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Monotone Particle Systems

Let S ,T be partially ordered sets and m : S → T . By definition, m
is monotone if

x ≤ y implies m(x) ≤ m(y).

Examples of monotone maps:

braij , deathi , votij , rwij , coopii ′j .

Examples of maps that are not monotone:

rvotij , arwij , abraij , killij .
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Monotone Particle Systems

Examples of monotone particle systems:

I The (ferromagnetic) Ising model (β ≥ 0).

I The two-type voter model.

I The biased voter model.

I The contact process.

I Branching and coalescing random walks.

I Cooperative branching.

Examples of particle systems that are not monotone:

I The antiferromagnetic Ising model (β < 0).

I (Voter and Potts models with 3 or more types.)

I Rebellious voter models.

I Branching annihilating random walks.

I Systems with branching and killing.
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The stochastic order

We adopt the notation µf :=
∫

f dµ. If µ, ν satisfy the equivalent
conditions below, then we say that they are stochastically ordered
and write µ ≤ ν.

Stochastic Order Let S be a compact metrizable space
equipped with a partial order such that {(x , y) : x ≤ y} is
a closed subset of S ×S. Let µ, ν be probability measures
on S. Then the following statements are equivalent:

(i) µf ≤ νf for every continuous monotone f : S → R.
(ii) µf ≤ νf for every bounded measurable monotone

f : S → R.
(iii) Random variables X ,Y with laws µ, ν can be

coupled such that X ≤ Y a.s.

Proof See Theorem II.2.4 in Liggett (1985).
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The upper invariant law

Below, we consider an interacting particle system with transition
kernels (Pt)t≥0 and generator G that is defined in terms of a set G
of maps m : SΛ → SΛ and rates (rm)m∈G .

Upper invariant law Assume that S partially ordered
with minimal and maximal elements 0, 1. Assume that all
maps m ∈ G are monotone. Then there exist invariant
laws ν and ν such that

δ0Pt =⇒
t→∞

ν and δ1Pt =⇒
t→∞

ν.

Moreover, any invariant law ν satisfies ν ≤ ν ≤ ν.
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The upper invariant law

Proof Since Xs,t is a concatenation of monotone maps, it is itself
monotone. For any s ≤ t ≤ u,

Xs,t(1) ≤ 1 ⇒ Xs,u(1) = Xt,u ◦ Xs,t(1) ≤ Xt,u(1)

which shows that the decreasing limit

Xs := lim
t→∞

Xs−t,s(1) a.s.

exists for all s ∈ R. One can check that (Xs)s∈R is a stationary
interacting particle system and hence ν := P[Xs ∈ · ] is an
invariant law. Since Xs−t,s(1) has law δ1Pt , this proves δ1Pt ⇒ ν.
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The upper invariant law

If ν is another invariant law and Y0 has law ν and is independent
of the Poisson set ω, then

X0,t(Y0) ≤ X0,t(1),

which proves that ν ≤ δ1Pt (t ≥ 0). Letting t →∞, we see that
ν ≤ ν.

The proof for ν is the same.

Example 1 For the contact process on Zd , ν = δ0, there exists a
0 < λc <∞ such that ν = δ0 for λ < λc and ν 6= δ0 for λ > λc.

Example 2 For the Ising model on Zd , d ≥ 2, there exists a
0 < βc <∞ such that ν = ν for β < βc and ν 6= ν for β > βc.
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The graphical representation of the contact process

time

space

0 1 2 3 4 5 6 7 8 9

0 0 0 1 1 1 1 1 0 0

0 0 0 0 1 0 1 1 0 0

X0,t(4)

x

0 0 0 0 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0
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Self-duality of the contact process

The Poisson point process ω used to define the stochastic flow
(Xs,t)s≤t of the contact process is called the graphical
representation.

Using the same graphical representation ω, but reversing the
direction of time and the direction of all branching arrows, we can
define a dual flow (X̂s,t)s≥t such that

Xs,t(x) ∧ y = 0 iff x ∧ X̂t,s(y) = 0 (s ≤ t).

In particular, the contact process is self-dual in the sense that

Px
[
Xt ∧ y = 0

]
= Py

[
x ∧ Xt = 0

]
(t ≥ 0).
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Survival

We say that the contact process on Zd with infection rate λ
survives if Pδi [Xt 6= 0 ∀t ≥ 0] > 0 (i ∈ Λ), and define

λc := inf{λ ≥ 0 : ν 6= δ0},
λ′c := inf{λ ≥ 0 : X survives}.

Lemma λc = λ′c.

Proof Set ρ(x) := Px [Xt 6= 0 ∀t ≥ 0]. Then

P1
[
Xt ∧ x 6= 0

]
= Px

[
1 ∧ Xt 6= 0

]
= Px

[
Xt 6= 0

]
−→
t→∞

ρ(x),

which shows that ∫
ν(dy)1{y ∧ x 6= 0} = ρ(x),

In particular,
∫
ν(dy)y(i) = ρ(δi ) so ν 6= δ0 if and only if the

contact process survives.
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Homogeneous initial laws

Theorem If the contact process on Zd is started in a translation
invariant initial law µ with µ({0}) = 0, then µPt =⇒

t→∞
ν.

Proof (sketch) It suffices to show that

P
[
Xt ∧ x 6= 0

]
= Px

[
X0 ∧ Xt 6= 0

]
−→
t→∞

ρ(x)

for all finite particle configurations x . Since

Px
[
X0 ∧ Xt 6= 0

]
= Px

[
X0 ∧ Xt 6= 0 |Xt 6= 0

]
Px
[
Xt 6= 0

]
,

it suffices to show that

Px
[
X0 ∧ Xt 6= 0 |Xt 6= 0

]
−→
t→∞

1,

which can be done.
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Duality

X = (Xt)t≥0 with state space S , generator G , semigroup (Pt)t≥0.
Y = (Yt)t≥0 with state space T , generator H, semigroup (Qt)t≥0.

Def X and Y dual with duality function ψ : S × T → R iff

Ex
[
ψ(Xt , y)

]
= Ey

[
ψ(x ,Yt)

]
(t ≥ 0).

This implies more generally that for any initial laws,

[0, t] 3 s 7→ E
[
ψ(Xt−s ,Ys))

]
is constant when Xt−s and Ys are independent.

Example: The contact process is self-dual with

ψ(x , y) = 1{x ∧ y = 0}.
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Duality

Let A†(x , y) := A(y , x) denote the adjoint of a matrix X . For
finite state spaces, we can view the duality function ψ as a matrix(

ψ(x , y)
)
x∈S , y∈T .

If S and T are finite, then the following statements are equivalent:

(i) X and Y dual with duality function ψ,

(ii)
∑

x ′ Pt(x , x ′)ψ(x ′, y) =
∑

y ′ Qt(y , y ′)ψ(x , y ′) (t ≥ 0),

(iii) Ptψ = ψQ†t (t ≥ 0),

(iv) Gψ = ψH†.
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Duality functions

Examples of duality functions

Additive duality ψadd(x , y) = 1{x ∧ y = 0}
Cancellative duality ψcanc(x , y) =

∑
i

x(i)y(i) mod(2)

Lloyd-Sudbury duality ψq(x , y) =
∏
i

(1− q)x(i)y(i) with q ∈ (0, 2].

Remark With 00 := 1, the special cases q = 1, 2 yield:

ψ1(x , y) =ψadd(x , y),

ψ2(x , y) = (−1)ψcanc(x , y) = 1− 2ψcanc(x , y).
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Intertwining

X = (Xt)t≥0 with state space S , generator G , semigroup (Pt)t≥0.
Y = (Yt)t≥0 with state space T , generator H, semigroup (Qt)t≥0.

Def Y is an intertwined Markov process on top of X with
intertwining kernel K (x , dy) iff

µK = ν implies µPtK = νQt .

For finite matrices, the following statements are equivalent:

(i) Y is an intertwined process on top of X with kernel K .

(ii)
∑

x ′ Pt(x , x ′)K (x ′, y) =
∑

y ′ K (x , y ′)Qt(y ′, y) (t ≥ 0),

(iii) PtK = K Qt (t ≥ 0),

(iv) G K = K H.
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Intertwining

X0 Xt

Y0 Yt

Pt

Qt

K K

Example Thinning kernel Kp on {0, 1}Λ defined as

Kp(x , y) :=
∏
i∈Λ

κp(x(i), y(i))

with

κp(1, 1) := p, κp(1, 0) := 1− p, and κp(0, 0) := 1.
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Pathwise duality

Def Two maps m : S → S and m̂ : T → T are dual with duality
function ψ iff

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
(x ∈ S , y ∈ T ).

Additive duals with ψadd(x , y) = 1{x ∧ y = 0}:

m = braij m̂ = braji ,

m = deathi m̂ = deathi ,

m = votij m̂ = rwji .

Cancellative duals: with ψcanc(x , y) =
∑

i x(i)y(i) mod(2):

m = abraij m̂ = abraji ,

m = deathi m̂ = deathi ,

m = votij m̂ = arwji .
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Pathwise duality

Let (Xs,t)s≤t be a stochastic flow defined in terms of a Poisson
point set ω whose elements are pairs (m, t) with m ∈ G.

Fix some duality function ψ and assume that each m ∈ G has some
dual m̂ w.r.t. ψ.
Then we can define a dual flow (X̂t,s)t≥s by

Xs,t := mn ◦ · · · ◦m1 and X̂t,s := m̂1 ◦ · · · ◦ m̂n,

with ωs,t := ω ∩ G × (s, t] =
{

(m1, t1), . . . , (mn, tn)
}

and t1 < · · · < tn. Then Xs,t and X̂t,s are dual maps, i.e.,

ψ
(
Xs,t(x), y

)
= ψ

(
(x), X̂t,s(y)

)
.
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Pathwise duality

Let X0 and Y0 be independent of ω. For fixed s ∈ R, setting

Xt := Xs,s+t(X0) (t ≥ 0)

defines a process (Xt)t≥0 with generator

G f (x) =
∑
m∈G

rm
{

f
(
m(x)

)
− f
(
x
)}
.

Also, setting
Yt := X̂s,s−t(Y0) (t ≥ 0)

defines a process (Yt)t≥0 with generator

G f (y) =
∑
m∈G

rm
{

f
(
m̂(y)

)
− f
(
y
)}
.

Slight complication: (Yt)t≥0 has left-continuous sample paths.
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Pathwise duality

Pathwise duality implies duality:

Ex
[
ψ(Xt , y)

]
= E

[
ψ
(
X0,t(x), y

)]
= E

[
ψ
(
x , X̂t,0(y

)]
= Ey

[
ψ(x ,Yt)

]
(t ≥ 0).
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Cancellative duality

A field is a set F on which a sum and product are defined such
that

(i) (a + b) + c = a + (b + c) and (ab)c = a(bc),

(ii) a + b = b + a and ab = ba,

(iii) ∃0, 1 s.t. a + 0 = a, a1 = 1,

(iv) ∀a ∃ − a s.t. a +−a = 0,

(v) ∀a 6= 0 ∃a−1 s.t. aa−1 = 1,

(vi) a(b + c) = ab + ac.

If p is prime, then {0, . . . , p − 1} ∼= Z mod(p) is a finite field.

Linear spaces can be defined over any field.
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Cancellative duality

We may view {0, 1}Λ as a linear space over the finite field {0, 1}
(with calculation modulo 2).

In this picture, a map m : {0, 1}Λ → {0, 1}Λ is linear iff it is of the
form

mx(i) =
∑
j

m(i , j)x(j) mod(2)

for some matrix (m(i , j))i ,j∈Λ with entries m(i , j) ∈ {0, 1}.

Introducing the “inner product”

〈〈x , y〉〉 :=
∑
i

x(i)y(i) mod(2),

and letting m†(i , j) := m(j , i), we observe that

〈〈mx , y〉〉 = 〈〈x ,m†y〉〉,

i.e., m and m† are dual w.r.t. ψcanc(x , y) = 〈〈x , y〉〉.
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Cancellative duality

A cancellative map m is local iff

{(i , j) : i 6= j , m(i , j) = 1} and {(i , i) : m(i , i) = 0}

are finite sets.

We can draw the matrix (m(i , j))i ,j∈Λ in terms of arrows and
blocking symbols:

I An arrow from i to j for each i 6= j such that m(i , j) = 1.

I A blocking symbol at each i such that m(i , i) = 0.

To draw m†, we reverse the arrows of m and keep the blocking
symbols where they are.
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Annihilating branching and deaths

time

X0

Xt

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0
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Annihilating branching and deaths

time

Yt

Y0

0 1 0 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0
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Cancellative duality

vot1,2 arw1,2 excl1,2

rvot1,2,3 adbr3,2,1

Graphical representations of cancellative maps.
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Thinnings and Lloyd-Sudbury duality

Recall the Lloyd-Sudbury duality function

ψq(x , y) :=
∏
i

(1− q)x(i)y(i) with q ∈ (0, 2].

In particular
ψ1(x , y) = 1{x ∧ y = 0},

ψ2(x , y) = (−1)〈〈x ,y〉〉.

Recall that Kp is a thinning kernel that independently keeps
particles with probability p and throws them away with probability
1− p.

Lemma KpKr = Kpr and Kpψq = ψpq.
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Thinnings and Lloyd-Sudbury duality

Proof The relation KpKr = Kpr is trivial, since thinning first with
p and then with r means that each particle independently has a
probability pr to survive both thinnings.

To check that Kpψq = ψpq, we start with the case that Λ consists
of a single site. Then

Kp =

(
Kp(0, 0) Kp(0, 1)
Kp(1, 0) Kp(1, 1)

)
=

(
1 0

1− p p

)
and

ψq =

(
ψq(0, 0) ψq(0, 1)
ψq(1, 0) ψq(1, 1)

)
=

(
1 1
1 1− q

)
which gives

Kpψq =

(
1 0

1− p p

)(
1 1
1 1− q

)
=

(
1 1
1 1− pq

)
= ψpq.
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Thinnings and Lloyd-Sudbury duality

The space of all real functions on {0, 1}Λ can be written as a
tensor product

R{0,1}
Λ ∼=

⊗
i∈Λ

R{0,1}.

A linear operator A acting on R{0,1} with matrix (A(x , y))x ,y∈S can

be “lifted” to a linear operator A{i} acting on R{0,1}Λ
with matrix

A{i}(x , y) = A
(
x(i), y(i)

) ∏
j : j 6=i

1
(
x(j), y(j)

)
.

Then A{i} “acts only on the i-th coordinate”:

A{i}f
(
x(1), . . . , x(n)

)
=
∑
y∈S

A
(
x(i), y

)
f
(
x(1), . . . , x(i − 1), y , x(i + 1), . . . , x(n)

)
.
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Thinnings and Lloyd-Sudbury duality

Operators acting on different coordinates commute:

[A{i},B{j}] = 0 (i 6= j).

We can write Kp as a (commuting) product of operators that thin
only a single site:

Kp = K
{1}
p · · ·K {n}p with Λ = {1, . . . , n}.

Since ψq(x , y) :=
∏

i (1− q)x(i)y(i), we see that likewise,

ψq =
∏
i∈Λ

ψ
{i}
q .

Now K
{i}
p ψ

{i}
q = ψ

{i}
pq for each i ∈ Λ implies Kpψq = ψpq.
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Thinnings and Lloyd-Sudbury duality

Example

1{x = 0} = 1{x ∧ 1 = 0} = ψ1(x , 1) =
∑
y

K1/2(x , y)ψ2(y , 1)

= E
[
ψ2

(
Thin1/2(x), 1

)]
= E

[
(−1)

∑
i Thin1/2(x)(i)].
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Thinnings and Lloyd-Sudbury duality

Lemma Let (Pt)t≥0, (Qt)t≥0, and (Rt)t≥0, be transition kernels
on {0, 1}Λ, and let p ∈ (0, 1], q ∈ (0, 2]. Then of the following
relations, any two imply the third one:

(i)
∑
x ′

Pt(x , x ′)ψpq(x ′, z) =
∑
z ′

Rt(z , z ′)ψpq(x , z ′) ∀x , z , t,

(ii)
∑
y ′

Qt(y , y ′)ψq(y ′, z) =
∑
z ′

Rt(z , z ′)ψq(y , z ′) ∀y , z , t,

(iii)
∑
x ′

Pt(x , x ′)Kp(x ′, y) =
∑
y ′

Kp(x , y ′)Qt(y ′, y) ∀x , y , t.

In words:

(i) (Pt)t≥0 and (Rt)t≥0 are dual w.r.t. ψpq,

(ii) (Qt)t≥0 and (Rt)t≥0 are dual w.r.t. ψq,

(iii) (Qt)t≥0 is interwined on top of (Pt)t≥0 w.r.t. Kp.

In (iii), we also say that (Qt)t≥0 is a p-thinning of (Pt)t≥0.

Jan M. Swart Spatial Models in Population Biology



Thinnings and Lloyd-Sudbury duality

Proof We use that Kp and ψq are invertible matrices and
Kpψq = ψpq. Let F ,G ,H denote the generators of (Pt)t≥0,
(Qt)t≥0, and (Rt)t≥0. Then our relations say:

(i) FKpψq = KpψqH†, (ii) Gψq = ψqH†, (iii) FKp = KpG .

(i)&(ii)⇒(iii): FKpψq = KpψqH† = KpGψq, multiply by ψ−1
q .

(ii)&(iii)⇒(i): FKpψq = KpGψq = KpψqH†.

(i)&(iii)⇒(ii): KpGψq = FKpψq = KpψqH†, multiply by K−1
p .

Remark We have not used that F ,G ,H are Markov generators.
E.g., if F ,G are Markov generators but H is not, then
(i)&(ii)⇒(iii) remains valid.
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Thinnings and Lloyd-Sudbury duality

Let G be the generator of a Markov process in {0, 1}2 for which 00
is a trap (i.e., G (00, x) = 0 ∀x 6= 00) and

G (11, 00) = a (annihilation),
G (01, 11) = G (10, 11) = b (branching),
G (11, 01) = G (11, 10) = c (coalescence),
G (01, 00) = G (10, 00) = d (death),
G (01, 10) = G (10, 01) = e (exclusion).

Let (Λ,E ) be an undirected graph and set

G =
∑
{i ,j}∈E

G {i ,j},

where we “lift” an operator acting only on two sites to the larger
space as before.
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Thinnings and Lloyd-Sudbury duality

[Lloyd and Sudbury (’95, ’97, ’00)] Let G be given by rates
a, b, c, d , e ≥ 0. Fix q ∈ (0, 2], set

γ := q−1(a + c − d + (1− q)b),

and define G ′ by

a′ := a + 2(1− q)γ, b′ := b + γ,

c ′ := c − (2− q)γ, d ′ := d + γ,

e ′ := e − γ.

If a′, b′, c ′, d ′, e ′ ≥ 0, then G ′ is a Markov generator and the
processes X and Y are dual with duality function ψq:

Ex
[
ψq(Xt , y)

]
= Ey

[
ψq(x ,Yt)

]
(t ≥ 0).
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Thinnings and Lloyd-Sudbury duality

Remark One can check that

γ′ := q−1(a′ + c ′ − d ′ + (1− q)b′)

satisfies γ′ = −γ. The relations between a, b, c , d , e and
a′, b′, c ′, d ′, e ′ can be written in a more symmetric form as:

1
2 a + c − e = 1

2 a′ + c ′ − e ′, b + e = b′ + e ′,

1
2 a + (1− q)e = 1

2 a′ + (1− q)e ′, d + e = d ′ + e ′,[
a + c − d + (1− q)b

]
= −

[
a′ + c ′ − d ′ + (1− q)b′

]
.
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Pathwise Lloyd-Sudbury duality

Recall the Lloyd-Sudbury duality function

ψq(x , y) = (1− q)
∑

i x(i)y(i) with q ∈ (0, 2],

ψ1(x , y) = 1{x ∧ y = 0},

ψ2(x , y) = (−1)〈〈x ,y〉〉.

A map m : {0, 1}Λ → {0, 1}Λ is:

dual w.r.t. ψ2 ⇔ m is cancellative:

m(x + y mod(2)) = m(x) + m(y) mod(2),

dual w.r.t. ψ1 ⇔ m is additive: m(x ∨ y) = m(x) ∨m(y).

Very few maps are dual w.r.t. ψq for q 6= 1, 2, though the exclusion
map is an example.
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A bit of order theory

A partially ordered set S is bounded from below resp. above if
there exists an element 0 resp. 1 such that

0 ≤ x (x ∈ S) resp. x ≤ 1 (x ∈ S).

The “upset” and “downset” of A ⊂ S are defined as

A↑ := {x ∈ S : x ≥ a for some a ∈ A},

A↓ := {x ∈ S : x ≤ a for some a ∈ A}.

A set A ⊂ S is increasing (resp. decreasing) if A↑ = A (resp.
A↓ = A). We let

Pinc(S) := {A ⊂ S : A is increasing},
Pdec(S) := {A ⊂ S : A is decreasing}.
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A bit of order theory

A lattice is a partially ordered set such that for every x , y ∈ S
there exist x ∨ y ∈ S and x ∧ y ∈ S called the supremum or join
and infimum or meet of x and y , respectively, such that

{x}↑ ∩ {y}↑ = {x ∨ y}↑ and {x}↓ ∩ {y}↓ = {x ∧ y}↓.

Finite lattices are bounded from below and above.

By definition, a lattice S is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (x , y , z ∈ S).

If Λ is a partially ordered set, then S := Pdec(Λ) with the order of
set inclusion is a distributive lattice. Birkhoff’s representation
theorem says that every distributive lattice is of this form.
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A bit of order theory

Let S be a partially ordered set. A dual of S is a partially ordered
set S ′ together with a bijection S 3 x 7→ x ′ ∈ S ′ such that

x ≤ y if and only if x ′ ≥ y ′.

Example 1: For any partially ordered set S , we may take S ′ := S
but equipped with the reversed order, and x 7→ x ′ the identity map.

Example 2: If Λ is a partially ordered set and S := Pdec(Λ) with
the order of set inclusion, then we may take S ′ := Pinc(Λ) and
x ′ := Λ\x the complement of x .
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Additive duality

Let S be a lattice and let S ′ be its dual. A map m : S → S is
additive if

m(0) = 0 and m(x ∨ y) = m(x) ∨m(y) (x , y ∈ S).

(Additive duality) A map m : S → S has a dual m′ : S ′ → S ′

w.r.t.

ψ(x , y) = 1{x ≤ y ′} = 1{y ≤ x ′} (x ∈ S , y ∈ S ′).

if and only if m is additive. The dual map m′ is unique and also an
additive map.
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Additive duality

If S is a distributive lattice, then w.l.o.g. S = Pdec(Λ),
S ′ = Pinc(Λ), and

ψ(x , y) = 1{x ≤ y ′} = 1{x ∩ y = ∅} (x ∈ S , y ∈ S ′).

An additive map m : S → S can be represented in terms of a
“matrix” M ⊂ Λ× Λ as

m(x) = {j ∈ Λ : (i , j) ∈ M for some i ∈ x} (x ∈ S).

We can choose M increasing in its first and decreasing in its
second argument:

(i) (i , j) ∈ M and i ≤ ı̃ implies (̃ı, j) ∈ M,

(ii) (i , j) ∈ M and j ≥ ̃ implies (i , ̃) ∈ M,

and with these conventions it is unique.
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Additive duality

We can draw the matrix M in terms of arrows and blocking
symbols:

I An arrow from i to j for each i 6= j such that (i , j) ∈ M.

I A blocking symbol at each i such that (i , i) 6∈ M.

The dual map m′ is given by M ′ := {(j , i) : (i , j) ∈ M}.

This corresponds to reversing the direction of all arrows and
keeping the blocking symbols where they are.
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Percolation representations

Xt

X0

Y0

Yt

Graphical representation of a voter model X and its dual Y , a
system of coalescing random walks.
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Percolation representations

In the previous example, we equip Λ with the trivial order i 6≤ j for
all i 6= j . With respect to this order,

S = Pdec(Λ) = P(Λ) = Pinc(Λ) = S ′.

Steve Krone [AAP 1999] has studied a two-stage contact process,
with state space of the form S = {0, 1, 2}Λ, where x(i) = 0, 1, or 2
are interpreted as an empty site, young, or adult organism.
We view

S ∼= Pdec

(
Λ× {1, 2}

)
where Λ is equipped with the trivial order, {1, 2} with the natural
order (i.e., 1 ≤ 2), and Λ× {1, 2} with the product order.
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Percolation representations

0 1 0 2

0 1 2 0

X0

Xt

0 2 2 1

2 0 1 2

Yt

Y0

A percolation representation of Krone’s 2-stage contact process
and its dual.
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Krone’s duality

The two-stage contact process and its dual are defined in terms of
the maps

grow up ai · · · 1 · · · · 7→ · · · 2 · · · ·
give birth bij · · · 20 · · · 7→ · · · 21 · · ·
young dies ci · · · 1 · · · · 7→ · · · 0 · · · ·
death di · · ·? · · · · 7→ · · · 0 · · · ·
grow younger ei · · · 2 · · · · 7→ · · · 1 · · · ·

where in all cases not mentioned, the maps have no effect.

(Krone’s dual) The maps ai , bij , ci , di , ei are all additive and their
duals are given by

a′i = ai , b′ij = bji , c ′i = ei , d ′i = di , e ′i = ci .

Jan M. Swart Spatial Models in Population Biology



Invariant subspaces

Let P(S) be the set of all subsets of S .
Let m−1 : P(S)→ P(S) denote the inverse image map

m−1(A) := {x ∈ S : m(x) ∈ A}.

Observation m−1 is dual to m w.r.t. to the duality function

ψ(x ,A) := 1{x ∈ A}.

Consequence Each Markov process X with state space S (and
given random mapping representation) has a pathwise dual Y with
state space P(S) and generator

Hf (A) :=
∑
m∈G

rm
(
f (m−1(A))− f (A)

)
In practice, this dual is not very useful since the space P(S) is very
big. Useful duals are associated with invariant subspaces of P(S).
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Monotone systems

Let S be a finite lattice and let m : S → S be monotone. Then m
is automatically superadditive:

m(x ∨ y) ≥ m(x) ∨m(y)

For monotone maps that are not additive, this inequality is strict.
A good example is the cooperative branching map

coopii ′jx(k) :=

{ (
x(i) ∧ x(i ′)

)
∨ x(j) if k = j ,

x(k) otherwise.

Observation m : S → S is monotone if and only if

m−1(A) ∈ Pinc(S) for all A ∈ Pinc(T ).

By taking complements, we can replace Pinc(S) by Pdec(S).
Additive maps have the stronger property that m−1({x ′}↓) is again
of the form {y ′}↓, where in fact y = m′(x).
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Monotone systems duality

Let Λ countable and S = {0, 1}Λ, equipped with the product order
and topology. Set Sfin := {y ∈ S : |y | <∞} with |y | :=

∑
i y(i).

We can encode open increasing sets A ⊂ S by their set of minimal
elements

A◦ :=
{

y ∈ A : z = y ∀A 3 z ≤ y
}
.

Set
I(Λ) := {Y : Y is open and Y ↑ = Y },
H(Λ) := {Y : Y ⊂ Sfin and Y ◦ = Y }.

It is easy to see that (Y ↑)↑ = Y ↑ and (Y ◦)◦ = Y ◦.

(Encoding open increasing sets)The map Y 7→ Y ↑ is a bijection
from H(Λ) to I(Λ), and Y 7→ Y ◦ is its inverse.
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Monotone systems duality

(Monotone systems duality) Let (Xs,t)s≤t be the stochastic flow
of an interacting particle system defined in terms of monotone
maps.
Then there exists a dual flow (X̂s,t)s≥t that is dual to (Xs,t)s≤t
w.r.t. the duality function

ψ(x ,Y ) = 1{x ≥ y for some y ∈ Y }
(
x ∈ {0, 1}Λ, Y ∈ H(Λ)

)
.

In particular,

Xs,t(x) ≥ y for some y ∈ Y iff x ≥ y for some y ∈ X̂t,s(Y )

Proof Since X−1
s,t (A) ∈ I(Λ) for all A ∈ I(Λ), this follows from the

trivial duality between Xs,t and X−1
s,t and the bijection between

I(Λ) and H(Λ).
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A graphical representation

time

space Z

0 1 1 0 1 1 0 1 1 0

1 0 1 0 1 1 0 0 1 0

We denote coopijk by a suitable symbol
and denote dthi as before.
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A graphical representation

time

space Z
X0

Xt = X0,t(X0)

0 1 1 0 1 1 0 1 1 0

1 0 1 0 1 1 0 0 1 0

The map x 7→ X0,t(x).
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Open paths

time
1

1 1

1 1 1

1 1

dual process Yt

P
[
Xt ≥ y for some y ∈ Y0

]
= P

[
X0 ≥ y for some y ∈ Yt

]
.
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Random mapping representations

Let S ,T be finite sets, let F(S ,T ) denote the set of all functions
f : S → T , and let K be a probability kernel from S to T .

A random mapping representation of K is an F(S ,T )-valued
random variable M such that

K (x , y) = P[M(x) = y ] (x ∈ S , y ∈ T ).

We say that K is representable in G ⊂ F(S ,T ) if M can be chosen
so that it takes values in G.

Jan M. Swart Spatial Models in Population Biology



Monotone probability kernels

For partially ordered sets S ,T , let Fmon(S ,T ) be the set of all
monotone maps m : S → T , i.e., those for which x ≤ x ′ implies
m(x) ≤ m(x ′).

A probability kernel K is called monotone if

Kf ∈ Fmon(S ,R) ∀f ∈ Fmon(T ,R),

and monotonically representable if K is representable in
Fmon(S ,T ).

Monotonical representability implies monotonicity:

f ∈ Fmon(T ,R) and x ≤ x ′ ⇒
Kf (x) = E

[
f
(
M(x)

)]
≤ E

[
f
(
M(x ′)

)]
= Kf (x ′).

Jan M. Swart Spatial Models in Population Biology



Monotone probability kernels

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross
(unpublished)) discovered that the converse does not hold. There
are counterexamples with S = T = {0, 1}2.

On the positive side, Kamae, Krengel & O’Brien (1977) and Fill &
Machida (2001) have shown that:

(Sufficient conditions for monotone representability)
Let S ,T be finite partially ordered sets and assume that at least
one of the following conditions is satisfied:

(i) S is totally ordered.

(ii) T is totally ordered.

Then any monotone probability kernel from S to T is
monotonically representable.
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Stochastic order

In particular, setting S = {1, 2}, this proves that if µ1, µ2 are
probability laws on T such that

µ1f ≤ µ2f ∀f ∈ Fmon(T ,R),

then it is possible to couple random variables M1,M2 with laws
µ1, µ2 such that M1 ≤ M2.
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