Systems of branching, annihilating, and coalescing particles

Jan M. Swart (ÚTIA)

January 3rd, 2013

Underlying random walk

Lattice Λ is a countable set.
Random walk kernel $q: \Lambda \times \Lambda \rightarrow \mathbb{R}$ jump rates satisfying

1. nonnegative $q(i, j) \geq 0$
2. summable $\sup _{i} \sum_{j} q(i, j)<\infty$
3. weakly irreducible $\forall \Delta \subset \Lambda, \Delta \neq \emptyset, \Lambda$ there exists $i \in \Delta$, $j \in \Lambda \backslash \Delta$ such that either $q(i, j)>0$ or $q(j, i)>0$ (or both).
4. influx equals outflux $|q|:=\sum_{j} q(i, j)=\sum_{j} q(j, i)$.

We say that $\xi=\left(\xi_{t}\right)_{t \geq 0}$ is a random walk with kernel q if ξ is a Markov process in Λ that stays in a state i for an exponential time with mean $|q|^{-1}$ and then jumps to the state j with probability $|q|^{-1} q(i, j)$. Condition 4 says that counting measure is an invariant measure for this process. The process is reversible if and only if $q^{\dagger}=q$ where $q^{\dagger}(i, j):=q(j, i)$ are the time-reversed jump rates.

Translation invariance

Let (Λ, q) be a lattice equipped with a random walk kernel. An automorphism of (Λ, q) is a bijection $g: \Lambda \rightarrow \Lambda$ such that $q(g i, g j)=q(i, j)$ for all $i, j \in \Lambda$.
Let $\operatorname{Aut}(\Lambda, q)$ be the group of all automorphisms of (Λ, q).
We say that a subgroup $G \subset \operatorname{Aut}(\Lambda, q)$ is transitive if for each $i, j \in \Lambda$ there exists a $g \in G$ such that $g i=j$.

Example $\Lambda=\mathbb{Z}^{d}, q(i, j)=1$ if $|i-j|=1$ and 0 otherwise. $\operatorname{Aut}(\Lambda, q)$ contains, e.g., translations, rotations by 90° along an axis, mirroring in a point, axis, or plane spanned by two axes, etc.
The translations form a transitive subgroup.
Other examples Nearest neighbor random walks on regular trees or Cayley graphs. Random walks on groups.

A particle system

Fix (Λ, q) and rates $a, b, c, d \geq 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate $q(i, j)$.

A particle system

Fix (Λ, q) and rates $a, b, c, d \geq 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate $q(i, j)$.
- Each pair of particles, present on the same site, annihilates with rate $2 a$, resulting in the disappearance of both particles.

A particle system

Fix (Λ, q) and rates $a, b, c, d \geq 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate $q(i, j)$.
- Each pair of particles, present on the same site, annihilates with rate $2 a$, resulting in the disappearance of both particles.
- Each particle branches with rate b into two new particles, created on the position of the old one.

A particle system

Fix (Λ, q) and rates $a, b, c, d \geq 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate $q(i, j)$.
- Each pair of particles, present on the same site, annihilates with rate $2 a$, resulting in the disappearance of both particles.
- Each particle branches with rate b into two new particles, created on the position of the old one.
- Each pair of particles, present on the same site, coalesces with rate $2 c$, resulting in the creation of one new particle on the position of the two old ones.

A particle system

Fix (Λ, q) and rates $a, b, c, d \geq 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate $q(i, j)$.
- Each pair of particles, present on the same site, annihilates with rate $2 a$, resulting in the disappearance of both particles.
- Each particle branches with rate b into two new particles, created on the position of the old one.
- Each pair of particles, present on the same site, coalesces with rate $2 c$, resulting in the creation of one new particle on the position of the two old ones.
- Each particle dies (disappears) with rate d.

Generator description

Let $X_{t}(i)$ be the number of particles at site $i \in \Lambda$ at time $t \geq 0$. Then $X=\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \Lambda}$ is a Markov process in \mathbb{N}^{Λ} with generator

$$
\begin{aligned}
G f(x):= & \sum_{i j} q(i, j) x(i)\left\{f\left(x+\delta_{j}-\delta_{i}\right)-f(x)\right\} \\
& +a \sum_{i} x(i)(x(i)-1)\left\{f\left(x-2 \delta_{i}\right)-f(x)\right\} \\
& +b \sum_{i} x(i)\left\{f\left(x+\delta_{i}\right)-f(x)\right\} \\
& +c \sum_{i} x(i)(x(i)-1)\left\{f\left(x-\delta_{i}\right)-f(x)\right\} \\
& +d \sum_{i} x(i)\left\{f\left(x-\delta_{i}\right)-f(x)\right\}
\end{aligned}
$$

where $\delta_{i}(j):=1$ if $i=j$ and 0 otherwise. We call X the (q, a, b, c, d)-branco-process. X is well-defined for initial states with finitely many particles and also for some infinite initial states.

Survival

Assume that $\operatorname{Aut}(\Lambda, q)$ is transitive.
We define shift operators $T_{g}: \mathbb{N}^{\wedge} \rightarrow \mathbb{N}^{\wedge}$ by

$$
T_{g x} x(i):=x\left(g^{-1} i\right) \quad\left(i \in \Lambda, x \in \mathbb{N}^{\wedge}, g \in \operatorname{Aut}(\Lambda, q)\right)
$$

If G is a subgroup of $\operatorname{Aut}(\Lambda, q)$, then we say that a probability measure ν on \mathbb{N}^{\wedge} is G-homogeneous if $\nu \circ T_{g}^{-1}=\nu$ for all $g \in G$. We say that ν is nontrivial if $\nu(\underline{0})=0$, where $\underline{0}$ denotes the configuration with no particles.

We say that the (q, a, b, c, d)-branco-process survives if

$$
\mathbb{P}^{\delta_{i}}\left[X_{t} \neq \underline{0} \forall t \geq 0\right]>0 \quad(i \in \Lambda)
$$

The process survives locally if

$$
\liminf _{t \rightarrow \infty} \mathbb{P}^{\delta_{i}}\left[X_{t}(i)>0\right]>0
$$

Processes on \mathbb{Z}^{d}

Let $\Lambda=\mathbb{Z}^{d}$, let G be the group of translations, and assume $G \subset \operatorname{Aut}(\Lambda, q)$.
Assume $a=0$ and let $c, d>0$ be fixed.
Thm 1.3 in Shiga \& Uchiyama (1986) and Thm 1 in Athreya \& S.
(2005) imply:

Theorem There exists a $0<b_{c}<\infty$ such that:

- For $b>b_{c}$, the process survives and has a unique nontrivial, G-homogeneous invariant law $\bar{\nu}$.

Processes on \mathbb{Z}^{d}

Let $\Lambda=\mathbb{Z}^{d}$, let G be the group of translations, and assume $G \subset \operatorname{Aut}(\Lambda, q)$.
Assume $a=0$ and let $c, d>0$ be fixed.
Thm 1.3 in Shiga \& Uchiyama (1986) and Thm 1 in Athreya \& S. (2005) imply:

Theorem There exists a $0<b_{\mathrm{c}}<\infty$ such that:

- For $b>b_{c}$, the process survives and has a unique nontrivial, G-homogeneous invariant law $\bar{\nu}$.
- For $b<b_{\mathrm{c}}$, the process dies out and the delta measure on $\underline{0}$ is the only invariant law.

Cayley graphs

Let Λ be a group with symmetric finite generating set Δ. Draw the associated (left) Cayley graph which has a vertex between i, j if and only if $j=k i$ for some $k \in \Delta$. Let d denote the graph distance and let 0 denote the unit element (origin).

The Cayley graph has subexponential growth if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log |\{i: d(i, 0) \leq n\}|=0
$$

The Cayley graph is amenable if

$$
\forall \varepsilon>0 \exists \text { finite nonempty } A \text { s.t. } \frac{|\partial A|}{|A|} \leq \varepsilon
$$

where $\partial A:=\{i: d(i, A)=1\}$. Subexponential growth implies amenability but not vice versa.

Zero death rate and local survival

Assume $a=d=0$ and let $c>0$ be fixed. Then survival is trivial. Frank Schirmeier (Erlangen) has shown:

Theorem

- If the Cayley graph has subexponential growth, then one has local survival for all $b>0$.

Zero death rate and local survival

Assume $a=d=0$ and let $c>0$ be fixed. Then survival is trivial. Frank Schirmeier (Erlangen) has shown:

Theorem

- If the Cayley graph has subexponential growth, then one has local survival for all $b>0$.
- If the Cayley graph is nonamenable, then one has local extinction for all b sufficiently small.

Open problems:

- What if the Cayley graph is amenable but has exponential growth?
- For positive death rate, on subexponential graphs, does survival imply local survival?

Implosion

Let $X^{(n)}$ be (q, a, b, c, d)-branco-processes started in initial states $x^{(n)}$ such that

$$
x^{(n)}(i) \uparrow \infty \quad(i \in \Lambda)
$$

Assume $a+c>0$. Then Athreya \& S. (2012) have shown (Thm. 1.4) that $X^{(n)}$ converges in law to a process $\left(X_{t}^{(\infty)}\right)_{t>0}$ with

$$
\mathbb{E}\left[X_{t}^{(\infty)}(i)\right] \leq\left\{\begin{array}{cl}
\frac{\gamma}{(2 a+c)\left(1-e^{-\gamma t}\right)} & \text { if } \gamma \neq 0 \\
\frac{1}{(2 a+c) t} & \text { if } \gamma=0
\end{array} \quad(i \in \Lambda)\right.
$$

where $\gamma:=a+b+c-d$. Moreover,

$$
\mathbb{P}\left[X_{t}^{(\infty)} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\nu}
$$

where $\bar{\nu}$ is an invariant law.
If $a=0$, then it is known that $\bar{\nu}$ is the maximal invariant law w.r.t. the stochastic order (Thm 2 in Athreya \& S. (2005)).

Starting from a single site

Consider the case $a=b=d=0$ and $c>0$ (pure coalescent).
Let q be a nearest-neighbor kernel on an infinite graph of bounded degree and fix some element $0 \in \Lambda$.
Let $X^{(n)}$ be the process started with n particles at 0 .
Theorem (Angel, Berestycki \& Limic 2010): For fixed $t>0$,

$$
\left|X_{t}^{(n)}\right| \approx\left|\left\{i: d(0, i) \leq \log ^{*}(n)\right\}\right| \quad \text { as } n \rightarrow \infty
$$

where

$$
\log ^{*}(n):=\inf \{m \geq 0: \underbrace{\exp \circ \cdots \circ \exp }_{m \text { times }}(1) \geq n\}
$$

Ergodicity

Assume that $\operatorname{Aut}(\Lambda, q)$ has a transitive subgroup G. Assume that $\mathbb{P}\left[X_{0} \in \cdot\right]$ is nontrivial and G-homogeneous.

Theorem (Athreya \& S. '05, '12) Assume $a+c>0$. Then

$$
\mathbb{P}\left[X_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\nu}
$$

An infinite system of diffusions

Let (Λ, q) be as before and let $r, s, m \geq 0$.
Let $\mathcal{X}=\left(\mathcal{X}_{t}\right)_{t \geq 0}$ be the $[0,1]^{\wedge}$-valued diffusion given by the infinite-dimensional SDE

$$
\begin{aligned}
\mathrm{d} \mathcal{X}_{t}(i)= & \sum_{j} q(j, i)\left(\mathcal{X}_{t}(j)-\mathcal{X}_{t}(i)\right) \mathrm{d} t+s \mathcal{X}_{t}(i)\left(1-\mathcal{X}_{t}(i)\right) \mathrm{d} t \\
& -m \mathcal{X}_{t}(i) \mathrm{d} t+\sqrt{2 r \mathcal{X}_{t}(i)\left(1-\mathcal{X}_{t}(i)\right)} \mathrm{d} B_{t}(i),
\end{aligned}
$$

where $(B(i))_{i \in \Lambda}$ is a collection of independent Brownian motions.
\mathcal{X} models local gene frequencies in the presence of resampling (rate r), positive selection (rate s), and negative mutation (rate m).
We call \mathcal{X} the (q, r, s, m)-resem-process.

Moment duality

For $\phi \in[0,1]^{\wedge}$ and $x \in \mathbb{N}^{\wedge}$, define

$$
\phi^{x}:=\prod_{i} \phi(i)^{x(i)}
$$

Proposition (Athreya \& S. 2012) Assume $a+c>0$. Let
$\alpha=a /(a+c), \quad r=a+c, \quad s=(1+\alpha) b, \quad$ and $\quad m=\alpha b+d$.
Let X and \mathcal{X}^{\dagger} be a (q, a, b, c, d)-branco-process and (q^{\dagger}, r, s, m)-resem-process, independent of each other. Then

$$
\mathbb{E}\left[\left(1-(1+\alpha) \mathcal{X}_{0}^{\dagger}\right)^{X_{t}}\right]=\mathbb{E}\left[\left(1-(1+\alpha) \mathcal{X}_{t}^{\dagger} X^{X_{0}}\right] \quad(t \geq 0)\right.
$$

provided one or more of the following conditions are satisfied:
(i) $\alpha<1$,
(ii) $\left|X_{0}\right|<\infty$ a.s.,
(iii) $\left|\mathcal{X}_{0}^{\dagger}\right|<\infty$ a.s.

The case without annihilation

If $a=0$ and hence $\alpha=0$ the duality reads

$$
\mathbb{E}\left[\left(1-\mathcal{X}_{0}^{\dagger}\right)^{X_{t}}\right]=\mathbb{E}\left[\left(1-\mathcal{X}_{t}^{\dagger}\right)^{X_{0}}\right] \quad(t \geq 0)
$$

For $\phi \in[0,1]^{\wedge}$ and $x \in \mathbb{N}^{\wedge}$, let $\operatorname{Thin}_{\phi}(x)$ be a random particle configuration obtained from x by keeping a particle at i with probability $\phi(i)$, independently for each particle.

If ϕ and / or x are random, we construct $\operatorname{Thin}_{\phi}(x)$ so that its conditional law given ϕ and x is as described.

Then the duality can be written as

$$
\mathbb{P}\left[\operatorname{Thin}_{\mathcal{X}_{0}^{\dagger}}\left(X_{t}\right)=\underline{0}\right]=\mathbb{P}\left[\operatorname{Thin}_{\mathcal{X}_{t}^{\dagger}}\left(X_{0}\right)=\underline{0}\right] \quad(t \geq 0) .
$$

Interpretation: X_{t} are the potential ancestors of X_{0} (Krone \& Neuhauser '97).

The case without coalescence

If $c=0$ and hence $\alpha=1$ the duality reads

$$
\mathbb{E}\left[\left(1-2 \mathcal{X}_{0}^{\dagger}\right)^{X_{t}}\right]=\mathbb{E}\left[\left(1-2 \mathcal{X}_{t}^{\dagger}\right)^{X_{0}}\right] \quad(t \geq 0)
$$

Since

$$
\mathbb{E}\left[(-1)^{\operatorname{Thin}_{\phi}(x)}\right]=\mathbb{E}\left[(1-2 \phi)^{x}\right]
$$

the duality can be rewritten as

$$
\mathbb{P}\left[\left|\operatorname{Thin}_{\mathcal{X}_{0}^{\dagger}}\left(X_{t}\right)\right| \text { is odd }\right]=\mathbb{P}\left[\left|\operatorname{Thin}_{\mathcal{X}_{t}^{\dagger}}\left(X_{0}\right)\right| \text { is odd }\right] \quad(t \geq 0) .
$$

General case: Lloyd \& Sudbury '97 and local mean field limit S. '06.

Self-duality

Assume $r>0$. It has been proved in Athreya \& S. (2005) Thm 1 that the (q, r, s, m)-resem-process \mathcal{X} and the $\left(q^{\dagger}, r, s, m\right)$-resem-process \mathcal{X}^{\dagger} are dual in the sense that

$$
\mathbb{E}\left[e^{-\frac{s}{r}\left|\mathcal{X}_{0} \mathcal{X}_{t}^{\dagger}\right|}\right]=\mathbb{E}\left[e^{-\frac{s}{r}\left|\mathcal{X}_{t} \mathcal{X}_{0}^{\dagger}\right|}\right] \quad(t \geq 0)
$$

This can be rewritten as

$$
\mathbb{P}\left[\operatorname{Pois}\left(\frac{s}{r}\left|\mathcal{X}_{0} \mathcal{X}_{t}^{\dagger}\right|\right)=\underline{0}\right]=\mathbb{P}\left[\operatorname{Pois}\left(\frac{s}{r}\left|\mathcal{X}_{t} \mathcal{X}_{0}^{\dagger}\right|\right)=\underline{0}\right] \quad(t \geq 0)
$$

where $\operatorname{Pois}(\phi)$ denotes a configuration which has at site i a Poisson number of particles with mean $\phi(i)$, independently for each site (conditional given ϕ).

Application: critical points for survival and nontriviality of $\bar{\nu}$ are the same.

Poissonization

Fix $s, m \geq 0, r>0$ and $0 \leq \alpha \leq 1$.
Let \mathcal{X} be the (q, r, s, m)-resem-process.
Let X be the $\left(q, \alpha r, \frac{1}{1+\alpha} s,(1-\alpha) r, m-\frac{\alpha}{1+\alpha} s\right)$-branco-process.
Then

$$
\begin{aligned}
& \mathbb{P}\left[X_{0} \in \cdot\right]=\mathbb{P}\left[\operatorname{Pois}\left(\frac{s}{(1+\alpha) r} \mathcal{X}_{0}\right) \in \cdot\right] \\
\text { implies } & \mathbb{P}\left[X_{t} \in \cdot\right]=\mathbb{P}\left[\operatorname{Pois}\left(\frac{s}{(1+\alpha) r} \mathcal{X}_{t}\right) \in \cdot\right]
\end{aligned}
$$

The invariant law $\bar{\nu}$ is a Poissonization of the upper invariant law of the (q, r, s, m)-resem-process.

Thinning

Fix $s, m \geq 0, r>0$ and $0 \leq \beta \leq \alpha \leq 1$.
Let \bar{X} be the $\left(q, \alpha r, \frac{1}{1+\alpha} s,(1-\alpha) r, m-\frac{\alpha}{1+\alpha} s\right)$-branco-process.
Let X be the $\left(q, \beta r, \frac{1}{1+\beta} s,(1-\beta) r, m-\frac{\beta}{1+\beta} s\right)$-branco-process.
Then

$$
\begin{aligned}
& \mathbb{P}\left[X_{0} \in \cdot\right]=\mathbb{P}\left[\operatorname{Thin}_{\frac{1+\beta}{1+\alpha}}\left(\bar{X}_{0}\right) \in \cdot\right] \\
\text { implies } & \mathbb{P}\left[X_{t} \in \cdot\right]=\mathbb{P}\left[\operatorname{Thinin}_{\frac{1+\beta}{1+\alpha}}\left(\bar{X}_{t}\right) \in \cdot\right]
\end{aligned}
$$

Every process with $a>0$ can be obtained a the thinning of some process with $a=0$.

The process X started at infinity is a $(1+\beta) /(1+\alpha)$-thinning of \bar{X} started at infinity.

Proof: Lloyd \& Sudbury have shown that when two particle processes have the same dual, one is a thinning of the other.

Proof of ergodicity

Assume that $\mathbb{P}\left[X_{0} \in \cdot\right]$ is nontrivial and G-homogeneous. To prove that

$$
\mathbb{P}\left[X_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\nu}
$$

by duality, it suffices to show that

$$
\begin{aligned}
& \mathbb{E}\left[\left(1-(1+\alpha) \mathcal{X}_{0}^{\dagger}\right) X_{t}\right]=\mathbb{E}\left[\left(1-(1+\alpha) \mathcal{X}_{t}^{\dagger}\right)^{X_{0}}\right] \\
& \xrightarrow[t \rightarrow \infty]{\longrightarrow} \mathbb{P}\left[\left|\mathcal{X}_{t}^{\dagger}\right|=0 \text { for some } t \geq 0\right]
\end{aligned}
$$

where $\left|\mathcal{X}_{t}^{\dagger}\right|:=\sum_{i} \mathcal{X}_{t}^{\dagger}(i)$.
It has been shown in Athreya \& S. ('05) that with probability one either $\left|\mathcal{X}_{t}^{\dagger}\right|=0$ at some $t \geq 0$ (and hence thereafter), or $\left|\mathcal{X}_{t}^{\dagger}\right| \rightarrow \infty$ as $t \rightarrow \infty$.
This and a sufficient amount of 'local randomness' does the job.

