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Stability without survival

Let Λ = Z2 with nearest-neighbour edges.
Let Nj :=

{
i ∈ Λ : i is adjacent to j

}
.

and N 2
j :=

{
(i , i ′) : i , i ′ ∈ Nj , i ̸= i ′

}
.

We are interested in the cooperative process with generator

Gf (x) :=
∑
j∈Λ

1

|N 2
j |

∑
(i ,i ′)∈N 2

j

{
f
(
cobii ′j(x)

)
− f

(
x
)}

+δ
∑
j∈Λ

{
f
(
dthj(x)

)
− f

(
x
)}
.

The survival probability θ′(δ) is 1 for δ = 0 and 0 for δ > 0.
The density of the upper inv. law is θ(δ) := lim

t→∞
P1

[
Xt(i) = 1

]
.

We define δc := inf{δ ≥ 0 : θ(δ) = 0}.
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Stability without survival

Aim Prove that δc > 0.

Recall that for the contact process, we proved δc > 0 in two steps:

1. We proved survival for a discrete-time process, oriented
percolation, by means of a Peierls argument.

2. We proved survival for the contact process by comparison
with oriented percolation.

We will take a similar approach here. We will focus on step 1.
We will prove stability of some discrete-time cellular automata by
means of a Peierls argument that goes back to Toom (1980).
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Monotone cellular automata

Let S = {0, 1}Zd
be equipped with the product topology.

Recall that C+(S, {0, 1}) is the set of continuous monotone
functions f : S → {0, 1} with f (0) = 0.
Functions in C+(S, {0, 1}) depend on finitely many coordinates.

Let ϕ0(x) := 0 (x ∈ S) denote the “death” map.
Let ϕ1, . . . , ϕm ∈ C+(S, {0, 1}), ϕk ̸= ϕ0 ∀k = 1, . . . ,m.
Let Φ =

(
Φ(i ,t)

)
(i ,t)∈Zd×Z be i.i.d. with values in {ϕ0, ϕ1, . . . , ϕm}

and

P
[
Φ(i ,t) = ϕ0

]
= p and P

[
Φ(i ,t) = ϕk

]
= (1− p)rk .

For each x ∈ S and s ∈ Z, there exists a unique S-valued Markov
chain (Xt)t≥s such that Xs = x and

Xt(i) = Φ(i ,t)

(
(Xt−1(i + j))j∈Zd

)
∀i ∈ Zd , t > s.

We set Xs,u(x) := Xu (s ≤ u).
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Monotone cellular automata

Lemma The decreasing limit X t := lim
s→−∞

X−s,t(1) exists a.s.

and defines a stationary Markov chain (X t)t∈Z.

We let θ(p, r1, . . . , rm) := P
[
X t(i) = 1

] (
(i , t) ∈ Zd+1

)
.

Clearly θ(0, r1, . . . , rm) = 1.

Fix a probability law r1, . . . , rm. We say that the unperturbed
cellular automaton with p = 0 is stable if

lim
p→0

θ(p, r1, . . . , rm) = 1.
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A cooperative cellular automaton

For example, we would like to prove stability of the cellular
automaton with m = 6, r1 = · · · = r6 = 1/6, and

ϕ1 ϕ2

ϕ3 ϕ4

ϕ5 ϕ6

ϕ1(x) := x(0, 0) ∨
(
x(1, 0) ∧ x(0, 1)

)
,

ϕ2(x) := x(0, 0) ∨
(
x(1, 0) ∧ x(−1, 0)

)
,

ϕ3(x) := x(0, 0) ∨
(
x(1, 0) ∧ x(0,−1)

)
,

ϕ4(x) := x(0, 0) ∨
(
x(0, 1) ∧ x(−1, 0)

)
,

ϕ5(x) := x(0, 0) ∨
(
x(0, 1) ∧ x(0,−1)

)
,

ϕ6(x) := x(0, 0) ∨
(
x(−1, 0) ∧ x(0,−1)

)
,

which corresponds to a discrete time version of the cooperative
process.
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Toom’s rule

We first look at the case m = 1. Thus, we fix one
ϕ ∈ C+(S, {0, 1}) and let Φ =

(
Φ(i ,t)

)
(i ,t)∈Zd×Z be i.i.d. with

P
[
Φ(i ,t) = ϕ0

]
= p and P

[
Φ(i ,t) = ϕ

]
= 1− p.

For example, Toom’s rule, also known as the North East Center
majority rule on Z2, is given by

ϕNEC(x) :=

{
1 if x(0, 0) + x(0, 1) + x(1, 0) ≥ 2,

0 if x(0, 0) + x(0, 1) + x(1, 0) ≤ 1.
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Toom’s model
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Toom’s model

We can generalise a bit and let

P
[
Φ(i ,t) = ϕ0

]
= p, P

[
Φ(i ,t) = ϕ1

]
= q

and P
[
Φ(i ,t) = ϕ

]
= 1− p − q,

where ϕ1(x) := 1 (x ∈ S) denotes the “spontaneous birth” map.
Let θ(p, q) denote the density of the upper invariant law.

Toom (1980) lim
p→0

θ(p, 0) = 1.
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Toom’s model

p

q

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Density of the upper invariant law for Toom’s model.
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Nearest neighbour voting

The Nearest Neighbor voting map is defined as

ϕNN(x) :=


1 if x(0, 0) + x(0, 1) + x(1, 0)

+x(0,−1) + x(−1, 0) ≥ 3,

0 if x(0, 0) + x(0, 1) + x(1, 0)
+x(0,−1) + x(−1, 0) ≤ 2.

Toom (1980) θ(p, 0) = 0 for all p > 0.
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Nearest neighbour voting

p

q

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Density of the upper invariant law for nearest neighbour voting.
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Toom’s stability theorem

Def ϕ is an eroder if for the unperturbed cellular automaton, any
finite collection of zeros disappears in finite time.

Toom’s stability theorem (1980)
If ϕ is an eroder, then θ(p) → 1 as p → 0.

If ϕ is not an eroder, then θ(p) = 0 for all p > 0.
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The eroder property

Let A(ϕ) :=
{
A ⊂ Zd : 1A is a minimal one-state for ϕ

}
.

Then we can write

ϕ(x) =
∨

A∈A(ϕ)

∧
i∈A

x(i).

Theorem (Toom 1980, Ponselet 2013) ϕ is an eroder if and only if⋂
A∈A(ϕ)

Conv(A) = ∅,

where Conv(A) is the convex hull of A.

By Helly’s theorem w.l.o.g. |A(ϕ)| ≤ d + 1.
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The eroder property

Toom’s model ϕNEC
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Toom’s model ϕNEC
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The eroder property

Nearest neighbour voting ϕNN.
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Nearest neighbour voting ϕNN.
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Nearest neighbour voting ϕNN.
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The eroder property

Nearest neighbour voting ϕNN.
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The eroder property

Def A linear polar function is a linear function

Rd ∋ z 7→
(
L1(z), . . . , Lσ(z)

)
∈ Rσ

such that
σ∑

s=1

Ls(z) = 0 (z ∈ Rd).

For x ∈ {0, 1}Zd
, let ℓs(x) := sup

i∈Zd : x(i)=0

Ls(i).

Then for the unperturbed cellular automaton:

ℓs(Xn) ≤ ℓs(X0)− δsn with δs := sup
A∈A(ϕ)

inf
i∈A

Ls(i).

The constants δs (1 ≤ s ≤ σ) are edge speeds.

Jan M. Swart Monotone interacting particle systems



The eroder property

L1 = 0

L2 = 0

L3 = 1

δ3 = 1
δ1 = 0

δ2 = 0

Toom’s model

L1(z) := −z1, L2(z) := −z2, L3(z) := z1 + z2.
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The eroder property

Lemma (Toom 1980, Ponselet 2013) ϕ is an eroder if and only if
there exists a linear polar function L such that

δ :=
σ∑

s=1

δs > 0 with δs := sup
A∈A(ϕ)

inf
i∈A

Ls(i).

Proof of sufficiency Define the extent of x by

ext(x) :=
σ∑

s=1

ℓs(x) with ℓs(x) := sup
i∈Zd : x(i)=0

Ls(i).

Then ext(x) ≥ 0 if there is at least one zero since
σ∑

s=1

Ls(z) = 0.

Moreover ext(Xn) ≤ ext(X0)− δn.
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Toom contours

Def A Toom graph is a directed graph with edges of σ different
charges and three types of vertices:

▶ At a source, σ directed edges emerge, one of each charge.

▶ At a sink, σ directed edges converge, one of each charge.

▶ At an internal vertex, there is one incoming edge and one
outgoing edge, and they are of the same charge.

In addition, there can be isolated vertices which we can think of as
a source and sink at the same time.
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Toom contours

A Toom graph with three charges.
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Peierls argument

Main idea A Toom contour is a connected Toom graph embedded
in the plain, with one special source called the root.

Theorem (incomplete statement) If X 0(0) = 0, then there
exists a Toom contour T rooted at (0, 0) such that the sinks of T
correspond to defective space-time points, where the trivial map ϕ0

is applied. Consequently:

P
[
X 0(0) = 0

]
≤

∑
T

P
[
T is present in Φ

]
≤

∑
T

pnsink(T ).

This tends to zero as p → 0 provided

Nsink
n := #{T : nsink(T ) = n}

grows at most exponentially in n.
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Peierls argument

It is not hard to show that there exists a R <∞ such that

Nedge
n ≤ Rn with Nedge

n := #{T : nedge(T ) = n}.

Need to show that nsink(T ) ≥ cnedge(T ) for some c > 0.

Idea: edges with charge s move in the direction where Ls increases,
except for edges coming out of sources. As a result:

nsink(T ) = nsource(T ) ≥ cnedge(T )

for some c > 0.
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Toom contours

Def An embedding of a Toom graph with vertex set V is a map

V ∋ v 7→
(
ψ(v),−h(v)

)
∈ Zd × Z

▶ The height (=negative time) h increases by 1 along each
directed edge.

▶ Sinks do not overlap with any other vertices.

▶ Internal vertices of the same charge do not overlap.

A Toom contour is an embedded connected Toom graph with one
special source, the root, whose height is minimal among all
vertices.
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Toom contours

Let ϕ be an eroder. For each 1 ≤ s ≤ σ, choose As(ϕ) ∈ A(ϕ)
such that

δs := sup
A∈A(ϕ)

inf
i∈A

Ls(i) = inf
i∈As(ϕ)

Ls(i).

Def A Toom contour is present in Φ =
(
Φ(i ,t)

)
(i ,t)∈Zd×Z if:

▶ Sinks correspond to vertices where the trivial map ϕ0 is
applied.

▶ If (v ,w) is a directed edge of charge s coming out of an
internal vertex or the root, then ψ(w)− ψ(v) ∈ As(ϕ).

▶ For directed edges emerging at other sources
ψ(w)− ψ(v) ∈ ⋃σ

s=1 As(ϕ).

Theorem (complete statement) If X 0(0) = 0, then there is a
Toom contour rooted at (0, 0) present in Φ.
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Cooperative branching

Consider the cooperative branching map defined as

ϕcoop(x) := x(0, 0) ∨
(
x(0, 1) ∧ x(1, 0)

)
.

One has A(ϕcoop) = {A1,A2} with

A1 := {(0, 1), (1, 0)} and A2 := {(0, 0)}.

We choose the linear polar function

L1(z) := z1 + z2, L2(z) := −z1 − z2.

The corresponding edge speeds are given by

δ1 = sup
A∈A(ϕ)

inf
i∈A

L1(i) = inf
i∈A1

L1(i) = 1,

δ2 = sup
A∈A(ϕ)

inf
i∈A

L2(i) = inf
i∈A2

L2(i) = 0.
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Toom contours

∗
∗

∗
∗

∗
∗

∗

(0, 0, 0)

(2, 0, 0)

(0, 1, 0)

(2, 2,−7)

ψ

∗ ∗

∗∗

∗∗

∗

v◦

⋆

⋆

⋆

⋆

⋆

⋆

⋆⋆

⋆⋆

⋆

A Toom contour for the cooperative branching map.

Jan M. Swart Monotone interacting particle systems



The Peierls argument

Lemma There exists a c > 0 such that nsink ≥ cnedge + 1.

Proof
σ∑

s=1

∑
(v ,w)∈Es

(
Ls(ψ(w))− Ls(ψ(v))

)
=

∑
v∈V

σ∑
s=1

{ ∑
u: (u,v)∈Es

Ls(ψ(v))−
∑

w : (v ,w)∈Es

Ls(ψ(v))
}
= 0.

Let E ◦
s denote the edges of charge s out of a source different from

the root and E ∗
s the other edges. Then

0=
σ∑

s=1

∑
(v ,w)∈E∗

s

(
Ls(ψ(w))− Ls(ψ(v))

)︸ ︷︷ ︸
≥δs

+
σ∑

s=1

∑
(v ,w)∈E◦

s

(
Ls(ψ(w))− Ls(ψ(v))

)︸ ︷︷ ︸
≥−K

.
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The Peierls argument

Lemma The number of Toom contours rooted at (0, 0) with N
edges is bounded by Rn for some R <∞.

Let T0 denote the set of all Toom contours rooted at (0, 0).
Let nsink(T ) denote the number of sinks of T .

Let Nedge
n denote the number of T ∈ T0 with n edges. Then

P
[
X 0(0) = 0

]
≤

∑
T∈T0

P
[
T is present in Φ

]
≤

∑
T∈T0

pnsink(T )

≤ p
∑
T∈T0

pcnedge(T ) = p
∞∑
n=0

Nedge
n pcn ≤ p

∞∑
n=0

Rnpcn.
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Intrinsic randomness

Recall that originally, we were interested in the case that there are
multiple maps ϕ1, . . . , ϕk , and

P
[
Φ(i ,t) = ϕ0

]
= p and P

[
Φ(i ,t) = ϕk

]
= (1− p)rk .

Unfortunately, this is more difficult than the case of a single map.

Example Apply ϕNEC, ϕNWC, ϕSWC, ϕSEC with equal probabilities.
In spite of individually being eroders, this random cellular
automaton is believed to be unstable.

Intuitively, the “edge speed” in each direction is zero.
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Intrinsic randomness

Gray (1999) has given sufficient conditions for continuous-time
Markov chains to be stable.

He uses a combination of Toom contours and a renormalisation
argument of Bramson and Gray (1991).

Can we handle more general random cellular automata with
intrinsic randomness?

Is the renormalisation argument really needed?

Work in progress with Réka Szabó and Cristina Toninelli. . .
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Continuous time

We were originally interested in the cooperative process with
generator

Gf (x) :=
∑
j∈Λ

1

|N 2
j |

∑
(i ,i ′)∈N 2

j

{
f
(
cobii ′j(x)

)
− f

(
x
)}

+δ
∑
j∈Λ

{
f
(
dthj(x)

)
− f

(
x
)}
.

Recall that

ϕ1 ϕ2

ϕ3 ϕ4

ϕ5 ϕ6

ϕ1(x) := x(0, 0) ∨
(
x(1, 0) ∧ x(0, 1)

)
,

ϕ2(x) := x(0, 0) ∨
(
x(1, 0) ∧ x(−1, 0)

)
,

ϕ3(x) := x(0, 0) ∨
(
x(1, 0) ∧ x(0,−1)

)
,

ϕ4(x) := x(0, 0) ∨
(
x(0, 1) ∧ x(−1, 0)

)
,

ϕ5(x) := x(0, 0) ∨
(
x(0, 1) ∧ x(0,−1)

)
,

ϕ6(x) := x(0, 0) ∨
(
x(−1, 0) ∧ x(0,−1)

)
,
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Continuous time

We can think of the continuous-time model as the ε→ 0 limit of a
discrete-time model that applies three maps:

ϕ1, . . . , ϕ6 with probability ε/6 each,
ϕ0 with probability εδ,
ϕid with the remaining probability,

where ϕid(x) := x(0) is the identity map.

Gray (1999) has shown that combining the identity map with an
eroder can spoil stability. Let:

ϕ(x) :=


0 if x(−2, 0) = x(−1, 0) = 0,

1 if x(−3, k) = x(−2, k) = 1 ∀|k| ≤ n,

x(0, 0) in all other cases.
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Continuous time

speed ≈ 1

speed ≪ 2
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