Lecture 1 Interacting particle systems and the backward process

Jan M. Swart

Berlin

January 29-31, 2024

→ ∃ >

- Poisson construction of finite state space Markov processes
- Countable state spaces
- Interacting particle systems
- The backward process

Probability kernels

Let **S** be a finite set.

A probability kernel on ${\boldsymbol{S}}$ is a function ${\boldsymbol{K}}:{\boldsymbol{S}}\times{\boldsymbol{S}}\rightarrow[0,1]$ such that

$$\sum_{y\in \mathbf{S}} \mathcal{K}(x,y) = 1$$
 $(x\in \mathbf{S}).$

We can multiply probability kernels as matrices:

$$(\mathcal{KL})(x,z) := \sum_{y \in \mathbf{S}} \mathcal{K}(x,y) \mathcal{L}(y,z) \qquad (x,z \in \mathbf{S}).$$

We can also view kernels as matrices representing linear operators that act on functions $f : \mathbf{S} \to \mathbb{R}$ as

$$Kf(x) := \sum_{y \in \mathbf{S}} K(x, y)f(y).$$

伺 ト イヨト イヨト

Continuous-time Markov chains

Let **S** be a finite set. A *Markov semigroup* is a collection of probability kernels $(P_t)_{t\geq 0}$ on **S** such that

$$\lim_{t\downarrow 0} P_t = P_0 = 1 \quad \text{and} \quad P_s P_t = P_{s+t} \qquad (s,t\geq 0).$$

Each such Markov semigroup is of the form

$$P_t = e^{tG} := \sum_{n=0}^{\infty} \frac{1}{n!} (tG)^n,$$

where the generator G is a matrix of the form

$$G(x, y) \ge 0 \quad (x \ne y) \text{ and } \sum_{y \in \mathbf{S}} G(x, y) = 0.$$

One has $P_t(x, y) = 1_{\{x=y\}} + tG(x, y) + O(t^2)$ as $t \rightarrow 0$.
Ne call $G(x, y)$ the *rate* of jumps from x to y $(x \ne y)$.

Random mapping representations

We view generators as linear operators that act on functions $f: \mathbf{S} \to \mathbb{R}$ as

$$Gf(x) := \sum_{y \in \mathbf{S}} G(x, y) f(y) \qquad (x \in \mathbf{S}).$$

Then $P_t f = f + tGf + O(t^2)$ as $t \to 0$. Each generator G can be written in the form

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \{f(m(x)) - f(x)\},\$$

where \mathcal{G} is a finite set whose elements are functions $m : \mathbf{S} \to \mathbf{S}$ and $(r_m)_{m \in \mathcal{G}}$ are nonnegative rates.

We call this a random mapping representation of G.

Random mapping representation are usually far from unique.

A B K A B K

Poisson construction of Markov processes

Each random mapping representation of G corresponds to a Poisson construction of the Markov process.

Let ρ be the measure on $\mathcal{G}\times\mathbb{R}$ defined by

$$hoig(\{m\}\times[s,t]ig):=r_m(t-s)\qquad(m\in\mathcal{G},\ s\leq t).$$

Let ω be a Poisson point set on $\mathcal{G} \times \mathbb{R}$ with intensity ρ and let

$$\omega_{s,u} := \{(m,t) \in \omega : s < t \le u\} \qquad (s \le u).$$

Define random maps $(X_{s,u})_{s \leq u}$ by

$$\begin{split} \mathbb{X}_{s,u} &:= m_n \circ \cdots \circ m_1 \\ \text{with} \quad \omega_{s,u} &:= \big\{ (m_1, t_1), \dots, (m_n, t_n) \big\} \\ \text{and} \quad t_1 < \cdots < t_n. \end{split}$$

The random maps $(\mathbb{X}_{s,u})_{s \leq u}$ form a *stochastic flow:*

$$\mathbb{X}_{s,s} = 1$$
 and $\mathbb{X}_{t,u} \circ \mathbb{X}_{s,t} = \mathbb{X}_{s,u}$ $(s \leq t \leq u).$

This stochastic flow has independent increments in the sense that

$$\mathbb{X}_{t_0,t_1},\ldots,\mathbb{X}_{t_{n-1},t_n}$$
 are independent $\forall t_0 < \cdots < t_n$.

Let X_0 be an **S**-valued random variable, independent of ω , and let $s \in \mathbb{R}$. Then

$$X_t := \mathbb{X}_{s,s+t}(X_0) \qquad (t \ge 0)$$

defines a Markov process $(X_t)_{t\geq 0}$ with generator G.

Poisson construction of Markov processes

Proof (sketch) Define

$$P_t(x,y) := \mathbb{P}\big[\mathbb{X}_{s,s+t}(x) = y\big] \qquad (t \ge 0, \ x,y \in \mathbf{S}).$$

Let $(\mathcal{F}_t^X)_{t\geq 0}$ be the filtration generated by $(X_t)_{t\geq 0}$ and let $\mathcal{F}_t := \sigma(\{\omega_{s,s+t}, X_0\})$. Then $\mathcal{F}_t^X \subset \mathcal{F}_t$, and for all $f : \mathbf{S} \to \mathbb{R}$ and $0 \leq t \leq u$, one has

$$\mathbb{E}\big[f(X_u)\,\big|\,\mathcal{F}_t\big]=\mathbb{E}\big[f(\mathbb{X}_{s+t,s+u}\circ\mathbb{X}_{s,s+t}(X_0))\,\big|\,\mathcal{F}_t\big]=P_{u-t}f(X_t).$$

It is easy to see $(P_t)_{t\geq 0}$ is a continuous semigroup so it suffices to identify its generator. Since

$$\mathbb{P}\big[\omega_{s,s+t} = \{(m,t)\}\big] = r_m t + O(t^2) \text{ and } \mathbb{P}\big[|\omega_{s,s+t}| \ge 2\big] = O(t^2),$$

it follows that

$$P_t f(x) = f(x) + t \sum_{m \in \mathcal{G}} r_m \{f(m(x)) - f(x)\} + O(t^2).$$

The contact process

Let Λ be a finite set and let $\mathbf{S} := \{0, 1\}^{\Lambda}$ be the set of all functions $x : \Lambda \to \{0, 1\}$. For $i, j \in \Lambda$, let $\operatorname{bra}_{ji} : \mathbf{S} \to \mathbf{S}$ be the branching map

$$ext{bra}_{ji}(x)(k) := \left\{egin{array}{ll} x(i) ee x(j) & ext{ if } k=i, \ x(k) & ext{ otherwise,} \end{array}
ight.$$

and for $i \in \Lambda$ let $\mathtt{dth}_i : \mathbf{S} \to \mathbf{S}$ be the *death map*

$$\mathtt{dth}_i(x)(k) := \left\{ egin{array}{ll} 0 & ext{if } k = i, \ x(k) & ext{otherwise.} \end{array}
ight.$$

Then the generator of the contact process with infection rates $(\lambda(j,i))_{i,j\in\Lambda}$ has the random mapping representation

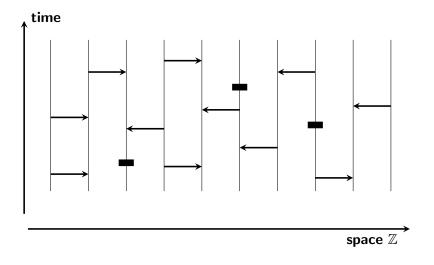
$$egin{aligned} Gf(x) &= \sum_{i,j\in\Lambda} \lambda(j,i) ig\{ fig(\mathtt{bra}_{ji}(x) ig) - fig(x ig) ig\} \ &+ \sum_{i\in\Lambda} ig\{ fig(\mathtt{dth}_i(x) ig) - fig(x ig) ig\} \ & (x \in \{0,1\}^\Lambda). \end{aligned}$$

We construct the contact process from a graphical representation ω .

We visualise the Poisson point set ω by drawing space Λ horizontally and time \mathbb{R} vertically.

For each $(bra_{ji}, t) \in \omega$ we draw an arrow from (j, t) to (i, t). For each $(dth_i, t) \in \omega$ we draw a blocking symbol \blacksquare at (i, t).

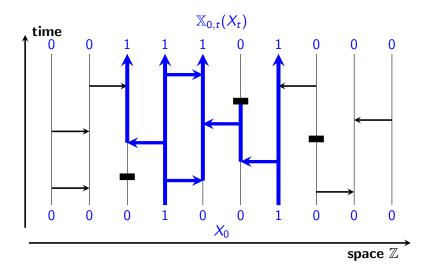
The graphical representation



・ 回 と く き と く き と

æ

The graphical representation



・ 回 ト ・ ヨ ト ・ ヨ ト

э

Let Λ be a finite graph and

 $\mathcal{N}_i := \left\{ j \in \Lambda : j \text{ is adjacent to } i \right\}$ and $\overline{\mathcal{N}}_i := \{i\} \cup \mathcal{N}_i.$

For each $i \in \Lambda$, we define maps min_i and max_i by

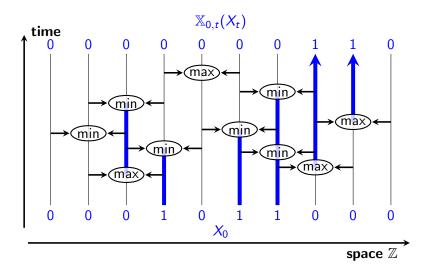
$$\min_i(x)(k) := \left\{ egin{array}{ll} \bigwedge_{j\in\mathcal{N}_i} x(j) & ext{ if } k=i, \ x(k) & ext{ otherwise,} \end{array}
ight.$$

and

$$\max_i(x)(k) := \left\{ egin{array}{ll} \bigvee_{j\in\mathcal{N}_i} x(j) & ext{ if } k=i, \ x(k) & ext{ otherwise.} \end{array}
ight.$$

Then the generator of the *threshold voter model* has the random mapping representation

$$egin{aligned} Gf(x) &= \sum_{i \in \Lambda} \left\{ f\left(\min_i(x)
ight) - f\left(x
ight)
ight\} \ &+ \sum_{i \in \Lambda} \left\{ f\left(\max_i(x)
ight) - f\left(x
ight)
ight\} \qquad (x \in \{0,1\}^\Lambda). \end{aligned}$$



イロト イヨト イヨト イヨト

臣

The threshold voter model has a second graphical representation. Let \oplus denote addition modulo 2.

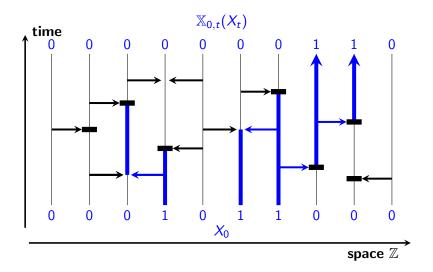
For each $i \in \Lambda$ and $\Delta \subset \overline{\mathcal{N}}_i$, we define a map flip_{*i*, Δ} by

$$\texttt{flip}_{i,\Delta}(x)(k) := \left\{ egin{array}{ll} \bigoplus_{j \in \Delta} x(j) & ext{if } k = i, \\ x(k) & ext{otherwise.} \end{array}
ight.$$

Then the generator of the threshold voter model has the alternative random mapping representation

$$Gf(x) = \sum_{i \in \Lambda} 2^{-|\overline{\mathcal{N}}_i|} \sum_{\substack{\Delta \subset \overline{\mathcal{N}}_i \\ |\Delta| \text{ is odd}}} \left\{ f(\texttt{flip}_{i,\Delta}(x)) - f(x) \right\}$$

[Cox & R. Durrett, 1991].



(1日) (1日) (1日) (1日)

э

Second random mapping representation

Note there are $2^{|\overline{\mathcal{N}}_i|-1}$ odd subsets of $\overline{\mathcal{N}}_i$.

We claim the threshold voter mode has the following description:

- Each site *i* is activated with Poisson rate 2.
- If i is activated, we uniformly chose an odd subset Δ ⊂ N_i and apply flip_{i,Δ}.

If x(j) = 0 for all $j \in \overline{\mathcal{N}}_i$ then $\bigoplus_{j \in \Delta} x(j) = 0$ for all odd $\Delta \subset \overline{\mathcal{N}}_i$ so flip_{*i*, Δ} does nothing.

If x(j) = 1 for all $j \in \overline{\mathcal{N}}_i$ then $\bigoplus_{j \in \Delta} x(j) = 1$ for all odd $\Delta \subset \overline{\mathcal{N}}_i$ so flip_{*i*, Δ} does nothing.

In all other cases, $\Delta \cap \{j \in \overline{\mathcal{N}}_j : x(j) = 1\}$ is uniformly chosen from all subsets of $\{j \in \overline{\mathcal{N}}_j : x(j) = 1\}$ so $\bigoplus_{j \in \Delta} x(j)$ is uniformly distributed on $\{0, 1\}$ and there is a probability 1/2 that $\texttt{flip}_{i,\Delta}$ changes the local state at *i*.

イロト 不得 トイヨト イヨト

Let **S** be a countably infinite set and let $\overline{\mathbf{S}} := \mathbf{S} \cup \{\infty\}$ be its one-point compactification, i.e., $\mathbf{S} \ni x_n \to \infty$ iff for all finite $\mathbf{S}' \subset \mathbf{S}$ there is an $N < \infty$ such that $x_n \notin \mathbf{S}'$ for all n > N.

Let \mathcal{G} be a countable set whose elements are functions $m : \mathbf{S} \to \mathbf{S}$. Let $(r_m)_{m \in \mathcal{G}}$ be nonnegative rates.

We assume that

$$\sum_{\substack{m\in\mathcal{G}\mbox{}m(x)
eq x}} r_m < \infty \qquad (x\in {f S}).$$

As before let ρ be the measure on $\mathcal{G}\times\mathbb{R}$ defined by

$$\rho(\{m\}\times[s,t]):=r_m(t-s) \qquad (m\in\mathcal{G},\ s\leq t).$$

Let ω be a Poisson point set on $\mathcal{G} \times \mathbb{R}$ with intensity ρ .

Recall that a function f defined on a real interval is *cadlag* if it is right-continuous and the left-limit $f_{t-} := \lim_{s \uparrow t} f_s$ exists for all t.

Lemma For all $s \in \mathbb{R}$ and $x \in S$, there exists a unique cadlag function $[s, \infty) \ni t \mapsto X_t \in \overline{S}$ and time $0 < \tau \le \infty$ such that

伺 とうき とうとう

If $\tau < \infty$, then we say that the Markov process *explodes*. To prove that the process is nonexplosive, it suffices to find a Lyapunov function.

Lemma Assume that there exists a function $L : \mathbf{S} \to [0, \infty)$ such that $L(x) \to \infty$ as $x \to \infty$, and a constant $K < \infty$ such that

$$GL(x) \leq KL(x)$$
 $(x \in \mathbf{S}).$

Then $\tau = \infty$ a.s. and the process started in $X_s = x$ satisfies

$$\mathbb{E}^{\mathsf{X}}[\mathsf{L}(\mathsf{X}_t)] \leq e^{\mathsf{K}(t-s)}\mathsf{L}(\mathsf{X}) \qquad (s \leq t, \ \mathsf{X} \in \mathbf{S}).$$

We define random maps $(X_{s,u})_{s \leq u}$ by

$$\mathbb{X}_{s,u}(x):=X_u$$
 where $(X_t)_{t\geq s}$ satisfies (i)–(iii).

伺下 イヨト イヨト

Let Λ be a countable set, called the *lattice*. Let S be a finite set, called the *local state space*. Let S^{Λ} denote the space of all functions $x : \Lambda \to S$. We equip S^{Λ} with the product topology, under which it is compact. For $x \in S^{\Lambda}$ and $\Delta \subset \Lambda$, let

$$x_{\Delta} = (x(i))_{i \in \Delta}$$

denote the restriction of x to Δ .

Lemma Let T be a finite set. Then a function $f : S^{\Lambda} \to T$ is continuous if and only if it depends on finitely many coordinates, i.e., there exists a finite set $\Delta \subset \Lambda$ and a function $f' : S^{\Delta} \to T$ such that $f(x) = f'(x_{\Delta})$ $(x \in S^{\Lambda})$.

向下 イヨト イヨト

For any function $f: S^{\Lambda} \to T$, we call

 $\mathcal{R}(f) := \big\{ i \in \Lambda : \exists x, y \in S^{\Lambda} \text{ s.t. } f(x) \neq f(y) \text{ and } x_{\Lambda \setminus \{i\}} = y_{\Lambda \setminus \{i\}} \big\}.$

the set of *f*-relevant sites.

If f is continuous, then $\mathcal{R}(f)$ is the smallest possible finite set $\Delta \subset \Lambda$ such that there exists a function $f' : S^{\Delta} \to T$ with $f(x) = f'(x_{\Delta}) \ (x \in S^{\Lambda})$.

If f is not continuous, then strange things can happen:

Example Set $S = T := \{0, 1\}$ and f(x) := 1 iff $\{i \in \Lambda : x(i) = 1\}$ is finite. Then $\mathcal{R}(f) = \emptyset$, but f is not constant.

Example Set $S = T := \{0, 1\}$ and f(x) := 1 iff $\{i \in \Lambda : x(i) = 1\}$ is finite and even. Then $\mathcal{R}(f) = \Lambda$.

Local maps

For any map $m: S^{\Lambda} \to S^{\Lambda}$ and $i \in \Lambda$, we define $m[i]: S^{\Lambda} \to S$ by $m[i](x) := m(x)(i) \qquad (x \in S^{\Lambda}).$

Then *m* is continuous iff m[i] is continuous for all $i \in \Lambda$.

By definition, a map $m: S^{\Lambda} \rightarrow S^{\Lambda}$ is *local* iff

- (i) *m* is continuous,
- (ii) $\mathcal{D}(m) := \{i \in \Lambda : \exists x \in S^{\Lambda} \text{ s.t. } m(x)(i) \neq x(i)\}$ is finite.

We will be interested in interacting particle systems with generator of the form

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \{f(m(x)) - f(x)\},\$$

where \mathcal{G} is a countable set whose elements are local maps $m: S^{\Lambda} \to S^{\Lambda}$ and $(r_m)_{m \in \mathcal{G}}$ are nonnegative rates.

Finite configurations

Let $\mathbf{S} := S^{\Lambda}$. For each local map $m : \mathbf{S} \to \mathbf{S}$, set $\mathcal{R}_{i}^{\uparrow}(m) := \{j \in \Lambda : i \in \mathcal{R}(m[j]), j \in \mathcal{D}(m)\},\$ $\mathcal{R}_{i}^{\downarrow}(m) := \{j \in \Lambda : j \in \mathcal{R}(m[i]), i \in \mathcal{D}(m)\}.$

Fix $0 \in S$, let $\underline{0} \in \mathbf{S}$ denote the all zero configuration, and let

 $\mathbf{S}_{ ext{fin}} := \left\{ x \in \mathbf{S} : |x| < \infty \right\}$ with $|x| := \left| \{ i \in \Lambda : x(i) \neq 0 \} \right|$.

Theorem Assume that $m(\underline{0}) = \underline{0}$ for all $m \in \mathcal{G}$ and that

$$\sum_{\substack{m\in\mathcal{G}\\\mathcal{D}(m)\ni i}} r_m < \infty \quad (i\in\Lambda) \quad \text{and} \quad \sup_{i\in\Lambda} \sum_{m\in\mathcal{G}} r_m \big|\mathcal{R}_i^{\uparrow}(m)| < \infty.$$

Then the Markov process with countable (!) state space $\mathbf{S}_{\mathrm{fin}}$ is nonexplosive.

・ 同 ト ・ ヨ ト ・ ヨ ト

Finite configurations

Proof idea Since $m(\underline{0}) = \underline{0}$ for all $m \in \mathcal{G}$ and

$$\sum_{\substack{m \in \mathcal{G} \\ \mathcal{D}(m) \ni i}} r_m < \infty \quad (i \in \Lambda),$$
$$\sum r_m < \infty \quad (x \in \mathbf{S}_{fin})$$

we have that

$$\sum_{\substack{m \in \mathcal{G} \\ m(x) \neq x}} r_m < \infty \qquad (x \in \mathbf{S}_{fin}),$$

while the condition involving $\mathcal{R}_i^{\uparrow}(m)$ implies that $x \mapsto |x|$ is a Lyapunov function.

The theorem allows us to construct the contact process, the threshold voter model, and many more interacting particle systems on infinite lattices, but only for finite initial states.

Infinite initial states

Theorem Assume that

$$\sum_{m\in\mathcal{G}} r_m < \infty \quad (i\in\Lambda) \quad \text{and} \quad \sup_{i\in\Lambda} \sum_{m\in\mathcal{G}} r_m |\mathcal{R}_i^{\downarrow}(m)| < \infty.$$

D(m)∋i

Then almost surely, for each $s \in \mathbb{R}$ and $x \in S^{\Lambda}$, there exists a unique cadlag function $(X_t)_{t \ge s}$ such that

We define random maps $(\mathbb{X}_{s,u})_{s\leq u}$ by

$$\mathbb{X}_{s,u}(x):=X_u$$
 where $(X_t)_{t\geq s}$ satisfies (i)–(ii).

If X_0 is independent of ω and $s \in \mathbb{R}$, then

$$X_t := \mathbb{X}_{s,s+t}(X_0) \qquad (t \ge 0)$$

is a Markov process $(X_t)_{t\geq 0}$ with generator G_{\cdot}

Idea of the proof Fix a finite "target" set T.

Then the set $\mathcal{C}(S^{\Lambda}, T)$ of continuous functions $f : S^{\Lambda} \to T$ is countable.

For fixed $f \in C(S^{\Lambda}, T)$ and $u \in \mathbb{R}$, we want the *backtracking* process

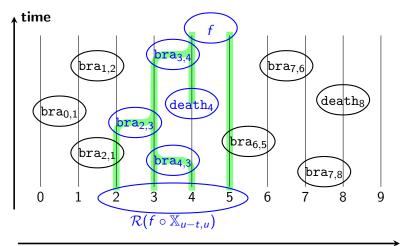
$$(F_t)_{t\geq 0}:=\left(f\circ\mathbb{X}_{u-t,t}\right)_{t\geq 0}$$

to be a well-defined Markov process with countable state space $\mathcal{C}(S^\Lambda, \mathcal{T})$ and generator

$$H\mathcal{F}(f) := \sum_{m \in \mathcal{G}} r_m \{ \mathcal{F}(f \circ m) - \mathcal{F}(f) \}.$$

伺下 イヨト イヨト

The backtracking process



space

æ

イロン 不同 とうほう 不同 とう

The backtracking process

The condition $\sum r_m < \infty \quad (i \in \Lambda)$ $m \in \mathcal{G}$ $\mathcal{D}(m) \ni i$ guarantees that $\sum r_m < \infty \qquad (f \in \mathcal{C}(S^{\Lambda}, T)),$ $m \in G$

 $f \circ m \neq f$

and the Lyapunov function

$$L(f) := |\mathcal{R}(f)| \qquad (f \in \mathcal{C}(S^{\Lambda}, T)),$$

satisfies $HL(f) \leq KL(f)$ with

$$\mathcal{K} := \sup_{i \in \Lambda} \sum_{m \in \mathcal{G}} r_m |\mathcal{R}_i^{\downarrow}(m)|.$$

The contact process is well-defined for finite initial states provided that

$$\sup_{i\in\Lambda}\sum_{j\in\Lambda}\lambda(i,j)<\infty.$$

and for arbitrary initial states provided that

$$\sup_{i\in\Lambda}\sum_{j\in\Lambda}\lambda(j,i)<\infty.$$

Our theorems imply that the threshold voter model is well-defined for finite or infinite initial states provided the graph Λ is of uniformly bounded degree.

(This condition can be relaxed by a more clever choice of the Lyapunov function.)

(周) (日) (日)

The backward stochastic flow

We set

$$\mathbb{F}_{u,s}(f) := f \circ \mathbb{X}_{s,u} \qquad (u \ge s, \ f \in \mathcal{C}(S^{\Lambda}, T)).$$

Then $(\mathbb{F}_{u,s})_{u\geq s}$ is a backward stochastic flow:

$$\mathbb{F}_{s,s} = 1$$
 and $\mathbb{F}_{t,s} \circ \mathbb{F}_{u,t} = \mathbb{X}_{s,u}$ $(u \ge t \ge s).$

If F_0 is a random variable with values in $\mathcal{C}(S^{\Lambda}, T)$, independent of ω , and $u \in \mathbb{R}$, then

$$F_t := \mathbb{F}_{u,u-t}(F_0) \qquad (t \ge 0)$$

defines a Markov process $(F_t)_{t\geq 0}$ with generator H. It is a consequence of our construction that this *backtracking* process has caglad sample paths, i.e., $t \mapsto F_t$ left-continuous and the right limit $F_{t+} := \lim_{s\downarrow t} F_s$ exists for all $t \geq 0$.