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The contact process

Let (Λ,E ) be an undirected graph with countable vertex set Λ and
set of undirected edges E . We sometimes view (Λ,E ) as a directed
graph with set of directed edges

~E :=
{

(i , j) ∈ Λ2 : {i , j} ∈ E
}
.

(Λ,E ) is locally finite if {j : {i , j} ∈ E} is finite for all i ∈ Λ.
By definition, an automorphism of (Λ,E ) is a bijection φ : Λ→ Λ
such that {

φ(i), φ(j)
}
∈ E iff

{
i , j
}
∈ E .

A transitive graph is a graph (Λ,E ) such that for all i , j ∈ Λ, there
exists an automorphism φ such that φ(i) = j . This means that:

As seen from each point, the space looks the same.
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The contact process

Let (Λ,E ) be a locally finite, transitive graph. The contact process
with infection rate λ ≥ 0 is the interacting particle system (Xt)t≥0

with state space {0, 1}Λ and generator

Gf (x) :=λ
∑

(i ,j)∈~E

{
f
(
braijx

)
− f (x)

}
+
∑
i∈Λ

{
f
(
deathix

)
− f (x)

}
.

This is the basic model for the spread of an organism.
We call i ∈ Λ sites. Sites with x(i) = 0, 1 are empty (or healthy)
resp. occupied (or infected).

We could be more general and allow infection rates λ(i , j) that
depend, e.g., on the (graph) distance. In such a setting, we usually
assume that ∀i , j , ∃ bijection φ s.t. λ(φ(i), φ(j)) = λ(i , j).
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The mean-field limit

Let XN be a contact process with infection rate λN on the
complete graph (ΛN ,EN) with N vertices. Then

X
N
t :=

1

N

∑
i∈ΛN

XN
t (i)

is a Markov process that jumps

x 7→

{
x + 1

N with rate λN2x(1− x),

x − 1
N with rate Nx .

We can find a nontrivial limit by letting λN := λN−1 for some
fixed constant λ ≥ 0. Since

Ex
[
X

N
t − x

]
=
[
λx(1− x)− x

]
t + O(t2),

Ex
[
(X

N
t − x)2

]
= O(t2),

XN
t can be approximated by a solution to the mean-field ODE

∂
∂t X t = λX t(1− X t)− X t =: Fλ(X t) (t ≥ 0).
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The mean-field limit of the contact process
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For λ ≤ 1, the equation ∂
∂t X t = Fλ(X t) has a single, stable fixed

point x = 0.

For λ > 1, the fixed point at 0 becomes unstable and a new, stable
fixed point appears.
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The mean-field limit of the contact process
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The mean-field limit of the contact process
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Fixed points of ∂
∂t X t = Fλ(X t) for different values of λ.
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The Contact Process
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The probability θ(λ) :=
∫
νλ(dx)x(0) of the origin being occupied

for the upper invariant law of the one-dimensional contact process.
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The Contact Process

By transitivity, every vertex i ∈ Λ has the same degree
D := |{j : {i , j} ∈ E}|.

In Lecture 1, we have seen that the contact process is uniquely
ergodic for λ < 1/D and hence λc ≥ 1/D.

Note that in the mean-field limit, we find a critical point at
λ ∼ 1/N, where the degree of each vertex is N − 1.

For the contact process on Zd , it is known that

λc(d) ∼ 1

2d
as d →∞

where f (d) ∼ g(d) means f (d)/g(d)→ 1.
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The Contact Process

Sharp lower bounds on λc can be obtained by finding bounded
stopping times τ such that

Eδi
[
|Xτ |

]
< 1.

Rigorous upper bounds are harder to obtain, especially in low
dimensions. The best result in dimension 1 is λc ≤ 1.942 [Liggett
1995].
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The Contact Process
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Numerically λc(1) ≈ 1.649 and

θ(λ) ∝ (λ− λc)β as λ ↓ λc,

with a critical exponent β ≈ 0.27648.
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The Contact Process

For the contact process, one observes that

θ(λ) ∝ (λ− λc)c as λ ↓ λc,

with a critical exponent

c ≈ 0.276 in dim 1, c ≈ 0.583 in dim 2,

c ≈ 0.813 in dim 3, and c = 1 in dim ≥ 4.

In theoretical physics, (nonrigorous) renormalization group theory
is used to explain these critical exponents and calculate them.

The lace expansion has been used to prove that c = 1 in very large
dimensions or for long-range models in dim ≥ 4, in line with the
mean-field prediction.

Jan M. Swart Spatial Models in Population Biology



The Contact Process

By self-duality, θ(λ) is not only the density of the upper invariant
law, but also the survival probability started with a single occupied
site.

It is easy to see that λ 7→ θ(λ) is right-continuous and
nondecreasing.

Duality can be used to prove that for λ > λc, the contact process
has a unique translation-invariant stationary law. This in turn can
be seen to imply that λ 7→ θ(λ) is left-continuous on (λc,∞).

Proving left-continuity at λc amounts to showing that the critical
process with λ = λc dies out. This has been proved in a celebrated
paper by Bezuidenhout and Grimmett (1990).

The analogue question for unoriented percolation in 3 dimensions
is still open.
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Local survival

The critical infection rate for local survival is defined as

λloc := sup
{
λ ≥ 0 : lim

t→∞
Pδi [Xt(i) = 1] = 0

}
.

It is known that

λc = λloc on Zd , but λc < λloc on regular trees.

For λ > λloc, all invariant laws are convex combinations of δ0 and
ν, but for λc < λ ≤ λloc, the set of invariant laws is much larger.
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The Voter Model

Let (Λ,E ) be a locally finite transitive graph in which each vertex
has degree D as before and let S be any set.
The voter model is the interacting particle system with state space
SΛ and generator

Gf (x) :=
∑

(i ,j)∈~E

{
f
(
votijx

)
− f (x)

}
,

where votij is the voter map

votji (x)(k) :=

{
x(j) if k = i ,
x(k) otherwise.

This is the basic model for neutral genetic drift. We interpret x(i)
as the (genetic) type of the organism living at the site i .

With rate D, the organism at site i dies and is replaced by the
offspring of a random parent, chosen uniformly from its D
neighbors.
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The mean-field model

We will mostly focus on the two-type model with S = {0, 1}.
The model on the complete graph (ΛN ,EN) with N vertices is
called the Moran model.1 The fraction of sites of type 1

X
N
t :=

1

N

∑
i∈ΛN

XN
t (i)

is a Markov process that jumps

x 7→

{
x + 1

N with rate N2x(1− x),

x − 1
N with rate N2x(1− x).

This gives

Ex
[
X

N
t − x

]
= 0,

Ex
[
(X

N
t − x)2

]
= 2x(1− x)t + O(t2).

1More precisely, the Moran model is the embedded Markov chain associated
with the continuous-time process XN

t .
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The mean-field model

It can be shown that XN
t converges in law to the Wright-Fisher

diffusion with generator

Gf (x) = x(1− x) ∂2

∂x2 f (x),

which is given (in law) by solutions to the SDE

dX t =

√
2X t(1− X t)dBt (t ≥ 0).
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Duality to coalescing random walks

Xt

X0

Y0

Yt

We recall that the two-type voter model is additive and dual to a
system of coalescing random walks.
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Duality to coalescing random walks

This duality works even for voter models with more than two types.
For each space-time point (i , u), we can define a random walk

ξ
(i ,u)
t≥0 that traces back where the (unique) ancestor of (i , u) lived at

time u − t (t ≥ 0). Then

Xs,u(x)(i) = x(ξ
(i ,u)
u−s ) (s ≤ u).

Random walks behave independently until the first time when they
meet. At that time, they coalesce and continue as a single walker.
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The Kingman coalescent

Let Y N
t denote the dual process on the complete graph with N

vertices. Then
Y

N
t :=

∑
i∈ΛN

Y N
t (i)

is a Markov process with state space {0, . . . ,N} that jumps

y 7→ y − 1 with rate y(y − 1).

Note that the rates do not depend on N. The limiting process with
state space N is the Kingman coalescent.

The Kingman coalescent is dual to the Wright-Fisher diffusion:

Ex
[
(1− X t)

y
]

= Ey
[
(1− x)Yt

]
.

We interpret x is the frequency of type 1 individuals in an infinite
population. Then (1− x)y is the probability that y individuals
drawn from this population are all of type 0, corresponding to the
duality function ψ(x , y) = 1{x∧y=0}.

Jan M. Swart Spatial Models in Population Biology



Coming down from infinity

We can couple processes Y
n
t with initial states n = 1, 2, . . . such

that Y
n
t ≤ Y

n+1
t for each n. Then the a.s. increasing limit

Y
∞
t := lim

n→∞
Y

n
t (t ≥ 0)

exists in N := N ∪ {∞} for each t ≥ 0.

It turns out that the Kingman coalescent comes down from
infinity. Indeed, Y

∞
t <∞ a.s. (t > 0) and

E∞
[
(1− x)Y

∞
t
]

= lim
n→∞

Ex
[
(1− X t)

n
]

= Px
[
X t = 0

]
> 0 (x < 1, t > 0),

where (X t)t≥0 is the Wright-Fisher diffusion.
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Mean-field behavior

Let XN be voter models on ΛN = {0, . . . ,N − 1}d with edges
connecting nearest neighbors and periodic boundary conditions,
and set

X
N
t :=

1

Nd

∑
i∈ΛN

XN
t (i).

Define constants sN by

sN :=

{
N2 1

2π log N if d = 2,

NdGd if d ≥ 3,

where Gd is the expected time spent at the origin by a random
walk that jumps with rate D and starts in 0. Then Cox (1989) has
proved that, provided the initial states converge,

P
[(

X
N
sN t

)
t≥0
∈ ·
]

=⇒
N→∞

P
[(

X t

)
t≥0
∈ ·
]
,

where (X t)t≥0 is the Wright-Fisher diffusion.
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Mean-field behavior

This result says that finite, but large populations in dimensions
d ≥ 2 behave essentially as well-mixing populations.
The reason for this is a separation of time scales: if we start two
random walks on a large torus in dimensions d ≥ 2, then the time
till coalescence is in the limit N →∞ much larger than the time
scale governing the movement of the walkers.
The result of this is that any finite number of coalescing random
walks, started sufficienty far from each other, converges in the
right time scale to the Kingman coalescent.

This result is not true in dimensions d < 2.
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Infinite lattices

Since δ0 and δ1 are two different invariant laws, the voter model is
never uniquely ergodic.

Long-time behavior Let (Xt)t≥0 be a voter model started in an
initial law such that (X0(i))i∈Zd are i.i.d. with P[X0(i) = 1] = θ.
Then

P
[
Xt ∈ ·

]
=⇒
t→∞

{
(1− θ)δ0 + θδ1 if d = 1, 2,

νθ if d ≥ 3,

where in dimensions d ≥ 3, there exists a one-parameter family
(νθ)θ∈[0,1] of mutually singular, translation-invariant stationary
measures.

The behavior in d = 1, 2 is called clustering and in d ≥ 3 stable
behavior.
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Infinite lattices

Clustering of a two-dimensional voter model.
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Infinite lattices

Stable behavior of a three-dimensional voter model.
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Infinite lattices

Proof idea Let (ξit)t≥0 and (ξjt)t≥0 be independent random walks,

started from ξi0 = i and ξj0 = j . By duality

P
[
Xt(i) = Xt(j)

]
−→
t→∞

P
[
∃t ≥ 0 s.t. ξit = ξjt

]{ = 1 if d = 1, 2,
< 1 if d ≥ 3.

Remark The statement holds more generally for voter models with
any number of types and for general transitive graphs Λ. If random
walk on Λ is recurrent, then two independent random walks meet
a.s., while on transient graphs there is2 a positive probability they
never meet.

2Usually? always?
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Infinite lattices
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In one dimension, spatial movement and coalescence happen on
the same time scale, and there is a nontrivial scaling limit.
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Boundaries
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If we start with each site occupied by a different type, then the
boundaries between types form coalescing random walks.
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Boundaries

For the two-type model, we obtain annihilating random walks.
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Coalescing Brownian motions

The diffusive scaling limit of coalescing random walks are
coalescing Brownian motions.

Coalescing Brownian motions come down from infinity. It is
possible to start with Brownian motions “everywhere” and still
have a finite particle density at each t > 0.

For the process coming down from infinity, the particle density is
∼ ct−1/2 as t → 0, different from the ∼ ct−1 of Kingman’s
coalescent.
It is even possible to start Brownian motions from every point in
space and time. The resulting collection of paths is known as the
Brownian web.
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The Brownian web

Artist’s impression of the Brownian web.
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The boundary process

The boundaries of the voter model are annihilating random walks
only for the nearest neighbor model
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The boundary process

Nevertheless, the picture for the range two voter model looks
roughly similar.
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Interface tightness

The boundary between two infinite populations of type 0 and 1
remains rather sharp.
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Interface tightness

Consider a voter model X where votij is applied with rate λ(j − i).
Let

S01
int :=

{
x ∈ {0, 1}Z : lim

i→−∞
x(i) = 0, lim

i→∞
x(i) = 1

}
be the set of configuration describing the interface between two
infinite populations of 0’s and 1’s.

Lemma If
∑

k λ(k)|k | <∞, then X0 ∈ S01
int implies Xt ∈ S01

int for
all t ≥ 0 a.s.

Define an equivalence relation

x ∼ y iff ∃k s.t. x(i) = y(i + k) (i ∈ Z).

Let x̃ := {y : x ∼ y} and S̃01
int := {x̃ : x ∈ S01

int}.

Def X exhibits interface tightness if the process modulo
translations (X̃t)t≥0 is positive recurrent.
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Interface tightness

Cox & Durrett 1995 If
∑

k λ(k)|k |3 <∞, then interface
tightness holds.

Belhaouari, Mountford & Valle 2007 Interface tightness holds
when

∑
k λ(k)k2 <∞, but not when

∑
k λ(k)k2−ε =∞ for some

ε > 0.

The width of the interface is W (Xt) := R(Xt)− L(Xt) with

L(x) := sup{i ∈ Z + 1
2 : x(j) = 0∀j < i},

R(x) := inf{i ∈ Z + 1
2 : x(j) = 1∀j > i}.

[B, M, Sun & V 2006] If
∑

k λ(k)|k |3+ε <∞, then in
equilibrium,

P[W (X∞) ≥ N
]
� N−1 as N →∞.
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Interface tightness

Some intuition: Let ξ1, . . . , ξn be independent nearest-neighbor
random walks started in ξ1

0 < · · · < ξn0 .
Let τi ,i+1 := inf{t ≥ 0 : ξit = ξi+1} and

τn := τ1,2 ∧ · · · ∧ τn−1,n.

It is known3 that

P[τn > t] ∼ cnhn(ξ1
0 , . . . , ξ

n
0 )t−βn as t →∞,

with cn an explicit constant, βn := 1
4 n(n − 1), and

hn(ξ1
0 , . . . , ξ

n
0 ) :=

∏
1≤k<m≤n

(xm − xk).

The harmonic function hn is the Vandermonde determinant.

3See Grabiner 1999 for the case of n Brownian motions.
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Interface tightness

The interface process modulo translations makes i.i.d. excursions
away from the simplest heaviside interface.

Since β3 < β5 < · · · , we expect the tail of W (X∞) to be
dominated by excursions where the interface effectively splits into
three random walks that do not meet for a long time.
In view of this, the duration σ of an excursion away from the
heaviside state should have tail distribution

P[σ > t] ≈ t−β3 = t−3/2 as t →∞.

In equilibrium, the duration of the excursion that is going on at
time zero has a size-biased law, which should satisfy

P̂[σ > t] ≈ t−1/2 as t →∞.

Since the width of an excursion should roughly be the root of its
duration, this implies

P[W (X∞) ≥ N] ≈ N−1 as N →∞.
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Interface tightness

In [CD95] and [BMV07], duality is used to show that the laws of
the number of inversions

f (Xt) :=
∑
i<j

1{Xt(i)=1, Xt(j)=0} (x ∈ S01
int)

are tight as t →∞, which implies interface tightness.

Sturm & S 2008 show that f can be used as a “pseudo Lyapunov
function”. More precisely, if interface tightness would not hold,
then on sufficiently long time intervals f (Xt) would decrease
linearly in time, which is not possible since f ≥ 0.

Let b(x) :=
∑
i

1{x(i)6=x(i+1)} denote the number of boundaries.

Open Problem P[b(X∞) ≥ N] � e−εN as N →∞?
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The biased voter model

The biased voter model with selection rate λ and deleterious
mutation rate µ on a locally finite, transitive graph (Λ,E ), is the
interacting particle system with state space SΛ and generator

Gf (x) :=
∑

(i ,j)∈~E

{
f
(
votijx

)
− f (x)

}
+ λ

∑
(i ,j)∈~E

{
f
(
braijx

)
− f (x)

}
+µ
∑
i∈Λ

{
f
(
deathix

)
− f (x)

}
.

Alternatively, we can view this as a mixture between voter model
and contact process dynamics.

We interpret the type 1 as fitter individuals that carry a gene that
gives them a selective advantage in reproduction.
On the other hand, deleterious mutations can cause the
advantageous gene to become dysfunctional.
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The biased voter model

Since the biased voter model has pairwise interactions and 0 is a
trap, it falls in the general class of models studied by Lloyd and
Sudbury. Recall that

11 7→ 00 with rate a (annihilation),

01 7→ 11 with rate b (branching),

11 7→ 01 with rate c (coalescence),

01 7→ 00 with rate d (death),

01 7→ 10 with rate e (exclusion).

In particular, setting

a = 0, b = 1 + λ, c = µ, d = 1 + µ, e = 0

yields a biased voter model with selection parameter λ and
mutation parameter µ.
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The biased voter model

For any q ∈ (0, 2], setting

γ := q−1(a + c − d + (1− q)b)

= q−1
(
0 + µ− (1 + µ) + (1− q)(1 + λ)

)
=

1− q

q
λ− 1

and
a′ := 2(1− q)γ, b′ :=λ/q,

c ′ :=µ− (2− q)γ, d ′ :=µ+ 1−q
q λ,

e ′ := −γ.

yields a dual process w.r.t. ψq, provided a′, b, c ′, d ′, e ′ ≥ 0.
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Duals of the biased voter model

Let X be a biased voter model with parameters λ, µ. For ε ∈ [0, 1]
and ρ, β ≥ 0, let Y be the process with generator

G ′f (y) :=
∑

(i ,j)∈~E

[
(1− ε)ρ

{
f (rwijy)− f (y)

}
+ ερ

{
f (arwijy)− f (y)

}
+(1− ε)β

{
f (braijy)− f (y)

}
+ εβ

{
f (abraijy)− f (y)

}]
+
∑
i∈Λ

δ
{

f (deathiy)− f (y)
}

Lloyd-Sudbury duals of biased voter models The biased voter
model X has a dual w.r.t. the duality function ψq with q ∈ (0, 2]
precisely in the following cases.

(a) If λ > 0, then X is self-dual with q = λ/(1 + λ).

(b) X is dual with q = 1 + ε to the process Y with parameters
ρ = 1 + ε

1+ελ, β = 1
1+ελ, and δ = µ− ε

1+ελ, for any ε ∈ [0, 1]
such that δ ≥ 0.
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Thinning relations

Branching and coalescing random walks Y with jump rate ρ = 1,
branching rate β = λ, and death rate δ = µ are the additive dual
of the biased voter model with bias λ and mutation rate µ.

Recall that if (Pt)t≥0 and (Qt)t≥0 are both dual to the same
(Rt)t≥0, with duality functions ψq and ψq′ , respectively, then
PtKq/q′ = Kq/q′Qt , i.e., (Qt)t≥0 is a q/q′-thinning of (Pt)t≥0.

Thinnings of biased voter models
(a) The process Y with parameters ρ = 1, β = λ, and δ = µ is a
λ/(1 + λ)-thinning of the biased voter model with parameters λ
and µ.

(b) The process Y with parameters ρ = 1 + ε
1+ελ, β = 1

1+ελ, and
δ = µ− ε

1+ελ is a 1/(1 + ε)-thinning of the process Y with
parameters ρ = 1, β = λ, and δ = µ.
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The skeletal process

Let (Xs,t)s≤t the stochastic flow of a biased voter model with
parameters λ > 0 and µ = 0. Set

Y t(i) := 1{Xt,u(δi ) 6= 0 ∀u ≥ t}.

Then (Y t)t∈R is a stationary system of branching and coalescing
random walks with branching parameter λ.
For each t ∈ R, the random variables (Y t(i))i∈Λ are i.i.d. with
P[Y t(i) = 1] = λ/(1 + λ).

Let X0 be independent of the graphical representation and

Xt = X0,t(X0) and Yt(i) := Xt(i) ∧ Y t(i) (t ≥ 0).

Then (Yt)t∈R is a λ/(1 + λ)-thinning of (Xt)t≥0.
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Interpretation of the self-duality

Let (Xs,t)s≤t be the stochastic flow of a biased voter model, and
let (Xt,s)t≥s be the stochastic flow of another such biased voter
model, with time running backwards.
Let q = λ/(1 + λ). Self-duality says that

E
[
ψq

(
Xs,t(x), x ′

)]
= E

[
ψq

(
x ,Xt,s(x ′)

)]
,

but this is not a pathwise duality.

Problem Can we couple (Xs,t)s≤t and (Xt,s)t≥s such that they
have the same death events and skeletal process (Y t)t∈R?

If we can, then E
[
ψq

(
Xs,t(x), x ′

)]
= P

[
Xs,t(x) ∧ x ′ ∧ Y t = 0

]
and

1{Xs,t(x) ∧ x ′ ∧ Y t = 0} = 1{x ∧ Xt,s(x ′) ∧ Y s = 0}
= 1{there is a path through Y from x × {s} to x ′ × {t}}.
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Interpretation of the self-duality
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Interpretation of the self-duality
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Interpretation of the self-duality
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The biased voter model

Since the maps votij , braij , and deathi are monotone, the biased
voter model has an upper invariant law ν.
We say that the process survives if

Pδi
[
Xt 6= 0 ∀t ≥ 0

]
> 0.

For any µ > 0, we define

λc(µ) := inf{λ ≥ 0 : ν 6= δ0},
λ′c(µ) := inf{λ ≥ 0 : X survives}.

Our basic result about ergodicity of particle systems implies

λc(µ) ≥ µ/D and λ′c(µ) ≥ µ/D,

where D is the degree of any vertex in (Λ,E ). On the other hand,
one can prove that λc(µ), λ′c(µ) <∞.
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The biased voter model

Proposition λc(µ) = λ′c(µ).

Proof We use self-duality. As already observed, if X ,X ′,Y are
independent {0, 1}Λ-valued r.v.’s and (Y (i))i∈Λ are i.i.d. with
P[Y (i) = 1] = q = λ/(1 + λ), then

E
[
ψq(X ,X ′)

]
= P

[
X ∧ X ′ ∧ Y = 0

]
Now

qP1
[
Xt(i) = 1

]
= P1

[
Xt ∧ δi ∧ Y 6= 0

]
= Pδi

[
1 ∧ X ′t ∧ Y 6= 0

]
−→
t→∞

Pδi
[
X ′t 6= 0 ∀t ≥ 0

]
,

where in the last step, we have used

extinction versus unbounded growth.
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Extinction versus unbounded growth

Lemma If µ > 0, then the biased voter model X started in any
finite initial state X0 satisfies

∃t <∞ s.t. Xt = 0 or lim
t→∞

|Xt | =∞ a.s.

Proof W.l.o.g. |X0| ≤ N. Set τ0 := 0 and

τn+1 := inf
{

t ≥ τn + 1 : |Xt | ≤ N
}
.

The assumption µ > 0 implies

ε := inf
x : |x |≤N

Px [X1 = 0] > 0,

and hence, by the strong Markov property

P[Xτn 6= 0] ≤ (1− ε)n.
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The additive dual

The additive, pathwise dual of the biased voter model X with
generator

G f (x) :=
∑

(i ,j)∈~E

{
f
(
votijx

)
− f (x)

}
+ λ

∑
(i ,j)∈~E

{
f
(
braijx

)
− f (x)

}
+µ
∑
i∈Λ

{
f
(
deathix

)
− f (x)

}
,

are systems of branching and coalescing random walks Y , with
generator

G ′f (y) :=
∑

(i ,j)∈~E

{
f (rwijy)− f (y)

}
+ λ

∑
(i ,j)∈~E

{
f (braijy)− f (y)

}
+
∑
i∈Λ

µ
{

f (deathiy)− f (y)
}
.
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Interpretation of the additive dual

We can interpret the particles of Y as potential ancestors.
Start Y with a single particle at i . The pathwise duality relation

1{Xs,t(x) ∧ δi = 0} = 1{x ∧ Yt,s(δi ) = 0}
says that the site i is at time t occupied by a fit organism if and
only if at least one of the occupied sites of Ybt,s(δi ) contains a fit
organism.

In the forward picture, a branching map braij represents a
selection event, i.e., a reproduction event that can only be used by
fit individuals.
In the backward picture, this translates into a branching map braji
that says we must follow both potential ancestors back in time,
and if one of them is fit, then the organism at j will be fit.

Likewise, deleterious mutations in the forward picture mean that
these individuals stop being potential ancestors, since their type is
certainly 0.
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The mean-field model

Let XN be a biased voter model on the complete graph (ΛN ,EN)
with N vertices and with selection rate λN−1 and mutation rate µ.
Then

X
N
t :=

1

N

∑
i∈ΛN

XN
t (i)

is a Markov process that jumps

x 7→

{
x + 1

N with rate (N2 + λN)x(1− x),

x − 1
N with rate N2x(1− x) + µNx .

Since
Ex
[
X

N
t − x

]
=λx(1− x)− µxt + O(t2),

Ex
[
(X

N
t − x)2

]
= O(N−1) + O(t2),

XN
t converges in law to the diffusion with generator

G (x) =
[
x(1− x) ∂2

∂x2 + λx(1− x) ∂
∂x − µx ∂

∂x

]
f (x).
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The mean-field model

The diffusion with generator

G (x) =
[
x(1− x) ∂2

∂x2 + λx(1− x) ∂
∂x − µx ∂

∂x

]
f (x).

is dual to a generalization of the Kingman coalescent that jumps

y 7→

{
y + 1 with rate λy(y − 1),

y − 1 with rate y(y − 1) + µy .

When y is large, the coalescence dominates the branching.
In line with this, the process still comes down from infinity.

The diffusion with generator G is also self-dual with duality
function

ψ(x , x ′) = e−λ
−1xx ′ .
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The Brownian net

Consider a one-dimensional system of branching and coalescing
random walks with small branching rate ε. Sun & S. (2008) have
shown that in the diffusive scaling limit, when space is rescaled by
ε and time by ε2, such a system converges to a nontrivial limit
process, the branching coalescing point set.

It is even possible to start particle from each point in space and
time. This yields an object called the Brownian net.

This has been extended to systems with deaths by Newman,
Ravishankar & Schertzer (2015). They have also shown that with
the help of the Brownian web and net, it is possible to describe the
scaling limits of a large class of one-dimenional systems, including
low-temperature Potts models.

In dimensions d ≥ 2, the time scales for the motion of particles
and for coalescence separate, leading to different scaling limits.
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Interface tightness

Interface tightness for biased voter models has recently been
proved by Sun, S., & Yu, based on the “pseudo Lyapunov

function” technique of Sturm & S. (2008).
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The Neuhauser-Pacala model

Denote a point in Zd by i = (i1, . . . , id).

Def neighborhood of a site Ni := {j ∈ Zd : 0 < ‖i − j‖∞ ≤ R}.

(Here R = 1, d = 2).
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The Neuhauser-Pacala model

Def local frequency fτ (i) := |Ni |−1|{j ∈ Ni : x(j) = τ}|.

1 0 1 1 0 0

1 1 0 1 1 1

1 1 0 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

Here f0(i) = 3/8, f1(i) = 5/8.
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The Neuhauser-Pacala model

Fix rates α01, α10 ≥ 0.

1 0 1 1 0 0

1 1 0 1 1 1

1 1 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

†

With rate f0 + α01f1 an organism of type 0 dies. . .
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The Neuhauser-Pacala model

1 0 1 1 0 0

1 1 0 1 1 1

1 1 1 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

. . . and is replaced by a random type from the neighborhood.
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The Neuhauser-Pacala model

Neuhauser & Pacala (1999): Markov process in the space

{0, 1}Zd
of spin configurations x = (x(i))i∈Zd , where spin x(i) flips:

0 7→ 1 with rate f1(f0 + α01f1),

1 7→ 0 with rate f0(f1 + α10f0),

with

fτ (i) :=
|{j ∈ Ni : x(j) = τ}|

|Ni |
Ni := {j : 0 < ‖i − j‖∞ ≤ R}.

the local frequency of type τ = 0, 1.

Interpretation: Interspecific competition rates α01, α10. Organism
of type 0 dies with rate f0 + α01f1 and is replaced by type sampled
at random from distance ≤ R.
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The Neuhauser-Pacala model

Parameter α01 measures the strength of competition felt by type 0
from type 1 (compared to strength 1 from its own type).
If α01 < 1, then type 0 dies less often due to competition from type
1 than from competition with its own type: balancing selection.
If α01 > 1, then type 0 dies more often due to competition from
type 1 than from competition with its own type, i.e., type 1 is an
agressive species.

By definition, type 0 survives if starting from a single organism of
type 0 and all other organisms of type 1, there is a positive
probability that the organisms of type 0 never die out.

By definition, one has coexistence if there exists an invariant law
concentrated on states where both types are present.
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Mean field model

In the mean field model, the lattice Zd is replaced by a complete
graph with N vertices. In this case, the neighborhood Ni of a
vertex i is simply all sites except i .

In the limit N →∞, the frequencies Fτ (t) of type τ = 0, 1 satisfy
a differential equation:

∂
∂t F1(t) = F1(t)

(
F0(t) + α01F1(t)

)
F0(t)

−F0(t)
(
F1(t) + α10F0(t)

)
F1(t).

with F0 = 1− F1.
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Mean field model

∂
∂t F1

F1

0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

0.15

0.2 α01 < 1, α10 < 1

Balancing selection (α01 = 0.6, α10 = 0.4).
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Mean field model

∂
∂t F1

F1

0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

0.15

0.2 α01 > 1, α10 < 1

Type 1 is an agressive species (α01 = 1.7, α10 = 0.4).
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Mean field model

∂
∂t F1

F1

0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

0.15

0.2 α01 < 1, α10 > 1

Type 0 is an agressive species (α01 = 0.6, α10 = 1.4).
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Mean field model

∂
∂t F1

F1

0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

0.15

0.2 α01 > 1, α10 > 1

Both types are agressive species (α01 = 1.7, α10 = 1.4).
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Mean field model

0’s survive

1’s survive
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Dimension d ≥ 3
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1’s survive
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Dimension d = 2
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1’s survive
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Dimension d = 1, range R ≥ 2
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Dimension d = 1, range R = 1

0’s survive

1’s survive
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Rigorous results

α01

α10

1

1

Thm 1

Con
j 1

Thm 4

Thm 4

Thm 4

Thm 4

Neuhauser & Pacala (1999) have proved that in the spatial model,
the regions of coexistence and founder control are reduced. Except
when d = 1 = R, coexistence is possible for α01 = α10 = α small
enough. They conjectured that this is true for all α < 1.
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Rigorous results

α01

α10

1

1

Cox & Perkins (2007) have proved coexistence in a cone near
(1, 1) for dimensions d ≥ 3. Cox, Merle & Perkins (2010) have an
analogue result for d = 2. The statement is believed to be false in
dimension d = 1.
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Voter model perturbations

For (α01, α10) = (1, 1) we have a classical voter model.

In dimensions d ≥ 2, Cox, Merle and Perkins prove that it is
possible to send α01, α10 → 1 through a cone (d ≥ 3) or cusp
(d = 2) such that rescaled sparse models converge to supercritical
super Brownian motion.

Using this, for (α01, α10) very close to (1, 1), they can set up a
comparison with oriented percolation and prove survival of the
ones. By symmetry, the same holds for the zeros and one can
conclude coexistence.
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Special models

α01

α10

1

1 pure voter model

cancellative system
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A cancellative representation

Recall that the rebellious voter map is defined as

rvotkji (x)(l) :=

{
1− x(i) if l = i and x(k) 6= x(j),

x(l) otherwise.

Lemma The generator of the symmetric Neuhauser-Pacala model
with α01 = α10 = α ∈ [0, 1] can be represented in cancellative
maps as

G f (x) = α
∑
i∈Zd

|Ni |−1
∑
j∈Ni

{
f
(
votji (x)

)
− f
(
x
)}

+ 1
2 (1− α)

∑
i∈Zd

|Ni |−2
∑

k,j∈Ni

{
f
(
rvotkji (x)

)
− f
(
x
)}
.

Proof Since the probability that two sites sampled at random from
Ni are of different types is given by 2f0f1, we see that the site i
jumps 0 7→ 1 with rate

αf1 + 1
2 (1− α)2f0f1 = f1

[
α(f0 + f1) + (1− α)f0

]
= f1(f0 + αf1).
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A cancellative representation

rvot1,2,3 adbr3,2,1

The rebellious voter model map rvotkji is dual to the
annihilating double branching map

adbrijk(y)(l) =

{
y(l) + y(i) mod(2) if l = j , k ,

y(l) otherwise.
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A cancellative representation

rvot1,2,3 adbr3,2,1

The rebellious voter model map rvotkji is dual to the
annihilating double branching map

adbrijk(y)(l) =

{
y(l) + y(i) mod(2) if l = j , k ,

y(l) otherwise.
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A cancellative representation

rvot1,2,3 adbr3,2,1

The rebellious voter model map rvotkji is dual to the
annihilating double branching map

adbrijk(y)(l) =

{
y(l) + y(i) mod(2) if l = j , k ,

y(l) otherwise.
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Parity preserving branching

The cancellative dual of the symmetric Neuhauser-Pacala model is
a system of parity preserving branching and annihilating random
walks.

G ′f (y) = α
∑
i∈Zd

|Ni |−1
∑
j∈Ni

{
f
(
arwij(y)

)
− f
(
y
)}

+ 1
2 (1− α)

∑
i∈Zd

|Ni |−2
∑

k,j∈Ni

{
f
(
adbrijk(y)

)
− f
(
y
)}
.

Jan M. Swart Spatial Models in Population Biology



Parity preserving branching

Def A cancellative system X is type symmetric if the transition
x 7→ x ′ has the same rate as (1− x) 7→ (1− x ′).

Def A cancellative system Y is parity preserving if a.s. |Yt | is odd
iff |Y0| is odd (t ≥ 0).

Lemma A cancellative system X is type symmetric iff its dual Y is
parity preserving.

Proof Let m(i , j) be the matrix of a cancellative map m. Then:

I m is type symmetric iff
∑

j m(i , j) is even for each i ,

I m is parity preserving iff
∑

i m(i , j) is even for each j .

In particular, m is type symmetric iff m† is parity preserving.
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Interfaces

In the one-dimensional case, we have an extra tool available.

Let Z + 1
2 := {k + 1

2 : k ∈ Z} and let I = Z or = Z + 1
2 .

Define a gradient operator ∇ : {0, 1}I → {0, 1}I+
1
2 by

∇x(i) := x(i − 1
2 )⊕ x(i + 1

2 ).

If (Xt)t≥0 is type symmetric, then (∇Xt)t≥0 is a Markov process:
the interface model of X .

0

1

1

0

1

0

1

1

0

0

0

1

1

1

0X

∇X

Interface models are always parity preserving.
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Interfaces and duality

[S. ’13] The interface model of a type symmetric cancellative spin
system is a parity preserving cancellative spin system. Conversely,
every parity preserving cancellative spin system is the interface
model of a unique type symmetric cancellative spin system.
Moreover, the following commutative diagram holds:

Y X ′

X Y ′
interface

interface

dual dual

Here X ,X ′ are type symmetric and Y ,Y ′ are parity preserving.
X and X ′ are dual with the duality function ψ(x , x ′) = 〈〈x ,∇x ′〉〉.
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Interfaces and duality

Proof (sketch) Recall the duality function

〈〈x , y〉〉 =
∑
i

x(i)y(i) mod(2).

Then

〈〈x ,∇y〉〉 = 〈〈∇x , y〉〉 (x ∈ {0, 1}I, y ∈ {0, 1}I+
1
2 ).

If m is type symmetric and m† is the dual map, then ∇m∇−1 is
the corresponding map on interfaces. Now

(∇m∇−1)† = ∇−1m†∇

correspond to the dual of the interface model resp. the model
whose interface model is the dual.

(Some care is needed to define ∇−1 but this is the basic idea.)
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Classification of behavior

Let Y be parity preserving.

Def An invariant law ν is nontrivial if ν({0}) = 0. We say that Y
persists if it has a nontrivial invariant law.

Def Y survives if Py [Yt 6= 0 ∀t ≥ 0] > 0 for some even initial
state y .

Def Y is stable if the state with a single particle is positively
recurrent for the process modulo translations Ỹ .

Def Y is strongly stable if Y is stable and E
[
|Ỹ∞|

]
<∞ in

equilibrium.
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Classification of behavior

Let X be type symmetric.

Def An invariant law ν is coexisting if ν({0, 1}) = 0. We say that
X exhibits coexistence if it has a coexisting invariant law.

Def X survives if Px [X t 6= 0 ∀t ≥ 0] > 0 for some finite initial
state x .

Def X exhibits (strong) interface tightness if its interface model is
(strongly) stable.
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The odd upper invariant law

Odd upper invariant law Let X be a cancellative spin system,
started in an initial law such that P[(X0(i))i∈Λ ∈ · ] = π1/2, the

product measure with intensity 1
2 . Then there exists an invariant

law ν1/2 such that

P
[
Xt ∈ ·

]
=⇒
t→∞

ν1/2.

Proof Let Y be the cancellative dual of X . Then

E
[
〈〈Xt , y〉〉

]
= Ey

[
〈〈X0,Yt〉〉

]
= 1

2P
y
[
Yt 6= 0

]
−→
t→∞

1
2P

y
[
Yt 6= 0 ∀t ≥ 0

]
.

Since this holds for each y ∈ {0, 1}Λ with |y | <∞, using the
compactness of {0, 1}Λ, it follows that π1/2Pt =⇒

ν→∞
1/2 for some

probability measure ν1/2. Using the continuity of Ps we see that
ν1/2Ps = limt→∞ π1/2PtPs = ν1/2 (s ≥ 0), so ν1/2 is invariant.
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The odd upper invariant law

Lemma Let X be a type symmetric cancellative spin system with
odd upper invariant law ν1/2, and let Y be its dual partity
preserving cancellative spin system with odd upper invariant law
ν
′ 1/2. Then:

(a) The following statements are equivalent: (i) X has a coexisting
invariant law, (ii) ν1/2({0, 1}) < 1, (iii) Y survives.

(b) The following statements are equivalent: (i) Y has a nontrivial
invariant law, (ii) ν

′ 1/2({0}) < 1, (iii) X survives.
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The odd upper invariant law

Proof of (a) Recall that Y survives if Py [Yt 6= 0 ∀t ≥ 0] > 0 for
some even initial state y . Let X∞ have law ν1/2. Then

E
[
〈〈X∞, y〉〉

]
= 1

2P
y [Yt 6= 0 ∀t ≥ 0] > 0

for some even y , which is only possible if ν1/2({0, 1}) < 1.
Subtracting a linear combination of δ0 and δ1 if necessary,
we find a coexisting invariant law.
Conversely, if X∞ is distributed according to some coexisting
invariant law, then, there exists i , j such that
P[X∞(i) 6= X∞(j)] > 0 and hence

Pδi+δj
[
Yt 6= 0

]
≥ E

[
〈〈X∞,Yt〉〉

]
= E

[
〈〈X∞, δi + δj〉〉

]
> 0

uniformly in t, proving that Y survives.
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Strong interface tightness

Theorem [S.’13] Strong interface tightness implies
noncoexistence.

Proof (sketch) Assume that strong interface tightness holds for
X . Let the law of Y ′∞ be invariant modulo shifts and let Ỹ ′∞ + i
denote the configuration Ỹ ′∞ shifted by i . Then

h(x) :=
∑

i∈Z+ 1
2

E
[
〈〈x ,Y ′∞ + i〉〉

]
is a harmonic function for the process X ′ (dual of interface model
of X ). Moreover, there exist constants 0 < c ≤ C <∞ s.t.

c |x | ≤ h(x) ≤ C |x |.

By martingale convergence, h(X ′t) converges a.s., which implies
that X ′ dies out a.s. The same holds for its interface model Y
which is dual to X , so by duality X exhibits noncoexistence.
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Invariant laws and harmonic functions

The previous proof exploited a general principle that is sometimes
useful:

Let X and Y be Markov processes that are dual w.r.t. some duality
function ψ and let ν be an invariant law of X . Then

h(y) :=

∫
ν(dx)ψ(x , y)

defines a harmonic function for Y , as follows by writing

Ey
[
h(Yt)

]
= Ey

[
ψ(Yt ,X0)

]
= E

[
ψ(y ,Xt)

]
= h(y),

where (Xt)t≥0 has initial law ν and is independent of Y .
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The odd upper invariant law

Theorem [Sturm & S. ’08] Let X be the Neuhauser-Pacala
model and let Y be its cancellative dual.
(a) If α < 1 and Y survives, then ν1/2 is the unique translation
invariant coexisting invariant law of X .
(b) If 0 < α < 1, and Y survives and is not stable, then the
Neuhauser-Pacala model started in any translation invariant
coexisting initial law satisfies

P
[
Xt ∈ ·

]
=⇒
t→∞

ν1/2.

Note We have seen that survival of Y is equivalent to the
existence of a coexisting invariant law. In one dimension, by
[S. ’13], survival of Y implies that Y is not strongly stable.

Proof idea Extinction versus unbounded growth.
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The rebellious voter model

The rebellious voter model is defined by the generator:

Gf (x) :=α
∑
i

{
f
(
voti ,i+1(x)

)
− f
(
x
)}

+α
∑
i

{
f
(
voti ,i−1(x)

)
− f
(
x
)}

+(1− α)
∑
i

{
f
(
rvoti−1,i ,i+1(x)

)
− f
(
x
)}

+(1− α)
∑
i

{
f
(
rvoti+1,i ,i−1(x)

)
− f
(
x
)}
.

The one-sided rebellious voter model is defined by:

Gf (x) :=α
∑
i

{
f
(
voti ,i+1(x)

)
− f
(
x
)}

+(1− α)
∑
i

{
f
(
rvoti−1,i ,i+1(x)

)
− f
(
x
)}
.
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The rebellious voter model

The rebellious voter model is self-dual in the sense that it is equal
to the dual of its interface model, or more simply:

Y

X

dual interface

Consequence Survival equivalent to coexistence.
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The rebellious voter model
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Edge speeds for the rebellious voter model (left) and its one-sided
counterpart (right) [S. & Vrbenský ’10].
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The rebellious voter model

Define the survival probability

ρ(α) := Pδ0 [Xt 6= 0 ∀t ≥ 0].

• coexistence ⇔ ρ(α) > 0.

Define the fraction of time spent with a single interface

χ(α) := P
[
|Y ′∞| = 1

]
.

• interface tightness ⇔ χ(α) > 0.
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The rebellious voter model
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The functions ρ and χ for the two-sided rebelious voter model.
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The rebellious voter model
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The rebellious voter model

[S. & Vrbenský ’10] It seems that for the one-sided model, the
functions ρ and χ are described by the explicit formulas:

ρ(α) = 0 ∨ 1− 2α

1− α
and χ(α) = 0 ∨

(
2− 1

α

)
.

In particular, one has the symmetry ρ(1− α) = χ(α) and the
critical parameter seems to be given by αc = 1/2.

Open problem Prove (strong) interface tightness for some α < 1.
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Cooperative branching

Recall the cooperative branching map

coopii ′jx(k) :=

{ (
x(i) ∧ x(i ′)

)
∨ x(j) if k = j ,

x(k) otherwise.

We will be interested in systems with cooperative branching and
deaths. We start with a mean-field model. Let [N] := {1, . . . ,N}
and

[N]〈3〉 :=
{

(i1, i2, i3) ∈ [N]k : im 6= in ∀n 6= m
}
.

Consider the generator

Gf (x) :=
α

(N − 1)(N − 2)

∑
(i ,i ′,j)∈[N]〈3〉

{
f
(
coopii ′jx

)
− f
(
x
)}

+
∑
i∈[N]

{
f
(
deathix

)
− f
(
x
)}
.
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Cooperative branching

Then

X
N
t :=

1

N

∑
i∈ΛN

XN
t (i)

is a Markov process that jumps

x 7→

{
x + 1

N with rate ≈ αNx2(1− x),

x − 1
N with rate Nx .

Letting N →∞, XN
t can be approximated by a solution to the

mean-field ODE

∂
∂t X t = αX t

2(1− X t)− X t =: Fα(X t) (t ≥ 0).

Jan M. Swart Spatial Models in Population Biology



Cooperative branching

Fα(x)

x

α = 3
0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1
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0.3

For α < 4, the equation ∂
∂t X t = Fα(X t) has a single, stable fixed

point x = 0.
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Cooperative branching

Fα(x)

xα = 4
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For α = 4, a second fixed point appears at x = 0.5.
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Cooperative branching

Fα(x)

x

α = 5
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For α > 4, there are two stable fixed points and one unstable fixed
point, which separates the domains of attraction of the other two.
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Cooperative branching

zupp

zmid

zlow

x

α

2 4 6 8 10
0

0.2

0.4

0.6

0.8

Fixed points of ∂
∂t X t = Fα(X t) for different values of α.
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Cooperative branching

In physics notation for reaction-diffusion models, cooperative
branching is denoted as 2A 7→ 3A. This sort of dynamics, together
with 3A 7→ 2A, was already considered by F. Schlögl [Z. Phys.
1972]. Lebowiz, Presutti and Spohn [JSP 1988] call this binary
reproduction.

C. Noble [AOP 1992], R. Durrett [JAP 1992], and C. Neuhauser
and S.W. Pacala [AAP 1999] call a model with cooperative
branching and deaths the sexual reproduction process.

The unstable fixed point says that in well-mixing populations, once
the population drops below a critical level, it becomes so hard for
organisms to find a partner that the population dies out.
This effect is also responsible for the first order (discontinuous)
phase transition - at least in well-mixing populations.

Jan M. Swart Spatial Models in Population Biology



A spatial model

Recall the exclusion map

exclijx(k) :=


x(i) if k = j ,
x(j) if k = i ,
x(k) otherwise.

Consider the one-dimensional model with generator

Gf (x) := 1
2α
∑
i

{
f
(
coopi−2,i−1,ix

)
− f
(
x
)}

+ 1
2α
∑
i

{
f
(
coopi+2,i+1,ix

)
− f
(
x
)}

+
∑
i

{
f
(
deathix

)
− f
(
x
)}

+ε−1
∑
i

{
f
(
excli ,i+1x

)
− f
(
x
)}
.

Jan M. Swart Spatial Models in Population Biology



Fast stirring

Set
mε(x , t) := P[Xε−2t(bεxc) (x ∈ R, t ≥ 0).

[DeMasi, Ferrari & Lebowitz ’86] In the fast stirring limit ε ↓ 0,
the particle density mε converges to a solution of the PDE

∂
∂t m = ∂2

∂x2 m + αm2(1−m)−m.

Note if we start with a constant density, then mt(x) ≡ mt solves
the mean-field ODE.
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The upper invariant law

mupp(λ)

λ

2 4 6 8
0

0.2

0.4

0.6

0.8

1.0

[Noble ’92] For small ε > 0, the density of the upper invariant law
is at least zupp(λ) for λ > 4.5 and close to zero for λ < 4.5.
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Travelling waves

For λ > 4, the equation ∂
∂t m = ∂2

∂x2 m + λm2(1−m)−m has
travelling wave solutions.

m(x , t)

x

[DeMasi, Ianiro, Pellegrinotti, & Presutti ’84] The propagation
speed is positive for λ > 4.5, and negative for 4 < λ < 4.5.
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Metastability

For 4 < λ < 4.5 and ε small, rare random events bring the local
particle density below a critical value.

m(x , t)

x

The interval of low population density spreads in both directions.
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The critical values

Def The process survives if Px [Xt 6= 0 ∀t ≥ 0] > 0 for some, and
hence for all finite nonzero initial states x .

Monotonicity implies that there exist λc, λ
′
c such that

I The upper invariant law satisfies ν({0}) = 0 for λ > λc and
ν = δ0 for λ < λc.

I The process survives for λ > λ′c and dies out for λ < λ′c.

Conjecture 1 limε↓0 λc(ε) = 4.5.

Conjecture 2 λ′c = λc.

[Noble ’92] 2 ≤ λc(ε) for all ε > 0 and lim supε↓0 λc(ε) ≤ 4.5.
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Order of the phase transition

mupp(λ)

λ
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continuous function

Conjecture For fixed ε > 0, the phase transition is second order
and in the same universality class as the contact process.
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Amenability

Let (Λ,E ) be a transitive graph. For each A ⊂ Λ, set

∂A :=
{

i 6∈ A : ∃j ∈ A s.t. {i , j} ∈ E
}

Def (Λ,E ) is amenable if for every ε > 0 there exists a finite
nonzero A ⊂ Λ such that

|∂A|
|A|
≤ ε.

(Λ,E ) is said to have exponential growth (resp. subexponential
growth) if the limit

lim
n→∞

1

n
log
∣∣{j ∈ Λ : d(i , j) ≤ n}

∣∣
is positive (resp. zero), where d( · , · ) denotes the usual graph
distance.

subexponential growth
⇒
6⇐ amenability.
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Amenability

Z2 T2

Zd with nearest-neighbor edges is amenable and of subexponential
growth, but regular trees are nonamenable and of exponential
growth.

The lamplighter group gives through its Cayley graphs rise to
transitive graphs that have exponential growth but are amenable.
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Some conjectures and questions

Recall that λc, λ
′
c are the critical values for nontriviality of the

upper invariant law and for survival, respectively.

Conjecture λc ≤ λ′c, with = on Zd and < on regular trees.

Motivation On nonamenable lattices, in any finite population, a
positive fraction of the population lives on the boundary of the
population, where it is harder to find a partner.
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Some conjectures and questions

Conjecture On Zd , the upper invariant is the limit law started
from any nontrivial initial law.

Conjecture On regular trees, there exist two mutually singular
translation invariant stationary laws, that roughly correspond to
the fixed points zmid and zupp of the mean-field ODE.

Motivation By our previous arguments, on nonamenable lattices,
if one starts in a translation invariant initial law with a very low
density, then the process should converge to δ0.
But then, by monotonicity, there should be some set in the space
of all translation invariant laws equipped with the stochastic order
that separates the domains of attraction of δ0 and ν.
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