Lecture 2 Monotone duality

Jan M. Swart

Berlin

January 29-31, 2024

Jan M. Swart Monotone interacting particle systems

イロト イヨト イヨト イヨト

臣

- Monotonicity and monotone representability
- Positive correlations
- The lower and upper invariant laws
- Survival and stability
- Monotone duality
- A cooperative contact process

< ∃⇒

For finite sets S, T, let $\mathcal{F}(S, T)$ denote the set of all functions $f : S \to T$.

A random mapping representation of a probability kernel K from S to T is an $\mathcal{F}(S, T)$ -valued random variable M such that

$$K(x,y) = \mathbb{P}[M(x) = y]$$
 $(x \in S, y \in T).$

We say that K is *representable* in $\mathcal{G} \subset \mathcal{F}(S, T)$ if M can be chosen so that it takes values in \mathcal{G} . Recall that

$$\begin{aligned} & \mathcal{K}f(x) := \sum_{y \in \mathcal{T}} \mathcal{K}(x,y)f(y) = \mathbb{E}\big[f\big(\mathcal{M}(x)\big)\big] \\ & (x \in \mathcal{S}, \ f \in \mathcal{F}(\mathcal{T},\mathbb{R})). \end{aligned}$$

伺 ト イヨト イヨト

For partially ordered sets S, T, let $\mathcal{F}_{mon}(S, T)$ be the set of all monotone maps $m: S \to T$, i.e., those for which $x \leq x'$ implies $m(x) \leq m(x')$.

A probability kernel K is called *monotone* if

$$Kf \in \mathcal{F}_{\mathrm{mon}}(S, \mathbb{R}) \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}),$$

and monotonically representable if K is representable in $\mathcal{F}_{mon}(S, T)$.

Monotonical representability implies monotonicity:

$$f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}) \quad \text{and} \quad x \leq x' \quad \Rightarrow$$

 $Kf(x) = \mathbb{E} \big[f \big(M(x) \big) \big] \leq \mathbb{E} \big[f \big(M(x') \big) \big] = Kf(x').$

伺 ト イ ヨ ト イ ヨ ト

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross (unpublished)) discovered that the converse does not hold. There are counterexamples with $S = T = \{0, 1\}^2$.

On the positive side, Kamae, Krengel & O'Brien (1977) and Fill & Machida (2001) have shown that:

(Sufficient conditions for monotone representability) Let S, T be finite partially ordered sets and assume that at least one of the following conditions is satisfied:

- (i) *S* is totally ordered.
- (ii) *T* is totally ordered.

Then any monotone probability kernel from S to T is monotonically representable.

・ 同 ト ・ ヨ ト ・ ヨ ト

In particular, setting $S = \{1,2\}$, this proves that if μ_1, μ_2 are probability laws on T such that

$$\mu_1 f \leq \mu_2 f \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}),$$

then it is possible to couple random variables M_1, M_2 with laws μ_1, μ_2 such that $M_1 \leq M_2$.

The statement remains true if \mathcal{T} is replaced by a set of the form $\mathbf{T} = \mathcal{T}^{\Lambda}$, equipped with the product order and $\mathcal{F}_{mon}(\mathcal{T}, \mathbb{R})$ is replaced by the space $\mathcal{C}_{mon}(\mathbf{T}, \mathbb{R})$ of continuous monotone functions.

(日本)(日本)(日本)

Monotone interacting particle systems

An interacting particle system $(X_t)_{t\geq 0}$ on a lattice Λ with a partially ordered local state space S and semigroup $(P_t)_{t\geq 0}$ is called *monotone* if P_t is a monotone probability kernel for all $t \geq 0$.

Lemma If the generator G has a random mapping representation

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \{f(m(x)) - f(x)\}$$

such that each local map $m \in \mathcal{G}$ is monotone, then P_t is monotonically representable for all $t \ge 0$.

Proof Immediate, since

$$P_t(x, \cdot) = \mathbb{P}\big[\mathbb{X}_{0,t}(x) \in \cdot\,\big] \qquad (x \in S^{\Lambda}, \ t \ge 0)$$

and $\mathbb{X}_{0,t}[i]$ is a concatenation of finitely many monotone maps for each $i \in \Lambda$ and $t \ge 0$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

A probability measure μ on $\mathbf{S} = S^{\Lambda}$ has *positive correlations* if

$$\operatorname{Cov}_{\mu}(f,g) := \int (fg) \, \mathrm{d}\mu - \left(\int f \, \mathrm{d}\mu\right) \left(\int g \, \mathrm{d}\mu\right) \ge 0$$

for all $f,g \in \mathcal{C}_{\mathrm{mon}}(\mathbf{S},\mathbb{R}).$

Theorem Assume that each $m \in \mathcal{G}$ is monotone and that

▶
$$\forall x \in S$$
 and $m \in G$ either $m(x) \ge x$ or $m(x) \le x$.

Then, if $\mathbb{P}[X_0 \in \cdot]$ has positive correlations, so has $\mathbb{P}[X_t \in \cdot]$ for all $t \ge 0$.

Proof sketch For any measure μ and bounded measurable function f write $\mu f := \int f d\mu$. Define μP_t by $(\mu P_t)f := \mu(P_t f)$ so that $\mu P_t = \mathbb{P}[X_t \in \cdot]$.

The claim now comes from the covariance formula

$$\operatorname{Cov}_{\mu P_t}(f,g) = \operatorname{Cov}_{\mu}(P_t f, P_t g) + \int_0^t \mathrm{d}s \, \mu P_{t-s} \Gamma(P_s f, P_s g),$$

where

$$\Gamma(f,g)(x) := G(fg)(x) - Gf(x)g(x) - f(x)Gg(x) = \sum_{m \in \mathcal{G}} r_m \{ f(m(x)) - f(x) \} \{ g(m(x)) - g(x) \}.$$

Lemma Assume that S is partially ordered with least element 0 and greatest element 1 and that each $m \in \mathcal{G}$ is monotone. Then there exist invariant laws $\underline{\nu}$ and $\overline{\nu}$ such that

$$\mathbb{P}^{\underline{0}}\big[X_t \in \,\cdot\,\big] \underset{t \to \infty}{\Longrightarrow} \underline{\nu} \quad \text{and} \quad \mathbb{P}^{\underline{1}}\big[X_t \in \,\cdot\,\big] \underset{t \to \infty}{\Longrightarrow} \overline{\nu}$$

and each other invariant law ν satisfies $\underline{\nu} \leq \nu \leq \overline{\nu}$ in the stochastic order.

We call $\underline{\nu}$ and $\overline{\nu}$ the *lower* and *upper* invariant laws.

They are extremal elements of the convex set of all invariant laws.

伺 ト イヨト イヨト

The lower and upper invariant laws

Proof sketch Since $\mathbb{X}_{t,u}(\underline{1}) \leq \underline{1}$ and $\mathbb{X}_{s,t}$ is monotone

$$\mathbb{X}_{s,u}(\underline{1}) = \mathbb{X}_{t,u}(\mathbb{X}_{s,t}(\underline{1})) \leq \mathbb{X}_{t,u}(\underline{1}) \quad (s \leq t \leq u)$$

which proves that the decreasing limit

$$\overline{X}_u := \lim_{t \to -\infty} \mathbb{X}_{t,u}(\underline{1})$$

exists. It is easy to check $(\overline{X}_u)_{u \in \mathbb{R}}$ is a stationary process that a.s. dominates any other stationary process adapted to the same graphical representation.

If $\overline{\nu} = p\nu_1 + (1-p)\nu_2$ with $0 and <math>\nu_1, \nu_2$ stationary, then $\nu_i \leq \overline{\nu}$ (i = 1, 2) implies $\nu_1 f = \nu_2 f = \nu f$ for all $f \in \mathcal{C}_{\text{mon}}(\mathbf{S}, \mathbb{R})$.

In the absence of monotone representability, replace a.s. arguments by arguments involving the semigroup and the stochastic order.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume that S is partially ordered with least element 0 and greatest element 1 and that each $m \in G$ is monotone with $m(\underline{0}) = \underline{0}$.

We say that the process $(X_t)_{t\geq 0}$ survives if

$$\mathbb{P}^{x}ig[X_t
eq \underline{0} \ orall t \geq 0ig] > 0 \quad ext{for some } x \in \mathbf{S}_{ ext{fin}}.$$

We say that the process $(X_t)_{t\geq 0}$ is *stable* if

 $\overline{\nu}$ is *nontrivial* in the sense that $\overline{\nu} \neq \delta_0$.

By the extremality of $\overline{\nu}$, nontriviality implies $\overline{\nu}(\{\underline{0}\}) = 0$.

• Image: A image:

Let S be a partially ordered set and $A \subset S$. Define the *upset* A^{\uparrow} and *downset* A^{\downarrow} of A as

$$A^{\uparrow} := \{ y \in S : \exists x \in A \text{ s.t. } x \leq y \},\$$
$$A^{\downarrow} := \{ y \in S : \exists x \in A \text{ s.t. } x \geq y \}.$$

Then A is increasing if $A = A^{\uparrow}$ and decreasing if $A = A^{\downarrow}$. S is a *lattice* if $\forall x, y \in S \exists ! x \lor y, x \land y \in S$ s.t.

$$\{x\}^{\uparrow}\cap\{y\}^{\uparrow}=\{x\lor y\}^{\uparrow} \quad \text{and} \quad \{x\}^{\downarrow}\cap\{y\}^{\downarrow}=\{x\land y\}^{\downarrow}.$$

A finite lattice has a unique least element 0 and greatest element 1. The set $\mathbf{S} := \{0, 1\}^{\Lambda}$ is a lattice with least element $\underline{0}$ and greatest element $\underline{1}$.

Monotone and additive maps

Let **S** := $\{0, 1\}^{\Lambda}$ and **T** := $\{0, 1\}^{\Delta}$. Let $\mathcal{L}_+(S, T)$ denote the set of maps $m : S \to T$ such that (i) *m* is lower semi-continuous, (ii) m(0) = 0, (iii) $x < y \Rightarrow m(x) < m(x) (x, y \in \mathbf{S}).$ Let $\mathcal{L}_{add}(\mathbf{S},\mathbf{T})$ denote the set of maps $m \in \mathcal{L}_{+}(\mathbf{S},\mathbf{T})$ such that (iii)' $m(x \lor y) = m(x) \lor m(y) \ (x, y \in \mathbf{S}).$ Let $\mathcal{C}_+(\mathbf{S},\mathbf{T})$ and $\mathcal{C}_{add}(\mathbf{S},\mathbf{T})$ denote the sets of maps $m \in \mathcal{L}_+(\mathbf{S}, \mathbf{T})$ and $m \in \mathcal{L}_{add}(\mathbf{S}, \mathbf{T})$, respectively, such that (i)' m is continuous.

Maps $m \in \mathcal{L}_{add}(\mathbf{S}, \mathbf{T})$ are called *additive*. Note that (iii) implies $m(x \lor y) \ge m(x) \lor m(y)$ $(x, y \in \mathbf{S})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $(X_t)_{t\geq 0}$ be an interacting particle system on a lattice Λ with local state space $S = \{0, 1\}$, semigroup $(P_t)_{t\geq 0}$, and generator

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \{f(m(x)) - f(x)\}.$$

Let $(X_{s,u})_{s \leq u}$ be the associated stochastic flow and let $(\mathbb{F}_{u,s})_{u \geq s}$ be the backward stochastic flow defined as

$$\mathbb{F}_{u,s}(f) := f \circ \mathbb{X}_{s,u} \qquad (u \ge s, \ f \in \mathcal{C}(S^{\Lambda}, \{0,1\})).$$

▶ If
$$m \in C_+(S^{\Lambda}, S^{\Lambda})$$
 for all $m \in \mathcal{G}$, then
 $\mathbb{F}_{u,s}(f) \in \mathcal{L}_+(S^{\Lambda}, \{0, 1\})$ for all $f \in \mathcal{L}_+(S^{\Lambda}, \{0, 1\})$.

▶ If
$$m \in C_{add}(S^{\Lambda}, S^{\Lambda})$$
 for all $m \in \mathcal{G}$, then
 $\mathbb{F}_{u,s}(f) \in \mathcal{L}_{add}(S^{\Lambda}, \{0, 1\})$ for all $f \in \mathcal{L}_{add}(S^{\Lambda}, \{0, 1\})$.

The backtracking process

space

æ

イロン 不同 とうほう 不同 とう

Minimal one-states

Let $f \in \mathcal{L}_+(\mathbf{S}, \{0,1\})$. We can write $f(x) = 1_A(x)$ where $A := \{x \in \mathbf{S} : f(x) = 1\}$

is the set of *one-states* of *f*. One has $1_A \in \mathcal{L}_+(\mathbf{S}, \{0, 1\}) \Leftrightarrow A$ is open and increasing. We say $y \in A$ is *minimal* if $\nexists y' \neq y, \ y' \leq y, \ y' \in A$. We set $A^\circ := \{y \in A : y \text{ is minimal}\},$ $\mathbf{S}_{fin}^+ := \{y \in \mathbf{S} : 0 < |y| < \infty\}, \quad \mathcal{H} := \{Y \subset \mathbf{S}_{fin}^+ : Y^\circ = Y\}.$

Proposition Each $Y \in \mathcal{H}$ defines a function $f \in \mathcal{L}_+(S, \{0, 1\})$ via

$$f(x) := 1_{Y^{\uparrow}}(x) = 1_{\{\exists y \in Y \text{ s.t. } x \ge y\}}$$
 $(x \in \mathbf{S}),$

and $\mathcal{H} \ni Y \mapsto \mathbf{1}_{Y^{\uparrow}} \in \mathcal{L}_{+}(\mathbf{S}, \{0, 1\})$ is a bijection. Set $\mathcal{H}_{\mathrm{fin}} := \{Y \in \mathcal{H} : |Y| < \infty\}$. Then also $\mathcal{H}_{\mathrm{fin}} \ni Y \mapsto \mathbf{1}_{Y^{\uparrow}} \in \mathcal{C}_{+}(\mathbf{S}, \{0, 1\})$ is a bijection.

Duality

Define $\psi : \mathbf{S} \times \mathcal{H} \to \mathcal{T}$ by

$$\psi(x, Y) := 1_{\{\exists y \in Y \text{ s.t. } x \ge y\}}$$
 $(x \in \mathbf{S}, Y \in \mathcal{H}).$

There exists random maps $\mathbb{Y}_{u,s}:\mathcal{H}\to\mathcal{H}\ (u\geq s)$ such that

$$\psi(\mathbb{X}_{s,u}(x), Y) = \psi(x, \mathbb{Y}_{u,s}(Y)) \qquad (x \in \mathbf{S}, \ Y \in \mathcal{H}, \ s \leq u).$$

These form a *dual stochastic flow*

$$\mathbb{Y}_{s,s} = 1 \quad \text{and} \quad \mathbb{Y}_{t,s} \circ \mathbb{Y}_{u,t} = \mathbb{Y}_{u,s} \qquad (u \geq t \geq s).$$

If Y_0 is independent of $(\mathbb{Y}_{u,s})_{u\geq s}$ and $u\in\mathbb{R}$, then

$$Y_t := \mathbb{Y}_{u-t,u}(Y_0) \qquad (t \ge 0)$$

defines a Markov process $(Y_t)_{t\geq 0}$ with state space \mathcal{H} .

• E •

Define branching maps, cooperative branching maps, and death maps by

$$\begin{aligned} & \operatorname{bra}_{ij}(x)(k) := \begin{cases} & x(i) \lor x(j) & \text{if } k = j, \\ & x(k) & \text{otherwise.} \end{cases} \\ & \operatorname{cob}_{ii'j}(x)(k) := \begin{cases} & (x(i) \land x(i')) \lor x(j) & \text{if } k = j, \\ & x(k) & \text{otherwise.} \end{cases} \\ & \operatorname{dth}_j(x)(k) := \begin{cases} & 0 & \text{if } k = j, \\ & x(k) & \text{otherwise.} \end{cases} \end{aligned}$$

Note that $\underbrace{\operatorname{cob}_{123}(100 \lor 010)}_{\operatorname{cob}_{123}(110) = 111} > \underbrace{\operatorname{cob}_{123}(100)}_{100} \lor \underbrace{\operatorname{cob}_{123}(010)}_{010}.$

Assume that Λ is a graph. Let $\mathcal{N}_j := \{i \in \Lambda : i \text{ is adjacent to } j\}$. and $\mathcal{N}_j^2 := \{(i, i') : i, i' \in \mathcal{N}_j, i \neq i'\}$.

Consider the "cooperative contact process" with generator

$$\begin{split} Gf(x) &:= (1-\alpha) \sum_{j \in \Lambda} \frac{1}{|\mathcal{N}_j|} \sum_{i \in \mathcal{N}_j} \left\{ f\left(\texttt{bra}_{ij}(x) \right) - f(x) \right\} \\ &+ \alpha \sum_{j \in \Lambda} \frac{1}{|\mathcal{N}_j^2|} \sum_{(i,i') \in \mathcal{N}_j^2} \left\{ f\left(\texttt{cob}_{ii'j}(x) \right) - f(x) \right\} \\ &+ \delta \sum_{j \in \Lambda} \left\{ f\left(\texttt{dth}_j(x) \right) - f(x) \right\}. \end{split}$$

For $\alpha = 0$ this is a contact process and for $\alpha = 1$ there is only cooperative branching. We construct the cooperative contact process from a graphical representation ω .

We visualise the Poisson point set ω by drawing space Λ horizontally and time \mathbb{R} vertically.

For each $(bra_{ij}, t) \in \omega$ we draw an arrow from (i, t) to (j, t).

For each $(\operatorname{cob}_{ii'j}, t) \in \omega$ we draw two arrows, one from (i, t) to (j, t) and the other from (i', t) to (j, t).

For each $(dth_j, t) \in \omega$ we draw a blocking symbol \blacksquare at (j, t).

• (1) • (

Pathwise construction

ヘロア 人間 アメヨア 人間 アー

æ

Pathwise construction

ヘロア 人間 アメヨア 人間 アー

æ

Pathwise construction

space \mathbb{Z}

Э

イロン 不同 とくほど 不同 とう

イロン 不同 とくほど 不同 とう

Э

ヘロア 人間 アメヨア 人間 アー

æ,

ヘロア 人間 アメヨア 人間 アー

æ,

ヘロア 人間 アメヨア 人間 アー

æ

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

Duality

There exists a metrisable topology on $\mathcal H$ such that

$$Y_n \to Y \quad \Leftrightarrow \quad \psi(x, Y_n) \to \psi(x, Y) \quad \forall x \in \mathbf{S}_{\mathrm{fin}}.$$

The space \mathcal{H} is compact under this topology.

We define a partial order on ${\mathcal H}$ by

$$Y_1 \leq Y_2 \quad \Leftrightarrow \quad \psi(x, Y_1) \leq \psi(x, Y_2).$$

The least element of ${\mathcal H}$ in this order is \emptyset and the greatest element is

$$\top := \big\{ \mathbb{1}_{\{i\}} : i \in \Lambda \big\}.$$

One has

$$\mathbb{P}^{\top}\big[Y_t \in \,\cdot\,\big] \underset{t \to \infty}{\Longrightarrow} \overline{\mu},$$

where $\overline{\mu}$ is the *upper invariant law* of the dual process.

Either μ̄ is trivial in the sense that μ̄ = δ_∅,
or μ̄ is nontrivial in the sense that μ̄({∅}) = 0.
If μ̄ is nontrivial, then we say the dual process (Y_t)_{t≥0} is stable.
We say that the dual process survives if

 $\mathbb{P}^{Y}[Y_{t} \neq \emptyset \ \forall t \geq 0] > 0 \quad \text{for some } Y \in \mathcal{H}_{\text{fin}}.$

Lemma [Gray '86, Latz & S. '23] One has

X is stable \Leftrightarrow Y survives, X survives \Leftrightarrow Y is stable

The main novelty of our work is the construction of $(Y_t)_{t\geq 0}$ for infinite initial states.

(日本) (日本) (日本)

Proof

$$\begin{split} \mathbb{P}\big[\exists y \in Y \text{ s.t. } \mathbb{X}_{-t,0}(\underline{1}) \geq y\big] &= \mathbb{P}\big[\exists y \in \mathbb{Y}_{0,-t}(Y) \text{ s.t. } \underline{1} \geq y\big] \\ &= \mathbb{P}\big[\mathbb{Y}_{0,-t}(Y) \neq \emptyset\big] \xrightarrow[t \to \infty]{} \mathbb{P}\big[\mathbb{Y}_{0,-s}(Y) \neq \emptyset \ \forall s \geq 0\big], \end{split}$$

and the limit is > 0 for some $Y \in \mathcal{H}_{\mathrm{fin}}$ iff $\overline{\nu}$ is nontrivial. Similarly

$$\begin{split} \mathbb{P}\big[\exists y \in \mathbb{Y}_{t,0}(\top) \text{ s.t. } x \geq y\big] &= \mathbb{P}\big[\exists y \in \top \text{ s.t. } \mathbb{X}_{0,t}(x) \geq y\big] \\ &= \mathbb{P}\big[\mathbb{X}_{0,t}(x) \neq \underline{0}\big] \xrightarrow[t \to \infty]{} \mathbb{P}\big[\mathbb{X}_{0,s}(x) \neq \underline{0} \ \forall s \geq 0\big], \end{split}$$

and the limit is > 0 for some $x \in \mathbf{S}_{\text{fin}}^+$ iff $\overline{\mu}$ is nontrivial.

伺下 イヨト イヨト

臣

Let $\mathcal{H}_1 := \{ Y \in \mathcal{H} : |y| = 1 \ \forall y \in Y \}.$ We can naturally identify $Y \in \mathcal{H}_1$ with $x \in \mathbf{S}$ defined as

$$x(i) = 1 \quad \Leftrightarrow \quad 1_{\{i\}} \in Y.$$

If all maps $m \in \mathcal{G}$ are additive, then the dual stochastic flow $(\mathbb{Y}_{u,s})_{u \geq s}$ maps \mathcal{H}_1 into itself and the corresponding Markov process on $\mathcal{H}_1 \cong \mathbf{S}$ is itself an additive particle system.

For the contact process, this yields a well-known *self-duality*. As a result:

X is stable \Leftrightarrow X survives.

Numerical data

Conjectured phase diagram

Conjectured phase diagram

Rigorous results

Let
$$\theta(\alpha, \delta) := \lim_{t \to \infty} \mathbb{P}^{\underline{1}}[X_t(i) = 1]$$
,
and $\theta'(\alpha, \delta) := \mathbb{P}^{1_{\{i\}}}[X_t \neq \underline{0} \ \forall t \ge 0]$.

- θ and θ' are nonincreasing in α and δ .
- ► $\forall \alpha \in [0,1] \exists 0 \leq \delta_{c}(\alpha) < \infty \text{ s.t. } \theta(\alpha,\delta) > 0 \text{ for } \delta < \delta_{c}(\alpha)$ and $\theta(\alpha,\delta) = 0$ for $\delta > \delta_{c}(\alpha)$.
- ► $\forall \alpha \in [0, 1] \exists 0 \leq \delta'_{c}(\alpha) < \infty \text{ s.t. } \theta'(\alpha, \delta) > 0 \text{ for } \delta < \delta'_{c}(\alpha)$ and $\theta'(\alpha, \delta) = 0$ for $\delta' > \delta_{c}(\alpha)$.

•
$$\theta(0,\delta) = \theta'(0,\delta)$$
 and $\delta_{c}(0) = \delta'_{c}(0)$.

 $\blacktriangleright \ \delta_{\rm c}(0) > 0.$

• $\delta \mapsto \theta(0, \delta)$ is continuous on $[0, \delta_c(0))$.

$$\blacktriangleright \ \theta(\mathbf{0}, \delta_{\mathrm{c}}(\mathbf{0})) = \mathbf{0}.$$

►
$$\delta_{\mathrm{c}}'(1) = 0$$
 and $\delta_{\mathrm{c}}(1) > 0$.

$$\blacktriangleright \ \delta_{\rm c}'(\alpha) \le \delta_{\rm c}(\alpha) \quad \forall \alpha \in [0,1]$$

向下 イヨト イヨト

- ► $\exists 0 < \alpha_{c} < 1 \text{ s.t. } \delta_{c}'(\alpha) = \delta_{c}(\alpha) \text{ for } \alpha \leq \alpha_{c}$ and $\delta_{c}'(\alpha) < \delta_{c}(\alpha) \text{ for } \alpha > \alpha_{c}.$
- Discontinuity of $\delta \mapsto \theta(\alpha, \delta)$ at $\delta_{c}(\alpha)$ for $\alpha > \alpha_{c}$.
- Continuity of θ and θ' everywhere else (partial results are known as will be discussed later).

同 と く ヨ と く ヨ と