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Jan M. Swart (ÚTIA) Systems of branching, annihilating, and coalescing particles



Underlying random walk

Lattice Λ is a countable set.

Random walk kernel q : Λ× Λ→ R jump rates satisfying

1. nonnegative q(i , j) ≥ 0

2. summable supi

∑
j q(i , j) <∞

3. weakly irreducible ∀∆ ⊂ Λ, ∆ 6= ∅,Λ there exists i ∈ ∆,
j ∈ Λ\∆ such that either q(i , j) > 0 or q(j , i) > 0 (or both).

4. influx equals outflux |q| :=
∑

j q(i , j) =
∑

j q(j , i).

We say that ξ = (ξt)t≥0 is a random walk with kernel q if ξ is a
Markov process in Λ that stays in a state i for an exponential time
with mean |q|−1 and then jumps to the state j with probability
|q|−1q(i , j). Condition 4 says that counting measure is an invariant
measure for this process. The process is reversible if and only if
q† = q where q†(i , j) := q(j , i) are the time-reversed jump rates.
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Translation invariance

Let (Λ, q) be a lattice equipped with a random walk kernel.
An automorphism of (Λ, q) is a bijection g : Λ→ Λ such that
q(gi , gj) = q(i , j) for all i , j ∈ Λ.
Let Aut(Λ, q) be the group of all automorphisms of (Λ, q).
We say that a subgroup G ⊂ Aut(Λ, q) is transitive if for each
i , j ∈ Λ there exists a g ∈ G such that gi = j .

Example Λ = Zd , q(i , j) = 1 if |i − j | = 1 and 0 otherwise.
Aut(Λ, q) contains, e.g., translations, rotations by 90◦ along an
axis, mirroring in a point, axis, or plane spanned by two axes, etc.
The translations form a transitive subgroup.
Other examples Nearest neighbor random walks on regular trees
or Cayley graphs. Random walks on groups.
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A particle system

Fix (Λ, q) and rates a, b, c , d ≥ 0. Consider a system of particles
such that

I Each particle jumps, independently of the others, from site i
to site j with rate q(i , j).

I Each pair of particles, present on the same site, annihilates
with rate 2a, resulting in the disappearance of both particles.

I Each particle branches with rate b into two new particles,
created on the position of the old one.

I Each pair of particles, present on the same site, coalesces with
rate 2c , resulting in the creation of one new particle on the
position of the two old ones.

I Each particle dies (disappears) with rate d .
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Generator description

Let Xt(i) be the number of particles at site i ∈ Λ at time t ≥ 0.
Then X = (Xt)t≥0 with Xt = (Xt(i))i∈Λ is a Markov process in NΛ

with generator

Gf (x) :=
∑
ij

q(i , j)x(i)
{

f (x + δj − δi )− f (x)
}

+a
∑

i

x(i)(x(i)− 1)
{

f (x − 2δi )− f (x)
}

+b
∑

i

x(i)
{

f (x + δi )− f (x)
}

+c
∑

i

x(i)(x(i)− 1)
{

f (x − δi )− f (x)
}

+d
∑

i

x(i)
{

f (x − δi )− f (x)
}
,

where δi (j) := 1 if i = j and 0 otherwise. We call X the
(q, a, b, c, d)-branco-process. X is well-defined for initial states
with finitely many particles and also for some infinite initial states.
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Survival

Assume that Aut(Λ, q) is transitive.

We define shift operators Tg : NΛ → NΛ by

Tg x(i) := x(g−1i)
(
i ∈ Λ, x ∈ NΛ, g ∈ Aut(Λ, q)

)
.

If G is a subgroup of Aut(Λ, q), then we say that a probability
measure ν on NΛ is G -homogeneous if ν ◦ T−1

g = ν for all g ∈ G .
We say that ν is nontrivial if ν(0) = 0, where 0 denotes the
configuration with no particles.

We say that the (q, a, b, c , d)-branco-process survives if

Pδi
[
Xt 6= 0 ∀t ≥ 0

]
> 0 (i ∈ Λ).

The process survives locally if

lim inf
t→∞

Pδi
[
Xt(i) > 0

]
> 0.
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Processes on Zd

Let Λ = Zd , let G be the group of translations, and assume
G ⊂ Aut(Λ, q).
Assume a = 0 and let c , d > 0 be fixed.
Thm 1.3 in Shiga & Uchiyama (1986) and Thm 1 in Athreya & S.
(2005) imply:

Theorem There exists a 0 < bc <∞ such that:

I For b > bc, the process survives and has a unique nontrivial,
G -homogeneous invariant law ν.

I For b < bc, the process dies out and the delta measure on 0 is
the only invariant law.
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Cayley graphs

Let Λ be a group with symmetric finite generating set ∆.
Draw the associated (left) Cayley graph which has a vertex
between i , j if and only if j = ki for some k ∈ ∆. Let d denote the
graph distance and let 0 denote the unit element (origin).

The Cayley graph has subexponential growth if

lim
n→∞

1

n
log
∣∣{i : d(i , 0) ≤ n}| = 0.

The Cayley graph is amenable if

∀ε > 0 ∃ finite nonempty A s.t.
|∂A|
|A|
≤ ε,

where ∂A := {i : d(i ,A) = 1}. Subexponential growth implies
amenability but not vice versa.
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Zero death rate and local survival

Assume a = d = 0 and let c > 0 be fixed. Then survival is trivial.
Frank Schirmeier (Erlangen) has shown:

Theorem

I If the Cayley graph has subexponential growth, then one has
local survival for all b > 0.

I If the Cayley graph is nonamenable, then one has local
extinction for all b sufficiently small.

Open problems:

I What if the Cayley graph is amenable but has exponential
growth?

I For positive death rate, on subexponential graphs, does
survival imply local survival?
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Implosion

Let X (n) be (q, a, b, c , d)-branco-processes started in initial states
x (n) such that

x (n)(i) ↑ ∞ (i ∈ Λ).

Assume a + c > 0. Then Athreya & S. (2012) have shown

(Thm. 1.4) that X (n) converges in law to a process (X
(∞)
t )t>0 with

E[X
(∞)
t (i)] ≤


γ

(2a + c)(1− e−γt)
if γ 6= 0,

1

(2a + c)t
if γ = 0

(i ∈ Λ),

where γ := a + b + c − d . Moreover,

P
[
X

(∞)
t ∈ ·

]
=⇒
t→∞

ν,

where ν is an invariant law.

If a = 0, then it is known that ν is the maximal invariant law w.r.t.
the stochastic order (Thm 2 in Athreya & S. (2005)).
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Starting from a single site

Consider the case a = b = d = 0 and c > 0 (pure coalescent).
Let q be a nearest-neighbor kernel on an infinite graph of bounded
degree and fix some element 0 ∈ Λ.
Let X (n) be the process started with n particles at 0.

Theorem (Angel, Berestycki & Limic 2010): For fixed t > 0,∣∣X (n)
t

∣∣ ≈ ∣∣{i : d(0, i) ≤ log∗(n)}
∣∣ as n→∞,

where

log∗(n) := inf{m ≥ 0 : exp ◦ · · · ◦ exp︸ ︷︷ ︸
m times

(1) ≥ n}.

Jan M. Swart (ÚTIA) Systems of branching, annihilating, and coalescing particles



Ergodicity

Assume that Aut(Λ, q) has a transitive subgroup G .
Assume that P[X0 ∈ · ] is nontrivial and G -homogeneous.

Theorem (Athreya & S. ’05, ’12) Assume a + c > 0. Then

P
[
Xt ∈ ·

]
=⇒
t→∞

ν.
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An infinite system of diffusions

Let (Λ, q) be as before and let r , s,m ≥ 0.
Let X = (Xt)t≥0 be the [0, 1]Λ-valued diffusion given by the
infinite-dimensional SDE

dXt(i) =
∑

j

q(j , i)(Xt(j)−Xt(i)) dt + sXt(i)(1−Xt(i)) dt

−mXt(i) dt +
√

2rXt(i)(1−Xt(i)) dBt(i),

where (B(i))i∈Λ is a collection of independent Brownian motions.

X models local gene frequencies in the presence of resampling
(rate r), positive selection (rate s), and negative mutation
(rate m).
We call X the (q, r , s,m)-resem-process.
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Moment duality

For φ ∈ [0, 1]Λ and x ∈ NΛ, define

φx :=
∏
i

φ(i)x(i).

Proposition (Athreya & S. 2012) Assume a + c > 0. Let

α = a/(a + c), r = a + c , s = (1 + α)b, and m = αb + d .

Let X and X † be a (q, a, b, c , d)-branco-process and
(q†, r , s,m)-resem-process, independent of each other. Then

E
[
(1− (1 + α)X †0 )Xt

]
= E

[
(1− (1 + α)X †t )X0

]
(t ≥ 0),

provided one or more of the following conditions are satisfied:

(i) α < 1, (ii) |X0| <∞ a.s., (iii) |X †0 | <∞ a.s.
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The case without annihilation

If a = 0 and hence α = 0 the duality reads

E
[
(1−X †0 )Xt

]
= E

[
(1−X †t )X0

]
(t ≥ 0).

For φ ∈ [0, 1]Λ and x ∈ NΛ, let Thinφ(x) be a random particle
configuration obtained from x by keeping a particle at i with
probability φ(i), independently for each particle.

If φ and / or x are random, we construct Thinφ(x) so that its
conditional law given φ and x is as described.

Then the duality can be written as

P
[
ThinX †

0
(Xt) = 0

]
= P

[
ThinX †

t
(X0) = 0

]
(t ≥ 0).

Interpretation: Xt are the potential ancestors of X0 (Krone &
Neuhauser ’97).
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The case without coalescence

If c = 0 and hence α = 1 the duality reads

E
[
(1− 2X †0 )Xt

]
= E

[
(1− 2X †t )X0

]
(t ≥ 0).

Since
E
[
(−1)Thinφ(x)] = E

[
(1− 2φ)x ],

the duality can be rewritten as

P
[
|ThinX †

0
(Xt)| is odd

]
= P

[
|ThinX †

t
(X0)| is odd

]
(t ≥ 0).

General case: Lloyd & Sudbury ’97 and local mean field limit S.
’06.
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Self-duality

Assume r > 0. It has been proved in Athreya & S. (2005) Thm 1
that the (q, r , s,m)-resem-process X and the
(q†, r , s,m)-resem-process X † are dual in the sense that

E
[
e−

s
r |X0X †t |] = E

[
e−

s
r |XtX †0 |] (t ≥ 0).

This can be rewritten as

P
[
Pois( s

r |X0X †t |) = 0
]

= P
[
Pois( s

r |XtX †0 |) = 0
]

(t ≥ 0),

where Pois(φ) denotes a configuration which has at site i a
Poisson number of particles with mean φ(i), independently for
each site (conditional given φ).

Application: critical points for survival and nontriviality of ν are
the same.
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Poissonization

Fix s,m ≥ 0, r > 0 and 0 ≤ α ≤ 1.
Let X be the (q, r , s,m)-resem-process.
Let X be the (q, αr , 1

1+αs, (1− α)r ,m − α
1+αs)-branco-process.

Then

P
[
X0 ∈ ·

]
= P

[
Pois( s

(1+α)rX0) ∈ ·
]

implies P
[
Xt ∈ ·

]
= P

[
Pois( s

(1+α)rXt) ∈ ·
]

The invariant law ν is a Poissonization of the upper invariant law
of the (q, r , s,m)-resem-process.
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Thinning

Fix s,m ≥ 0, r > 0 and 0 ≤ β ≤ α ≤ 1.
Let X be the (q, αr , 1

1+αs, (1− α)r ,m − α
1+αs)-branco-process.

Let X be the (q, βr , 1
1+β s, (1− β)r ,m − β

1+β s)-branco-process.
Then

P
[
X0 ∈ ·

]
= P

[
Thin 1+β

1+α
(X 0) ∈ ·

]
implies P

[
Xt ∈ ·

]
= P

[
Thin 1+β

1+α
(X t) ∈ ·

]
Every process with a > 0 can be obtained a the thinning of some
process with a = 0.

The process X started at infinity is a (1 + β)/(1 + α)-thinning of
X started at infinity.

Proof: Lloyd & Sudbury have shown that when two particle
processes have the same dual, one is a thinning of the other.
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Proof of ergodicity

Assume that P[X0 ∈ · ] is nontrivial and G -homogeneous. To prove
that

P
[
Xt ∈ ·

]
=⇒
t→∞

ν,

by duality, it suffices to show that

E
[
(1− (1 + α)X †0 )Xt

]
= E

[
(1− (1 + α)X †t )X0

]
−→
t→∞

P
[
|X †t | = 0 for some t ≥ 0],

where |X †t | :=
∑

i X
†
t (i).

It has been shown in Athreya & S. (’05) that with probability one

either |X †t | = 0 at some t ≥ 0 (and hence thereafter), or

|X †t | → ∞ as t →∞.
This and a sufficient amount of ‘local randomness’ does the job.
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