle Systems

Lemma 1 One has

E
[∣∣Ri (Xs,t)

∣∣] ≤ eR(t − s) (s ≤ t),

where
R := sup

i∈Λ

∑
m∈G
D(m)3i

rm
(
|Ri (m)| − 1

)
. (1)
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Poisson construction of Interacting Particle Systems
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Poisson construction of Interacting Particle Systems
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Poisson construction of Interacting Particle Systems
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Generator construction of Interacting Particle Systems

For any f ∈ C(SΛ) and i ∈ Λ, we define

δf (i) := sup
{
|f (x)− f (y)| : x , y ∈ SΛ, x(j) = y(j) ∀j 6= i

}
,

Csum :=
{

f ∈ C(SΛ) : ‖‖f ‖‖ :=
∑
i∈Λ

δf (i) <∞
}

We call f ∈ Csum a function of summable variation. One has∣∣f (x)− f (y)
∣∣ ≤ ∑

i : x(i) 6=y(i)

δf (i) ≤ ‖‖f ‖‖.

Lemma 2 If (Pt)t≥0 is the Feller semigroup of an interacting
particle system with generator G , then Csumm ⊂ D(G ) and

‖‖Pt f ‖‖ ≤ eRt‖‖f ‖‖ (t ≥ 0),

where R is the constant in (1).
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Generator construction of Interacting Particle Systems

For any probability kernel κ on SΛ, set

D(κ) :=
{

i ∈ Λ : ∃x s.t. κ
(
x , {y : y(i) 6= x(i)}

)
> 0
}
.

By definition, a local probability kernel is a probab. kernel such
that

(i) D(κ) is finite,
(ii) x 7→ κ(x , · ) is continuous w.r.t. weak convergence.

Liggett (1985) writes generators in the form

Gf (x) =
∑
κ∈K

rκ
{∫

κ(x , dy) f (y)− f (x)
}
,

where K is a collection of local probability kernels and (rκ)κ∈K are
nonnegative rates. Under suitable conditions on the rates, he
proves the closure of G generates a Feller semigroup and

‖‖Pt f ‖‖ ≤ eR ′t‖‖f ‖‖ (t ≥ 0)

for some constant R ′ <∞.
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Proofs

Proof of Lemma 1 By a cut-off argument, w.l.o.g. we assume
that Λ is finite. Then we can apply our previous result about the
Poisson construction of continuous-time Markov chains to
conclude that (

Ri (X−t,0)
)
t≥0

is a set-valued Markov process that can be bounded from above by
a process that jumps as

A 7→ (A\D(m)) ∪
⋃

i∈D(m)∩A

Ri (m) with rate rm

for each m ∈ G. Let (Pt)t≥0 denote the semigroup of the
set-valued process and let G be its generator. Let f be the
function f (A) := |A|. Then

Gf (A) =
∑
m∈G

rm
{

f
(
(A\D(m)) ∪

⋃
i∈D(m)∩A

Ri (m)
)
− f (A)

}
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Proofs

It follows that

Gf (A)≤
∑
m∈G

rm
∑

i∈D(m)∩A

(
|Ri (m)| − 1

)
=
∑
i∈A

∑
m:D(m)3i

rm
(
|Ri (m)| − 1

)
≤ R|A|,

and hence

∂
∂t

(
e−RtPt f

)
= −Re−RtPt f +e−RtPtGnf = e−RtPt(Gnf −Rf ) ≤ 0

and therefore e−RtPt f ≤ e−R0P0f = f , which means in particular
that

E
[
|Ri (X−t,0)|

]
= Pt f ({i}) ≤ eRt f ({i}) = eRt (t ≥ 0).
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Proofs

Proof of Lemma 2 We want to prove that

‖‖Pt f ‖‖ ≤ eRt‖‖f ‖‖ with ‖‖f ‖‖ :=
∑
i∈Λ

δf (i).

Fix i ∈ Λ and let x , y ∈ SΛ with x(j) = y(j) ∀j 6= i . Then∣∣Pt f (x)− Pt f (y)| =
∣∣E[f (X0,t(x))]− E[f (X0,t(y))]

∣∣
≤ E

[∣∣f (X0,t(x))− f (X0,t(y))
∣∣]

≤
∑
j

P
[
X0,t(x)(j) 6= X0,t(y)(j)

]
δf (j)

≤
∑
j

P
[
i ∈ Rj(X0,t)

]
δf (j)

It follows that∑
i

δPt f (i) ≤
∑
ij

P
[
i ∈ Rj(X0,t)

]
δf (j) ≤ eRt

∑
j

δf (j).
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Unique ergodicity

For any probability measure µ on SΛ, write

µPt :=

∫
µ(dx)Pt(x , · ) (t ≥ 0).

If X = (Xt)t≥0 has initial law P[X0 ∈ · ] = µ, then,

P[Xt ∈ A] =

∫
P[X0 ∈ dx ]P[Xt ∈ A |X0 ∈ dx ] =

∫
µ(dx)Pt(x ,A),

i.e., Xt has law µPt .
By definition, a probability measure ν on SΛ is an invariant law if

νPt = ν (t ≥ 0).

The process X = (Xt)t≥0 is stationary if and only if P[X0 ∈ · ] is
an invariant law.
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Unique ergodicity

Proposition If the constant R from (1) satisfies R < 0, then the
interacting particle system has a unique invariant law ν, and

µPt =⇒
t→∞

ν

for any initial law µ.

Proof If R < 0, then

P
[
Ri (X0,t) = ∅

]
−→
t→∞

1.

As a consequence, the limit

Xt(i) := lim
s→∞

Xt−s,t(x)(i) (i ∈ Λ)

exists a.s. for each i ∈ Λ and t ∈ R, and does not depend on the
choice of x ∈ SΛ.
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Unique ergodicity

One can check that this defines a stationary process (Xt)t∈R. Let
Y have law µ and be independent of the Poisson processes used to
construct the flow (Xs,t)s≤t . Then X−t,0(Y ) has law µPt and

X−t,0(Y ) −→
t→∞

X0 a.s.,

proving that µPt =⇒
t→∞

ν.

Remark 1 This method is called coupling from the past.

Remark 2 The proof works more generally if

P
[
Ri (X0,t) = ∅

]
−→
t→∞

1 (i ∈ Λ),

which may happen even if R ≥ 0.
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The contact process

Recall that

D(braij) = {j} Rj(braij) = {i , j},
D(deathi ) = {i} Ri (deathi ) = ∅.

For the nearest neighbor contact process on Zd , this yields

R = 2dλ− 1,

which is < 0 iff λ < 1/2d . Since Xs,t(0) = 0, we conclude that for
λ < 1/2d , the measure δ0 is the unique invariant law.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 0.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 1.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 2.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 3.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 4.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 5.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 6.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 7.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 8.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 9.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 10.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 11.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 12.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 13.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 14.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 15.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 16.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 17.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 18.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 19.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 20.
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A stochastic Ising model

Let (Λ,E ) be an undirected graph and let S = {−1,+1}. For any
x ∈ SΛ, we call

Mi (x) :=
∑

j : {i ,j}∈E

x(j)

the local magnetization around i ∈ Λ. Let κi (x , · ) denote the law
of a random variable X such that

P[X (i) = ±1] =
eβ±Mi (x)

eβ±Mi (x) + eβ∓Mi (x)
,

and X (j) = x(j) a.s. for all j 6= i . Then κi is a local probability
kernel and

Gf (x) =
∑
i∈Λ

( ∫
κi (x , dy)f (y)− f (x)

)
defines the generator of a stochastic Ising model with Glauber
dynamics.
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A stochastic Ising model

When the parameter β is large, nearby spins like have the same
sign.
We start the process in product measure for different values of β
and see what happens.
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The Ising model

β = 0.3, time t = 0.
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The Ising model

β = 0.3, time t = 1.
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The Ising model

β = 0.3, time t = 2.
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The Ising model

β = 0.3, time t = 4.
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The Ising model

β = 0.3, time t = 8.
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The Ising model

β = 0.3, time t = 16.
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The Ising model

β = 0.3, time t = 32.
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The Ising model

β = 0.3, time t = 64.
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The Ising model

β = 0.7, time t = 0.
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The Ising model

β = 0.7, time t = 1.
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The Ising model

β = 0.7, time t = 2.
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The Ising model

β = 0.7, time t = 4.
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The Ising model

β = 0.7, time t = 8.
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The Ising model

β = 0.7, time t = 16.
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The Ising model

β = 0.7, time t = 32.
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The Ising model

β = 0.7, time t = 64.
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The Ising model

β = 0.7, time t = 125.
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The Ising model

β = 0.7, time t = 250.
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The Ising model

β = 1, time t = 0.
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The Ising model

β = 1, time t = 1.
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The Ising model

β = 1, time t = 2.
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The Ising model

β = 1, time t = 4.
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The Ising model

β = 1, time t = 8.
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The Ising model

β = 1, time t = 16.
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The Ising model

β = 1, time t = 32.
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The Ising model

β = 1, time t = 64.
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The Ising model

β = 1, time t = 125.
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The Ising model

β = 1, time t = 250.
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The Ising model

β = 1, time t = 500.
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A stochastic Potts model

Instead of allowing only two states −1,+1, we can more generally
allow q ≥ 2 states 1, . . . , q.
Each person i chooses a new state at times of a Poisson process
with rate 1.
The probability that the newly chosen state is k ∈ {1, . . . , q}
equals

eβMi (k)∑q
m=1 eβMi (m)

,

where Mi (k) denotes the number of neighbors of i that are in the
state k .
Setting q = 2 and replacing β by 2β yields the Ising model.
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The Potts model

β = 1.2, time t = 0.
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The Potts model

β = 1.2, time t = 1.
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The Potts model

β = 1.2, time t = 2.
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The Potts model

β = 1.2, time t = 4.
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The Potts model

β = 1.2, time t = 8.
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The Potts model

β = 1.2, time t = 16.
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The Potts model

β = 1.2, time t = 32.
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The Potts model

β = 1.2, time t = 64.
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The Potts model

β = 1.2, time t = 125.
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The Potts model

β = 1.2, time t = 250.
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The Potts model

β = 1.2, time t = 500.
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The voter model

In the voter model, each site i ∈ Λ is occupied by an organism with
genetic type x(i) ∈ S .

The organism at site i dies at times of a Poisson process with rate
1 and is replaced by the offspring of a randomly chosen neighbor.

Using the voter map

votji (x)(k) :=

{
x(j) if k = i ,
x(k) otherwise,

we can give the following random mapping representation of the
generator:

Gf (x) =
∑

(i ,j)∈E

1

Ni

{
f
(
votjix

)
− f
(
x
)}
,

where Ni :=
∣∣{j : (j , i) ∈ E}

∣∣ is the number of neigbors of i .
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The voter model

Time t = 0.
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The voter model

Time t = 0.25.
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The voter model

Time t = 0.5.
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The voter model

Time t = 1.
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The voter model

Time t = 2.
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The voter model

Time t = 4.
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The voter model

Time t = 8.
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The voter model

Time t = 16.
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The voter model

Time t = 31.25.
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The voter model

Time t = 62.5.
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The voter model

Time t = 125.
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The voter model

Time t = 250.
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The voter model

Time t = 500.
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The voter model

The behavior of the voter model strongly depends on the
dimension.

Clustering in dimensions d = 1, 2.

Stable behavior in dimensions d ≥ 3.
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The voter model

Cut of 3-dimensional model, time t = 0.
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The voter model

Cut of 3-dimensional model, time t = 1.
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The voter model

Cut of 3-dimensional model, time t = 2.
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The voter model

Cut of 3-dimensional model, time t = 4.
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The voter model

Cut of 3-dimensional model, time t = 8.
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The voter model

Cut of 3-dimensional model, time t = 16.
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The voter model

Cut of 3-dimensional model, time t = 32.
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The voter model

Cut of 3-dimensional model, time t = 64.
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The voter model

Cut of 3-dimensional model, time t = 125.
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The voter model

Cut of 3-dimensional model, time t = 250.
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A one-dimensional voter model

space

time

0 100 200 300 400 500

0

500

1000

1500

2000

2500

A one-dimensional voter model.
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A one-dimensional Potts model
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In one-dimensional Potts models, the cluster size remains
bounded in time even at very high β (= low temperature).
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The biased voter model

In the biased voter model with two states {0, 1}, each organism i
changes its type Xt(i) with the rates

0 7→ 1 with rate (1 + s) · fraction of type 1 neighbors,

1 7→ 0 with rate 1 · fraction of type 0 neighbors,

where s > 0 gives type 1 a (small) advantage.

Contrary to the voter model, even if we start with just a single
organism of type 1, there is a positive probability that type 1 never
dies out.

Models spread of advantageous mutation.
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The biased voter model

Biased voter model with s = 0.2. Time t = 0 .
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The biased voter model

Biased voter model with s = 0.2. Time t = 10.
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The biased voter model

Biased voter model with s = 0.2. Time t = 20.
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The biased voter model

Biased voter model with s = 0.2. Time t = 30.

Jan M. Swart Spatial Models in Population Biology



The biased voter model

Biased voter model with s = 0.2. Time t = 40.
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The biased voter model

Biased voter model with s = 0.2. Time t = 50.
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The biased voter model

Biased voter model with s = 0.2. Time t = 60.
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The biased voter model

Biased voter model with s = 0.2. Time t = 70.
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The biased voter model

Biased voter model with s = 0.2. Time t = 80.
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The biased voter model

Biased voter model with s = 0.2. Time t = 90.
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The biased voter model

Biased voter model with s = 0.2. Time t = 100.
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The biased voter model

Biased voter model with s = 0.2. Time t = 110.
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The biased voter model

Biased voter model with s = 0.2. Time t = 120.
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The biased voter model

Biased voter model with s = 0.2. Time t = 130.
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The biased voter model

Biased voter model with s = 0.2. Time t = 140.
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The biased voter model

Biased voter model with s = 0.2. Time t = 150.
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The biased voter model

Biased voter model with s = 0.2. Time t = 160.
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The biased voter model
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A one-dimensional biased voter model with bias s = 0.2.
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The biased voter model

We can extend the biased voter model by also allowing
spontaneous jumps from 1 to 0.

0 7→ 1 with rate (1 + s) · fraction of type 1 neighbors,

1 7→ 0 with rate 1 · fraction of type 0 neighbors

+ d ,

where s > 0 gives type 1 an advantage and d ≥ 0 is a death rate.

This models the fact that genes may become disfunctional due to
deleterious mutations.

Whether 1’s have a positive probability to survive now depends in
a nontrivial way on s and d .
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The biased voter model
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Process with bias s = 0.5, death rate d = 0.02.
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A rebellious voter model

The rebellious voter map is defined as

rvotkji (x)(l) :=

{
1− x(i) if l = i and x(k) 6= x(j),

x(l) otherwise.

The rebellious voter model is the one-dimensional model with
generator

Gf (x) :=α
∑
i

{
f
(
voti ,i+1(x)

)
− f
(
x
)}

+α
∑
i

{
f
(
voti ,i−1(x)

)
− f
(
x
)}

+(1− α)
∑
i

{
f
(
rvoti−1,i ,i+1(x)

)
− f
(
x
)}

+(1− α)
∑
i

{
f
(
rvoti+1,i ,i−1(x)

)
− f
(
x
)}
.
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A rebellious voter model
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Process with α = 0.8 behaves more or less as a voter model.
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A rebellious voter model
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In the process with α = 0.3, cluster size remains bounded in time.
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Reaction diffusion models

Another rich class of models are reaction diffusion models.

These are systems of particles that perform independent random
walks and interact when they are near to each other.

Let Xt(i) = 1 (resp. 0) signify the presence (resp. absence) of a
particle and consider the maps rwij : {0, 1}Z → {0, 1}Z

rwi ,jx(k) :=


0 if k = i ,

x(i) ∨ x(j) if k = j ,
x(k) otherwise.

The process with generator

G = 1
2

∑
i∈Z

{
f
(
rwi ,i+1x

)
− f
(
x
)}

+ 1
2

∑
i∈Z

{
f
(
rwi ,i−1x

)
− f
(
x
)}

describes coalescing random walks.

Jan M. Swart Spatial Models in Population Biology



Coalescing random walks
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Reaction diffusion models

In analogy with the branching map

braijx(k) :=

{
x(i) ∨ x(j) if k = j ,

x(k) otherwise,

we can also define a cooperative branching map

coopii ′jx(k) :=

{ (
x(i) ∧ x(i ′)

)
∨ x(j) if k = j ,

x(k) otherwise.

Jan M. Swart Spatial Models in Population Biology



Branching and coalescing random walks
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Cooperative branching and coalescence
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Cooperative branching rate 2.2.
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Cooperative branching
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Cooperative branching rate 3.
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A cancellative system

Two more maps of interest are the annihilating random walk map

arwijx(k) :=


0 if k = i ,

x(i) + x(j) mod(2) if k = j ,
x(k) otherwise,

and the annihilating branching map

abraijx(k) :=

{
x(i) + x(j) mod(2) if k = j ,

x(k) otherwise,
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A cancellative system
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Annihilating random walks.
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A cancellative system
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A system of branching annihilating random walks.
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Killing

Define a killing map as

killijx(k) :=

{ (
1− x(i)

)
∧ x(j) if k = j ,

x(k) otherwise,

which says that the particle at i , if present, kills any particle at j .
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Branching and killing
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A system with branching and killing.
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