Necessary and sufficient conditions for strong R-positivity

Jan M. Swart (ÚTIA AV ČR)

Wednesday, November 29th, 2017

The Perron-Frobenius theorem

Let $A = (A(x, y))_{x,y \in S}$ be a nonnegative matrix indexed by a countable set S.

We say that A is *irreducible* if $\forall x, y \in S \ \exists n \geq 0 \ \text{s.t.} \ A^n(x, y) > 0$. We say that A is *aperiodic* if the greatest common divisor of $\{n \geq 1 : A^n(x, x) > 0\}$ is one.

[Perron-Frobenius (1912)] Let A be irreducible and let S be finite. Then there exist a unique constant c>0 and a function $h:S\to (0,\infty)$ that is unique up to scalar multiples, such that Ah=ch.

How about infinite *S*?

Observation Let A be a nonnegative matrix, c>0 a constant, and $h:S\to (0,\infty)$. Then the following conditions are equivalent.

- 1. Ah = ch.
- 2. $P(x,y) := c^{-1}h(x)^{-1}A(x,y)h(y)$ defines a probability kernel.

Gibbs measures

Let Ω^n denote the space of all functions $\omega: \{0, \ldots, n\} \to S$. Let $\mu_{x,y}^{A,n}$ be the probability measure(!) on Ω^n defined by

$$\mu_{x,y}^{A,n}(\omega) := \frac{1_{\{\omega_0 = x, \ \omega_n = y\}}}{A^n(x,y)} \prod_{k=1}^n A(\omega_{k-1}, \omega_k).$$

We call this the Gibbs measure on Ω^n with transfer matrix A and boundary conditions x, y.

[Equivalence of transfer matrices] Let A, B be irreducible with A(x, y) > 0 iff B(x, y) > 0. Then the following conditions are equivalent.

- 1. $\mu_{x,y}^{A,n} = \mu_{x,y}^{B,n}$ for all x, y, n such that $A^n(x, y) > 0$.
- 2. There exists a c > 0 and $h: S \to (0, \infty)$ such that $B(x,y) := c^{-1}h(x)^{-1}A(x,y)h(y)$.

Moreover, in 2., the constant c is unique and h is unique up to a multiplicative constant.

The infinite-volume limit

Write $A \sim_c B$ or $A \sim B$ and call A, B equivalent if

$$B(x,y) := c^{-1}h(x)^{-1}A(x,y)h(y)$$
 $(x,y \in S)$

for some c > 0 and $h: S \to (0, \infty)$.

Perron-Frobenius A irreducible and S finite $\Rightarrow \exists$ unique probability kernel P such that $A \sim P$.

[Infinite-volume limit] The Gibbs measures $\mu_{x,y}^{A,n}$ converge weakly as $n \to \infty$ to the law of the Markov chain with initial state x and transition kernel P.

Note A and P determine c uniquely, and h uniquely up to a multiplicative constant.

R-recurrence

[David Vere-Jones 1962, 1967] Let A be a countable, irreducible, nonnegative matrix. Then there exists at most one recurrent probability kernel P such that $A \sim P$. Call such A R-recurrent.

Consequence If A is R-recurrent, then there exists a unique c>0 and a $h:S\to (0,\infty)$ that is unique up to constant multiples, such that

$$P(x, y) := c^{-1}h(x)^{-1}A(x, y)h(y)$$

is a recurrent probability kernel.

Call A R-transient if A is not R-recurrent.

Call A R-positive if P is positive recurrent.

The result about the infinite-volume limit holds more generally for all R-positive A.

The spectral radius

[Kingman 1963] Let A be aperiodic and irreducible. Then the limit

$$\rho(A) := \lim_{n \to \infty} \left(A^n(x, y) \right)^{1/n}$$

exists and does not depend on $x, y \in S$. We call this the *spectral radius*.

- $A \sim_c B \quad \Rightarrow \quad \rho(A) = c\rho(B),$
- ▶ P recurrent probability kernel $\Rightarrow \rho(P) = 1$.

[David Vere-Jones 1962, 1967] A is R-recurrent if and only if

$$\sum_{n=1}^{\infty} \rho(A)^{-n} A^n(x, x) = \infty$$

for some, and hence for all $x \in S$.

The spectral radius

Proof of the necessity: If $A \sim_c P$ with P a recurrent probability kernel, then $c = \rho(A)$ and

$$\sum_{n=1}^{\infty} \rho(A)^{-n} A^n(x,x) = \sum_{n=1}^{\infty} P^n(x,x) = \infty.$$

Here we used $P^n(x,y) = c^{-1}h(x)^{-1}A^n(x,y)h(y)$ and in particular $P^n(x,x) = c^{-1}A^n(x,x)$.

Similarly: A is R-positive if and only if

$$\lim_{n\to\infty}\rho(A)^{-n}A^n(x,x)>0.$$

A generalization of Perron-Frobenius

[David Vere-Jones 1962, 1967] If A is irreducible and R-recurrent, then there exists a function $h:S\to (0,\infty)$, unique up to scalar multiples, such that $Ah=\rho(A)h$. If some function $f:S\to [0,\infty)$ satisfies $Af\le \rho(A)f$, then f is a scalar multiple of h.

Consequence If Af = cf for some $f : S \to (0, \infty)$, then $\rho(A) \le c$. If $\rho(A) < c$, then $P(x,y) := c^{-1}f(x)^{-1}A(x,y)f(y)$ is a transient probability kernel.

Note 1 In the infinite dimensional case, $\rho(A)$ need not be the largest eigenvalue.

Note 2 The theory of R-recurrence is just one way to generalize the Perron-Frobenius theorem to infinite dimensions. A functional analytic generalization is the Krein-Rutman theorem (1948).

Geometric ergodicity

Let $(X_k)_{k\geq 0}$ be a Markov chain with irreducible transition kernel P. Let $\sigma_x := \inf\{k > 0 : X_k = x\}$ denote the first return time to x.

Def P is *strongly positive recurrent* if for some, and hence for all $x \in S$, there exists an $\varepsilon > 0$ s.t. $\mathbb{E}^{\times}[e^{\varepsilon \sigma_{x}}] < \infty$.

[Kendall '59, Vere-Jones '62] Let P be irreducible and aperiodic with invariant law π . Then P is strongly positive recurrent if and only if it is *geometrically ergodic* in the sense that

$$\exists \varepsilon > 0, \ M_{x,y} < \infty \text{ s.t. } \left| P^n(x,y) - \pi(y) \right| \leq M_{x,y} e^{-\varepsilon n}.$$

$$(x, y \in S, n \ge 0).$$

Def A is *strongly* R-positive if $A \sim P$ for some (necessarily unique) strongly positive recurrent P.

Conditions for R-recurrence

Problem: it is often not easy to check whether

$$\sum_{n=1}^{\infty} \rho(A)^{-n} A^n(x,x) = \infty.$$

In fact, not using the Perron-Frobenius theorem, it is not even clear how to prove this is always true for finite matrices.

Intuition: A should be R-recurrent if the Gibbs measures $\mu_{x,y}^{A,n}$ put, for large n, most of their mass on walks ω that stay close to x.

Intuition

Recall $\rho(A) := \lim_{n \to \infty} (A^n(x, y))^{1/n}$.

The unnormalized measures

$$u_{x,y}^{A,n}(\omega) := 1_{\{\omega_0 = x, \ \omega_n = y\}} \prod_{k=1}^n A(\omega_{k-1}, \omega_k)$$

have total mass $A^n(x, y)$, which grows exponentially as

$$A^n(x,y) = e^{n\log\rho(A) + o(n)}.$$

We need to know if most of this mass lies on walks that stay close to x, or on paths that wander far away.

Local modifications

[Swart 2017] Let $A \leq B$ be irreducible with $\rho(B) < \infty$. Assume that A(x,y) > 0 whenever B(x,y) > 0 and that $\left\{ (x,y) : A(x,y) < B(x,y) \right\}$ is finite and nonempty.

- (a) B is strongly R-positive if and only if $\rho(A) < \rho(B)$.
- **(b)** A is R-transient if and only if $\rho(A) = \rho(A + \varepsilon(B A))$ for some $\varepsilon > 0$.

Note: This implies in particular that finite matrices are strongly R-positive.

Pinning models

Let Q denote the transition kernel of nearest-neighbor random walk on \mathbb{Z}^d . Define

$$A_{eta}(x,y) := \left\{ egin{array}{ll} e^{eta} Q(x,y) & & ext{if } x=0, \ Q(x,y) & & ext{otherwise}. \end{array}
ight.$$

[Giacomin, Caravenna, Zambotti 2006] There exists a $-\infty < \beta_c < \infty$ such that:

- A_{β} is R-transient for $\beta < \beta_{\rm c}$.
- ▶ A_{β} is R-null recurrent or weakly R-positive for $\beta = \beta_{c}$.
- ▶ A_{β} is strongly R-positive for $\beta > \beta_c$.

Moreover, $\beta \mapsto \rho(A_{\beta})$ is constant on $(-\infty, \beta_c]$ and stricty increasing on $[\beta_c, \infty)$.

One has $\beta_{\rm c}=0$ in dimensions d=1,2 and $\beta_{\rm c}>0$ in dimensions $d\geq 3$. In fact, $e^{-\beta_{\rm c}}$ is the return probability of the random walk.

Bounds on the spectral radius

Sharp upper bounds on $\rho(A)$ can (in principle) be obtained from

$$\rho(A) = \inf \{ K < \infty : \exists f : S \to (0, \infty) \text{ s.t. } Af \le Kf \}.$$

Let (π, Q) be a pair such that 1. π is a probability measure on some finite $S' \subset S$, 2. Q is a transition kernel on S' with invariant law π . Define a large deviations *rate function*

$$I_A(\pi, Q) := \sum_{x,y} \pi(x) Q(x,y) \log \left(\frac{Q(x,y)}{A(x,y)}\right).$$

Sharp lower bounds on $\rho(A)$ can be obtained from

$$\rho(A) = \sup_{(\pi,Q)} e^{-I_A(\pi,Q)}.$$

Open problems

Define

$$\rho_{\infty}(A) := \inf \{ \rho(B) : B \leq A \text{ a finite modification of } A \}.$$

Then *A* strongly R-positive $\Leftrightarrow \rho_{\infty}(A) < \rho(A)$.

Open problem Prove that $\rho_{\infty}(A^n) = \rho_{\infty}(A)^n$.

Open problem Develop the theory for semigroups $(A_t)_{t\geq 0}$ of nonnegative matrices.

Open problem Show that the contact process modulo translations is strongly R-positive for all $\lambda \neq \lambda_c$.

[Sturm & Swart 2014] The contact process modulo translations is R-positive for all $\lambda<\lambda_c.$

Proof of the main result

The most interesting part of the main theorem is:

Let A be irreducible. If there exists a finite modification $B \le A$ such that $\rho(B) < \rho(A)$, then $A \sim P$ for some strongly positive recurrent probability kernel P.

Sketch of the proof Fix a reference point $z \in S$. Let $\widehat{\Omega}_z$ denote the space of all *excursions* away from z, i.e., functions $\omega:\{0,\ldots,n\}\to S$ with $\omega_0=z=\omega_n$ and $\omega_k\neq z$ for all 0< k< n. Let $\ell_\omega:=n$ denote the length of ω . Define

$$e^{\psi_{\mathbf{z}}(\lambda)} := \sum_{\omega \in \widehat{\Omega}_{\mathbf{z}}} \nu_{\lambda}(\omega) \quad \text{with} \quad \nu_{\lambda}(\omega) := e^{\lambda \ell_{\omega}} \prod_{k=1}^{\ell_{\omega}} A(\omega_{k-1}, \omega_{k})$$

STEP I: If there exists some λ such that $\psi_z(\lambda)=0$, then the process that makes i.i.d. excursions away from z with law ν_λ is a recurrent Markov chain with transition kernel $P\sim A$.

The logarithmic moment generating function

Sketch of the proof (continued)

Let G be the directed graph with vertex set S and edge set $\{(x,y): A(x,y)>0\}$. For any subgraph $F\subset G$ and vertices $x,y\in F$, define $\psi^F_{x,y}(\lambda)=\log\phi^F_{x,y}(\lambda)$ with

$$\phi_{x,y}^F(\lambda) := \sum_{\omega \in \widehat{\Omega}_{x,y}(F)} e^{\lambda \ell_{\omega}} \prod_{k=1}^{\ell_{\omega}} A(\omega_{k-1}, \omega_k),$$

where $\widehat{\Omega}_{x,y}(F)$ denotes the space of excursions away from F starting in x and ending in y.

Removal of an edge Let $F' = F \setminus \{e\}$ be obtained from F by the removal of an edge e. Then

$$\phi_{x,y}^{F'}(\lambda) = \begin{cases} \phi_{x,y}^F(\lambda) + e^{\lambda} A(x,y) & \text{if } e = (x,y), \\ \phi_{x,y}^F(\lambda) & \text{otherwise} \end{cases} (\lambda \in \mathbb{R}).$$

Removal of an isolated vertex Let $F' = F \setminus \{z\}$ be obtained from F by the removal of an isolated vertex z. Then

$$\phi_{x,y}^{F'}(\lambda) = \phi_{x,y}^{F}(\lambda) + \sum_{k=0}^{\infty} \phi_{x,z}^{F}(\lambda) \phi_{z,z}^{F}(\lambda)^{k} \phi_{z,y}^{F}(\lambda).$$

Proof: Set $A(\omega) := \prod_{k=1}^{\ell_{\omega}} A(\omega_{k-1}, \omega_k)$. Distinguishing excursions away from F' according to how often they visit the vertex z, we have

$$\phi_{x,y}^{F'}(\lambda) = \sum_{\omega_{x,y}} e^{\lambda \ell_{\omega_{x,y}}} \mathcal{A}(\omega_{x,y})$$

$$+ \sum_{k=0}^{\infty} \sum_{\omega_{x,z}} \sum_{\omega_{z,y}} \sum_{\omega_{z,z}^{1}} \cdots \sum_{\omega_{z,z}^{k}} e^{\lambda (\ell_{\omega_{x,z}} + \ell_{\omega_{z,y}} + \ell_{\omega_{z,z}^{1}} + \cdots + \ell_{\omega_{z,z}^{k}})} \times \mathcal{A}(\omega_{x,z}) \mathcal{A}(\omega_{z,y}) \mathcal{A}(\omega_{z,z}^{1}) \cdots \mathcal{A}(\omega_{z,z}^{k}),$$

where we sum over $\omega_{x,y} \in \widehat{\Omega}_{x,y}(F)$ etc.

Rewriting gives

$$\begin{split} &\phi_{x,y}^{F'}(\lambda) = \sum_{\omega_{x,y}} e^{\lambda \ell_{\omega_{x,y}}} \mathcal{A}(\omega_{x,y}) + \\ &\big(\sum_{\omega_{x,z}} e^{\lambda \ell_{\omega_{x,z}}} \mathcal{A}(\omega_{x,z})\big) \big(\sum_{\omega_{z,y}} e^{\lambda \ell_{\omega_{z,y}}} \mathcal{A}(\omega_{z,y})\big) \sum_{k=0}^{\infty} \big(\sum_{\omega_{z,z}} e^{\lambda \ell_{\omega_{z,z}}} \mathcal{A}(\omega_{z,z})\big)^k. \end{split}$$

Lemma (Exponential moments of excursions) Let P be an irreducible subprobability kernel. Set

$$\lambda_{\mathbf{x},\mathbf{y}}^{\mathit{F}} := \sup\{\lambda : \psi_{\mathbf{x},\mathbf{y}}^{\mathit{F}}(\lambda) < \infty\}.$$

Then, if

$$\lambda^{\textit{F}}_{x,y,+} > 0 \text{ for all } x,y \in \textit{F} \cap \textit{S}$$

holds for some finite nonempty subgraph F of G, it holds for all such subgraphs.

Proof: By induction, removing edges and isolated vertices.

Lemma Set $\lambda_* := \sup\{\lambda : \psi_z(\lambda) = 0\}$. Then $\lambda_* = -\log \rho(A)$.

Proof of the theorem: Assume that A is not strongly positive recurrent. Let $A' \leq A$ be a finite modification. We must show that $\rho(A') = \rho(A)$. By a similarity transformation, we may assume w.l.o.g. that A is a subprobability kernel and $\lambda_* = 0$. We need to show $\lambda_*' = 0$. It suffices to show that for the subgraph $F = \{z\}$, we have $\lambda_{z,+}' = 0$. Since A is not strongly positive, we have $\lambda_{z,+} = 0$. Since B is a finite modification, we can choose a finite subgraph F such that $\lambda_{x,y,+}^F$ is the same for A and A'. Now

$$\lambda_{z,+} \leq 0 \quad \Leftrightarrow \quad \lambda_{x,y,+}^F \leq 0 \text{ for some } x,y \in F \quad \Leftrightarrow \quad \lambda_{z,+}' \leq 0.$$

