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The Perron-Frobenius theorem

Let A= (A(x,¥))x,yes be a nonnegative matrix indexed by a
countable set S.
We say that A is irreducible if ¥x,y € S 3n > 0 s.t. A"(x,y) > 0.
We say that A is aperiodic if the greatest common divisor of
{n>1:A"(x,x) > 0} is one.

[Perron-Frobenius (1912)] Let A be irreducible and let

S be finite. Then there exist a unique constant ¢ > 0

and a function h: S — (0,00) that is unique up to scalar

multiples, such that Ah = ch.

How about infinite S?
Observation Let A be a nonnegative matrix, ¢ > 0 a constant,
and h: S — (0,00). Then the following conditions are equivalent.

1. Ah=ch.
2. P(x,y) := c th(x)"tA(x, y)h(y) defines a probability kernel.
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Gibbs measures

Let Q” denote the space of all functions w : {0,...,n} — S.
Let ,qu be the probability measure(!) on Q" deflned by

1
A, . {UJO X, wn=y}
ey (W) = A7(x, y) kl |1A Wh—1,Wk)-

We call this the Gibbs measure on Q" with transfer matrix A and
boundary conditions x, y.

[Equivalence of transfer matrices] Let A, B be
irreducible with A(x,y) > 0 iff B(x,y) > 0. Then the
following conditions are equivalent.

1. ,ufj}',' = yfj}f’ for all x,y, n such that A"(x,y) > 0.

2. There exists a ¢ >0 and h: S — (0,00) such that

B(x,y) := ¢ th(x) T A(x, y)h(y).

Moreover, in 2., the constant c is unique and h is unique
up to a multiplicative constant.

Jan M. Swart (UTIA AV CR) Strong R-positivity



The infinite-volume limit

Write A ~. B or A~ B and call A, B equivalent if

B(x,y) = c th(x)'A(x, y)h(y)  (x,y €S)
for some ¢ > 0and h: S — (0,00).
Perron-Frobenius A irreducible and S finite = 3 unique

probability kernel P such that A ~ P.

[Infinite-volume limit] The Gibbs measures 11y
converge weakly as n — oo to the law of the Markov
chain with initial state x and transition kernel P.

Note A and P determine ¢ uniquely, and h uniquely up to a
multiplicative constant.
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R-recurrence

[David Vere-Jones 1962, 1967] Let A be a countable,
irreducible, nonnegative matrix. Then there exists at most one
recurrent probability kernel P such that A ~ P. Call such A
R-recurrent.

Consequence If A is R-recurrent, then there exists a unique ¢ > 0
and a h: S — (0,00) that is unique up to constant multiples, such
that

P(x,y) = ¢ th(x) "t A(x, y)h(y)

is a recurrent probability kernel.

Call A R-transient if A is not R-recurrent.

Call A R-positive if P is positive recurrent.

The result about the infinite-volume limit holds more generally for
all R-positive A.
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The spectral radius

[Kingman 1963] Let A be aperiodic and irreducible. Then the
limit y
p(A) = lim (A"(x,y)) "

exists and does not depend on x,y € S. We call this the spectral
radius.

» A~c B = p(A) =cp(B),

» P recurrent probability kernel = p(P) = 1.
[David Vere-Jones 1962, 1967] A is R-recurrent if and only if

S p(A) A (x,x) = o
n=1

for some, and hence for all x € S.
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The spectral radius

Proof of the necessity: If A ~. P with P a recurrent probability
kernel, then ¢ = p(A) and

o0 o0
Zp(A)_"A"(X,X) = Z P"(x,x) = oo.
n=1 n=1
Here we used P"(x,y) = c~1h(x)"1A"(x, y)h(y) and in particular

P"(x,x) = ¢ 1A"(x, x). n

Similarly: A is R-positive if and only if

lim p(A)""A"(x,x) > 0.

n—o0
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A generalization of Perron-Frobenius

[David Vere-Jones 1962, 1967] If A is irreducible and
R-recurrent, then there exists a function h: S — (0,00), unique up
to scalar multiples, such that Ah = p(A)h. If some function

f: S —[0,00) satisfies Af < p(A)f, then f is a scalar multiple

of h.

Consequence If Af = cf for some f : S — (0,00), then p(A) < c.
If p(A) < c, then P(x,y) := c 1f(x)"TA(x,y)f(y) is a transient
probability kernel.

Note 1 In the infinite dimensional case, p(A) need not be the
largest eigenvalue.

Note 2 The theory of R-recurrence is just one way to generalize the
Perron-Frobenius theorem to infinite dimensions. A functional
analytic generalization is the Krein-Rutman theorem (1948).
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Geometric ergodicity

Let (Xk)k>0 be a Markov chain with irreducible transition kernel P.
Let o :=inf{k > 0 : Xk = x} denote the first return time to x.

Def P is strongly positive recurrent if for some, and hence for all
x € S, there exists an ¢ > 0 s.t. E¥X[e°7%] < o0.

[Kendall ’59, Vere-Jones '62] Let P be irreducible and aperiodic
with invariant law 7. Then P is strongly positive recurrent if and
only if it is geometrically ergodic in the sense that

Jde >0, My, < oos.t. |P"(X,y) - W(y)‘ < My, e &

(x,y €S, n>0).

Def A is strongly R-positive if A ~ P for some (necessarily unique)
strongly positive recurrent P.
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Conditions for R-recurrence

Problem: it is often not easy to check whether
o
Zp(A)_”A"(X,X) = 00.
n=1

In fact, not using the Perron-Frobenius theorem, it is not even
clear how to prove this is always true for finite matrices.

Intuition: A should be R-recurrent if the Gibbs measures uf(‘,’; put,
for large n, most of their mass on walks w that stay close to x.
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— i n 1/n
Recall p(A) := nILrgo (A"(x,y)) "

The unnormalized measures

n
I/é”;((.U) = 1{w0:x’ wn:y} H A(wk_l,wk)
k=1

have total mass A”(x, y), which grows exponentially as
A"(x,y) = e" log p(A) + o(n)

We need to know if most of this mass lies on walks that stay close
to x, or on paths that wander far away.
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Local modifications

[Swart 2017] Let A < B be irreducible with p(B) < co. Assume

that A(x, y) > 0 whenever B(x,y) > 0 and that

{(x,y) : A(x,y) < B(x,y)} is finite and nonempty.

(a) B is strongly R-positive if and only if p(A) < p(B).

(b) A'is R-transient if and only if p(A) = p(A +£(B — A)) for
some ¢ > 0.

Note: This implies in particular that finite matrices are strongly
R-positive.
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Pinning models

Let Q denote the transition kernel of nearest-neighbor random
walk on Z9. Define

e’ Q(x,y) if x=0,
Q(x,y) otherwise.

As(x,y) == {

[Giacomin, Caravenna, Zambotti 2006] There exists a
—00 < ¢ < 0o such that:

» Ag is R-transient for 3 < f3..
» Ag is R-null recurrent or weakly R-positive for 3 = f3..
» Ag is strongly R-positive for 3 > f3..

Moreover, 3+ p(Ag) is constant on (—o0, 3] and stricty
increasing on [f., 00).

One has 8. = 0 in dimensions d = 1,2 and 8. > 0 in dimensions
d > 3. In fact, e P is the return probability of the random walk.
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Bounds on the spectral radius

Sharp upper bounds on p(A) can (in principle) be obtained from
p(A) =inf {K <oo:3f:5— (0,00) s.t. Af < Kf}.

Let (7, Q) be a pair such that 1. 7 is a probability measure on
some finite S’ C S, 2. Q is a transition kernel on S’ with invariant
law 7. Define a large deviations rate function

Qx, y) ) ‘

Ia(m, Q) := ZW(X)Q(X,y) log <A(X )

Xy

Sharp lower bounds on p(A) can be obtained from
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Open problems

Define
poc(A) :=inf {p(B) : B < A a finite modification of A}.

Then A strongly R-positive < poo(A) < p(A).
Open problem Prove that poo(A") = poo(A)".

Open problem Develop the theory for semigroups (A¢)¢>0 of
nonnegative matrices.

Open problem Show that the contact process modulo translations
is strongly R-positive for all A\ # A..

[Sturm & Swart 2014] The contact process modulo translations
is R-positive for all A < Ac.
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Proof of the main result

The most interesting part of the main theorem is:

Let A be irreducible. If there exists a finite modification
B < A such that p(B) < p(A), then A ~ P for some
strongly positive recurrent probability kernel P.

Sketch of the proof Fix a reference point z € S. Let ﬁz denote
the space of all excursions away from z, i.e., functions
w:{0,...,n} - S with wo = z = w,, and wy # z for all

0 < k < n. Let ¢, := n denote the length of w. Define

Lw
e¥z(A) .= Z va(w) with vy\(w) = eMw H Alwk—1,wk)

weﬁz k=1

STEP I: If there exists some A such that 9,(\) = 0, then the
process that makes i.i.d. excursions away from z with law v} is a
recurrent Markov chain with transition kernel P ~ A.
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The logarithmic moment generating function
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Sketch of the proof (continued)

Let G be the directed graph with vertex set S and edge set
{(x,y) : A(x,y) > 0}. For any subgraph F C G and vertices
x,y € F, define wgy()\) = log qﬁf,y()\) with

Lo,
Sry(N) = > e T Alwk—1,wi),

weQ, ,(F) k=1

where ﬁxyy(F) denotes the space of excursions away from F
starting in x and ending in y.

Removal of an edge Let F' = F\{e} be obtained from F by the
removal of an edge e. Then

ok, (N +erA(x,y)  ife=(xy),

A €eR).
(bf’y()\) otherwise ( )

oL, (\) = {
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Sketch of the proof

Removal of an isolated vertex Let F' = F\{z} be obtained from
F by the removal of an isolated vertex z. Then

of,(\) = of, AHZ% )6k (N SE (V).

Proof: Set A(w) := Hi“zl A(wgk—1,wk). Distinguishing excursions
away from F’ according to how often they visit the vertex z, we
have

of,(0) =Y eMew Ay

wxy

n ZZZ Z Z (lory, + Loy, + gw%’z + gwéz)

k=0 wx,z Wz,y wl
XA(Wx,Z)-A(Wz,y)A(W;,z) e "A(wé(,z)?

where we sum over wy , € Q ,(F) etc.

Jan M. Swart (UTIA AV CR) Strong R-positivity



Sketch of the proof

Rewriting gives

N =3 eMoo Ay )+

Wx,y

Ze)\fwsz sz Ze)\ng}ﬂA Wzy Z Ze)\zwzz‘A wz Z)) ’

Wx,z Wz,y k= Wz,z
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Sketch of the proof

Lemma (Exponential moments of excursions) Let P be an
irreducible subprobability kernel. Set

Fo._ . hF
Ay = sup{A 1, (A) < oo}

Then, if

)\F

xy+ > 0forall x,y e FNS

holds for some finite nonempty subgraph F of G, it holds for all
such subgraphs.

Proof: By induction, removing edges and isolated vertices.
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Sketch of the proof

Lemma Set A\, :=sup{\: ¢,(A) = 0}. Then A\, = —log p(A).

Proof of the theorem: Assume that A is not strongly positive
recurrent. Let A < A be a finite modification. We must show that
p(A") = p(A). By a similarity transformation, we may assume
w.l.0.g. that A is a subprobability kernel and A, = 0. We need to
show N, = 0. It suffices to show that for the subgraph F = {z},
we have )\’Z,Jr = 0. Since A is not strongly positive, we have

Az+ = 0. Since B is a finite modification, we can choose a finite
subgraph F such that AL, is the same for A and A’. Now

A2+ <0 & )\;},’JrgOforsomex,yeF & /\/Z’JFSO.
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