Recursive tree processes and the mean-field limit of stochastic flows

Jan M. Swart (Czech Academy of Sciences)

joint with Tibor Mach (Prague) A. Sturm (Göttingen)
Thursday, January 30th, 2020

Cooperative branching

Let $S:=\{0,1\}$. Consider the maps:

$$
\begin{aligned}
& \operatorname{cob}: S^{3} \rightarrow S \quad \text { with } \quad \operatorname{cob}\left(x_{1}, x_{2}, x_{3}\right):=x_{1} \vee\left(x_{2} \wedge x_{3}\right), \\
& \text { dth }: S^{0} \rightarrow S \quad \text { with } \quad \operatorname{dth}(\varnothing):=0 .
\end{aligned}
$$

Let $G=(V, E)$ be a graph.
Let $X=\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in V}$ be a Markov process with state space S^{V} that evolves as follows:

- (Cooperative branching) For each $i \in V$, with Poisson rate α, we pick $i \sim j \sim k$, all different, at random and replace $X_{t}(i)$ by $\operatorname{cob}\left(X_{t}(i), X_{t}(j), X_{t}(k)\right)$.
- (death) For each $i \in V$, with Poisson rate one, we replace $X_{t}(i)$ by $\operatorname{dth}(\varnothing)=0$.

A graphical representation

We denote cob and dth by suitable symbols.

A graphical representation

The Poisson events define a random map $x \mapsto \mathbf{X}_{0, t}(x)$.

A stochastic flow

The random maps $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$ form a stochastic flow

$$
\mathbf{X}_{s, s}=1 \quad \text { and } \quad \mathbf{X}_{t, u} \circ \mathbf{X}_{s, t}=\mathbf{X}_{s, u}
$$

with independent increments, in the sense that

$$
\mathbf{X}_{t_{0}, t_{1}}, \ldots, \mathbf{X}_{t_{n-1}, t_{n}}
$$

are independent for each $t_{0}<\cdots<t_{n}$.
If X_{0} is independent of $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$, then setting

$$
X_{t}:=\mathbf{X}_{0, t}\left(X_{0}\right) \quad(t \geq 0)
$$

defines a Markov process $\left(X_{t}\right)_{t \geq 0}$ with the right jump rates.

The mean-field limit

We are interested in the process on the complete graph with N vertices.
For any deterministic map $g: S^{k} \rightarrow S$, let us write

$$
\top_{g}(\mu):=\text { the law of } g\left(X_{1}, \ldots, X_{k}\right)
$$

where $\left(X_{i}\right)_{i \geq 1}$ are i.i.d. with law μ. In the limit $N \rightarrow \infty$, the empirical measure $\mu_{t}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}(i)}$ solves

$$
\frac{\partial}{\partial t} \mu_{t}=\alpha\left\{\boldsymbol{T}_{\mathrm{cob}}\left(\mu_{t}\right)-\mu_{t}\right\}+\left\{\mathrm{T}_{\mathrm{dth}}\left(\mu_{t}\right)-\mu_{t}\right\} .
$$

Rewriting this in terms of $p_{t}:=\mu_{t}(\{1\})$ yields

$$
\frac{\partial}{\partial t} p_{t}=\alpha p_{t}^{2}\left(1-p_{t}\right)-p_{t}=: F_{\alpha}\left(p_{t}\right) \quad(t \geq 0)
$$

Cooperative branching

For $\alpha<4$, the equation $\frac{\partial}{\partial t} p_{t}=F_{\alpha}\left(p_{t}\right)$ has a single, stable fixed point $p=0$.

Cooperative branching

For $\alpha=4$, a second fixed point appears at $p=0.5$.

Cooperative branching

For $\alpha>4$, there are two stable fixed points and one unstable fixed point, which separates the domains of attraction of the other two.

Cooperative branching

Fixed points of $\frac{\partial}{\partial t} p_{t}=F_{\alpha}\left(p_{t}\right)$ for different values of α.

The general set-up

(i) Polish space S local state space.
(ii) $(\Omega, \mathcal{B}, \mathbf{r})$ Polish space with Borel σ-field and finite measure: source of external randomness.
(iii) $\kappa: \Omega \rightarrow \mathbb{N}$ measurable function.
(iv) For each $\omega \in \Omega$, a measurable function $\gamma[\omega]: S^{\kappa(\omega)} \rightarrow S$.

Then the mean-field equation takes the form

$$
\begin{equation*}
\frac{\partial}{\partial t} \mu_{t}=\int_{\Omega} \mathbf{r}(\mathrm{d} \omega)\left\{\mathbf{T}_{\gamma[\omega]}\left(\mu_{t}\right)-\mu_{t}\right\} \quad(t \geq 0) \tag{1}
\end{equation*}
$$

In our example $S=\{0,1\}, \Omega=\{1,2\}$,

$$
\begin{array}{lll}
\gamma[1]=\operatorname{cob}: S^{3} \rightarrow S, & \kappa(1)=3, & \mathbf{r}(\{1\})=\alpha \\
\gamma[2]=\operatorname{dth}: S^{0} \rightarrow S, & \kappa(2)=0, & \mathbf{r}(\{2\})=1
\end{array}
$$

The mean-field equation

Theorem [Mach, Sturm, S. '18] Assume that

$$
\begin{equation*}
\int_{\Omega} \mathbf{r}(\mathrm{d} \omega) \kappa(\omega)<\infty \tag{2}
\end{equation*}
$$

Then for each initial state, the mean-field equation (1) has a unique solution.

Define a (nonlinear) semigroup $\left(T_{t}\right)_{t \geq 0}$ of operators acting on probability measures by

$$
\mathrm{T}_{t}(\mu):=\mu_{t} \quad \text { where }\left(\mu_{t}\right)_{t \geq 0} \text { solves (1) with } \mu_{0}=\mu
$$

Proposition [Mach, Sturm, S. '18] Assume that $\forall k, x \in S^{k}$

$$
\begin{equation*}
\mathbf{r}(\{\omega: \kappa(\omega)=k, \gamma[\omega] \text { is discontinuous at } x\})=0 . \tag{3}
\end{equation*}
$$

Then the operators T_{t} are continuous w.r.t. weak convergence.

The mean-field equation

Let $\mu_{t}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}(i)}$ denote the empirical measure.
Let d be any metric that generates the topology of weak convergence and let $\|\cdot\|$ denote the total variation norm.

Theorem [Mach, Sturm, S. '18] Assume (2) and at least one of the following conditions:
(i) $\mathbb{P}\left[d\left(\mu_{0}^{N}, \mu_{0}\right) \geq \varepsilon\right] \underset{N \rightarrow \infty}{\longrightarrow} 0$ for all $\varepsilon>0$, and (3) holds.
(ii) $\left\|\mathbb{E}\left[\left(\mu_{0}^{N}\right)^{\otimes n}\right]-\mu_{0}^{\otimes n}\right\| \underset{N \rightarrow \infty}{\longrightarrow} 0$ for all $n \geq 1$.

Then

$$
\mathbb{P}\left[\sup _{0 \leq t \leq T} d\left(\mu_{t}^{N}, T_{t}\left(\mu_{0}\right)\right) \geq \varepsilon\right] \underset{N \rightarrow \infty}{\longrightarrow} 0 \quad(\varepsilon>0, T<\infty) .
$$

The mean-field limit of the stochastic flow

Question

What is the mean-field limit of the stochastic flow $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$?
Fix $d \in \mathbb{N}_{+} \cup\{\infty\}$ such that $\kappa(\omega) \leq d$ for all $\omega \in \Omega$. Let $\mathbb{T}=\mathbb{T}^{d}$ denote the space of all words $\mathbf{i}=i_{1} \cdots i_{n}$ made from the alphabet $\{1, \ldots, d\}$ (if $d<\infty$) resp. \mathbb{N}_{+}(if $d=\infty$).

A recursive tree representation

We view $\mathbb{T}=\mathbb{T}^{d}$ as a tree with root \varnothing, the word of length zero.

A recursive tree representation

We attach i.i.d. $\left(\omega_{\mathbf{i}}\right)_{i \in \mathbb{T}}$ with law $|\mathbf{r}|^{-1} \mathbf{r}$ to each node, which translate into maps $\left(\gamma\left[\omega_{\mathbf{i}}\right]\right)_{\mathbf{i} \in \mathbb{T}}$.

A recursive tree representation

Let \mathbb{S} be the random subtree of \mathbb{T} defined as

$$
\mathbb{S}:=\left\{i_{1} \cdots i_{n} \in \mathbb{T}: i_{m} \leq \kappa\left(\omega_{i_{1} \cdots i_{m-1}}\right) \forall 1 \leq m \leq n\right\} .
$$

A recursive tree representation

For any rooted subtree $\mathbb{U} \subset \mathbb{S}$, let

$$
\nabla \mathbb{U}:=\left\{i_{1} \cdots i_{n} \in \mathbb{S}: i_{1} \cdots i_{n-1} \in \mathbb{U}, i_{1} \cdots i_{n} \notin \mathbb{U}\right\}
$$

denote the boundary of \mathbb{U} relative to \mathbb{S}.

A recursive tree representation

Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa(\omega)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

A recursive tree representation

Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa(\omega)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

A recursive tree representation

Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa(\omega)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

A recursive tree representation

Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa(\omega)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

A recursive tree representation

Define $G_{\mathbb{U}}: S^{\nabla \mathbb{U}} \rightarrow S$ by $G_{\mathbb{U}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}\right):=X_{\varnothing}$.
$G_{\mathbb{U}}$ is the concatenation of the maps $\left(\gamma\left[\omega_{\mathbf{i}}\right]\right)_{\mathbf{i} \in \mathbb{U}}$ according to the tree structure of \mathbb{U}.

Let $\left|i_{1} \cdots i_{n}\right|:=n$ denote the length of a word \mathbf{i} and set

$$
\mathbb{S}_{(n)}:=\{\mathbf{i} \in \mathbb{S}:|\mathbf{i}|<n\} \quad \text { and } \quad \nabla \mathbb{S}_{(n)}=\{\mathbf{i} \in \mathbb{S}:|\mathbf{i}|=n\}
$$

Aldous and Bandyopadyay (2005) observed that

$$
\mathrm{T}^{n}(\mu):=\text { the law of } G_{\mathbb{S}_{(n)}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{(n)}}\right)
$$

where $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{(n)}}$ are i.i.d. with law μ and independent of $\left(\omega_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{S}_{(n)}}$, and

$$
\mathrm{T}(\mu):=|\mathbf{r}|^{-1} \int_{\Omega} \mathbf{r}(\mathrm{d} \omega) \mathrm{T}_{\gamma[\omega]}(\mu)
$$

A recursive tree representation

A recursive tree representation

Let $\left(\sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ be i.i.d. exponentially distributed with mean $|\mathbf{r}|^{-1}$, independent of $\left(\omega_{\mathbf{i}}\right)_{i \in \mathbb{T}}$, and set

$$
\begin{aligned}
\tau_{\mathbf{i}}^{*} & :=\sum_{m=1}^{n-1} \sigma_{i_{1} \cdots i_{m}} \quad \text { and } \quad \tau_{\mathbf{i}}^{\dagger}:=\tau_{\mathbf{i}}^{*}+\sigma_{\mathbf{i}} \quad\left(\mathbf{i}=i_{1} \cdots i_{n}\right), \\
\mathbb{S}_{t} & :=\left\{\mathbf{i} \in \mathbb{S}: \tau_{\mathbf{i}}^{\dagger} \leq t\right\} \quad \text { and } \quad \nabla \mathbb{S}_{t}=\left\{\mathbf{i} \in \mathbb{S}: \tau_{\mathbf{i}}^{*} \leq t<\tau_{\mathbf{i}}^{\dagger}\right\} .
\end{aligned}
$$

Let \mathcal{F}_{t} be the filtration

$$
\mathcal{F}_{t}:=\sigma\left(\nabla \mathbb{S}_{t},\left(\omega_{\mathbf{i}}, \sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{S}_{t}}\right) \quad(t \geq 0)
$$

Theorem [Mach, Sturm, S. '18]

$$
\mathrm{T}_{t}(\mu):=\text { the law of } G_{\mathbb{S}_{t}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{t}}\right)
$$

where $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{t}}$ are i.i.d. with law μ and independent of \mathcal{F}_{t}.

A recursive tree representation

Recursive Tree Processes

A Recursive Distributional Equation is an equation of the form

$$
X \stackrel{\mathrm{~d}}{=} \gamma[\omega]\left(X_{1}, \ldots, X_{\kappa(\omega)}\right) \quad(\mathrm{RDE})
$$

where X_{1}, X_{2}, \ldots are i.i.d. copies of X, independent of ω.
A law ν solves (RDE) iff

$$
\text { (i) } \quad \mathrm{T}_{t}(\nu)=\nu \quad(t \geq 0) \quad \text { or } \quad \text { (ii) } \quad \mathrm{T}(\nu)=\nu
$$

We can view ν as the "invariant law" of a "Markov chain" where time has a tree-like structure.

In our example, solutions to the RDE are the Bernoulli distributions $\nu_{\text {low }}, \nu_{\text {mid }}, \nu_{\text {upp }}$ with density $z_{\text {low }}, z_{\text {mid }}, z_{\text {upp }}$.

Recursive Tree Processes

For any rooted subtree $\mathbb{U} \subset \mathbb{T}$, let

$$
\partial \mathbb{U}:=\left\{i_{1} \cdots i_{n} \in \mathbb{T}: i_{1} \cdots i_{n-1} \in \mathbb{U}, i_{1} \cdots i_{n} \notin \mathbb{U}\right\}
$$

denote the boundary of \mathbb{U} relative to \mathbb{T}.
For each solution ν of (RDE), there exists a Recursive Tree Process $(R T P)\left(\omega_{\mathbf{i}}, \mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$, unique in law, such that:
(i) $\left(\omega_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ are i.i.d. with law $|\mathbf{r}|^{-1} \mathbf{r}$.
(ii) For finite $\mathbb{U} \subset \mathbb{T}$, the r.v.'s $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \partial U}$ are i.i.d. with ν and independent of $\left(\omega_{\mathbf{i}}\right)_{i \in \mathbb{U}}$.
(iii) $\mathbf{X}_{\mathbf{i}}=\gamma\left[\omega_{\mathbf{i}}\right]\left(\mathbf{X}_{\mathbf{i} 1}, \ldots, \mathbf{X}_{\mathbf{i} \kappa\left(\omega_{\mathbf{i}}\right)}\right) \quad(\mathbf{i} \in \mathbb{T})$.

If we add independent exponentially distributed lifetimes, then:

- Conditional on \mathcal{F}_{t}, the r.v.'s $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{t}}$ are i.i.d. with law ν.

Endogeny

Let $\left(\omega_{\mathbf{i}}, \mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ be the RTP corresponding to a solution ν of the RDE.

Aldous and Bandyopadyay (2005) say that an RTP is endogenous if
\mathbf{X}_{\varnothing} is measurable w.r.t. the σ-field generated by $\left(\omega_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$.
Define \mathbf{j} is pivotal if

$$
G_{\mathbb{U}}\left(X_{\mathbf{j}},\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U} \backslash\{\mathbf{j}\}}\right) \neq G_{\mathbb{U}}\left(x,\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U} \backslash \mathbf{j}\}}\right) .
$$

For some $x \neq X_{\mathbf{j}}$ and \mathbb{U} such that $\mathbf{j} \in \nabla \mathbb{U}$.
Johnson, Podder \& Skerman (2018) observe that

$$
J_{n}:=\left\{\mathbf{j} \in \nabla \mathbb{S}_{(n)}: \mathbf{j} \text { is pivotal }\right\} \quad(n \geq 0)
$$

is a branching process. In a special setting, they prove $\left(J_{n}\right)_{n \geq 0}$ subcritical \Rightarrow endogeny. For a more restrictive class, endogeny is equivalent to extinction of $\left(J_{n}\right)_{n \geq 0}$.

n -Variate processes

For each $n \geq 1$, a measurable map $g: S^{k} \rightarrow S$ gives rise to n-variate $\operatorname{map} g^{(n)}:\left(S^{n}\right)^{k} \rightarrow S^{n}$ defined as

$$
g^{(n)}\left(x_{1}, \ldots, x_{k}\right)=g^{(n)}\left(x^{1}, \ldots, x^{n}\right):=\left(g\left(x^{1}\right), \ldots, g\left(x^{n}\right)\right),
$$

with $x=\left(x_{i}^{m}\right)_{i=1, \ldots, k}^{m=1, \ldots, n}, x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{n}\right), x^{m}=\left(x_{1}^{m}, \ldots, x_{k}^{m}\right)$.
We define an n-variate map

$$
\mathrm{T}^{(n)}\left(\mu^{(n)}\right):=|\mathbf{r}|^{-1} \int_{\Omega} \mathbf{r}(\mathrm{d} \omega) \mathrm{T}_{\gamma^{(n)}[\omega]}\left(\mu^{(n)}\right),
$$

which acts on probability measures $\mu^{(n)}$ on S^{n}.
The n-variate mean-field equation

$$
\frac{\partial}{\partial t} \mu_{t}^{(n)}=\int_{\Omega} \mathbf{r}(\mathrm{d} \omega)\left\{\mathrm{T}_{\gamma^{(n)}[\omega]}\left(\mu_{t}^{(n)}\right)-\mu_{t}^{(n)}\right\} \quad(t \geq 0)
$$

describes the mean-field limit of n coupled processes that are constructed using the same stochastic flow $\left(\mathbf{X}_{s, u}\right)_{s \leqq u}$.

n -Variate processes

$\mathcal{P}(S)$ space of probability measures on S.
$\mathcal{P}_{\text {sym }}\left(S^{n}\right)$ space of probability measures on S^{n} that are symmetric under a permutation of the coordinates.
$S_{\text {diag }}^{n} \quad\left\{x \in S^{n}: x_{1}=\cdots=x_{n}\right\}$
$\mathcal{P}\left(S^{n}\right)_{\mu} \quad$ space of probability measures on S^{n} whose one-dimensional marginals are all equal to μ.

- If $\left(\mu_{t}^{(n)}\right)_{t \geq 0}$ solves the n-variate equation, then its m-dimensional marginals solve the m-variate equation.
- $\mu_{0}^{(n)} \in \mathcal{P}_{\text {sym }}\left(S^{n}\right)$ implies $\mu_{t}^{(n)} \in \mathcal{P}_{\text {sym }}\left(S^{n}\right)(t \geq 0)$.
- $\mu_{0}^{(n)} \in \mathcal{P}\left(S_{\text {diag }}^{n}\right)$ implies $\mu_{t}^{(n)} \in \mathcal{P}\left(S_{\text {diag }}^{n}\right)(t \geq 0)$.
- If $\mathrm{T}(\nu)=\nu$, then $\mu_{0}^{(n)} \in \mathcal{P}\left(S^{n}\right)_{\nu}$ implies $\mu_{t}^{(n)} \in \mathcal{P}\left(S^{n}\right)_{\nu}$.

n -Variate processes

If $\nu=\mathbb{P}[X \in \cdot]$ solves the $\operatorname{RDE} T(\nu)=\nu$, then

$$
\bar{\nu}^{(n)}:=\mathbb{P}[(\underbrace{X, \ldots, X}_{n \text { times }}) \in \cdot]
$$

solves the n-variate $R D E T^{(n)}\left(\nu^{(n)}\right)=\nu^{(n)}$.
Questions:

- Is $\bar{\nu}^{(n)}$ a stable fixed point of the n-variate equation?
- Is $\bar{\nu}^{(n)}$ the only solution in $\mathcal{P}_{\text {sym }}\left(S^{n}\right)_{\nu}$ of the n-variate RDE?

n -Variate processes

Recall that an RTP $\left(\omega_{\mathbf{i}}, \mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ corresponding to a solution ν of the RDE is endogenous if
\mathbf{X}_{\varnothing} is measurable w.r.t. the σ-field generated by $\left(\omega_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$.
Theorem [AB '05 \& MSS '18] The following statements are equivalent:
(i) The RTP corresponding to ν is endogenous.
(ii) $\mathrm{T}_{t}^{(n)}(\mu) \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\nu}^{(n)}$ for all $\mu \in \mathcal{P}\left(S^{n}\right)_{\nu}$ and $n \geq 1$.
(iii) $\bar{\nu}^{(2)}$ is the only solution in $\mathcal{P}_{\text {sym }}\left(S^{2}\right)_{\nu}$ of the bivariate RDE. In our example, the RTPs for $\nu_{\text {low }}, \nu_{\text {upp }}$ are endogenous, but the RTP corresponding to $\nu_{\text {mid }}$ is not.

n -Variate processes

Fixed points of $\frac{\partial}{\partial t} p_{t}=F_{\alpha}\left(p_{t}\right)$ for different values of α.

n -Variate processes

Cooperative branching with branching rate $\alpha>4$
The RDE $\mathrm{T}(\nu)=\nu$ has three solutions $\nu_{\text {low }}, \nu_{\text {mid }}$, and $\nu_{\text {upp }}$, where ν_{\ldots} is the probability measure on $\{0,1\}$ with mean $\nu_{\ldots}(\{1\})=z_{\ldots}(\ldots=$ low, mid, upp $)$, which give rise to solutions $\bar{\nu}_{\text {low }}^{(2)}, \bar{\nu}_{\text {mid }}^{(2)}$, and $\bar{\nu}_{\text {upp }}^{(2)}$ of the bivariate $R D E$. Proposition [Mach, Sturm, S. '18] Apart from $\bar{\nu}_{\text {low }}^{(2)}, \bar{\nu}_{\text {mid }}^{(2)}, \bar{\nu}_{\text {upp }}^{(2)}$, the bivariate $R D E$ has one more solution $\underline{\nu}_{\text {mid }}^{(2)}$ in $\mathcal{P}_{\text {sym }}\left(S^{2}\right)$. The domains of attraction are:

$$
\begin{aligned}
\bar{\nu}_{\text {low }}^{(2)}: & \left\{\mu_{0}^{(2)}: \mu_{0}^{(1)}(\{1\})<z_{\text {mid }}\right\}, \\
\nu_{\text {mid }}^{(2)}: & \left\{\mu_{0}^{(2)}: \mu_{0}^{(1)}(\{1\})=z_{\text {mid }}, \mu_{0}^{(2)} \neq \bar{\nu}_{\text {mid }}^{(2)}\right\}, \\
\bar{\nu}_{\text {mid }}^{(2)}: & \left\{\bar{\nu}_{\text {mid }}^{(2)}\right\}, \\
\bar{\nu}_{\text {upp }}^{(2)}: & \left\{\mu_{0}^{(2)}: \mu_{0}^{(1)}(\{1\})>z_{\text {mid }}\right\} .
\end{aligned}
$$

The higher-level equation

The n-variate map $T^{(n)}$ is defined even for $n=\infty$, and $T^{(\infty)}$ maps $\mathcal{P}_{\text {sym }}\left(S^{\mathbb{N}_{+}}\right)$into itself.
By De Finetti's theorem, $\left(X_{i}\right)_{i \in \mathbb{N}_{+}}$have a law in $\mathcal{P}_{\text {sym }}\left(S^{\mathbb{N}_{+}}\right)$if and only if there exists a random probability measure ξ on S such that conditional on ξ, the $\left(X_{i}\right)_{i \in \mathbb{N}_{+}}$are i.i.d. with law ξ.
Let $\rho:=\mathbb{P}[\xi \in \cdot]$ the law of ξ. Then $\rho \in \mathcal{P}(\mathcal{P}(S))$.
In view of this, $\mathcal{P}_{\text {sym }}\left(S^{\mathbb{N}_{+}}\right) \cong \mathcal{P}(\mathcal{P}(S))$.
The map $T^{(\infty)}: \mathcal{P}_{\text {sym }}\left(S^{\mathbb{N}_{+}}\right) \rightarrow \mathcal{P}_{\text {sym }}\left(S^{\mathbb{N}_{+}}\right)$ corresponds to a higher-level map $\check{\mathrm{T}}: \mathcal{P}(\mathcal{P}(S)) \rightarrow \mathcal{P}(\mathcal{P}(S))$.

The higher-level equation

For any measurable map $g: S^{k} \rightarrow S$, define $\check{g}: \mathcal{P}(S)^{k} \rightarrow \mathcal{P}(S)$ by

$$
\begin{aligned}
\check{g}:= & \text { the law of } g\left(X_{1}, \ldots, X_{k}\right), \\
& \text { where }\left(X_{1}, \ldots, X_{k}\right) \text { are independent with laws } \mu_{1}, \ldots, \mu_{k} .
\end{aligned}
$$

Then

$$
\check{\mathrm{T}}(\rho):=\text { the law of } \check{\gamma}[\omega]\left(\xi_{1}, \ldots, \xi_{\kappa(\omega)}\right) \text {, }
$$

with ω as before and ξ_{1}, ξ_{2}, \ldots i.i.d. with law ρ.
Define n-th moment measures

$$
\rho^{(n)}:=\mathbb{E}[\underbrace{\xi \otimes \cdots \otimes \xi}_{n \text { times }}] \quad \text { where } \xi \text { has law } \rho
$$

Proposition [MSS '18] If $\left(\rho_{t}\right)_{t \geq 0}$ solves the higher-level mean-field equation, then its n-th moment measures $\left(\rho_{t}^{(n)}\right)_{t \geq 0}$ solve the n-variate equation.

The higher-level equation

Equip $\mathcal{P}(\mathcal{P}(S))_{\nu}=\left\{\rho: \rho^{(1)}=\nu\right\}$ with the convex order

$$
\rho_{1} \leq_{\mathrm{cv}} \rho_{2} \quad \text { iff } \quad \int \phi \mathrm{d} \rho_{1} \leq \int \phi \mathrm{d} \rho_{2} \quad \forall \text { convex } \phi .
$$

[Strassen '65] $\rho_{1} \leq_{\mathrm{cv}} \rho_{2}$ iff there exist a r.v. X with law ν and σ-fields $\mathcal{H}_{1} \subset \mathcal{H}_{2}$ s.t. $\rho_{i}=\mathbb{P}\left[\mathbb{P}\left[X \in \cdot \mid \mathcal{H}_{i}\right] \in \cdot\right](i=1,2)$.
Maximal and minimal elements: $\mathcal{H}_{1}=\{\Omega, \emptyset\} \Rightarrow \rho_{1}=\delta_{\nu}$. $\mathcal{H}_{2}=\sigma(X) \Rightarrow \rho_{2}=\bar{\nu}:=\mathbb{P}\left[\delta_{X} \in \cdot\right]$ with $\mathbb{P}[X \in \cdot]=\nu$.

$$
\delta_{\nu} \leq_{\mathrm{cv}} \rho \leq_{\mathrm{cv}} \bar{\nu} \quad \forall \rho \in \mathcal{P}(\mathcal{P}(S))_{\nu}
$$

Proposition [MSS '18] $\check{\top}$ is monotone w.r.t. the convex order. There exists a solution $\underline{\nu}$ to the higher-level RDE s.t.

$$
\check{T}^{n}\left(\delta_{\nu}\right) \underset{n \rightarrow \infty}{\Longrightarrow} \underline{\nu} \quad \text { and } \quad \check{T}_{t}\left(\delta_{\nu}\right) \underset{t \rightarrow \infty}{\Longrightarrow} \underline{\nu}
$$

and any solution $\rho \in \mathcal{P}(\mathcal{P}(S))_{\nu}$ to the higher-level RDE satisfies

$$
\underline{\nu} \leq_{\mathrm{cv}} \rho \leq_{\mathrm{cv}} \bar{\nu} \quad \forall \rho \in \mathcal{P}(\mathcal{P}(S))_{\nu}
$$

The higher-level equation

Proposition [MSS '18]

Let $\left(\omega_{\mathbf{i}}, \mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ be the RTP corresponding to γ and ν. Set

$$
\xi_{\mathbf{i}}:=\mathbb{P}\left[X_{\mathbf{i}} \in \cdot \mid\left(\omega_{\mathbf{i}}\right)_{\mathbf{j} \in \mathbb{T}}\right] .
$$

Then $\left(\omega_{\mathbf{i}}, \xi_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ is an RTP corresponding to $\check{\gamma}$ and $\underline{\nu}$. Also, $\left(\omega_{\mathbf{i}}, \delta x_{\mathbf{i}}\right)_{i \in \mathbb{T}}$ is an RTP corresponding to $\check{\gamma}$ and $\bar{\nu}$.
Corollary The RTP is endogenous iff $\underline{\nu}=\bar{\nu}$.

The higher-level equation

Theorem [Mach, Sturm, S. '18] One has

$$
\underline{\nu}_{\text {low }}=\bar{\nu}_{\text {low }}, \quad \underline{\nu}_{\text {upp }}=\bar{\nu}_{\text {upp }}, \quad \text { but } \quad \underline{\nu}_{\text {mid }} \neq \bar{\nu}_{\text {mid }}
$$

These are all solutions to the higher-level RDE.
Any solution $\left(\rho_{t}\right)_{t \geq 0}$ to the higher-level mean-field equation converges to one of these fixed points.
The domains of attraction are:

$$
\begin{array}{ll}
\bar{\nu}_{\text {low }}: & \left\{\rho_{0}: \rho_{0}^{(1)}(\{1\})<z_{\text {mid }}\right\}, \\
\underline{\nu}_{\text {mid }}: & \left\{\rho_{0}: \rho_{0}^{(1)}(\{1\})=z_{\text {mid }}, \rho_{0} \neq \bar{\nu}_{\text {mid }}\right\}, \\
\bar{\nu}_{\text {mid }}: & \left\{\bar{\nu}_{\text {mid }}\right\}, \\
\bar{\nu}_{\text {upp }}: & \left\{\rho_{0}: \rho_{0}^{(1)}(\{1\})>z_{\text {mid }}\right\} .
\end{array}
$$

The higher-level equation

The map $\mu \mapsto \mu(\{1\})$ defines a bijection $\mathcal{P}(\{0,1\}) \cong[0,1]$, and hence $\mathcal{P}(\mathcal{P}(\{0,1\})) \cong \mathcal{P}[0,1]$.

Then the higher-level RDE takes the form

$$
\eta \stackrel{\mathrm{d}}{=} \chi \cdot\left(\eta_{1}+\left(1-\eta_{1}\right) \eta_{2} \eta_{3}\right)
$$

where η takes values in $[0,1], \eta_{1}, \eta_{2}, \eta_{3}$ are independent copies of η and χ is an independent Bernoulli r.v. with $\mathbb{P}[\chi=1]=\alpha /(\alpha+1)$.
This RDE has three "trivial" solutions

$$
\bar{\nu}_{\ldots}=\left(1-z_{\ldots}\right) \delta_{0}+z_{\ldots} \delta_{1} \quad(\ldots=\text { low, mid, upp })
$$

and a nontrivial solution

$$
\underline{\nu}_{\text {mid }}=\lim _{n \rightarrow \infty} \check{T}^{n}\left(\delta_{z_{\text {mid }}}\right) .
$$

Numerical results

