IV Spatial Models in Population Biology

Jan M. Swart

Lecture 4: Mean-field duality

Mean-field duality

Plan:

- The mean-field ODE
- A recursive tree representation
- Endogeny
- The multivariate ODE
- A higher-level ODE

With cooperative branching as a running example.

The mean-field ODE

Let S be a Polish space, let \mathcal{G} me a collection of measurable maps $g: S^{k} \rightarrow S$ with $k=k_{g} \geq 0$, and let $\left(r_{g}\right)_{g \in \mathcal{G}}$ be nonnegative rates. We view S^{0} as a set with a single element, i.e., $k_{g}=0$ means the function g is constant.

Let $[N]:=\{1, \ldots, N\}$ and

$$
[N]^{\langle k\rangle}:=\left\{\mathbf{i}=\left(i_{1}, \ldots, i_{k}\right) \in[N]^{k}: i_{m} \neq i_{n} \forall n \neq m\right\},
$$

which has $N^{\langle k\rangle}:=N(N-1) \cdots(N-k+1)$ elements.
For $g: S^{k} \rightarrow S, N \geq k, \mathbf{i} \in[N]^{\langle\langle k\rangle}$, and $j \in[N]$, define $g^{\mathbf{i}, j}: S^{N} \rightarrow S^{N}$ by

$$
g^{\mathbf{i}, j^{\prime}} x\left(j^{\prime}\right):= \begin{cases}g\left(x\left(i_{1}\right), \ldots, x\left(i_{k}\right)\right) & \text { if } j^{\prime}=j \\ x\left(j^{\prime}\right) & \text { otherwise }\end{cases}
$$

The mean-field ODE

The Markov process $\left(X_{t}^{N}\right)_{t \geq 0}$ with state space S^{N} and generator

$$
G f(x):=\sum_{g \in \mathcal{G}} r_{g} \sum_{j \in[N]} \frac{1}{N^{(k)}} \sum_{\mathbf{i} \in[N]^{\langle k\rangle}}\left\{f \left(\left(g^{\mathbf{i}, j} x\right)-f((x)\}\right.\right.
$$

can be constructed in a Poissonian way as before, leading to a stochastic flow $\left(\mathbf{X}_{s, t}^{N}\right)_{s \leq t}$. As before, the empirical process

$$
\mu_{t}^{N}:=\mu\left[X_{t}^{N}\right] \quad(t \geq 0) \quad \text { with } \quad \mu[x]:=\frac{1}{N} \sum_{i \in[N]} \delta_{x(i)}
$$

is a Markov process. In the mean-field limit $N \rightarrow \infty$, we expect $\left(\mu_{t}^{N}\right)_{t \geq 0}$ to be close to the solution of an ODE.

The mean-field ODE

Let $\mathcal{M}^{1}(S)$ denote the space of all probability measures on S, equipped with the topology of weak convergence and the Borel- σ-algebra.
For each measurable map $g: S^{k} \rightarrow S$, we define a measurable map $\check{g}: \mathcal{M}^{1}(S)^{k} \rightarrow \mathcal{M}^{1}(S)$ by

$$
\check{g}\left(\mu_{1}, \ldots, \mu_{k}\right):=\mathbb{P}\left[g\left(X_{1}, \ldots, X_{k}\right) \in \cdot\right]
$$

where $\quad X_{1}, \ldots, X_{k}$ are indep. with $\mathbb{P}\left[X_{i} \in \cdot\right]=\mu_{i}$.
We also define $T_{g}: \mathcal{M}^{1}(S) \rightarrow \mathcal{M}^{1}(S)$ by

$$
T_{g}(\mu):=\check{g}(\mu, \ldots, \mu)
$$

Note that T_{g} is in general nonlinear, unless $k=1$.

The mean-field ODE

Theorem [Mach, Sturm \& S. '18] Assume that

$$
\sum_{g \in \mathcal{G}} r_{g} k_{g}<\infty
$$

Then, for each initial state $\mu_{0} \in \mathcal{M}^{1}(S)$, the mean-field $O D E$

$$
\begin{equation*}
\frac{\partial}{\partial t} \mu_{t}=\sum_{g \in \mathcal{G}}\left\{T_{g}\left(\mu_{t}\right)-\mu_{t}\right\} \quad(t \geq 0) \tag{1}
\end{equation*}
$$

has a unique solution. Here, writing $\langle\mu, \phi\rangle:=\int \phi \mathrm{d} \mu$, we interpret (1) in a weak sense: for each bounded measurable $\phi: S \rightarrow \mathbb{R}$, the function $t \mapsto\left\langle\mu_{t}, \phi\right\rangle$ is continuously differentiable and

$$
\frac{\partial}{\partial t}\left\langle\mu_{t}, \phi\right\rangle=\sum_{g \in \mathcal{G}}\left\{\left\langle T_{g}\left(\mu_{t}\right), \phi\right\rangle-\left\langle\mu_{t}, \phi\right\rangle\right\} \quad(t \geq 0)
$$

The mean-field ODE

Theorem [Mach, Sturm \& S. '18] Assume that $\sum_{g \in \mathcal{G}} r_{g} k_{g}<\infty$ and let S be finite. Let $\left(\mu_{t}^{N}\right)_{t \geq 0}$ be empirical processes such that $\mu_{0}^{N} \rightarrow \mu_{0}$ for some $\mu_{0} \in \mathcal{M}^{1}(S)$. Then

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T}\left\|\mu^{N}(t)-\mu_{t}\right\| \geq \varepsilon\right] \underset{N \rightarrow \infty}{\longrightarrow} 0 \quad \forall \varepsilon>0, T<\infty,
$$

where $\left(\mu_{t}\right)_{t \geq 0}$ solves the mean-field ODE (1).
Note Something similar should hold for infinite (even uncountable) S, at least when $\left(X_{0}^{N}(1), \ldots, X_{0}^{N}(N)\right)$ are i.i.d. with law μ_{0}.

The mean-field ODE

Remark We could be more general and also consider maps

$$
S^{k} \ni\left(x_{1}, \ldots, x_{k}\right) \mapsto\left(g_{1}\left(x_{1}, \ldots, x_{k}\right), g_{2}\left(x_{1}, \ldots, x_{k}\right)\right) \in S^{2}
$$

and similarly with S^{2} replaced by $S^{m}(m \geq 1)$. However, applying such a map with rate r has for the mean-field ODE the same effect as applying the maps g_{1} and g_{2} each with rate r.
Also, in our definition of $g^{\mathbf{i}, j}$, we could have chosen $j \in\left\{i_{1}, \ldots, i_{k}\right\}$, e.g. $j=i_{1}$ always. Again, although this yields a different Markov process, for the mean-field ODE this has no effect.

Cooperative branching

Let $S=\{0,1\}$ and $\mathcal{G}=\{$ coop, death $\}$, where

$$
\text { coop : }\{0,1\}^{3} \rightarrow\{0,1\} \text { and death : }\{0,1\}^{0} \rightarrow\{0,1\}
$$

are defined as

$$
\operatorname{coop}\left(x_{1}, x_{2}, x_{3}\right):=x_{1} \vee\left(x_{2} \wedge x_{3}\right) \text { and } \operatorname{death}():=0 .
$$

A probability measure μ on $\{0,1\}$ is uniquely determined by $\mu(\{1\})$. Setting $\bar{X}_{t}:=\mu_{t}(\{1\})$ and choosing the rates

$$
r_{\text {coop }}:=\alpha \quad \text { and } \quad r_{\text {death }}:=1
$$

we find the mean-field ODE

$$
\frac{\partial}{\partial t} \bar{X}_{t}=\alpha \bar{X}_{t}^{2}\left(1-\bar{X}_{t}\right)-\bar{X}_{t}=: F_{\alpha}\left(\bar{X}_{t}\right)
$$

Cooperative branching

For $\alpha<4$, the equation $\frac{\partial}{\partial t} \bar{X}_{t}=F_{\alpha}\left(\bar{X}_{t}\right)$ has a single, stable fixed point $\bar{x}=0$.

Cooperative branching

For $\alpha=4$, a second fixed point appears at $\bar{x}=0.5$.

Cooperative branching

For $\alpha>4$, there are two stable fixed points and one unstable fixed point, which separates the domains of attraction of the other two.

Cooperative branching

Fixed points of $\frac{\partial}{\partial t} \bar{X}_{t}=F_{\alpha}\left(\bar{X}_{t}\right)$ for different values of α.

Cooperative branching

In physics notation for reaction-diffusion models, cooperative branching is denoted as $2 A \mapsto 3 A$. This sort of dynamics, together with $3 A \mapsto 2 A$, was already considered by F. Schlögl [Z. Phys. 1972]. Lebowiz, Presutti and Spohn [JSP 1988] call this binary reproduction.
C. Noble [AOP 1992], R. Durrett [JAP 1992], and C. Neuhauser and S.W. Pacala [AAP 1999] call a model with cooperative branching and deaths the sexual reproduction process.
The unstable fixed point says that in well-mixing populations, once the population drops below a critical level, it becomes so hard for organisms to find a partner that the population dies out.
This effect is also responsible for the first order (discontinuous) phase transition - at least in well-mixing populations.

A recursive tree representation

Recall the Markov process

$$
\left(\mathcal{R}_{i}\left(\mathbf{X}_{s-t, t}\right)\right)_{t \geq 0}
$$

that traces back in time all sites at time $s-t$ that are relevant for the state at the site i at time s.

A recursive tree representation

A recursive tree representation

In the mean-field limit,

$$
\left(\mathcal{R}_{i}\left(\mathbf{X}_{s-t, t}\right)\right)_{t \geq 0}
$$

converges to a branching process.

A recursive tree representation

A recursive tree representation

Let $\overline{\mathbb{T}}$ be the set of all finite words $\mathbf{i}=i_{1} \cdots i_{n}(n \geq 0)$ made up from the alphabet $\mathbb{N}_{+}=\{1,2, \ldots\}$. We view $\overline{\mathbb{T}}$ as a tree with root \emptyset, the word of length zero, in which each individual \mathbf{i} has infinitely many offspring $\mathbf{i} 1, \mathbf{i} 2, \ldots$

Let $|r|:=\sum_{g \in \mathcal{G}} r_{g}$ and let $\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ be i.i.d. with law

$$
\mathbb{P}\left[\gamma_{\mathbf{i}}=g\right]=|r|^{-1} r_{g} \quad(g \in \mathcal{G})
$$

We inductively define a random subtree $\mathbb{T} \subset \overline{\mathbb{T}}$ which contains the root and satisfies

$$
\mathbf{i} j \in \mathbb{T} \quad \text { iff } \quad \mathbf{i} \in \mathbb{T} \quad \text { and } \quad j \leq k,
$$

where $k=k_{\mathrm{i}}:=k_{\gamma_{\mathrm{i}}}$ is the integer such that $\gamma_{\mathrm{i}}: S^{k} \rightarrow S$.
Then \mathbb{T} is the family tree of a branching process with maps $\left(\gamma_{\mathbf{i}}\right)_{i \in \mathbb{T}}$ attached to its vertices, such that the individual \mathbf{i} has $k_{\mathbf{i}}$ offspring.

A recursive tree representation

For any subtree $\mathbb{U} \subset \mathbb{T}$ that contains the root, we write

$$
\partial \mathbb{U}:=\{\mathbf{i} j \in \mathbb{T} \backslash \mathbb{U}: \mathbf{i} \in \mathbb{U}\}
$$

Let $\left(\sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}$ be i.i.d. exponentially distributed random variables with mean $|r|^{-1}$, independent of $\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}$. We interpret $\sigma_{\mathbf{i}}$ as the lifetime of \mathbf{i} and let

$$
\tau_{i_{1} \cdots i_{n}}^{*}:=\sigma_{\emptyset}+\sigma_{i_{1}}+\cdots+\sigma_{i_{1} \cdots i_{n-1}} \quad \text { and } \quad \tau_{\mathbf{i}}^{\dagger}:=\tau_{\mathbf{i}}^{*}+\sigma_{\mathbf{i}}
$$

denote its birth and death time. Then

$$
\mathbb{T}_{t}:=\left\{\mathbf{i} \in \mathbb{T}: \tau_{\mathbf{i}}^{\dagger} \leq t\right\} \quad \text { and } \quad \partial \mathbb{T}_{t}
$$

denote the set of individuals that have died before time t resp. are alive at time t. In particular,

$$
\left(\partial \mathbb{T}_{t}\right)_{t \geq 0}
$$

is a branching process where each individual \mathbf{i} gives with rate r_{g} birth to k_{g} offspring, for each $g \in \mathcal{G}$.

A recursive tree representation

Given a finite subtree $\mathbb{U} \subset \overline{\mathbb{T}}$ that contains the root, we define a map $G_{U}: S^{\partial U} \rightarrow S$ by

$$
G_{\mathbb{U}}:=x_{\emptyset} \quad \text { where } \quad\left(x_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}} \text { satisfy } x_{\mathbf{i}}=\gamma_{\mathbf{i}}\left(x_{\mathbf{i} 1}, \ldots, x_{\mathbf{i} k_{\mathbf{i}}}\right) \quad(\mathbf{i} \in \mathbb{U}) .
$$

In particular, we set $G_{t}:=G_{\mathbb{T}_{t}}$.
Theorem [Mach, Sturm \& S. '18] Assume that
$\sum_{g \in \mathcal{G}} r_{g} k_{g}<\infty$. Then the solution to the mean-field equation (1) is given by

$$
\mu_{t}=\mathbb{E}\left[T_{G_{t}}\left(\mu_{0}\right)\right] \quad(t \geq 0)
$$

i.e., $\mu_{t}=\mathbb{P}\left[X_{\emptyset} \in \cdot\right]$ where $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}_{t} \cup \partial \mathbb{T}_{t}}$ satisfy
(i) $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \partial \mathbb{T}_{t}}$ are i.i.d. with law μ_{0} and independent of $\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}_{t}}$.
(ii) $X_{\mathbf{i}}=\gamma_{\mathbf{i}}\left(X_{\mathbf{i} 1}, \ldots, X_{\mathrm{i}_{\mathrm{i}}}\right) \quad\left(\mathbf{i} \in \mathbb{T}_{t}\right)$.

A recursive tree representation

A recursive tree representation

In the special case that $k_{g}=1$ for each $g \in \mathcal{G}$, the mean-field ODE (1) is just the backward equation of a continuous-time Markov chain where each map $g \in \mathcal{G}$ is applied with Poisson rate r_{g}.
We can think of the collection of random variables $\left(\gamma_{\mathbf{i}}, \sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ as a generalization of the Poisson construction of a continuous-time Markov chain, where "time" now has a tree-like structure.

We let

$$
\mathcal{F}_{t}:=\sigma\left(\left(\partial \mathbb{T}_{s}\right)_{0 \leq s \leq t},\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}_{t}}\right)
$$

denote the filtration generated by the branching process $\left(\partial \mathbb{T}_{t}\right)_{t \geq 0}$ as well as the maps attached to the particles that have died by time t.

Unique ergodicity

Lemma Assume that

$$
R:=\sum_{g \in \mathcal{G}} r_{g}\left(k_{g}-1\right)
$$

satisfies $R<0$. Then the mean-field ODE (1) has a unique fixed point ν and solutions started in an arbitrary initial law μ_{0} satisfy

$$
\left\|\mu_{t}-\nu\right\| \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

where $\|\cdot\|$ denotes the total variation norm.
Proof The condition $R<0$ guarantees that $\left(\partial \mathbb{T}_{t}\right)_{t \geq 0}$ is a subcritical branching process and hence the tree \mathbb{T} is a.s. finite. Now $\partial \mathbb{T}=\emptyset$ and $G_{\mathbb{T}}: S^{0} \rightarrow S$ is a random constant that depends on the random finite tree \mathbb{T}. Setting $\nu:=\mathbb{P}\left[G_{\mathbb{T}} \in \cdot\right]$, the statement follows by observing that

$$
G_{t}=G_{\mathbb{T}_{t}} \underset{t \rightarrow \infty}{\longrightarrow} G_{\mathbb{T}} \quad \text { a.s. }
$$

Unique ergodicity

For our process with cooperative branching and deaths,

$$
R=\alpha \cdot(3-1)+1 \cdot 0=2 \alpha
$$

which implies that the mean-field ODE has a unique attractive fixed point for $\alpha<1 / 2$.
This is not very good compared to the necessary and sufficient condition $\alpha<4$ that came out of our earlier analysis of the ODE, but the proof of the previous lemma actually works more generally: Lemma Assume that

$$
\mathbb{P}\left[\exists t<\infty \text { s.t. } G_{t} \text { is constant }\right]=1
$$

Then the mean-field ODE (1) has a unique fixed point ν and solutions started in an arbitrary initial law μ_{0} satisfy

$$
\left\|\mu_{t}-\nu\right\| \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

where $\|\cdot\|$ denotes the total variation norm.

Unique ergodicity

For our process with cooperative branching and deaths, say that $\mathbb{S} \subset \mathbb{T}$ is a good subtree if $\emptyset \in \mathbb{S}$ and
(i) $\gamma_{\mathbf{i}} \neq$ death for all $\mathbf{i} \in \mathbb{S}$
(ii) $\forall \mathbf{i} \in \mathbb{S},\{\mathbf{i} 1, \mathbf{i} 2, \mathbf{i} 3\} \cap \mathbb{S}$ is either $\{\mathbf{i} 1\}$ or $\{\mathbf{i} 2, \mathbf{i} 3\}$.

Lemma The following events are a.s. equal:
(i) \mathbb{T} contains a good subtree.
(ii) G_{t} is constant for some $t<\infty$.

Moreover, $\mathbb{P}[\mathbb{T}$ contains a good subtree] >0 iff $\alpha \geq 4$.

Good subtrees

Good subtrees

Good subtrees

Good subtrees

A Recursive Distributional Equation

Fixed points μ of the mean-field ODE (1) solve the Recursive Distributional Equation (RDE)

$$
\begin{equation*}
\mu=|r|^{-1} \sum_{g \in \mathcal{G}} T_{g}(\mu) . \tag{2}
\end{equation*}
$$

For each solution μ to the RDE, it is possible to define a collection of random variables $\left(\gamma_{\mathrm{i}}, X_{\mathrm{i}}\right)_{i \in \overline{\mathbb{T}}}$ such that:
(i) $\left(\gamma_{\mathrm{i}}\right)_{i \in \overline{\mathbb{T}}}$ is an i.i.d. collection of \mathcal{G}-valued random variables with law $\mathbb{P}\left[\gamma_{\mathrm{i}}=g\right]=|r|^{-1} r_{g}(g \in \mathcal{G})$.
(ii) For each finite subtree $\mathbb{U} \subset \overline{\mathbb{T}}$ that contains the root, $\left(X_{i}\right)_{i \in \partial U}$ are i.i.d. with common law μ and independent of $\left(\gamma_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{U}}$.
(iii) $X_{\mathbf{i}}=\gamma_{\mathbf{i}}\left(X_{i 1}, \ldots, X_{\mathbf{k}_{\mathrm{i}}}\right)(\mathbf{i} \in \overline{\mathbb{T}})$.

Following Aldous and Bandyopadhyay (2005), we call such a collection of r.v.'s a Recursive Tree Process (RTP).

A Recursive Distributional Equation

We can think of fixed points μ of the mean-field ODE (1) as a generalization of the invariant law of a (continuous-time) Markov chain.

Then a Recursive Tree Process (RTP) is a generalization of a stationary (continuous-time) Markov chain.

If we add independent exponentially distributed lifetimes $\left(\sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}$ as before, then for each $t \geq 0$:
$\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \partial \mathbb{T}_{t}}$ are i.i.d. with common law μ and independent of the σ-field \mathcal{F}_{t} of events measurable before time t.

The n-variate ODE

Recall that the mean-field ODE (1) describes the Markov process $\left(X_{t}^{N}\right)_{t \geq 0}$ on the complete graph in the mean-field limit $N \rightarrow \infty$. The Markov process $\left(X_{t}^{N}\right)_{t \geq 0}$ is defined in terms of a stochastic flow $\left(\mathbf{X}_{s, t}^{N}\right)_{s \leq t}$.

The stochastic flow $\left(\mathbf{X}_{s, t}^{N}\right)_{s \leq t}$ contains more information than the Markov process $\left(X_{t}^{N}\right)_{t \geq 0}$ alone; in particular, the stochastic flow provides us with a natural way of coupling processes with different initial states.

We would like to understand this coupling in the mean-field limit $N \rightarrow \infty$.

The n-variate ODE

For each measurable map $g: S^{k} \rightarrow S$ and $n \geq 1$, we define an n-variate map $g^{(n)}:\left(S^{n}\right)^{k} \rightarrow S^{n}$ by

$$
g^{(n)}\left(x^{1}, \ldots, x^{n}\right):=\left(g\left(x^{1}\right), \ldots, g\left(x^{n}\right)\right) \quad\left(x^{1}, \ldots, x^{n} \in S^{k}\right)
$$

Let \mathcal{G} and $\left(r_{g}\right)_{g \in \mathcal{G}}$ be as before. We will be interested in the n-variate $O D E$

$$
\frac{\partial}{\partial t} \mu_{t}^{(n)}=\sum_{g \in \mathcal{G}} r_{g}\left\{T_{g^{(n)}}\left(\mu_{t}^{(n)}\right)-\mu_{t}^{(n)}\right\} \quad(t \geq 0)
$$

that describes the mean-field limit of n coupled Markov processes, that are constructed from the same stochastic flow but have different initial states.

The n-variate ODE

Let $\mathcal{M}_{\mathrm{sym}}^{1}\left(S^{n}\right)$ be the space of all probability measures on S^{n} that are symmetric under a permutation of the coordinates.
For any $\mu \in \mathcal{M}^{1}(S)$, let $\mathcal{M}_{\text {sym }}^{1}\left(S^{n}\right)_{\mu}$ be the set of all symmetric
$\mu^{(n)}$ whose one-dimensional marginals are given by μ.
Let $S_{\text {diag }}^{n}:=\left\{\left(x^{1}, \ldots, x^{n}\right) \in S^{n}: x^{1}=\cdots=x^{n}\right\}$.

Observations

- If $\left(\mu_{t}^{(n)}\right)_{t \geq 0}$ solves the n-variate ODE, then its m-dimensional marginals solve the m-variate ODE.
- $\mu_{0}^{(n)} \in \mathcal{M}_{\mathrm{sym}}^{1}\left(S^{n}\right)$ implies $\mu_{t}^{(n)} \in \mathcal{M}_{\mathrm{sym}}^{1}\left(S^{n}\right)(t \geq 0)$.
- If $\mu^{(n)}$ solves the n-variate ODE, then $\mu_{0}^{(n)} \in \mathcal{M}_{\mathrm{sym}}^{1}\left(S^{n}\right)_{\mu}$ implies $\mu_{t}^{(n)} \in \mathcal{M}_{\mathrm{sym}}^{1}\left(S^{n}\right)_{\mu}(t \geq 0)$.
- If $\mu_{0}^{(n)}$ is concentrated on $S_{\text {diag }}^{n}$ then so is $\mu_{t}^{(n)}(t \geq 0)$.

The n-variate ODE

In particular, these observations show that if $\mu^{(n)}$ solves the n-variate RDE, then its marginals must solve the RDE (2). Conversely, if μ solves the RDE (2) and X is a random variable with law μ, then

$$
\bar{\mu}^{(n)}:=\mathbb{P}[(X, \ldots, X) \in \cdot]
$$

solves the n-variate RDE.

Question Are all fixed points of the n-variate RDE of this form?

The bivariate ODE for cooperative branching

For our system with cooperative branching and deaths, set

$$
z_{\text {low }}:=0, \quad z_{\text {mid }}:=\frac{1}{2}-\sqrt{\frac{1}{4}-\frac{1}{\alpha}}, \quad \text { and } \quad z_{\text {upp }}:=\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{\alpha}}
$$

where $z_{\text {mid }}$ and $z_{\text {upp }}$ are only defined for $\alpha \geq 4$ and satisfy $z_{\text {mid }}=z_{\text {upp }}$ for $\alpha=4$ and $z_{\text {mid }}<z_{\text {upp }}$ for $\alpha>4$.

Let $\mu_{\text {low }}, \mu_{\text {mid }}, \mu_{\text {upp }}$ be the measures on $\{0,1\}$ with these intensities. Then $\mu_{\text {low }}, \mu_{\text {mid }}, \mu_{\text {upp }}$ are all fixed points of the mean-field ODE (1).

The bivariate ODE for cooperative branching

Fixed points of $\frac{\partial}{\partial t} \bar{X}_{t}=F_{\alpha}\left(\bar{X}_{t}\right)$ for different values of α.

The bivariate ODE for cooperative branching

Proposition The measures $\bar{\mu}_{\text {low }}^{(2)}, \bar{\mu}_{\text {mid }}^{(2)}, \bar{\mu}_{\text {upp }}^{(2)}$ defined as

$$
\bar{\mu}_{\text {low }}^{(2)}:=\mathbb{P}[(X, X) \in \cdot] \quad \text { with } \quad \mathbb{P}[X \in \cdot]=\mu_{\text {low }}
$$

etc. are fixed points of the bivariate ODE. In addition, for $\alpha>4$, there exists one more fixed point $\mu_{\text {mid }}^{(2)} \in \mathcal{M}_{\text {sym }}^{1}\left(\{0,1\}^{2}\right)$ that has marginals $\mu_{\text {mid }}$ but differs from $\bar{\mu}_{\text {mid }}^{(2)}$.

Any solution $\left(\mu_{t}^{(2)}\right)_{t \geq 0}$ to the bivariate ODE with $\mu_{0}^{(2)} \in \mathcal{M}_{\text {sym }}^{1}(\{0,1\})_{\mu_{\text {mid }}}$ and $\mu_{0}^{(2)} \neq \bar{\mu}_{\text {mid }}^{(2)}$ satisfies

$$
\mu_{t}^{(2)} \underset{t \rightarrow \infty}{\Longrightarrow} \underline{\mu}_{\mathrm{mid}}^{(2)}
$$

The bivariate ODE for cooperative branching

Interpretation For large N, let $x, x^{\prime} \in\{0,1\}^{N}$ be initial states
such that

$$
\frac{1}{N} \sum_{i=1}^{N} x(i)=z_{\mathrm{mid}}=\sum_{i=1}^{N} \frac{1}{N} x^{\prime}(i)
$$

and

$$
\frac{1}{N} \sum_{i=1}^{N} 1_{\left\{x(i) \neq x^{\prime}(i)\right\}}>0
$$

but arbitrarily small. Then

$$
\frac{1}{N} \sum_{i=1}^{N} 1_{\left\{\mathbf{X}_{0, t}^{N}(x)(i) \neq \mathbf{X}_{0, t}^{N}\left(x^{\prime}\right)(i)\right\}}
$$

converges in probability as $N \rightarrow \infty$ and then $t \rightarrow \infty$ to $\underline{\mu}_{\text {mid }}^{(2)}(\{(0,1),(1,0)\})>0$. In particular, the evolution under the stochastic flow is unstable in the sense that small differences in the initial states are multiplied, provided the initial density is $z_{\text {mid }}$.

Endogeny

Aldous and Bandyopadhyay (2005) call a Recursive Tree Process (RTP) $\left(\gamma_{\mathbf{i}}, X_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}$ endogenous if
X_{\emptyset} is measurable w.r.t. the σ-field generated by $\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}$.
Theorem [AB '05, MSS '18] For any solution μ to the RDE (2), the following statements are equivalent.
(i) The RTP corresponding to μ is endogenous.
(ii) The measure $\bar{\mu}^{(2)}$ is the only solution of the bivariate RDE in the space $\mathcal{M}_{\text {sym }}^{1}\left(S^{2}\right)_{\mu}$.
(iii) Solutions to the n-variate ODE satisfy $\mu_{t}^{(n)} \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\mu}^{(2)}$ for all $\mu_{0}^{(n)} \in \mathcal{M}_{\mathrm{sym}}^{1}\left(S^{2}\right)_{\mu}$ and $n \geq 1$.

Endogeny

In our example of a system with cooperative branching and deaths, the RTPs corresponding to $\mu_{\text {low }}$ and $\mu_{\text {upp }}$ are endogenous, but for $\alpha>4$, the RTP corresponding to $\mu_{\text {mid }}$ is not endogenous.
Proposition [AB '05] Let S be a finite partially ordered set with minimal and maximal elements 0,1 . Assume that all maps $m \in \mathcal{G}$ are monotone. Let $\left(\mu_{t}^{0}\right)_{t \geq 0}$ and $\left(\mu_{t}^{1}\right)_{t \geq 0}$ be solutions to the mean-field ODE with initial states $\mu_{0}^{0}=\delta_{0}$ and $\mu_{0}^{1}=\delta_{1}$. Then there exist solutions $\underline{\nu}$ and $\bar{\nu}$ to the RDE (2) such that

$$
\mu_{t}^{0} \underset{t \rightarrow \infty}{\Longrightarrow} \underline{\nu} \quad \text { and } \quad \mu_{t}^{1} \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\nu}
$$

Moreover, the RTPs corresponding to $\underline{\nu}$ and $\bar{\nu}$ are endogenous.

Moment measures

Let ξ be a $\mathcal{M}^{1}(S)$-valued random variable, i.e., a random probability measure on S, and let $\rho \in \mathcal{M}^{1}\left(\mathcal{M}^{1}(S)\right)$ denote its law. Conditional on ξ, let X^{1}, \ldots, X^{n} be independent with law ξ. Then

$$
\rho^{(n)}:=\mathbb{P}\left[\left(X^{1}, \ldots, X^{n}\right) \in \cdot\right]=\mathbb{E}[\underbrace{\xi \otimes \cdots \otimes \xi}_{n \text { times }}]
$$

is called the n-th moment measure of ξ.
Then $\rho^{(n)} \in \mathcal{M}_{\text {sym }}^{1}\left(S^{n}\right)$ for each $\rho \in \mathcal{M}^{1}\left(\mathcal{M}^{1}(S)\right)$.
For $n=\infty$, De Finetti's theorem says that each element of $\mathcal{M}_{\text {sym }}^{1}\left(S^{n}\right)$ is of the form $\rho^{(n)}$ for some $\rho \in \mathcal{M}^{1}\left(\mathcal{M}^{1}(S)\right)$.
Using this idea, we seek to define a higher level ODE that corresponds to the n-variate ODE with $n=\infty$.

The higher-level ODE

Recall that for each measurable map $g: S^{k} \rightarrow S$, we have defined a measurable map $\check{g}: \mathcal{M}^{1}(S)^{k} \rightarrow \mathcal{M}^{1}(S)$ by

$$
\check{g}\left(\mu_{1}, \ldots, \mu_{k}\right):=\mathbb{P}\left[g\left(X_{1}, \ldots, X_{k}\right) \in \cdot\right]
$$

where $\quad X_{1}, \ldots, X_{k}$ are indep. with $\mathbb{P}\left[X_{i} \in \cdot\right]=\mu_{i}$.
In particular, $T_{g}: \mathcal{M}^{1}(S) \rightarrow \mathcal{M}^{1}(S)$ is defined by

$$
T_{g}(\mu):=\check{g}(\mu, \ldots, \mu) .
$$

The higher level ODE is the equation

$$
\frac{\partial}{\partial t} \rho_{t}=\sum_{g \in \mathcal{G}}\left\{T_{\check{g}}\left(\rho_{t}\right)-\rho_{t}\right\} \quad(t \geq 0)
$$

This differs from the mean-field ODE (1) in the sense that T_{g} is replaced by $T_{\check{g}}$ and ρ_{t} takes values in $\mathcal{M}^{1}\left(\mathcal{M}^{1}(S)\right)$.

The higher-level ODE

Lemma If $\left(\rho_{t}\right)_{t \geq 0}$ solves the higher level ODE, then its n-th moment measures solve the n-variate ODE.

Below, we equip the space $\mathcal{M}^{1}\left(\mathcal{M}^{1}(S)\right)_{\mu}$ of all $\rho \in \mathcal{M}^{1}\left(\mathcal{M}^{1}(S)\right)$ with first moment measure $\rho^{(1)}=\mu$ with the convex order $\rho_{1} \leq_{\mathrm{cv}} \rho_{2}$, defined as

$$
\int \phi \mathrm{d} \rho_{1} \leq \int \phi \mathrm{d} \rho_{2} \quad \forall \text { convex bounded contin. } \phi: \mathcal{M}^{1}(S) \rightarrow \mathbb{R}
$$

Theorem [MSS '18] Let μ be a fixed point of the mean-field ODE (1). Then the higher-level ODE has fixed points $\underline{\mu}, \bar{\mu} \in \mathcal{M}^{1}\left(\mathcal{M}^{1}(S)\right)_{\mu}$ that are minimal and maximal with respect to the convex order.
Remark One has $\rho_{1} \leq_{\text {cv }} \rho_{2}$ iff there exists an S-valued random variable X on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and sub- σ-fields $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}$ such that $\rho_{i}=\mathbb{P}\left[\mathbb{P}\left[X \in \cdot \mid \mathcal{F}_{i}\right] \in \cdot\right](i=1,2)$.

The higher-level ODE

Theorem [MSS '18] Let μ be a fixed point of the mean-field ODE (1). Let $\left(\gamma_{\mathbf{i}}, X_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}$ be the RTP corresponding to μ. Set

$$
\xi_{\mathbf{i}}:=\mathbb{P}\left[X_{\mathbf{i}} \in \cdot \mid\left(\gamma_{\mathbf{i j}}\right)_{\mathbf{j} \in \mathbb{T}}\right]
$$

Then

$$
\left(\check{\gamma}_{\mathbf{i}}, \xi_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}} \quad \text { and } \quad\left(\check{\gamma}_{\mathbf{i}}, \delta_{X_{\mathbf{i}}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}
$$

are RTPs corresponding to the fixed points $\underline{\mu}, \bar{\mu}$ of the higher-level ODE. The original RTP is endogenous if and only if $\underline{\mu}=\bar{\mu}$.

Remark $1 \underline{\mu}$ and $\bar{\mu}$ correspond to minimal and maximal knowledge about X_{\emptyset}. The former describes the knowledge contained in $\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}$, the latter represents perfect knowledge.
Remark $2 \bar{\mu}^{(n)}:=\mathbb{P}[(X, \ldots, X) \in \cdot]$ in line with earlier notation.

The higher-level ODE

In our example of a system with cooperative branching and deaths, we identify

$$
\mathcal{M}^{1}(\{0,1\}) \ni \mu \mapsto \mu(\{1\}) \in[0,1]
$$

and correspondingly $\mathcal{M}^{1}\left(\mathcal{M}^{1}(\{0,1\})\right) \cong \mathcal{M}^{1}[0,1]$. If $g=$ coop, then $\check{g}:[0,1]^{3} \rightarrow[0,1]$ is given by

$$
\check{g}\left(\omega_{1}, \omega_{2}, \omega_{3}\right):=\mathbb{P}\left[X_{1} \vee\left(X_{2} \wedge X_{3}\right)=1\right] \quad \text { with } \quad \mathbb{P}\left[X_{i}=1\right]=\omega_{i}
$$

which gives

$$
\check{g}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\omega_{1}+\left(1-\omega_{1}\right) \omega_{2} \omega_{3}
$$

and, for any $\rho \in \mathcal{M}^{1}[0,1]$,
$T_{\check{g}}(\rho)=\mathbb{P}\left[\omega_{1}+\left(1-\omega_{1}\right) \omega_{2} \omega_{3} \in \cdot\right] \quad$ with $\quad \omega_{1}, \omega_{2}, \omega_{3}$ i.i.d. with law ρ.

The higher-level ODE

Proposition For our system with cooperative branching and deaths, for $\alpha>4$, the higher-level ODE

$$
\frac{\partial}{\partial t} \rho_{t}=\alpha\left\{T_{\check{g}}(\rho)-\rho\right\}+\left\{\delta_{0}-\rho\right\}
$$

has precisely four fixed points. Three trivial fixed points of the form

$$
\rho=(1-z) \delta_{0}+z \delta_{1} \quad \text { with } \quad z=z_{\text {low }}, z_{\text {mid }}, z_{\mathrm{upp}}
$$

and a nontrivial fixed point $\underline{\mu}_{\text {mid }}$ which is the law of the [0,1$]$-valued random variable

$$
\mathbb{P}\left[X_{\emptyset}=1 \mid\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}\right]
$$

where $\left(\gamma_{\mathbf{i}}, X_{\mathbf{i}}\right)_{\mathbf{i} \in \overline{\mathbb{T}}}$ is the RTP with $\mathbb{P}\left[X_{\emptyset}=1\right]=z_{\text {mid }}$.

Numerical results

The measure $\underline{\mu}_{\text {mid }}$ should be the limit of measures μ_{n} inductively defined as $\mu_{0} \stackrel{- \text { mid }}{=} \delta_{z_{\text {mid }}}$ and

$$
\mu_{n}=\frac{\alpha}{\alpha+1} T_{\check{g}}\left(\mu_{n-1}\right)+\frac{1}{\alpha+1} \delta_{0} .
$$

We plot the distribution functions

$$
F_{n}(s):=\mu_{n}([0, s]) \quad(s \in[0,1])
$$

for the parameters $\alpha=9 / 2, z_{\text {mid }}=1 / 3, z_{\text {upp }}=2 / 3$ and various values of n.

Numerical results

