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Mean-field duality

Plan:

I The mean-field ODE

I A recursive tree representation

I Endogeny

I The multivariate ODE

I A higher-level ODE

With cooperative branching as a running example.
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The mean-field ODE

Let S be a Polish space, let G me a collection of measurable maps
g : Sk → S with k = kg ≥ 0, and let (rg )g∈G be nonnegative rates.
We view S0 as a set with a single element, i.e., kg = 0 means the
function g is constant.

Let [N] := {1, . . . ,N} and

[N]〈k〉 :=
{
i = (i1, . . . , ik) ∈ [N]k : im 6= in ∀n 6= m

}
,

which has N〈k〉 := N(N − 1) · · · (N − k + 1) elements.
For g : Sk → S , N ≥ k , i ∈ [N](〈k〉, and j ∈ [N], define
g i,j : SN → SN by

g i,jx(j ′) :=

{
g
(
x(i1), . . . , x(ik)

)
if j ′ = j ,

x(j ′) otherwise.
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The mean-field ODE

The Markov process (XN
t )t≥0 with state space SN and generator

Gf (x) :=
∑
g∈G

rg
∑
j∈[N]

1

N〈k〉

∑
i∈[N]〈k〉

{
f (
(
g i,jx

)
− f (

(
x
)}

can be constructed in a Poissonian way as before, leading to a
stochastic flow (XN

s,t)s≤t . As before, the empirical process

µNt := µ
[
XN
t

]
(t ≥ 0) with µ[x ] :=

1

N

∑
i∈[N]

δx(i)

is a Markov process. In the mean-field limit N →∞, we expect
(µNt )t≥0 to be close to the solution of an ODE.
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The mean-field ODE

Let M1(S) denote the space of all probability measures on S ,
equipped with the topology of weak convergence and the
Borel-σ-algebra.
For each measurable map g : Sk → S , we define a measurable map
ǧ :M1(S)k →M1(S) by

ǧ(µ1, . . . , µk) := P
[
g(X1, . . . ,Xk) ∈ ·

]
where X1, . . . ,Xk are indep. with P[Xi ∈ · ] = µi .

We also define Tg :M1(S)→M1(S) by

Tg (µ) := ǧ(µ, . . . , µ).

Note that Tg is in general nonlinear, unless k = 1.
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The mean-field ODE

Theorem [Mach, Sturm & S. ’18] Assume that∑
g∈G

rgkg <∞.

Then, for each initial state µ0 ∈M1(S), the mean-field ODE

∂
∂tµt =

∑
g∈G

{
Tg (µt)− µt

}
(t ≥ 0) (1)

has a unique solution. Here, writing 〈µ, φ〉 :=
∫
φ dµ, we interpret

(1) in a weak sense: for each bounded measurable φ : S → R, the
function t 7→ 〈µt , φ〉 is continuously differentiable and

∂
∂t 〈µt , φ〉 =

∑
g∈G

{
〈Tg (µt), φ〉 − 〈µt , φ〉

}
(t ≥ 0).
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The mean-field ODE

Theorem [Mach, Sturm & S. ’18] Assume that∑
g∈G rgkg <∞ and let S be finite. Let (µNt )t≥0 be empirical

processes such that µN0 → µ0 for some µ0 ∈M1(S). Then

P
[

sup
0≤t≤T

‖µN(t)− µt‖ ≥ ε
]
−→
N→∞

0 ∀ε > 0, T <∞,

where (µt)t≥0 solves the mean-field ODE (1).

Note Something similar should hold for infinite (even uncountable)
S , at least when

(
XN

0 (1), . . . ,XN
0 (N)

)
are i.i.d. with law µ0.
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The mean-field ODE

Remark We could be more general and also consider maps

Sk 3 (x1, . . . , xk) 7→
(
g1(x1, . . . , xk), g2(x1, . . . , xk)

)
∈ S2,

and similarly with S2 replaced by Sm (m ≥ 1). However, applying
such a map with rate r has for the mean-field ODE the same effect
as applying the maps g1 and g2 each with rate r .

Also, in our definition of g i,j , we could have chosen j ∈ {i1, . . . , ik},
e.g. j = i1 always. Again, although this yields a different Markov
process, for the mean-field ODE this has no effect.
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Cooperative branching

Let S = {0, 1} and G = {coop, death}, where

coop : {0, 1}3 → {0, 1} and death : {0, 1}0 → {0, 1}

are defined as

coop(x1, x2, x3) := x1 ∨ (x2 ∧ x3) and death( ) := 0.

A probability measure µ on {0, 1} is uniquely determined by
µ({1}). Setting X t := µt({1}) and choosing the rates

rcoop := α and rdeath := 1,

we find the mean-field ODE

∂
∂t X t = αX 2

t (1− X t)− X t =: Fα(X t).
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Cooperative branching

Fα(x)

x

α = 3
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0.2

0.3

For α < 4, the equation ∂
∂t X t = Fα(X t) has a single, stable fixed

point x = 0.
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Cooperative branching

Fα(x)

xα = 4
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For α = 4, a second fixed point appears at x = 0.5.
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Cooperative branching

Fα(x)

x

α = 5
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For α > 4, there are two stable fixed points and one unstable fixed
point, which separates the domains of attraction of the other two.
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Cooperative branching

zupp

zmid

zlow

x
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Fixed points of ∂
∂t X t = Fα(X t) for different values of α.
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Cooperative branching

In physics notation for reaction-diffusion models, cooperative
branching is denoted as 2A 7→ 3A. This sort of dynamics, together
with 3A 7→ 2A, was already considered by F. Schlögl [Z. Phys.
1972]. Lebowiz, Presutti and Spohn [JSP 1988] call this binary
reproduction.

C. Noble [AOP 1992], R. Durrett [JAP 1992], and C. Neuhauser
and S.W. Pacala [AAP 1999] call a model with cooperative
branching and deaths the sexual reproduction process.

The unstable fixed point says that in well-mixing populations, once
the population drops below a critical level, it becomes so hard for
organisms to find a partner that the population dies out.
This effect is also responsible for the first order (discontinuous)
phase transition - at least in well-mixing populations.
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A recursive tree representation

Recall the Markov process(
Ri (Xs−t,t))t≥0

that traces back in time all sites at time s − t that are relevant for
the state at the site i at time s.
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A recursive tree representation

time

space

0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 1 1 0 0
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bra7,6

death8
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A recursive tree representation

time

space

0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 1 1 0 0

X0,t(4)

x

bra2,1

bra2,1

bra0,1

bra4,3

bra4,3

bra7,8

bra2,3

bra2,3

death4

death4

bra3,4

bra3,4
bra1,2

bra6,5

bra7,6

death8

Jan M. Swart Spatial Models in Population Biology



A recursive tree representation
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A recursive tree representation
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A recursive tree representation
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A recursive tree representation
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A recursive tree representation

In the mean-field limit, (
Ri (Xs−t,t))t≥0

converges to a branching process.
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A recursive tree representation

coop

coop

coop
coop

coop

death
death

death

death

death
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A recursive tree representation

Let T be the set of all finite words i = i1 · · · in (n ≥ 0) made up
from the alphabet N+ = {1, 2, . . .}. We view T as a tree with root
∅, the word of length zero, in which each individual i has infinitely
many offspring i1, i2, . . .

Let |r | :=
∑

g∈G rg and let (γi)i∈T be i.i.d. with law

P[γi = g ] = |r |−1rg (g ∈ G).

We inductively define a random subtree T ⊂ T which contains the
root and satisfies

ij ∈ T iff i ∈ T and j ≤ k,

where k = ki := kγi is the integer such that γi : Sk → S .
Then T is the family tree of a branching process with maps (γi)i∈T
attached to its vertices, such that the individual i has ki offspring.
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A recursive tree representation

For any subtree U ⊂ T that contains the root, we write

∂U := {ij ∈ T\U : i ∈ U}.

Let (σi)i∈T be i.i.d. exponentially distributed random variables with
mean |r |−1, independent of (γi)i∈T. We interpret σi as the lifetime
of i and let

τ∗i1···in := σ∅ + σi1 + · · ·+ σi1···in−1 and τ †i := τ∗i + σi

denote its birth and death time. Then

Tt := {i ∈ T : τ †i ≤ t} and ∂Tt

denote the set of individuals that have died before time t resp. are
alive at time t. In particular,(

∂Tt

)
t≥0

is a branching process where each individual i gives with rate rg
birth to kg offspring, for each g ∈ G.
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A recursive tree representation

Given a finite subtree U ⊂ T that contains the root, we define a
map GU : S∂U → S by

GU := x∅ where (xi)i∈U satisfy xi = γi(xi1, . . . , xiki) (i ∈ U).

In particular, we set Gt := GTt .

Theorem [Mach, Sturm & S. ’18] Assume that∑
g∈G rgkg <∞. Then the solution to the mean-field equation (1)

is given by
µt = E

[
TGt (µ0)

]
(t ≥ 0),

i.e., µt = P[X∅ ∈ · ] where (Xi)i∈Tt∪∂Tt satisfy

(i) (Xi)i∈∂Tt are i.i.d. with law µ0 and independent of (γi)i∈Tt .

(ii) Xi = γi(Xi1, . . . ,Xiki) (i ∈ Tt).
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A recursive tree representation

X∅ law µt

X21

coop

X32

coop

X23

coop

X131

coop

X132 X133
i.i.d. µ0

coop

death
death

death

death

death
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A recursive tree representation

In the special case that kg = 1 for each g ∈ G, the mean-field ODE
(1) is just the backward equation of a continuous-time Markov
chain where each map g ∈ G is applied with Poisson rate rg .

We can think of the collection of random variables (γi, σi)i∈T as a
generalization of the Poisson construction of a continuous-time
Markov chain, where “time” now has a tree-like structure.

We let
Ft := σ

(
(∂Ts)0≤s≤t , (γi)i∈Tt

)
denote the filtration generated by the branching process (∂Tt)t≥0

as well as the maps attached to the particles that have died by
time t.
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Unique ergodicity

Lemma Assume that

R :=
∑
g∈G

rg (kg − 1)

satisfies R < 0. Then the mean-field ODE (1) has a unique fixed
point ν and solutions started in an arbitrary initial law µ0 satisfy

‖µt − ν‖ −→
t→∞

0,

where ‖ · ‖ denotes the total variation norm.

Proof The condition R < 0 guarantees that (∂Tt)t≥0 is a
subcritical branching process and hence the tree T is a.s. finite.
Now ∂T = ∅ and GT : S0 → S is a random constant that depends
on the random finite tree T. Setting ν := P

[
GT ∈ · ], the

statement follows by observing that

Gt = GTt −→t→∞
GT a.s.
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Unique ergodicity

For our process with cooperative branching and deaths,

R = α · (3− 1) + 1 · 0 = 2α,

which implies that the mean-field ODE has a unique attractive
fixed point for α < 1/2.
This is not very good compared to the necessary and sufficient
condition α < 4 that came out of our earlier analysis of the ODE,
but the proof of the previous lemma actually works more generally:
Lemma Assume that

P
[
∃t <∞ s.t. Gt is constant

]
= 1.

Then the mean-field ODE (1) has a unique fixed point ν and
solutions started in an arbitrary initial law µ0 satisfy

‖µt − ν‖ −→
t→∞

0,

where ‖ · ‖ denotes the total variation norm.
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Unique ergodicity

For our process with cooperative branching and deaths, say that
S ⊂ T is a good subtree if ∅ ∈ S and

(i) γi 6= death for all i ∈ S
(ii) ∀i ∈ S, {i1, i2, i3} ∩ S is either {i1} or {i2, i3}.
Lemma The following events are a.s. equal:

(i) T contains a good subtree.

(ii) Gt is constant for some t <∞.

Moreover, P[T contains a good subtree] > 0 iff α ≥ 4.
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Good subtrees

X∅ law µt

X21X32 X23 X131 X132 X133
i.i.d. µ0

coop

coop

coop
coop

coop

death
death

death

death

death
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Good subtrees

X∅ law µt

X21X32 X23 X131 X132 X133
i.i.d. µ0
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Good subtrees

11 1

a good subtree
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Good subtrees

11 1

11 1 1
dual process Y t
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A Recursive Distributional Equation

Fixed points µ of the mean-field ODE (1) solve the Recursive
Distributional Equation (RDE)

µ = |r |−1
∑
g∈G

Tg (µ). (2)

For each solution µ to the RDE, it is possible to define a collection
of random variables (γi,Xi)i∈T such that:

(i) (γi)i∈T is an i.i.d. collection of G-valued random variables with
law P[γi = g ] = |r |−1rg (g ∈ G).

(ii) For each finite subtree U ⊂ T that contains the root, (Xi)i∈∂U
are i.i.d. with common law µ and independent of (γi)i∈U.

(iii) Xi = γi(Xi1, . . . ,Xiki) (i ∈ T).

Following Aldous and Bandyopadhyay (2005), we call such a
collection of r.v.’s a Recursive Tree Process (RTP).
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A Recursive Distributional Equation

We can think of fixed points µ of the mean-field ODE (1) as a
generalization of the invariant law of a (continuous-time) Markov
chain.

Then a Recursive Tree Process (RTP) is a generalization of a
stationary (continuous-time) Markov chain.

If we add independent exponentially distributed lifetimes (σi)i∈T as
before, then for each t ≥ 0:

(Xi)i∈∂Tt are i.i.d. with common law µ and independent
of the σ-field Ft of events measurable before time t.
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The n-variate ODE

Recall that the mean-field ODE (1) describes the Markov process
(XN

t )t≥0 on the complete graph in the mean-field limit N →∞.

The Markov process (XN
t )t≥0 is defined in terms of a stochastic

flow (XN
s,t)s≤t .

The stochastic flow (XN
s,t)s≤t contains more information than the

Markov process (XN
t )t≥0 alone; in particular, the stochastic flow

provides us with a natural way of coupling processes with different
initial states.

We would like to understand this coupling in the mean-field limit
N →∞.
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The n-variate ODE

For each measurable map g : Sk → S and n ≥ 1, we define an
n-variate map g (n) : (Sn)k → Sn by

g (n)
(
x1, . . . , xn) :=

(
g(x1), . . . , g(xn)

)
(x1, . . . , xn ∈ Sk).

Let G and (rg )g∈G be as before. We will be interested in the
n-variate ODE

∂
∂tµ

(n)
t =

∑
g∈G

rg
{

Tg (n)(µ
(n)
t )− µ(n)

t

}
(t ≥ 0),

that describes the mean-field limit of n coupled Markov processes,
that are constructed from the same stochastic flow but have
different initial states.
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The n-variate ODE

Let M1
sym(Sn) be the space of all probability measures on Sn that

are symmetric under a permutation of the coordinates.
For any µ ∈M1(S), let M1

sym(Sn)µ be the set of all symmetric

µ(n) whose one-dimensional marginals are given by µ.
Let Sn

diag :=
{

(x1, . . . , xn) ∈ Sn : x1 = · · · = xn
}

.

Observations

I If (µ
(n)
t )t≥0 solves the n-variate ODE, then its m-dimensional

marginals solve the m-variate ODE.

I µ
(n)
0 ∈M1

sym(Sn) implies µ
(n)
t ∈M1

sym(Sn) (t ≥ 0).

I If µ(n) solves the n-variate ODE, then µ
(n)
0 ∈M1

sym(Sn)µ

implies µ
(n)
t ∈M1

sym(Sn)µ (t ≥ 0).

I If µ
(n)
0 is concentrated on Sn

diag then so is µ
(n)
t (t ≥ 0).
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The n-variate ODE

In particular, these observations show that if µ(n) solves the
n-variate RDE, then its marginals must solve the RDE (2).
Conversely, if µ solves the RDE (2) and X is a random variable
with law µ, then

µ(n) := P
[
(X , . . . ,X ) ∈ ·

]
solves the n-variate RDE.

Question Are all fixed points of the n-variate RDE of this form?
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The bivariate ODE for cooperative branching

For our system with cooperative branching and deaths, set

zlow := 0, zmid := 1
2 −

√
1
4 −

1
α , and zupp := 1

2 +
√

1
4 −

1
α ,

where zmid and zupp are only defined for α ≥ 4 and satisfy
zmid = zupp for α = 4 and zmid < zupp for α > 4.

Let µlow, µmid, µupp be the measures on {0, 1} with these
intensities. Then µlow, µmid, µupp are all fixed points of the
mean-field ODE (1).

Jan M. Swart Spatial Models in Population Biology



The bivariate ODE for cooperative branching
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Fixed points of ∂
∂t X t = Fα(X t) for different values of α.
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The bivariate ODE for cooperative branching

Proposition The measures µ
(2)
low, µ

(2)
mid, µ

(2)
upp defined as

µ
(2)
low := P

[
(X ,X ) ∈ ·

]
with P[X ∈ · ] = µlow

etc. are fixed points of the bivariate ODE. In addition, for α > 4,

there exists one more fixed point µ
(2)
mid ∈M

1
sym({0, 1}2) that has

marginals µmid but differs from µ
(2)
mid.

Any solution (µ
(2)
t )t≥0 to the bivariate ODE with

µ
(2)
0 ∈M1

sym({0, 1})µmid
and µ

(2)
0 6= µ

(2)
mid satisfies

µ
(2)
t =⇒

t→∞
µ(2)
mid

.
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The bivariate ODE for cooperative branching

Interpretation For large N, let x , x ′ ∈ {0, 1}N be initial states
such that

1

N

N∑
i=1

x(i) = zmid =
N∑
i=1

1

N
x ′(i),

and

1

N

N∑
i=1

1{x(i) 6= x ′(i)} > 0,

but arbitrarily small. Then

1

N

N∑
i=1

1{XN
0,t(x)(i) 6= XN

0,t(x ′)(i)}

converges in probability as N →∞ and then t →∞ to

µ
(2)
mid({(0, 1), (1, 0)}) > 0. In particular, the evolution under the

stochastic flow is unstable in the sense that small differences in the
initial states are multiplied, provided the initial density is zmid.

Jan M. Swart Spatial Models in Population Biology



Endogeny

Aldous and Bandyopadhyay (2005) call a Recursive Tree Process
(RTP) (γi,Xi)i∈T endogenous if

X∅ is measurable w.r.t. the σ-field generated by (γi)i∈T.

Theorem [AB ’05, MSS ’18] For any solution µ to the RDE (2),
the following statements are equivalent.

(i) The RTP corresponding to µ is endogenous.

(ii) The measure µ(2) is the only solution of the bivariate RDE in
the space M1

sym(S2)µ.

(iii) Solutions to the n-variate ODE satisfy µ
(n)
t =⇒

t→∞
µ(2) for all

µ
(n)
0 ∈M1

sym(S2)µ and n ≥ 1.
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Endogeny

In our example of a system with cooperative branching and deaths,
the RTPs corresponding to µlow and µupp are endogenous, but for
α > 4, the RTP corresponding to µmid is not endogenous.

Proposition [AB ’05] Let S be a finite partially ordered set with
minimal and maximal elements 0, 1. Assume that all maps m ∈ G
are monotone. Let (µ0

t )t≥0 and (µ1
t )t≥0 be solutions to the

mean-field ODE with initial states µ0
0 = δ0 and µ1

0 = δ1. Then
there exist solutions ν and ν to the RDE (2) such that

µ0
t =⇒
t→∞

ν and µ1
t =⇒
t→∞

ν.

Moreover, the RTPs corresponding to ν and ν are endogenous.
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Moment measures

Let ξ be a M1(S)-valued random variable, i.e., a random
probability measure on S , and let ρ ∈M1(M1(S)) denote its law.
Conditional on ξ, let X 1, . . . ,X n be independent with law ξ. Then

ρ(n) := P
[
(X 1, . . . ,X n) ∈ ·

]
= E

[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸

n times

]

is called the n-th moment measure of ξ.

Then ρ(n) ∈M1
sym(Sn) for each ρ ∈M1(M1(S)).

For n =∞, De Finetti’s theorem says that each element of
M1

sym(Sn) is of the form ρ(n) for some ρ ∈M1(M1(S)).

Using this idea, we seek to define a higher level ODE that
corresponds to the n-variate ODE with n =∞.
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The higher-level ODE

Recall that for each measurable map g : Sk → S , we have defined
a measurable map ǧ :M1(S)k →M1(S) by

ǧ(µ1, . . . , µk) := P
[
g(X1, . . . ,Xk) ∈ ·

]
where X1, . . . ,Xk are indep. with P[Xi ∈ · ] = µi .

In particular, Tg :M1(S)→M1(S) is defined by

Tg (µ) := ǧ(µ, . . . , µ).

The higher level ODE is the equation

∂
∂t ρt =

∑
g∈G

{
Tǧ (ρt)− ρt

}
(t ≥ 0).

This differs from the mean-field ODE (1) in the sense that Tg is
replaced by Tǧ and ρt takes values in M1(M1(S)).
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The higher-level ODE

Lemma If (ρt)t≥0 solves the higher level ODE, then its n-th
moment measures solve the n-variate ODE.

Below, we equip the space M1(M1(S))µ of all ρ ∈M1(M1(S))
with first moment measure ρ(1) = µ with the convex order
ρ1 ≤cv ρ2, defined as∫

φ dρ1 ≤
∫
φ dρ2 ∀ convex bounded contin. φ :M1(S)→ R.

Theorem [MSS ’18] Let µ be a fixed point of the mean-field
ODE (1). Then the higher-level ODE has fixed points
µ, µ ∈M1(M1(S))µ that are minimal and maximal with respect
to the convex order.
Remark One has ρ1 ≤cv ρ2 iff there exists an S-valued random
variable X on some probability space (Ω,F ,P) and sub-σ-fields
F1 ⊂ F2 ⊂ F such that ρi = P

[
P[X ∈ · |Fi ] ∈ ·

]
(i = 1, 2).
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The higher-level ODE

Theorem [MSS ’18] Let µ be a fixed point of the mean-field
ODE (1). Let (γi,Xi)i∈T be the RTP corresponding to µ. Set

ξi := P
[
Xi ∈ · | (γij)j∈T

]
.

Then
(γ̌i, ξi)i∈T and (γ̌i, δXi

)i∈T

are RTPs corresponding to the fixed points µ, µ of the higher-level
ODE. The original RTP is endogenous if and only if µ = µ.

Remark 1 µ and µ correspond to minimal and maximal knowledge
about X∅. The former describes the knowledge contained in
(γi)i∈T, the latter represents perfect knowledge.

Remark 2 µ(n) := P
[
(X , . . . ,X ) ∈ ·

]
in line with earlier notation.
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The higher-level ODE

In our example of a system with cooperative branching and deaths,
we identify

M1({0, 1}) 3 µ 7→ µ({1}) ∈ [0, 1]

and correspondingly M1(M1({0, 1})) ∼=M1[0, 1]. If g = coop,
then ǧ : [0, 1]3 → [0, 1] is given by

ǧ(ω1, ω2, ω3) := P[X1 ∨ (X2 ∧ X3) = 1] with P[Xi = 1] = ωi ,

which gives

ǧ(ω1, ω2, ω3) = ω1 + (1− ω1)ω2ω3

and, for any ρ ∈M1[0, 1],

Tǧ (ρ) = P
[
ω1+(1−ω1)ω2ω3 ∈ ·

]
with ω1, ω2, ω3 i.i.d. with law ρ.
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The higher-level ODE

Proposition For our system with cooperative branching and
deaths, for α > 4, the higher-level ODE

∂
∂t ρt = α

{
Tǧ (ρ)− ρ

}
+
{
δ0 − ρ

}
has precisely four fixed points. Three trivial fixed points of the form

ρ = (1− z)δ0 + zδ1 with z = zlow, zmid, zupp,

and a nontrivial fixed point µ
mid

which is the law of the
[0, 1]-valued random variable

P
[
X∅ = 1

∣∣ (γi)i∈T
]

where (γi,Xi)i∈T is the RTP with P[X∅ = 1] = zmid.
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Numerical results

The measure µ
mid

should be the limit of measures µn inductively
defined as µ0 = δzmid

and

µn =
α

α + 1
Tǧ (µn−1) +

1

α + 1
δ0.

We plot the distribution functions

Fn(s) := µn
(
[0, s]

) (
s ∈ [0, 1]

)
for the parameters α = 9/2, zmid = 1/3, zupp = 2/3 and various
values of n.
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Numerical results
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