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Probability kernels

For finite sets S ,T , let F(S ,T ) denote the set
of all functions f : S → T .

A random mapping representation of a probability kernel K from S
to T is an F(S ,T )-valued random variable M such that

K (x , y) = P[M(x) = y ] (x ∈ S , y ∈ T ).

We say that K is representable in G ⊂ F(S ,T ) if M can be chosen
so that it takes values in G. Recall that

Kf (x) :=
∑
y∈T

K (x , y)f (y) = E
[
f
(
M(x)

)]
(
x ∈ S , f ∈ F(T ,R)

)
.
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Monotone probability kernels

For partially ordered sets S ,T , let Fmon(S ,T ) be the set of all
monotone maps m : S → T , i.e., those for which x ≤ x ′ implies
m(x) ≤ m(x ′).

A probability kernel K is called monotone if

Kf ∈ Fmon(S ,R) ∀f ∈ Fmon(T ,R),

and monotonically representable if K is representable in
Fmon(S ,T ).

Monotonical representability implies monotonicity:

f ∈ Fmon(T ,R) and x ≤ x ′ ⇒
Kf (x) = E

[
f
(
M(x)

)]
≤ E

[
f
(
M(x ′)

)]
= Kf (x ′).
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Monotone probability kernels

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross
(unpublished)) discovered that the converse does not hold. There
are counterexamples with S = T = {0, 1}2.

On the positive side, Kamae, Krengel & O’Brien (1977) and Fill &
Machida (2001) have shown that:

(Sufficient conditions for monotone representability)
Let S ,T be finite partially ordered sets and assume that at least
one of the following conditions is satisfied:

(i) S is totally ordered.

(ii) T is totally ordered.

Then any monotone probability kernel from S to T is
monotonically representable.
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Stochastic order

In particular, setting S = {1, 2}, this proves that if µ1, µ2 are
probability laws on T such that

µ1f ≤ µ2f ∀f ∈ Fmon(T ,R),

then it is possible to couple random variables M1,M2 with laws
µ1, µ2 such that M1 ≤ M2.

The statement remains true if T is replaced by a set of the form
T = TΛ, equipped with the product order and Fmon(T ,R) is
replaced by the space Cmon(T,R) of continuous monotone
functions.
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Monotone interacting particle systems

An interacting particle system (Xt)t≥0 on a lattice Λ with a
partially ordered local state space S and semigroup (Pt)t≥0 is
called monotone if Pt is a monotone probability kernel for all t ≥ 0.

Lemma If the generator G has a random mapping representation

Gf (x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}

such that each local map m ∈ G is monotone, then Pt is
monotonically representable for all t ≥ 0.

Proof Immediate, since

Pt(x , · ) = P
[
X0,t(x) ∈ ·

]
(x ∈ SΛ, t ≥ 0)

and X0,t [i ] is a concatenation of finitely many monotone maps for
each i ∈ Λ and t ≥ 0.
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Positive correlations

A probability measure µ on S = SΛ has positive correlations if

Covµ(f , g) :=

∫
(fg)dµ−

(∫
f dµ

)(∫
g dµ

)
≥ 0

for all f , g ∈ Cmon(S,R).

Theorem Assume that each m ∈ G is monotone and that

▶ ∀x ∈ S and m ∈ G either m(x) ≥ x or m(x) ≤ x .

Then, if P[X0 ∈ · ] has positive correlations,
so has P[Xt ∈ · ] for all t ≥ 0.
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Positive correlations

Proof sketch For any measure µ and bounded measurable
function f write µf :=

∫
f dµ. Define µPt by (µPt)f := µ(Pt f ) so

that µPt = P[Xt ∈ · ].

The claim now comes from the covariance formula

CovµPt (f , g) = Covµ(Pt f ,Ptg) +

∫ t

0
ds µPt−sΓ(Ps f ,Psg),

where

Γ(f , g)(x) :=G (fg)(x)− Gf (x)g(x)− f (x)Gg(x)

=
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}{

g
(
m(x)

)
− g

(
x
)}
.
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The lower and upper invariant laws

Lemma Assume that S is partially ordered with least element 0
and greatest element 1 and that each m ∈ G is monotone.
Then there exist invariant laws ν and ν such that

P0
[
Xt ∈ ·

]
=⇒
t→∞

ν and P1
[
Xt ∈ ·

]
=⇒
t→∞

ν

and each other invariant law ν satisfies ν ≤ ν ≤ ν
in the stochastic order.

We call ν and ν the lower and upper invariant laws.

They are extremal elements of the convex set of all invariant laws.
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The lower and upper invariant laws

Proof sketch Since Xt,u(1) ≤ 1 and Xs,t is monotone

Xs,u(1) = Xt,u

(
Xs,t(1)

)
≤ Xt,u(1) (s ≤ t ≤ u)

which proves that the decreasing limit

X u := lim
t→−∞

Xt,u(1)

exists. It is easy to check (X u)u∈R is a stationary process that a.s.
dominates any other stationary process adapted to the same
graphical representation.

If ν = pν1 + (1− p)ν2 with 0 < p < 1 and ν1, ν2 stationary, then
νi ≤ ν (i = 1, 2) implies ν1f = ν2f = νf for all f ∈ Cmon(S,R).

In the absencse of monotone representability, replace a.s. arguments by

arguments involving the semigroup and the stochastic order.
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Survival and stability

Assume that S is partially ordered with least element 0
and greatest element 1 and that each m ∈ G
is monotone with m(0) = 0.

We say that the process (Xt)t≥0 survives if

Px
[
Xt ̸= 0 ∀t ≥ 0

]
> 0 for some x ∈ Sfin.

We say that the process (Xt)t≥0 is stable if

ν is nontrivial in the sense that ν ̸= δ0.

By the extremality of ν, nontriviality implies ν({0}) = 0.
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A bit of order theory

Let S be a partially ordered set and A ⊂ S .
Define the upset A↑ and downset A↓ of A as

A↑ :=
{
y ∈ S : ∃x ∈ A s.t. x ≤ y

}
,

A↓ :=
{
y ∈ S : ∃x ∈ A s.t. x ≥ y

}
.

Then A is increasing if A = A↑ and decreasing if A = A↓.

S is a lattice if ∀x , y ∈ S ∃!x ∨ y , x ∧ y ∈ S s.t.

{x}↑ ∩ {y}↑ = {x ∨ y}↑ and {x}↓ ∩ {y}↓ = {x ∧ y}↓.

A finite lattice has a unique least element 0 and greatest element 1.
The set S := {0, 1}Λ is a lattice with
least element 0 and greatest element 1.
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Monotone and additive maps

Let S := {0, 1}Λ and T := {0, 1}∆.
Let L+(S,T) denote the set of maps m : S → T such that

(i) m is lower semi-continuous,

(ii) m(0) = 0,

(iii) x ≤ y ⇒ m(x) ≤ m(x) (x , y ∈ S).

Let Ladd(S,T) denote the set of maps m ∈ L+(S,T) such that

(iii)′ m(x ∨ y) = m(x) ∨m(y) (x , y ∈ S).

Let C+(S,T) and Cadd(S,T) denote the sets of maps
m ∈ L+(S,T) and m ∈ Ladd(S,T), respectively, such that

(i)′ m is continuous.

Maps m ∈ Ladd(S,T) are called additive.
Note that (iii) implies m(x ∨ y) ≥ m(x) ∨m(y) (x , y ∈ S).

Jan M. Swart Monotone interacting particle systems



Monotone and additive systems

Let (Xt)t≥0 be an interacting particle system on a lattice Λ with
local state space S = {0, 1}, semigroup (Pt)t≥0, and generator

Gf (x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}
.

Let (Xs,u)s≤u be the associated stochastic flow and let (Fu,s)u≥s

be the backward stochastic flow defined as

Fu,s(f ) := f ◦ Xs,u

(
u ≥ s, f ∈ C(SΛ, {0, 1})

)
.

▶ If m ∈ C+(SΛ,SΛ) for all m ∈ G, then
Fu,s(f ) ∈ L+(S

Λ, {0, 1}) for all f ∈ L+(S
Λ, {0, 1}).

▶ If m ∈ Cadd(SΛ,SΛ) for all m ∈ G, then
Fu,s(f ) ∈ Ladd(S

Λ, {0, 1}) for all f ∈ Ladd(S
Λ, {0, 1}).
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The backtracking process

time

space

0 1 2 3 4 5 6 7 8 9

R(f )

bra2,1

bra0,1

bra4,3
bra7,8

bra2,3

death4

bra3,4
bra1,2

bra6,5

bra7,6

death8

R(f ◦ Xs,u)
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Minimal one-states

Let f ∈ L+(S, {0, 1}). We can write f (x) = 1A(x) where

A :=
{
x ∈ S : f (x) = 1

}
is the set of one-states of f . One has
1A ∈ L+(S, {0, 1}) ⇔ A is open and increasing.

We say y ∈ A is minimal if ̸ ∃y ′ ̸= y , y ′ ≤ y , y ′ ∈ A.
We set

A◦ :=
{
y ∈ A : y is minimal

}
,

S+
fin :=

{
y ∈ S : 0 < |y | <∞

}
, H :=

{
Y ⊂ S+

fin : Y ◦ = Y
}
.

Proposition Each Y ∈ H defines a function f ∈ L+(S, {0, 1}) via

f (x) := 1Y ↑(x) = 1{∃y ∈ Y s.t. x ≥ y} (x ∈ S),

and H ∋ Y 7→ 1Y ↑ ∈ L+(S, {0, 1}) is a bijection.
Set Hfin :=

{
Y ∈ H : |Y | <∞

}
. Then also

Hfin ∋ Y 7→ 1Y ↑ ∈ C+(S, {0, 1}) is a bijection.
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Duality

Define ψ : S×H → T by

ψ(x ,Y ) := 1{∃y ∈ Y s.t. x ≥ y} (x ∈ S, Y ∈ H).

There exists random maps Yu,s : H → H (u ≥ s) such that

ψ
(
Xs,u(x),Y

)
= ψ

(
x ,Yu,s(Y )

)
(x ∈ S, Y ∈ H, s ≤ u).

These form a dual stochastic flow

Ys,s = 1 and Yt,s ◦ Yu,t = Yu,s (u ≥ t ≥ s).

If Y0 is independent of (Yu,s)u≥s and u ∈ R, then

Yt := Yu−t,u(Y0) (t ≥ 0)

defines a Markov process (Yt)t≥0 with state space H.
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Pathwise construction

Define branching maps, cooperative branching maps,
and death maps by

braij(x)(k) :=

{
x(i) ∨ x(j)

x(k)

if k = j ,

otherwise.

cobii ′j(x)(k) :=

{ (
x(i) ∧ x(i ′)

)
∨ x(j)

x(k)

if k = j ,

otherwise.

dthj(x)(k) :=

{
0

x(k)

if k = j ,

otherwise.

Note that cob123(100 ∨ 010)︸ ︷︷ ︸
cob123(110) = 111

> cob123(100)︸ ︷︷ ︸
100

∨ cob123(010)︸ ︷︷ ︸
010

.
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Pathwise construction

Assume that Λ is a graph.
Let Nj :=

{
i ∈ Λ : i is adjacent to j

}
.

and N 2
j :=

{
(i , i ′) : i , i ′ ∈ Nj , i ̸= i ′

}
.

Consider the “cooperative contact process” with generator

Gf (x) := (1− α)
∑
j∈Λ

1

|Nj |
∑
i∈Nj

{
f
(
braij(x)

)
− f

(
x
)}

+α
∑
j∈Λ

1

|N 2
j |

∑
(i ,i ′)∈N 2

j

{
f
(
cobii ′j(x)

)
− f

(
x
)}

+δ
∑
j∈Λ

{
f
(
dthj(x)

)
− f

(
x
)}
.

For α = 0 this is a contact process and
for α = 1 there is only cooperative branching.
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The graphical representation

We construct the cooperative contact process from
a graphical representation ω.

We visualise the Poisson point set ω by drawing
space Λ horizontally and time R vertically.

For each (braij , t) ∈ ω we draw an arrow from (i , t) to (j , t).

For each (cobii ′j , t) ∈ ω we draw two arrows, one from (i , t) to
(j , t) and the other from (i ′, t) to (j , t).

For each (dthj , t) ∈ ω we draw a blocking symbol at (j , t).
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Pathwise construction

f = 1Y ↑ with Y = {1{i}}

R(f ◦ Xs,u)

time

space Z

1 0 1 0 1 0 1 0 0 0

1 1 0 1 1 1 1 0 0 0

X0

Xt = Xs,s+t(X0)
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Percolation picture

Y = {y0} with y0 = 1{i}.

Yu,s(Y ) =???

y0 = 0 0 0 0 1 0 0 0 0 0

1

1

1 1

y1 = 0 0 1 0 0 0 0 0 0 0
y2 = 0 0 0 1 0 0 0 0 0 0
y3 = 0 0 0 0 1 0 1 0 0 0

Yu,s({y0}) = {y1, y2, y3}
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Duality

There exists a metrisable topology on H such that

Yn → Y ⇔ ψ(x ,Yn) → ψ(x ,Y ) ∀x ∈ Sfin.

The space H is compact under this topology.

We define a partial order on H by

Y1 ≤ Y2 ⇔ ψ(x ,Y1) ≤ ψ(x ,Y2).

The least element of H in this order is ∅ and the greatest element
is

⊤ :=
{
1{i} : i ∈ Λ

}
.

One has
P⊤[Yt ∈ ·

]
=⇒
t→∞

µ,

where µ is the upper invariant law of the dual process.
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Survival and stability

▶ Either µ is trivial in the sense that µ = δ∅,

▶ or µ is nontrivial in the sense that µ({∅}) = 0.

If µ is nontrivial, then we say the dual process (Yt)t≥0 is stable.

We say that the dual process survives if

PY
[
Yt ̸= ∅ ∀t ≥ 0

]
> 0 for some Y ∈ Hfin.

Lemma [Gray ’86, Latz & S. ’23] One has

X is stable ⇔ Y survives,

X survives ⇔ Y is stable

The main novelty of our work is the construction
of (Yt)t≥0 for infinite initial states.
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Survival and stability

Proof

P
[
∃y ∈ Y s.t. X−t,0(1) ≥ y

]
= P

[
∃y ∈ Y0,−t(Y ) s.t. 1 ≥ y

]
= P

[
Y0,−t(Y ) ̸= ∅

]
−→
t→∞

P
[
Y0,−s(Y ) ̸= ∅ ∀s ≥ 0

]
,

and the limit is > 0 for some Y ∈ Hfin iff ν is nontrivial. Similarly

P
[
∃y ∈ Yt,0(⊤) s.t. x ≥ y

]
= P

[
∃y ∈ ⊤ s.t. X0,t(x) ≥ y

]
= P

[
X0,t(x) ̸= 0

]
−→
t→∞

P
[
X0,s(x) ̸= 0 ∀s ≥ 0

]
,

and the limit is > 0 for some x ∈ S+
fin iff µ is nontrivial.
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Additive duality

Let H1 :=
{
Y ∈ H : |y | = 1 ∀y ∈ Y

}
.

We can naturally identify Y ∈ H1 with x ∈ S defined as

x(i) = 1 ⇔ 1{i} ∈ Y .

If all maps m ∈ G are additive, then the
dual stochastic flow (Yu,s)u≥s maps H1 into itself
and the corresponding Markov process on H1

∼= S
is itself an additive particle system.

For the contact process, this yields a well-known self-duality.
As a result:

X is stable ⇔ X survives.
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Numerical data

α

δ

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

Density of the upper invariant law for the process on Z2.
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Conjectured phase diagram

survival and stability

no survival and no stability

no survival
but stability

α

δ

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

Conjectured phase diagram for the process on Z2.
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Conjectured phase diagram

continuous phase transitions of
density and survival probability

discontinuous
phase transition
of the density

α

δ

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

Conjectured phase diagram for the process on Z2.
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Rigorous results

Let θ(α, δ) := limt→∞ P1
[
Xt(i) = 1

]
,

and θ′(α, δ) := P1{i}
[
Xt ̸= 0 ∀t ≥ 0

]
.

▶ θ and θ′ are nonincreasing in α and δ.

▶ ∀α ∈ [0, 1] ∃0 ≤ δc(α) <∞ s.t. θ(α, δ) > 0 for δ < δc(α)
and θ(α, δ) = 0 for δ > δc(α).

▶ ∀α ∈ [0, 1] ∃0 ≤ δ′c(α) <∞ s.t. θ′(α, δ) > 0 for δ < δ′c(α)
and θ′(α, δ) = 0 for δ′ > δc(α).

▶ θ(0, δ) = θ′(0, δ) and δc(0) = δ′c(0).

▶ δc(0) > 0.

▶ δ 7→ θ(0, δ) is continuous on [0, δc(0)).

▶ θ(0, δc(0)) = 0.

▶ δ′c(1) = 0 and δc(1) > 0.

▶ δ′c(α) ≤ δc(α) ∀α ∈ [0, 1].
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Open problems

▶ ∃0 < αc < 1 s.t. δ′c(α) = δc(α) for α ≤ αc

and δ′c(α) < δc(α) for α > αc.

▶ Discontinuity of δ 7→ θ(α, δ) at δc(α) for α > αc.

▶ Continuity of θ and θ′ everywhere else (partial results are
known as will be discussed later).
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