Pathwise duality for monotone interacting particle systems.

Jan M. Swart
joint with J.N. Latz, T. Mach, and A. Sturm

Monday, January 8th, 2024

Transitive graphs

Let $G=(V, E)$ be a graph with vertex set V and edge set E.
An automorphism of G is a bijection $\psi: V \rightarrow V$ such that $\{\psi(v), \psi(w)\} \in E \Leftrightarrow\{v, w\} \in E$.
We say that G is vertex transitive if for each $v, w \in V$ there exists an automorphism ψ such that $\psi(v)=w$.
If G is vertex transitive then each vertex v has the same degree

$$
\Delta:=\#\{w \in V:\{v, w\} \in E\}
$$

We call Δ the degree of G.

A cooperative contact process

Let $G=(V, E)$ be a vertex transitive graph of degree $\Delta \geq 2$. Let $S:=\{0,1\}^{V}$ be the space of all functions $x: V \rightarrow\{0,1\}$. Vertices with $x(i)=0$ and $=1$ are called vacant and occupied. Let $\alpha \in[0,1]$ and $\delta \geq 0$ be constants.
Consider the Markov process $\left(X_{t}\right)_{t \geq 0}$ with state space S that evolves as follows:

- With rate $1-\alpha$, each vacant vertex selects one neighbouring vertex uniformly at random and becomes occupied if this neighbour is occupied.
- With rate α, each vacant vertex selects two neighbouring vertices uniformly at random from all ways to do so, and becomes occupied if both these neighbours are occupied.
- With rate δ, each occupied vertex becomes vacant.

A cooperative contact process

Let $S_{\text {fin }}:=\{x \in S:|x|<\infty\}$ with $|x|:=\sum_{i \in S} x(i)$.
Let $\underline{0}, \underline{1} \in S$ denote the all zero and all one configurations.
We say that the process with parameters α and δ survives if

$$
\mathbb{P}^{x}\left[X_{t} \neq \underline{0} \forall t \geq 0\right]>0 \quad \text { for some } x \in S_{\mathrm{fin}} .
$$

Standard theory for monotone systems implies that

$$
\mathbb{P}^{1}\left[X_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\nu}
$$

where $\bar{\nu}$ is the upper invariant law. For all values of α and δ,

- either $\bar{\nu}$ is trivial in the sense that $\bar{\nu}=\delta_{\underline{0}}$,
- or $\bar{\nu}$ is nontrivial in the sense that $\bar{\nu}(\{\underline{0}\})=0$.

If $\bar{\nu}$ is nontrivial, then we say the process is stable.

The noncooperative case

For $\alpha=0$ the process is a contact process with infection rate 1 and death rate δ.

Self-duality of the contact process implies:

$$
\text { stability } \Leftrightarrow \text { survival. }
$$

In fact

$$
\mathbb{P}^{x}\left[X_{t} \neq \underline{0} \forall t \geq 0\right]=\int \bar{\nu}(\mathrm{d} y) 1_{\{x \wedge y \neq \underline{0}\}}
$$

The cooperative case

For $\alpha=1$ the process has only cooperative branching.
On $G=\mathbb{Z}^{d}$ with nearest-neighbour edges, the process cannot escape (hyper-) rectangles and hence does not survive for any $\delta>0$.

On the other hand, a result of Lawrence Gray (1999) shows that in dimensions $d \geq 2$ the upper invariant law is nontrivial for δ small enough.

Numerical data

Density of the upper invariant law for the process on \mathbb{Z}^{2}.

Conjectured phase diagram

Conjectured phase diagram for the process on \mathbb{Z}^{2}.

Conjectured phase diagram

Conjectured phase diagram for the process on \mathbb{Z}^{2}.

Pathwise construction

Define branching maps, cooperative branching maps, and death maps by

$$
\begin{aligned}
\operatorname{bra}_{i j}(x)(k) & := \begin{cases}x(i) \vee x(j) & \text { if } k=j, \\
x(k) & \text { otherwise. }\end{cases} \\
\operatorname{cob}_{i i^{\prime} j}(x)(k) & := \begin{cases}\left(x(i) \wedge x\left(i^{\prime}\right)\right) \vee x(j) & \text { if } k=j \\
x(k) & \text { otherwise. }\end{cases} \\
\operatorname{dth}_{j}(x)(k) & := \begin{cases}0 & \text { if } k=j, \\
x(k) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Pathwise construction

$$
\begin{aligned}
& \text { Let } \mathcal{N}_{j}:=\{i \in V:\{i, j\} \in E\} \\
& \text { and } \mathcal{N}_{j}^{2}:=\left\{\left(i, i^{\prime}\right) \in V:\{i, j\} \in E,\{i, j\} \in E, i \neq i^{\prime}\right\} .
\end{aligned}
$$

Then the generator of the process can be written as

$$
\begin{aligned}
L f(x):= & (1-\alpha) \sum_{j \in V} \frac{1}{\left|\mathcal{N}_{j}\right|} \sum_{i \in \mathcal{N}_{j}}\left\{f\left(\operatorname{bra}_{i j}(x)\right)-f(x)\right\} \\
& +\alpha \sum_{j \in V} \frac{1}{\left|\mathcal{N}_{j}^{2}\right|} \sum_{\left(i, i^{\prime}\right) \in \mathcal{N}_{j}^{2}}\left\{f\left(\operatorname{cob}_{i i^{\prime} j}(x)\right)-f(x)\right\} \\
& +\delta \sum_{j \in V}\left\{f\left(\operatorname{dth}_{j}(x)\right)-f(x)\right\} .
\end{aligned}
$$

We wish to construct the process from a graphical representation by applying these maps at Poisson times.

Pathwise construction

Pathwise construction

We equip $S=\{0,1\}^{V}$ with the product topology.
Let T be a finite set and $f: S \rightarrow T$.
We define the set of relevant vertices for $f: S \rightarrow T$ as

$$
\mathcal{R}(f):=\left\{i \in V: \exists x \in S \text { s.t. } f\left(x^{i, 0}\right) \neq f\left(x^{i, 1}\right)\right\} .
$$

with

$$
x^{i, \sigma}(k):= \begin{cases}\sigma & \text { if } k=i \\ x(k) & \text { otherwise }\end{cases}
$$

Lemma $f: S \rightarrow T$ is continuous if and only if
(i) $\mathcal{R}(f)$ is finite,
(ii) $x=y$ on $\mathcal{R}(f)$ implies $f(x)=f(y)$.

Pathwise construction

For a map $m: S \rightarrow S$ and $i \in V$, we define $m[i]: S \rightarrow\{0,1\}$ by

$$
m[i](x):=m(x)(i) \quad(x \in S, i \in V)
$$

We denote the set of vertices that can be affected by m by

$$
\mathcal{D}(m):=\{i \in V: \exists x \in S \text { s.t. } m(x)(i) \neq x(i)\}
$$

Def A map $m: S \rightarrow S$ is local if
(i) m is continuous,
(ii) $\mathcal{D}(m)$ is finite.

Based on information from finitely many vertices, finitely many vertices change their value.

Pathwise construction

Consider a generator of the form

$$
L f(x):=\sum_{m \in \mathcal{G}} r_{m}\{f(m(x))-f(x)\}
$$

where \mathcal{G} is a countable collection of local maps and $\left(r_{m}\right)_{m \in \mathcal{G}}$ are nonnegative rates.

Let μ be the measure on $\mathcal{G} \times \mathbb{R}$ defined by

$$
\mu(\{m\} \times[s, t]):=r_{m}(t-s) \quad(m \in \mathcal{G}, s \leq t)
$$

Let ω be a Poisson point set on $\mathcal{G} \times \mathbb{R}$ with intensity μ.
Elements of ω are pairs (m, t) that have the interpretation that at time t, the local map m should be applied.

Pathwise construction

Let $\omega_{s, u}:=\{(m, t) \in \omega: s<t \leq u\} \quad(s \leq u)$.
If μ is a finite measure, then we can define random maps $\left(\mathbb{X}_{s, u}\right)_{s \leq u}$ by

$$
\begin{aligned}
& \mathbb{X}_{s, u}:=m_{n} \circ \cdots \circ m_{1} \\
& \quad \text { with } \quad \omega_{s, u}:=\left\{\left(m_{1}, t_{1}\right), \ldots,\left(m_{n}, t_{n}\right)\right\} \\
& \\
& \text { and } \quad t_{1}<\cdots<t_{n} .
\end{aligned}
$$

The random maps $\left(\mathbb{X}_{s, u}\right)_{s \leq u}$ form a stochastic flow:

$$
\mathbb{X}_{s, s}=1 \quad \text { and } \quad \mathbb{X}_{t, u} \circ \mathbb{X}_{s, t}=\mathbb{X}_{s, u} \quad(s \leq t \leq u)
$$

Let X_{0} be independent of ω, and let $s \in \mathbb{R}$. Then

$$
X_{t}:=\mathbb{X}_{s, s+t}\left(X_{0}\right) \quad(t \geq 0)
$$

defines a Markov process $\left(X_{t}\right)_{t \geq 0}$ with generator L.

Pathwise construction

More generally, assume that

$$
\sup _{i \in \Lambda} \sum_{\substack{m \in \mathcal{G} \\ \mathcal{D}(m) \ni i}} r_{m}(1+\mid \mathcal{R}(m([i]) \mid)<\infty .
$$

Then almost surely, for each $i \in V$ and $u \in \mathbb{R}$, there exists a piecewise constant, left-continuous process

$$
\left(\mathbb{X}_{u-t, u}[i]\right)_{t \geq 0}
$$

taking values in the (countable!) space of continuous functions $\mathcal{C}(S,\{0,1\})$, such that for all $\varepsilon>0$ small enough

$$
\mathbb{X}_{u-t-\varepsilon, u}[i]= \begin{cases}\mathbb{X}_{u-t, u}[i] \circ m & \text { if } \exists(m, t) \in \omega \text { s.t. } \\ & \mathcal{D}(m) \cap \mathcal{R}\left(\mathbb{X}_{u-t, u}[i]\right) \neq \emptyset \\ \mathbb{X}_{u-t, u}[i] & \text { otherwise }\end{cases}
$$

Pathwise construction

Pathwise construction

The dual process

Recall that $S:=\{0,1\}^{V}$. We set $T:=\{0,1\}$ and let $\mathcal{L}_{+}(S, T)$ denote the set of functions $f: S \rightarrow T$ that are lower semi-continuous, monotone, and satisfy $f(\underline{0})=\underline{0}$.
Let $S_{\text {fin }}^{+}:=\{x \in S: 0<|x|<\infty\}$. A minimal element of a set $Y \subset S_{\text {fin }}^{+}$is an $y \in Y$ such that $\nexists y^{\prime} \neq y, y^{\prime} \leq y, y^{\prime} \in Y$.
We set

$$
\begin{aligned}
Y^{\circ} & :=\{y \in Y: y \text { is minimal }\}, \\
\mathcal{H} & :=\left\{Y \subset S_{\text {fin }}^{+}: Y^{\circ}=Y\right\} .
\end{aligned}
$$

Proposition Each $Y \in \mathcal{H}$ defines a function $f_{Y} \in \mathcal{L}_{+}(S, T)$ via

$$
f_{Y}(x):=1_{\{\exists y \in Y \text { s.t. } x \geq y\}} \quad(x \in S)
$$

and $\mathcal{H} \ni Y \mapsto f_{Y} \in \mathcal{L}_{+}(S, T)$ is a bijection.

The dual process

For any $f \in \mathcal{L}_{+}(S, T)$, let

$$
Y(f):=\left\{x \in S_{\text {fin }}^{+}: f(x)=1\right\}^{\circ}
$$

denote the set of minimal configurations y such that $f(y)=1$. Then $f \mapsto Y(f)$ is the inverse of $Y \mapsto f_{Y}$.
Set $\mathcal{H}_{\text {fin }}:=\{Y \in \mathcal{H}:|Y|<\infty\}$ and $\mathcal{C}_{+}(S, T):=\left\{f \in \mathcal{L}_{+}(S, T): f\right.$ is continuous $\}$.
Then $f \in \mathcal{C}_{+}(S, T) \Leftrightarrow Y(f) \in \mathcal{H}_{\text {fin }}$.

Percolation picture

Duality

Define $\psi: S \times \mathcal{H} \rightarrow T$ by

$$
\psi(x, Y):=1_{\{\exists y \in Y \text { s.t. } x \geq y\}} \quad(x \in S, Y \in \mathcal{H})
$$

There exists random maps $\mathbb{Y}_{u, s}: \mathcal{H} \rightarrow \mathcal{H}(u \geq s)$ such that

$$
\psi\left(\mathbb{X}_{s, u}(x), Y\right)=\psi\left(x, \mathbb{Y}_{u, s}(Y)\right) \quad(x \in S, \quad Y \in \mathcal{H}, s \leq u)
$$

These form a dual stochastic flow

$$
\mathbb{Y}_{s, s}=1 \quad \text { and } \quad \mathbb{Y}_{t, s} \circ \mathbb{Y}_{u, t}=\mathbb{Y}_{u, s} \quad(u \geq t \geq s)
$$

If Y_{0} is independent of $\left(\mathbb{Y}_{u, s}\right)_{u \geq s}$ and $u \in \mathbb{R}$, then

$$
Y_{t}:=\mathbb{Y}_{u-t, u}\left(Y_{0}\right) \quad(t \geq 0)
$$

defines a Markov process $\left(Y_{t}\right)_{t \geq 0}$ with state space \mathcal{H}.

Duality

There exists a metrisable topology on \mathcal{H} such that

$$
Y_{n} \rightarrow Y \quad \Leftrightarrow \quad \psi\left(x, Y_{n}\right) \rightarrow \psi(x, Y) \quad \forall x \in S_{\mathrm{fin}}
$$

The space \mathcal{H} is compact under this topology.
We define a partial order on \mathcal{H} by

$$
Y_{1} \leq Y_{2} \quad \Leftrightarrow \quad \psi\left(x, Y_{1}\right) \leq \psi\left(x, Y_{2}\right)
$$

The least element of \mathcal{H} in this order is \emptyset and the greatest element is

$$
\top:=\left\{1_{\{i\}}: i \in V\right\} .
$$

One has

$$
\mathbb{P}^{\top}\left[Y_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\mu}
$$

where $\bar{\mu}$ is the upper invariant law of the dual process.

Survival and stability

- Either $\bar{\mu}$ is trivial in the sense that $\bar{\mu}=\delta_{\emptyset}$,
- or $\bar{\mu}$ is nontrivial in the sense that $\bar{\mu}(\{\emptyset\})=0$.

If $\bar{\mu}$ is nontrivial, then we say the dual process $\left(Y_{t}\right)_{t \geq 0}$ is stable.
We say that the dual process survives if

$$
\mathbb{P}^{Y}\left[Y_{t} \neq \emptyset \forall t \geq 0\right]>0 \quad \text { for some } Y \in \mathcal{H}_{\text {fin }}
$$

Theorem [Gray '86, Latz \& S. '23] One has

$$
\begin{aligned}
X \text { is stable } & \Leftrightarrow Y \text { survives, }, \\
X \text { survives } & \Leftrightarrow Y \text { is stable }
\end{aligned}
$$

The main novelty of our work is the construction of $\left(Y_{t}\right)_{t \geq 0}$ for infinite initial states.

Additive duality

Let $\mathcal{H}_{1}:=\{Y \in \mathcal{H}:|y|=1 \forall y \in Y\}$.
We can naturally identify $Y \in \mathcal{H}_{1}$ with $x \in S$ defined as

$$
x(i)=1 \quad \Leftrightarrow \quad 1_{\{i\}} \in Y
$$

If all maps $m \in \mathcal{G}$ are additive in the sense that

$$
m(x \vee y)=m(x) \vee m(y) \quad(x, y \in S)
$$

then the dual stochastic flow $\left(\mathbb{Y}_{u, s}\right)_{u \geq s}$ maps \mathcal{H}_{1} into itself and the corresponding Markov process on $\mathcal{H}_{1} \cong S$ is itself an additive particle system.

In particular, the contact process is additive and its dual is also a contact process.

Conjectured phase diagram

We conjectured a regime where X is stable but does not survive.

Stability without survival

If X is stable but does not survive, then Y is unstable but survives. We believe that for each $i \in \mathbb{Z}^{2}$,

$$
\begin{aligned}
& \mathbb{P}^{\left\{1_{\{i\}}\right\}}\left[Y_{t} \neq \emptyset \forall t \geq 0\right]>0, \\
& \mathbb{P}^{\left\{1_{\{i\}}\right\}}\left[Y_{t} \xrightarrow[t \rightarrow \infty]{ } \emptyset\right]=1
\end{aligned}
$$

On the event $\left\{Y_{t} \neq \emptyset \forall t \geq 0\right\}$, we conjecture that

$$
\inf \left\{|y|: y \in Y_{t}\right\} \underset{t \rightarrow \infty}{\longrightarrow} \infty \quad \text { a.s. }
$$

This means that as $t \rightarrow \infty$, the maps $\mathbb{X}_{u-t, t}[i] \in \mathcal{C}_{+}(S, T)$ have the property that $\mathbb{X}_{u-t, t}[i](x)=1$ requires $|x|$ to be ever larger.

The mean-field limit

Let $G=(V, E)$ be the complete graph $G=K_{N}$ with N vertices.
In the mean-field limit $N \rightarrow \infty$, the frequency of ones

$$
P_{t}:=\frac{1}{N} \sum_{i \in V} X_{t}(i)
$$

solves the mean-field equation

$$
\begin{equation*}
\frac{\partial}{\partial t} p_{t}=\alpha p_{t}^{2}\left(1-p_{t}\right)+(1-\alpha) p_{t}\left(1-p_{t}\right)-\delta p_{t} \tag{1}
\end{equation*}
$$

Define a (nonlinear) semigroup $\left(T_{t}\right)_{t \geq 0}$ of operators acting on [0,1] by

$$
\mathrm{T}_{t}(p):=p_{t} \quad \text { where }\left(p_{t}\right)_{t \geq 0} \text { solves (1) with } p_{0}=p
$$

The mean-field limit

Fixed points of the mean-field equation for $\alpha=0.5$ and their domains of attraction, as a function of δ.

The mean-field limit

Fixed points of the mean-field equation for $\alpha=0.95$ and their domains of attraction, as a function of δ.

A mean-field dual

Recall $\mathrm{T}_{t}(p):=p_{t} \quad$ where $\left(p_{t}\right)_{t \geq 0}$ solves (1) with $p_{0}=p$.
Our aim is to show that there exist random maps $F_{t}:\{0,1\}^{\nabla \mathbb{S}_{t}} \rightarrow\{0,1\}$ such that

$$
\mathrm{T}_{t}(p):=\mathbb{P}\left[F_{t}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{t}}\right)=1\right]
$$

where $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{t}}$ are i.i.d. with intensity p.
We can think of F_{t} as the mean-field limit of $\mathbb{X}_{u-t, t}[i]$.

A mean-field dual

For (notational) simplicity we concentrate on the case $\alpha=1$ (only cooperative branching).
Define cob: $\{0,1\}^{3} \rightarrow\{0,1\}$, and $d t h:\{0,1\}^{0} \rightarrow\{0,1\}$ by

$$
\begin{aligned}
\operatorname{cob}\left(x_{1}, x_{2}, x_{3}\right) & :=x_{1} \vee\left(x_{2} \wedge x_{3}\right) \\
d t h(\varnothing) & :=0
\end{aligned}
$$

We set $\kappa(c o b):=3$ and $\kappa(d t h):=0$.
Let $\mathbb{T}=\mathbb{T}^{3}$ denote the space of all words
$\mathbf{i}=i_{1} \cdots i_{n}$ made from the alphabet $\{1,2,3\}$.

A recursive tree representation

We view \mathbb{T}^{3} as a tree with root \varnothing, the word of length zero.

A recursive tree representation

We attach i.i.d. maps $\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ to the nodes, with

$$
\mathbb{P}\left[\gamma_{\mathbf{i}}=c o b\right]=\frac{1}{1+\delta} \quad \text { and } \quad \mathbb{P}\left[\gamma_{\mathbf{i}}=d t h\right]=\frac{\delta}{1+\delta}
$$

A recursive tree representation

Let \mathbb{S} be the random subtree of \mathbb{T} defined as

$$
\mathbb{S}:=\left\{i_{1} \cdots i_{n} \in \mathbb{T}: i_{m} \leq \kappa\left(\gamma_{i_{1} \cdots i_{m-1}}\right) \forall 1 \leq m \leq n\right\} .
$$

A recursive tree representation

For any rooted subtree $\mathbb{U} \subset \mathbb{S}$, let

$$
\nabla \mathbb{U}:=\left\{i_{1} \cdots i_{n} \in \mathbb{S}: i_{1} \cdots i_{n-1} \in \mathbb{U}, i_{1} \cdots i_{n} \notin \mathbb{U}\right\}
$$

denote the boundary of \mathbb{U} relative to \mathbb{S}.

A recursive tree representation

Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma_{\mathbf{i}}\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa\left(\gamma_{\mathbf{i}}\right)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

and define $F_{\mathbb{U}}:\{0,1\}^{\nabla \mathbb{U}} \rightarrow\{0,1\}$ by $F_{\mathbb{U}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}\right):=X_{\varnothing}$.

A recursive tree representation

Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma_{\mathbf{i}}\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa\left(\gamma_{\mathbf{i}}\right)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

and define $F_{\mathbb{U}}:\{0,1\}^{\nabla \mathbb{U}} \rightarrow\{0,1\}$ by $F_{\mathbb{U}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}\right):=X_{\varnothing}$.

A recursive tree representation

Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma_{\mathbf{i}}\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa\left(\gamma_{\mathbf{i}}\right)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

and define $F_{\mathbb{U}}:\{0,1\}^{\nabla \mathbb{U}} \rightarrow\{0,1\}$ by $F_{\mathbb{U}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}\right):=X_{\varnothing}$.

A recursive tree representation

Given $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}$, we inductively define $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{U}}$ by

$$
X_{\mathbf{i}}=\gamma_{\mathbf{i}}\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa\left(\gamma_{\mathbf{i}}\right)}\right) \quad(\mathbf{i} \in \mathbb{U})
$$

and define $F_{\mathbb{U}}:\{0,1\}^{\nabla \mathbb{U}} \rightarrow\{0,1\}$ by $F_{\mathbb{U}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{U}}\right):=X_{\varnothing}$.

A recursive tree representation

A recursive tree representation

Let $\left(\sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ be i.i.d. exponentially distributed with mean $(1+\delta)^{-1}$, independent of $\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$, and set

$$
\begin{aligned}
& \tau_{\mathbf{i}}^{*}:=\sum_{m=1}^{n-1} \sigma_{i_{1} \cdots i_{m}} \quad \text { and } \quad \tau_{\mathbf{i}}^{\dagger}:=\tau_{\mathbf{i}}^{*}+\sigma_{\mathbf{i}} \quad\left(\mathbf{i}=i_{1} \cdots i_{n}\right), \\
& \mathbb{S}_{t}:=\left\{\mathbf{i} \in \mathbb{S}: \tau_{\mathbf{i}}^{\dagger} \leq t\right\} \quad \text { and } \quad \nabla \mathbb{S}_{t}=\left\{\mathbf{i} \in \mathbb{S}: \tau_{\mathbf{i}}^{*} \leq t<\tau_{\mathbf{i}}^{\dagger}\right\} .
\end{aligned}
$$

Let \mathcal{F}_{t} be the filtration

$$
\mathcal{F}_{t}:=\sigma\left(\nabla \mathbb{S}_{t},\left(\gamma_{\mathbf{i}}, \sigma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{S}_{t}}\right) \quad(t \geq 0)
$$

Theorem [Mach, Sturm, S. '20]

$$
\mathrm{T}_{t}(p):=\mathbb{P}\left[F_{\mathbb{S}_{t}}\left(\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla \mathbb{S}_{t}}\right)=1\right]
$$

where $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \nabla S_{t}}$ are i.i.d. with intensity p and independent of \mathcal{F}_{t}.

A recursive tree representation

Recursive Tree Processes

For any rooted subtree $\mathbb{U} \subset \mathbb{T}$, let

$$
\partial \mathbb{U}:=\left\{i_{1} \cdots i_{n} \in \mathbb{T}: i_{1} \cdots i_{n-1} \in \mathbb{U}, i_{1} \cdots i_{n} \notin \mathbb{U}\right\}
$$

denote the boundary of \mathbb{U} relative to \mathbb{T}.
For each fixed point p of the mean-field equation, there exists a Recursive Tree Process (RTP) $\left(\gamma_{\mathbf{i}}, X_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$, unique in law, such that:
(i) $\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{T}}$ are i.i.d. with law as before.
(ii) For finite $\mathbb{U} \subset \mathbb{T}$, the r.v.'s $\left(X_{\mathbf{i}}\right)_{\mathbf{i} \in \partial U}$ are i.i.d. with intensity p and independent of $\left(\gamma_{\mathbf{i}}\right)_{i \in \mathbb{U}}$.
(iii) $X_{\mathbf{i}}=\gamma_{\mathbf{i}}\left(X_{\mathbf{i} 1}, \ldots, X_{\mathbf{i} \kappa\left(\gamma_{\mathbf{i}}\right)}\right) \quad(\mathbf{i} \in \mathbb{T})$.

Fixed points

Fixed points of the mean-field equation for $\alpha=1$ and their domains of attraction, as a function of δ.

Endogeny

Aldous and Bandyopadyay (2005) say that an RTP is endogenous if
X_{\varnothing} is measurable w.r.t. the σ-field generated by $\left(\gamma_{\mathbf{i}}\right)_{i \in \mathbb{T}}$.
In our case, it has been shown that the RTP's corresponding to the stable fixed points $p_{\text {low }}$ and $p_{\text {up }}$ are endogenous but the RTP corresponding to the unstable fixed point $p_{\text {mid }}$ is not.

