Lecture 2
 Monotone duality

Jan M. Swart

Berlin

January 29-31, 2024

Outline

- Monotonicity and monotone representability
- Positive correlations
- The lower and upper invariant laws
- Survival and stability
- Monotone duality
- A cooperative contact process

Probability kernels

For finite sets S, T, let $\mathcal{F}(S, T)$ denote the set of all functions $f: S \rightarrow T$.

A random mapping representation of a probability kernel K from S to T is an $\mathcal{F}(S, T)$-valued random variable M such that

$$
K(x, y)=\mathbb{P}[M(x)=y] \quad(x \in S, y \in T)
$$

We say that K is representable in $\mathcal{G} \subset \mathcal{F}(S, T)$ if M can be chosen so that it takes values in \mathcal{G}. Recall that

$$
\begin{aligned}
& K f(x):=\sum_{y \in T} K(x, y) f(y)=\mathbb{E}[f(M(x))] \\
& \quad(x \in S, f \in \mathcal{F}(T, \mathbb{R})) .
\end{aligned}
$$

Monotone probability kernels

For partially ordered sets S, T, let $\mathcal{F}_{\text {mon }}(S, T)$ be the set of all monotone maps $m: S \rightarrow T$, i.e., those for which $x \leq x^{\prime}$ implies $m(x) \leq m\left(x^{\prime}\right)$.
A probability kernel K is called monotone if

$$
K f \in \mathcal{F}_{\mathrm{mon}}(S, \mathbb{R}) \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R})
$$

and monotonically representable if K is representable in $\mathcal{F}_{\text {mon }}(S, T)$.
Monotonical representability implies monotonicity:

$$
\begin{aligned}
& f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}) \quad \text { and } \quad x \leq x^{\prime} \quad \Rightarrow \\
& \quad K f(x)=\mathbb{E}[f(M(x))] \leq \mathbb{E}\left[f\left(M\left(x^{\prime}\right)\right)\right]=K f\left(x^{\prime}\right)
\end{aligned}
$$

Monotone probability kernels

J.A. Fill \& M. Machida (AOP 2001) (and also D.A. Ross (unpublished)) discovered that the converse does not hold. There are counterexamples with $S=T=\{0,1\}^{2}$.

On the positive side, Kamae, Krengel \& O'Brien (1977) and Fill \& Machida (2001) have shown that:
(Sufficient conditions for monotone representability)
Let S, T be finite partially ordered sets and assume that at least one of the following conditions is satisfied:
(i) S is totally ordered.
(ii) T is totally ordered.

Then any monotone probability kernel from S to T is monotonically representable.

Stochastic order

In particular, setting $S=\{1,2\}$, this proves that if μ_{1}, μ_{2} are probability laws on T such that

$$
\mu_{1} f \leq \mu_{2} f \quad \forall f \in \mathcal{F}_{\operatorname{mon}}(T, \mathbb{R})
$$

then it is possible to couple random variables M_{1}, M_{2} with laws μ_{1}, μ_{2} such that $M_{1} \leq M_{2}$.

The statement remains true if T is replaced by a set of the form $\mathbf{T}=T^{\wedge}$, equipped with the product order and $\mathcal{F}_{\text {mon }}(T, \mathbb{R})$ is replaced by the space $\mathcal{C}_{\text {mon }}(\mathbf{T}, \mathbb{R})$ of continuous monotone functions.

Monotone interacting particle systems

An interacting particle system $\left(X_{t}\right)_{t \geq 0}$ on a lattice Λ with a partially ordered local state space S and semigroup $\left(P_{t}\right)_{t \geq 0}$ is called monotone if P_{t} is a monotone probability kernel for all $t \geq 0$.
Lemma If the generator G has a random mapping representation

$$
G f(x)=\sum_{m \in \mathcal{G}} r_{m}\{f(m(x))-f(x)\}
$$

such that each local map $m \in \mathcal{G}$ is monotone, then P_{t} is monotonically representable for all $t \geq 0$.

Proof Immediate, since

$$
P_{t}(x, \cdot)=\mathbb{P}\left[\mathbb{X}_{0, t}(x) \in \cdot\right] \quad\left(x \in S^{\wedge}, t \geq 0\right)
$$

and $\mathbb{X}_{0, t}[i]$ is a concatenation of finitely many monotone maps for each $i \in \Lambda$ and $t \geq 0$.

Positive correlations

A probability measure μ on $\mathbf{S}=S^{\wedge}$ has positive correlations if

$$
\operatorname{Cov}_{\mu}(f, g):=\int(f g) \mathrm{d} \mu-\left(\int f \mathrm{~d} \mu\right)\left(\int g \mathrm{~d} \mu\right) \geq 0
$$

for all $f, g \in \mathcal{C}_{\text {mon }}(\mathbf{S}, \mathbb{R})$.
Theorem Assume that each $m \in \mathcal{G}$ is monotone and that

- $\forall x \in \mathbf{S}$ and $m \in \mathcal{G}$ either $m(x) \geq x$ or $m(x) \leq x$.

Then, if $\mathbb{P}\left[X_{0} \in \cdot\right]$ has positive correlations, so has $\mathbb{P}\left[X_{t} \in \cdot\right]$ for all $t \geq 0$.

Positive correlations

Proof sketch For any measure μ and bounded measurable function f write $\mu f:=\int f \mathrm{~d} \mu$. Define μP_{t} by $\left(\mu P_{t}\right) f:=\mu\left(P_{t} f\right)$ so that $\mu P_{t}=\mathbb{P}\left[X_{t} \in \cdot\right]$.
The claim now comes from the covariance formula

$$
\operatorname{Cov}_{\mu P_{t}}(f, g)=\operatorname{Cov}_{\mu}\left(P_{t} f, P_{t} g\right)+\int_{0}^{t} \mathrm{~d} s \mu P_{t-s} \Gamma\left(P_{s} f, P_{s} g\right),
$$

where

$$
\begin{aligned}
\Gamma(f, g)(x) & :=G(f g)(x)-G f(x) g(x)-f(x) G g(x) \\
& =\sum_{m \in \mathcal{G}} r_{m}\{f(m(x))-f(x)\}\{g(m(x))-g(x)\} .
\end{aligned}
$$

The lower and upper invariant laws

Lemma Assume that S is partially ordered with least element 0 and greatest element 1 and that each $m \in \mathcal{G}$ is monotone. Then there exist invariant laws $\underline{\nu}$ and $\bar{\nu}$ such that

$$
\mathbb{P} 0\left[X_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \underline{\nu} \quad \text { and } \quad \mathbb{P}^{\underline{1}}\left[X_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\nu}
$$

and each other invariant law ν satisfies $\underline{\nu} \leq \nu \leq \bar{\nu}$ in the stochastic order.

We call $\underline{\nu}$ and $\bar{\nu}$ the lower and upper invariant laws.
They are extremal elements of the convex set of all invariant laws.

The lower and upper invariant laws

Proof sketch Since $\mathbb{X}_{t, u}(\underline{1}) \leq \underline{1}$ and $\mathbb{X}_{s, t}$ is monotone

$$
\mathbb{X}_{s, u}(\underline{1})=\mathbb{X}_{t, u}\left(\mathbb{X}_{s, t}(\underline{1})\right) \leq \mathbb{X}_{t, u}(\underline{1}) \quad(s \leq t \leq u)
$$

which proves that the decreasing limit

$$
\bar{X}_{u}:=\lim _{t \rightarrow-\infty} \mathbb{X}_{t, u}(\underline{1})
$$

exists. It is easy to check $\left(\bar{X}_{u}\right)_{u \in \mathbb{R}}$ is a stationary process that a.s. dominates any other stationary process adapted to the same graphical representation.
If $\bar{\nu}=p \nu_{1}+(1-p) \nu_{2}$ with $0<p<1$ and ν_{1}, ν_{2} stationary, then $\nu_{i} \leq \bar{\nu}(i=1,2)$ implies $\nu_{1} f=\nu_{2} f=\nu f$ for all $f \in \mathcal{C}_{\text {mon }}(\mathbf{S}, \mathbb{R})$.

In the absencse of monotone representability, replace a.s. arguments by arguments involving the semigroup and the stochastic order.

Survival and stability

Assume that S is partially ordered with least element 0 and greatest element 1 and that each $m \in \mathcal{G}$
is monotone with $m(\underline{0})=\underline{0}$.
We say that the process $\left(X_{t}\right)_{t \geq 0}$ survives if

$$
\mathbb{P}^{x}\left[X_{t} \neq \underline{0} \forall t \geq 0\right]>0 \quad \text { for some } x \in \mathbf{S}_{\mathrm{fin}}
$$

We say that the process $\left(X_{t}\right)_{t \geq 0}$ is stable if
$\bar{\nu}$ is nontrivial in the sense that $\bar{\nu} \neq \delta_{\underline{0}}$.
By the extremality of $\bar{\nu}$, nontriviality implies $\bar{\nu}(\{\underline{0}\})=0$.

A bit of order theory

Let S be a partially ordered set and $A \subset S$.
Define the upset A^{\uparrow} and downset A^{\downarrow} of A as

$$
\begin{aligned}
& A^{\uparrow}:=\{y \in S: \exists x \in A \text { s.t. } x \leq y\}, \\
& A^{\downarrow}:=\{y \in S: \exists x \in A \text { s.t. } x \geq y\} .
\end{aligned}
$$

Then A is increasing if $A=A^{\uparrow}$ and decreasing if $A=A^{\downarrow}$.
S is a lattice if $\forall x, y \in S \exists!x \vee y, x \wedge y \in S$ s.t.

$$
\{x\}^{\uparrow} \cap\{y\}^{\uparrow}=\{x \vee y\}^{\uparrow} \quad \text { and } \quad\{x\}^{\downarrow} \cap\{y\}^{\downarrow}=\{x \wedge y\}^{\downarrow}
$$

A finite lattice has a unique least element 0 and greatest element 1 .
The set $\mathbf{S}:=\{0,1\}^{\wedge}$ is a lattice with
least element $\underline{0}$ and greatest element $\underline{1}$.

Monotone and additive maps

Let $\mathbf{S}:=\{0,1\}^{\wedge}$ and $\mathbf{T}:=\{0,1\}^{\Delta}$.
Let $\mathcal{L}_{+}(\mathbf{S}, \mathbf{T})$ denote the set of maps $m: \mathbf{S} \rightarrow \mathbf{T}$ such that
(i) m is lower semi-continuous,
(ii) $m(\underline{0})=\underline{0}$,
(iii) $x \leq y \Rightarrow m(x) \leq m(x)(x, y \in \mathbf{S})$.

Let $\mathcal{L}_{\text {add }}(\mathbf{S}, \mathbf{T})$ denote the set of maps $m \in \mathcal{L}_{+}(\mathbf{S}, \mathbf{T})$ such that (iii) $m(x \vee y)=m(x) \vee m(y)(x, y \in \mathbf{S})$.

Let $\mathcal{C}_{+}(\mathbf{S}, \mathbf{T})$ and $\mathcal{C}_{\text {add }}(\mathbf{S}, \mathbf{T})$ denote the sets of maps $m \in \mathcal{L}_{+}(\mathbf{S}, \mathbf{T})$ and $m \in \mathcal{L}_{\text {add }}(\mathbf{S}, \mathbf{T})$, respectively, such that (i) m is continuous.

Maps $m \in \mathcal{L}_{\text {add }}(\mathbf{S}, \mathbf{T})$ are called additive.
Note that (iii) implies $m(x \vee y) \geq m(x) \vee m(y)(x, y \in \mathbf{S})$.

Monotone and additive systems

Let $\left(X_{t}\right)_{t \geq 0}$ be an interacting particle system on a lattice Λ with local state space $S=\{0,1\}$, semigroup $\left(P_{t}\right)_{t \geq 0}$, and generator

$$
G f(x)=\sum_{m \in \mathcal{G}} r_{m}\{f(m(x))-f(x)\}
$$

Let $\left(\mathbb{X}_{s, u}\right)_{s \leq u}$ be the associated stochastic flow and let $\left(\mathbb{F}_{u, s}\right)_{u \geq s}$ be the backward stochastic flow defined as

$$
\mathbb{F}_{u, s}(f):=f \circ \mathbb{X}_{s, u} \quad\left(u \geq s, f \in \mathcal{C}\left(S^{\wedge},\{0,1\}\right)\right)
$$

- If $m \in \mathcal{C}_{+}\left(S^{\wedge}, S^{\wedge}\right)$ for all $m \in \mathcal{G}$, then

$$
\mathbb{F}_{u, s}(f) \in \mathcal{L}_{+}\left(S^{\wedge},\{0,1\}\right) \text { for all } f \in \mathcal{L}_{+}\left(S^{\wedge},\{0,1\}\right)
$$

- If $m \in \mathcal{C}_{\text {add }}\left(S^{\wedge}, S^{\wedge}\right)$ for all $m \in \mathcal{G}$, then

$$
\mathbb{F}_{u, s}(f) \in \mathcal{L}_{\text {add }}\left(S^{\wedge},\{0,1\}\right) \text { for all } f \in \mathcal{L}_{\text {add }}\left(S^{\wedge},\{0,1\}\right)
$$

The backtracking process

space

Minimal one-states

Let $f \in \mathcal{L}_{+}(\mathbf{S},\{0,1\})$. We can write $f(x)=1_{A}(x)$ where

$$
A:=\{x \in \mathbf{S}: f(x)=1\}
$$

is the set of one-states of f. One has
$1_{A} \in \mathcal{L}_{+}(\mathbf{S},\{0,1\}) \Leftrightarrow A$ is open and increasing.
We say $y \in A$ is minimal if $\nexists y^{\prime} \neq y, y^{\prime} \leq y, y^{\prime} \in A$.
We set

$$
A^{\circ}:=\{y \in A: y \text { is minimal }\}
$$

$$
\mathbf{S}_{\mathrm{fin}}^{+}:=\{y \in \mathbf{S}: 0<|y|<\infty\}, \quad \mathcal{H}:=\left\{Y \subset \mathbf{S}_{\mathrm{fin}}^{+}: Y^{\circ}=Y\right\} .
$$

Proposition Each $Y \in \mathcal{H}$ defines a function $f \in \mathcal{L}_{+}(\mathbf{S},\{0,1\})$ via

$$
f(x):=1_{Y \uparrow}(x)=1_{\{\exists y \in Y \text { s.t. } x \geq y\}} \quad(x \in \mathbf{S})
$$

and $\mathcal{H} \ni Y \mapsto 1_{Y^{\uparrow}} \in \mathcal{L}_{+}(\mathbf{S},\{0,1\})$ is a bijection.
Set $\mathcal{H}_{\text {fin }}:=\{Y \in \mathcal{H}:|Y|<\infty\}$. Then also $\mathcal{H}_{\text {fin }} \ni Y \mapsto 1_{Y \uparrow} \in \mathcal{C}_{+}(\mathbf{S},\{0,1\})$ is a bijection.

Duality

Define $\psi: \mathbf{S} \times \mathcal{H} \rightarrow T$ by

$$
\psi(x, Y):=1_{\{\exists y \in Y \text { s.t. } x \geq y\}} \quad(x \in \mathbf{S}, Y \in \mathcal{H})
$$

There exists random maps $\mathbb{Y}_{u, s}: \mathcal{H} \rightarrow \mathcal{H}(u \geq s)$ such that

$$
\psi\left(\mathbb{X}_{s, u}(x), Y\right)=\psi\left(x, \mathbb{Y}_{u, s}(Y)\right) \quad(x \in \mathbf{S}, \quad Y \in \mathcal{H}, s \leq u)
$$

These form a dual stochastic flow

$$
\mathbb{Y}_{s, s}=1 \quad \text { and } \quad \mathbb{Y}_{t, s} \circ \mathbb{Y}_{u, t}=\mathbb{Y}_{u, s} \quad(u \geq t \geq s)
$$

If Y_{0} is independent of $\left(\mathbb{Y}_{u, s}\right)_{u \geq s}$ and $u \in \mathbb{R}$, then

$$
Y_{t}:=\mathbb{Y}_{u-t, u}\left(Y_{0}\right) \quad(t \geq 0)
$$

defines a Markov process $\left(Y_{t}\right)_{t \geq 0}$ with state space \mathcal{H}.

Pathwise construction

Define branching maps, cooperative branching maps, and death maps by

$$
\begin{aligned}
\operatorname{bra}_{i j}(x)(k) & := \begin{cases}x(i) \vee x(j) & \text { if } k=j, \\
x(k) & \text { otherwise. }\end{cases} \\
\operatorname{cob}_{i i^{\prime} j}(x)(k) & := \begin{cases}\left(x(i) \wedge x\left(i^{\prime}\right)\right) \vee x(j) & \text { if } k=j \\
x(k) & \text { otherwise. }\end{cases} \\
\operatorname{dth}_{j}(x)(k) & := \begin{cases}0 & \text { if } k=j, \\
x(k) & \text { otherwise }\end{cases}
\end{aligned}
$$

Note that $\underbrace{\operatorname{cob}_{123}(100 \vee 010)}_{\operatorname{cob}_{123}(110)=111}>\underbrace{\operatorname{cob}_{123}(100)}_{100} \vee \underbrace{\operatorname{cob}_{123}(010)}_{010}$.

Pathwise construction

Assume that Λ is a graph.
Let $\mathcal{N}_{j}:=\{i \in \Lambda: i$ is adjacent to $j\}$.
and $\mathcal{N}_{j}^{2}:=\left\{\left(i, i^{\prime}\right): i, i^{\prime} \in \mathcal{N}_{j}, i \neq i^{\prime}\right\}$.
Consider the "cooperative contact process" with generator

$$
\begin{aligned}
G f(x):= & (1-\alpha) \sum_{j \in \Lambda} \frac{1}{\left|\mathcal{N}_{j}\right|} \sum_{i \in \mathcal{N}_{j}}\left\{f\left(\operatorname{bra}_{i j}(x)\right)-f(x)\right\} \\
& +\alpha \sum_{j \in \Lambda} \frac{1}{\left|\mathcal{N}_{j}^{2}\right|} \sum_{\left(i, i^{\prime}\right) \in \mathcal{N}_{j}^{2}}\left\{f\left(\operatorname{cob}_{i i^{\prime} j}(x)\right)-f(x)\right\} \\
& +\delta \sum_{j \in \Lambda}\left\{f\left(\operatorname{dth}_{j}(x)\right)-f(x)\right\} .
\end{aligned}
$$

For $\alpha=0$ this is a contact process and for $\alpha=1$ there is only cooperative branching.

The graphical representation

We construct the cooperative contact process from a graphical representation ω.

We visualise the Poisson point set ω by drawing space Λ horizontally and time \mathbb{R} vertically.

For each $\left(\mathrm{bra}_{i j}, t\right) \in \omega$ we draw an arrow from (i, t) to (j, t).
For each $\left(\mathrm{cob}_{i i^{\prime} j}, t\right) \in \omega$ we draw two arrows, one from (i, t) to (j, t) and the other from $\left(i^{\prime}, t\right)$ to (j, t).

For each $\left(\mathrm{dth}_{j}, t\right) \in \omega$ we draw a blocking symbol $\boldsymbol{m}(j, t)$.

Pathwise construction

Pathwise construction

Pathwise construction

Percolation picture

Duality

There exists a metrisable topology on \mathcal{H} such that

$$
Y_{n} \rightarrow Y \quad \Leftrightarrow \quad \psi\left(x, Y_{n}\right) \rightarrow \psi(x, Y) \quad \forall x \in \mathbf{S}_{\mathrm{fin}}
$$

The space \mathcal{H} is compact under this topology.
We define a partial order on \mathcal{H} by

$$
Y_{1} \leq Y_{2} \quad \Leftrightarrow \quad \psi\left(x, Y_{1}\right) \leq \psi\left(x, Y_{2}\right)
$$

The least element of \mathcal{H} in this order is \emptyset and the greatest element is

$$
\top:=\left\{1_{\{i\}}: i \in \Lambda\right\} .
$$

One has

$$
\mathbb{P}^{\top}\left[Y_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\mu}
$$

where $\bar{\mu}$ is the upper invariant law of the dual process.

Survival and stability

- Either $\bar{\mu}$ is trivial in the sense that $\bar{\mu}=\delta_{\emptyset}$,
- or $\bar{\mu}$ is nontrivial in the sense that $\bar{\mu}(\{\emptyset\})=0$.

If $\bar{\mu}$ is nontrivial, then we say the dual process $\left(Y_{t}\right)_{t \geq 0}$ is stable.
We say that the dual process survives if

$$
\mathbb{P}^{Y}\left[Y_{t} \neq \emptyset \forall t \geq 0\right]>0 \quad \text { for some } Y \in \mathcal{H}_{\text {fin }}
$$

Lemma [Gray '86, Latz \& S. '23] One has

$$
\begin{aligned}
X \text { is stable } & \Leftrightarrow Y \text { survives, }, \\
X \text { survives } & \Leftrightarrow Y \text { is stable }
\end{aligned}
$$

The main novelty of our work is the construction of $\left(Y_{t}\right)_{t \geq 0}$ for infinite initial states.

Survival and stability

Proof

$$
\begin{aligned}
& \mathbb{P}\left[\exists y \in Y \text { s.t. } \mathbb{X}_{-t, 0}(\underline{1}) \geq y\right]=\mathbb{P}\left[\exists y \in \mathbb{Y}_{0,-t}(Y) \text { s.t. } 1 \geq y\right] \\
& \quad=\mathbb{P}\left[\mathbb{Y}_{0,-t}(Y) \neq \emptyset\right] \underset{t \rightarrow \infty}{\longrightarrow} \mathbb{P}\left[\mathbb{Y}_{0,-s}(Y) \neq \emptyset \forall s \geq 0\right],
\end{aligned}
$$

and the limit is >0 for some $Y \in \mathcal{H}_{\text {fin }}$ iff $\bar{\nu}$ is nontrivial. Similarly

$$
\begin{aligned}
& \mathbb{P}\left[\exists y \in \mathbb{Y}_{t, 0}(T) \text { s.t. } x \geq y\right]=\mathbb{P}\left[\exists y \in T \text { s.t. } \mathbb{X}_{0, t}(x) \geq y\right] \\
& \quad=\mathbb{P}\left[\mathbb{X}_{0, t}(x) \neq \underline{0}\right] \underset{t \rightarrow \infty}{\longrightarrow} \mathbb{P}\left[\mathbb{X}_{0, s}(x) \neq \underline{0} \forall s \geq 0\right],
\end{aligned}
$$

and the limit is >0 for some $x \in \mathbf{S}_{\text {fin }}^{+}$iff $\bar{\mu}$ is nontrivial.

Additive duality

Let $\mathcal{H}_{1}:=\{Y \in \mathcal{H}:|y|=1 \forall y \in Y\}$.
We can naturally identify $Y \in \mathcal{H}_{1}$ with $x \in \mathbf{S}$ defined as

$$
x(i)=1 \quad \Leftrightarrow \quad 1_{\{i\}} \in Y
$$

If all maps $m \in \mathcal{G}$ are additive, then the dual stochastic flow $\left(\mathbb{Y}_{u, s}\right)_{u \geq s}$ maps \mathcal{H}_{1} into itself and the corresponding Markov process on $\mathcal{H}_{1} \cong \mathbf{S}$ is itself an additive particle system.
For the contact process, this yields a well-known self-duality. As a result:

$$
X \text { is stable } \Leftrightarrow X \text { survives. }
$$

Numerical data

Density of the upper invariant law for the process on \mathbb{Z}^{2}.

Conjectured phase diagram

Conjectured phase diagram for the process on \mathbb{Z}^{2}.

Conjectured phase diagram

Conjectured phase diagram for the process on \mathbb{Z}^{2}.

Rigorous results

Let $\theta(\alpha, \delta):=\lim _{t \rightarrow \infty} \mathbb{P} \underline{1}\left[X_{t}(i)=1\right]$, and $\theta^{\prime}(\alpha, \delta):=\mathbb{P}^{1_{i j\}}}\left[X_{t} \neq \underline{0} \forall t \geq 0\right]$.

- θ and θ^{\prime} are nonincreasing in α and δ.
- $\forall \alpha \in[0,1] \exists 0 \leq \delta_{\mathrm{c}}(\alpha)<\infty$ s.t. $\theta(\alpha, \delta)>0$ for $\delta<\delta_{\mathrm{c}}(\alpha)$ and $\theta(\alpha, \delta)=0$ for $\delta>\delta_{\mathrm{c}}(\alpha)$.
- $\forall \alpha \in[0,1] \exists 0 \leq \delta_{\mathrm{c}}^{\prime}(\alpha)<\infty$ s.t. $\theta^{\prime}(\alpha, \delta)>0$ for $\delta<\delta_{\mathrm{c}}^{\prime}(\alpha)$ and $\theta^{\prime}(\alpha, \delta)=0$ for $\delta^{\prime}>\delta_{\mathrm{c}}(\alpha)$.
- $\theta(0, \delta)=\theta^{\prime}(0, \delta)$ and $\delta_{\mathrm{c}}(0)=\delta_{\mathrm{c}}^{\prime}(0)$.
- $\delta_{\mathrm{c}}(0)>0$.
- $\delta \mapsto \theta(0, \delta)$ is continuous on $\left[0, \delta_{\mathrm{c}}(0)\right)$.
- $\theta\left(0, \delta_{\mathrm{c}}(0)\right)=0$.
- $\delta_{\mathrm{c}}^{\prime}(1)=0$ and $\delta_{\mathrm{c}}(1)>0$.
- $\delta_{\mathrm{c}}^{\prime}(\alpha) \leq \delta_{\mathrm{c}}(\alpha) \quad \forall \alpha \in[0,1]$.

Open problems

- $\exists 0<\alpha_{\mathrm{c}}<1$ s.t. $\delta_{\mathrm{c}}^{\prime}(\alpha)=\delta_{\mathrm{c}}(\alpha)$ for $\alpha \leq \alpha_{\mathrm{c}}$ and $\delta_{\mathrm{c}}^{\prime}(\alpha)<\delta_{\mathrm{c}}(\alpha)$ for $\alpha>\alpha_{\mathrm{c}}$.
- Discontinuity of $\delta \mapsto \theta(\alpha, \delta)$ at $\delta_{\mathrm{c}}(\alpha)$ for $\alpha>\alpha_{\mathrm{c}}$.
- Continuity of θ and θ^{\prime} everywhere else (partial results are known as will be discussed later).

