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Stochastic flows

Let (Ω,F ,P) and X be a probability space and a measurable space.
By definition, a stochastic flow on X is a collection (Xs,t)s≤t of
random maps Xs,t : X → X , such that:

(i) (s, t, ω, x) 7→ Xs,t [ω](x) is jointly measurable as a function on
{(s, t) ∈ R2 : s ≤ t} × Ω×X .

(ii) Xs,s = Id and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u).

Sometimes (ii) is required only for deterministic s ≤ t ≤ u, i.e.,

(ii)’ Xs,s = Id and Xt,u ◦ Xs,t = Xs,u a.s. (s ≤ t ≤ u).

A stochastic flow (Xs,t)s≤t is stationary if:

(iii) (Xs,t)s≤t is equal in law to (Xs+r ,t+r )s≤t for all r ∈ R,

and we say that (Xs,t)s≤t has independent increments if:

(iv) Xt0,t1 , . . . ,Xtn−1,tn are independent for all t0 ≤ · · · ≤ tn.
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Stochastic flows

If (Xs,t)s≤t is a stochastic flow with independent increments,
s ∈ R, and X0 is an independent X -valued random variable, then
setting

Xt := Xs,s+t(X0) (t ≥ 0)

defines a Markov process (Xt)t≥0. If (Xs,t)s≤t is stationary, then
(Xt)t≥0 is time-homogeneous.

Many Markov processes can be constructed from stochastic flows.
Examples:

I Markov processes constructed from Poisson point processes

I Solutions to stochastic differential equations, with the driving
Brownian motion playing the role of white noise.
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Stochastic flows

More generally, if ~X0 = (X 1
0 , . . . ,X

n
0 ) is an independent X n-valued

random variable, then setting

X i
t := Xs,s+t(X i

0) (t ≥ 0, 1 ≤ i ≤ n)

defines a stochastic process (~Xt)t≥0. These n-point motions satisfy
a natural consistency property.
Le Jan and Raimond (AoP 2004) have shown that each consistent
family of Feller processes gives rise to a stationary stochastic flow
(in the weak sense of (ii)’) with independent increments.

We will be interested in stochastic flows on R with non-crossing
n-point motions.
Alternatively, this says that the maps Xs,t : R→ R are monotone
in the sense that x ≤ y implies Xs,t(x) ≤ Xs,t(y).
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The Arratia flow

The n-point motions of the Arratia flow
are coalescing Brownian motions.
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Discrete approximation

We can define random maps Xk,k+1 : (Z + k)→ (Z + k + 1) such
that Xk,k+1(i) = i − 1 or i + 1 with equal probabilies,
independently for all (i , k) ∈ Z2

even := {(x , t) ∈ Z2 : x + t is even}.
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Discrete approximation

ε
ε2

If we rescale space by ε and time by ε2 and let ε→ 0,
then these discrete maps converge to the Arratia flow.
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Harris flows

By definition, a correlation function is a continuous function
ρ : R→ [−1, 1] such that:

(i) ρ is continuous with ρ(0) = 1,

(ii) for each x1, . . . , xn ∈ R, setting Mij := ρ(xi − xj) defines a
positive semidefinite matrix.

By Bochner’s theorem, if µ is a symmetric probability measure on
R, then

ρ(x) :=

∫ ∞
−∞

µ(dy)e−2πixy (x ∈ R)

defines a correlation function, and each correlation function is of
this form.
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Harris flows

Harris (SPA 1984) proved that if ρ is a correlation function, then
for each initial state in Rn, there exists a unique solution to the
martingale problem for the operator

Gf (x1, . . . , xn) := 1
2

n∑
i ,j=1

ρ(xi − xj)
∂2

∂xi∂xj
f (x),

with the additional condition that paths coalesce once they meet.1

The solutions to this martingale problem are correlated Brownian
motions that form the n-point motions for a Harris flow (Xs,t)s≤t .

lim
t→0

t−1E
[
(X0,t(x)− x)(X0,t(y)− y)

]
= ρ(x − y).

1Paths meet a.s. iff

∫
0+

x

1− ρ(x)
dx <∞.

Ha
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Wright-Fisher correlations

At even times we divide 0, 2, . . . , 2n − 2 into two intervals.
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Wright-Fisher correlations

At odd times we divide 1, 3, . . . , 2n− 1 randomly into two intervals.
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Wright-Fisher correlations

In one interval (with periodic b.c.) we draw arrows to the left.
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Wright-Fisher correlations

And in the other interval we draw arrows to the right.
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Wright-Fisher correlations

n−1
n−2

We extend periodically and rescale diffusively.
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Wright-Fisher correlations

The result is a Harris flow with correlation function

ρ(x) = 1− 4ẋ(1− ẋ) (x ∈ R),

where ẋ := x − bxc.

Note ρ(x) := 1− cẋ(1− ẋ) is positive definite iff c ∈ [0, 6].

Note Bertoin and Le Gall (AIHP 05) have shown that this Harris
flow is closely related to the Kingman coalescent.

Jan M. Swart (Czech Academy of Sciences) Weaves, webs and flows I



Jump-type n-point motions

x

fa,b(x)

a b

fa,b(x) :=

{
a if a < x < b or b < x < a

x otherwise.
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Jump-type n-point motions

x

fa,b(x)

b a

fa,b(x) :=

{
a if a < x < b or b < x < a

x otherwise.
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Jump-type n-point motions

Let ν be a locally finite measure on A := R2\
{

(a, a) : a ∈ R
}

and let ` denote the Lebesgue measure on R.
Let ω ⊂ A× R be a Poisson point set with intensity ν ⊗ `.

We would like to define a stochastic flow with the following
informal description:

For each (a, b, t) ∈ ω, we apply the map fa,b at time t.
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Jump-type n-point motions

R

time

The n-point motions would be coalescing Lévy processes.
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The Brownian web

Let (zi )i≥1 = (xi , ti )i≥1 be points in R2.
Let (Bi )i≥1 with Bi =

(
Bi (t)

)
t≥ti

be independent Brownian

motions started from Bi (ti ) = xi .

Define inductively τi := inf{t ≥ ti :
(
Bi (t), t

)
∈
⋃i−1

k=1 Ak

}
with Ai :=

{(
Bi (t), t

)
: ti ≤ t < τi

}
.

For i ≥ 2 define κ(i) < i by
(
Bi (τi ), τi

)
∈ Aκ(i).

Then we can inductively define
coalescing Brownian motions (Pi )i≥1 started from (zi )i≥1 by:

Pi (t) := Bi (t) (ti ≤ t < τi )
Pi (t) := Pκ(i)(t) (τi ≤ t <∞)
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The Brownian web

Coalescing Brownian motions.
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The Brownian web

Coalescing Brownian motions.
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The Brownian web

Let Π↑c be the space of continuous, upward paths.
We equip Π↑c with a suitable topology (convergence of starting
times and locally uniform convergence of paths -details later.)

Let (Pi )i≥1 be coalescing Brownian motions started from (zi )i≥1.
Assume that {zi : i ∈ N+} is dense in R2.

[Fontes, Isopi, Newman & Ravishankar (AoP 2004)]
The set {Pi : i ∈ N+} is precompact and the law of

W := {Pi : i ∈ N+}

does not depend on {zi : i ∈ N+}.

The compact set W is called the Brownian web.
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Discrete approximation

Let K(Π↑c) denote the space of all compact sets of paths, equipped
with the Hausdorff metric (details later).
Let Wε be the collection of all paths in an arrow configuration,
diffusively rescaled by ε.

Fontes, Isopi, Newman & Ravishankar (AoP 2004) have shown that

P
[
Wε ∈ ·

]
=⇒
ε→0

P
[
W ∈ ·

]
with respect to the topology on K(Π↑c).
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Dual Brownian web

Associated to each arrow configuration is a
dual arrow configuration.
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Dual Brownian web

Let P1, . . . ,Pn be coalescing Brownian motions
started from z1, . . . , zn,
Let P̂1, . . . , P̂n be downward coalescing Brownian motions started
from z1, . . . , zn, with Shorohod reflection off the paths P1, . . . ,Pn.

This is consistent in the sense of Kolmogorov!

Setting W := {Pi : i ∈ N+} and Ŵ := {P̂i : i ∈ N+}
yields a Brownian web W together with its dual Brownian web Ŵ.

If we concatenate the forward and dual paths coming out of
{zi : i ∈ N+} and then take the closure, we obtain an object
known as the full Brownian web, which is a random compact

subset of the space Π
l
c of bi-infinite paths.
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Dual Brownian web

Special points of the Brownian web are distinguished according to
the numbers (min,mout) of incoming and outgoing paths.

m̂out = min + 1 and mout = m̂in + 1.
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General webs

Aim We want to extend the theory of the Brownian web
to more general stochastic flows with non-crossing n-point motions,
including such that make jumps.
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Cadlag functions

The split real line is the set Rs consisting of all pairs t± consisting
of a real number t ∈ R and a sign ± ∈ {−,+}.
For an element τ = t± of Rs we let τ := t denote its real part and
s(τ) := ± its sign.
We equip Rs with the lexographic order, in which σ ≤ τ if and
only if σ < τ or σ = τ and s(σ) ≤ s(τ).
We write σ < τ iff σ ≤ τ and σ 6= τ and define intervals

(σ, ρ) := {τ ∈ Rs : σ < τ < ρ}, [σ, ρ) := {τ ∈ Rs : σ ≤ τ < ρ},
(σ, ρ] := {τ ∈ Rs : σ < τ ≤ ρ}, [σ, ρ] := {τ ∈ Rs : σ ≤ τ ≤ ρ}.

There is some redundency, e.g., (s−, r+] = [s+, r+]. We also
write

(σ,∞) := {τ ∈ Rs : σ < τ}, [σ,∞) := {τ ∈ Rs : σ ≤ τ}, etc.
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Cadlag functions

We equip the split real line Rs with the order topology.
A basis for the topology is formed by all open intervals (σ, ρ) with
σ, ρ ∈ Rs, σ < ρ.

(i) τn → t+ iff τn → t and τ ≥ t+ for n sufficiently large.

(ii) τn → t− iff τn → t and τ ≤ t− for n sufficiently large.

Lemma Rs is first countable, Hausdorff and separable, but not
second countable and not metrisable.

Lemma For C ⊂ Rd
s , the following are equivalent:

(i) C is compact, (ii), C is sequentially compact,
(iii) C is closed and bounded.
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Cadlag functions

Lemma Let I ⊂ Rs be an interval and let X be a Hausdorff
topological space. Then a function f : I → X is continuous iff:

(i) f (τn)→ f (t+) for all τn ∈ I such that
τn → t and τn > t for all n.

(ii) f (τn)→ f (t−) for all τn ∈ I such that
τn → t and τn < t for all n.

Let I± := {t ∈ R : t± ∈ I} and define f ± : I± → X by
f ±(t) := f (t±) (t ∈ I±). Then f + is cadlag (right continuous
with left limits) and f − is caglad (left continuous with right limits).

Corollary A function f : [0+,∞)→ X is continuous iff
f + : [0,∞)→ X is cadlag and f − : (0,∞)→ X is its caglad
modification.

Remark Continuous functions f : [0−,∞)→ X are similar, except
that they can also jump at time zero.
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Squeezed space

Let (X , d) be a metric space and let

R(X ) := (X × R) ∪
{

(∗,−∞), (∗,∞)
}
.

Let R := [−∞,∞], let dR generate the topology on R.
Let ϕ : R→ [0,∞) be continuous with ϕ(t) > 0 iff t ∈ R.

Lemma

dsqz

(
(x , s), (y , t)

)
:=
(
ϕ(s) ∧ ϕ(t)

)(
d(x , y) ∧ 1

)
+
∣∣ϕ(s)− ϕ(t)

∣∣+ dR(s, t)

is a metric on R(X ) such that dsqz

(
(xn, tn), (x , t)

)
−→
n→∞

0 iff

(i) tn → t,

(ii) if t ∈ R, then xn → x .

The topology on R(X ) does not depend on the choice of the
metric on X .
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Squeezed space

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

A picture of R(R).
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Squeezed space

Lemma If (X , d) is separable, then so is (R(X ), dsqz).
If (X , d) is complete, then so is (R(X ), dsqz).

Lemma A ⊂ R(X ) is compact iff ∀T <∞ ∃K ∈ K(X ) s.t.

A ∩
(
X × [−T ,T ]

)
⊂ K × [−T ,T ].
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Path space

Def A path π in a metrisable space X with starting time σπ and
final time τπ is a continuous function π : Is(π)→ X , where
I (π) := [σπ, τπ], I (π) := I (π) ∩ R,
Is(π) :=

{
t± : t ∈ I (π), ± ∈ {−,+}

}
.

Π = Π(X ) := the set of all paths in X .
Πc :=

{
π ∈ Π : π(t−) = π(t+) ∀t ∈ I (π)

}
,

Π↑ :=
{
π ∈ Π : τπ =∞

}
, Π↓ :=

{
π ∈ Π : σπ = −∞

}
.

Def The closed graph of π is the set

G(π) :=
{(
π(t±), t

)
: t ∈ I (π)

}
∪ {(∗,±∞) : ±∞ ∈ I (π)\I (π)

}
.

Lemma G(π) is a compact subset of R(X ).
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Path space

π

G(π)

A path and its graph.
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Path space

For a, b ∈ R, let

〈a, b〉 :=

{
[a, b] if a ≤ b,

[b, a] if b ≤ a.

Def The interpolated graph of π ∈ Π(R) is the set

Gint(π) :=
{

(x , t) : t ∈ I (π), x ∈ 〈π(t−), π(t+)〉
}

∪{(∗,±∞) : ±∞ ∈ I (π)\I (π)
}
.

Lemma Gint(π) is a compact subset of R(R).
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Path space

π

Gint(π)

A path and its interpolated graph.
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The Hausdorff metric

Let (X , d) be a metric space. Let d(x ,A) := inf{d(x , y) : y ∈ A}.

Let K(X ) be the set of all compact subsets of X
and let K+(X ) := {K ∈ K(X ) : K 6= ∅}.

The Hausdorff metric on K+(X ) is defined as

dH(K1,K2) := sup
x1∈K1

d(x1,K2) ∨ sup
x2∈K2

d(x2,K1).

A correspondence between A1,A2 is a set R ⊂ A1 × A2 such that:

∀(i , j) ∈ {(1, 2), (2, 1)}, xi ∈ Ai ∃xj ∈ Aj s.t. (xi , xj) ∈ R.

Let Cor(A1,A2) denote the set of all correspondences between
A1,A2. Then

dH(K1,K2) = inf
R∈Cor(K1,K2)

sup
(x1,x2)∈R

d(x1, x2).
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The Hausdorff metric

Lemma If (X , d) is separable, then so is (K+(X ), dH).
If (X , d) is complete, then so is (K+(X ), dH).

Lemma A set A ⊂ K+(X ) is compact iff there exists a compact
C ⊂ X such that K ⊂ C for all K ∈ A.

Lemma Let Kn ∈ K+(X ) and let

Lim
(
(Kn)

)
:=
{

x ∈ X : ∃xn ∈ Kn s.t. xn −→
n→∞

x
}
,

Clus
(
(Kn)

)
:=
{

x ∈ X : ∃ n(k)→∞, xn(k) ∈ Kn(k) s.t. xn(k) −→
k→∞

x
}
.

Then dH(Kn,K ) −→
n→∞

0 iff

(i) ∃C ⊂ K+(X ) s.t. Kn ⊂ C ∀n,

(ii) Lim(K ) = K = Clus(K ).

The topology on K+(X ) does not depend on the choice of the
metric on X .
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Topologies on path space

Ideas (not so good) Skorohod’s J2 topology is generated by the
metric on Π(R) defined as:

dJ2(π1, π2) := dH

(
G(π1),G(π2)

)
.

Skorohod’s M2 topology is generated by:

dM2(π1, π2) := dH

(
Gint(π1),Gint(π2)

)
.

Problem of these topologies:

We do not want to be close to
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Topologies on path space

Idea Both G(π) and Gint(π) are naturally equipped with a total
order:

(x1, t1) ≤ (x2, t2) ⇔
t1 < t2 or t1 = t2 =: t and x2 lies closer to π(t+) than x1.

Let R be a correspondence between totally ordered sets A1,A2.

Def R is monotone if there do not exist (x1, x2) ∈ R and
(y1, y2) ∈ R such that x1 < y1 but y2 < x2.

Let Cor+(A1,A2) denote the set of monotone correspondences and
set

dH+(A1,A2) := inf
R∈Cor+(A1,A2)

sup
(x1,x2)∈R

d(x1, x2).
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Topologies on path space

Alternative idea For a totally ordered set A, define A≤ ⊂ X 2 by

A≤ :=
{

(x , y) ∈ A2 : x ≤ y
}
,

equip X 2 with a metric that generates the product topology and
set

dH≤(A1,A2) := dH(A≤1 ,A
≤
2 ).

It seems both approaches yield the same topology. The metrics

dJ1(π1, π2) := dH+

(
G(π1),G(π2)

)
,

dM1(π1, π2) := dH+

(
Gint(π1),Gint(π2)

)
,

generate topologies on Π that correspond to Skorohod’s J1 and
M1 topologies.
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Topologies on path space

Note

is dM1-close but not dJ1-close to
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Topologies on path space

Recall that a Polish space is a separable topological space such
that there exists a complete metric generating the topology.

Theorem If X is a Polish space, then Π(X ), equipped with the
J1-topology, is also a Polish space. Moreover, Π(R) and Π(R),
equipped with the M1-topogy, are Polish spaces.

Lemma The subset Πc(R) of Π(R) is closed w.r.t. the J1
topology, but not w.r.t. the M1 topology. The J1 and M1
topologies induce the same topology on Πc(R), which corresponds
to locally uniform convergence.
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Topologies on path space

The modulus of continuity is defined as

mT ,δ(π) := sup
{

d
(
π(σ), π(τ)

)
: −T < σ < τ < T , τ − σ ≤ δ

}
.

The J1-modulus of continuity is defined as

mJ1
T ,δ(π) := sup

{
d
(
π(σ), π(τ)

)
∧ d
(
π(τ), π(ρ)

)
:

−T < σ < τ < ρ < T , ρ− σ ≤ δ
}
.

The M1-modulus of continuity is defined as

mM1
T ,δ(π) := sup

{
d
(
π(τ), 〈π(σ), π(ρ)〉

)
:

−T < σ < τ < ρ < T , ρ− σ ≤ δ
}
.

where as before

〈a, b〉 :=

{
[a, b] if a ≤ b,

[b, a] if b ≤ a.
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Topologies on path space

Def A set A ⊂ Π(X ) is compactly contained if

∀T <∞ ∃C ∈ K(X ) s.t. π(t±) ∈ C ∀t ∈ [−T ,T ] ∩ I (π).

A set A ⊂ Πc(X ) is equicontinuous if

lim
δ→0

sup
π∈A

mT ,δ(π) = 0 (T <∞).

We define J1-equicontinuity and M1-equicontinuity similarly.

Arzela-Ascoli A set A ⊂ Πc(X ) is precompact iff it is compactly
contained and equicontinuous.

Theorem A set A ⊂ Πc(X ) is precompact w.r.t. the J1-topology
iff it is compactly contained and J1-equicontinuous.

Theorem A set A ⊂ Πc(R) is precompact w.r.t. the M1-topology
iff it is compactly contained and M1-equicontinuous.
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