Systems of branching, annihilating, and coalescing particles

Jan M. Swart (ÚTIA)

January 3rd, 2013

Jan M. Swart (ÚTIA) Systems of branching, annihilating, and coalescing particles

伺い イヨト イヨト

Lattice Λ is a countable set.

Random walk kernel $q : \Lambda \times \Lambda \rightarrow \mathbb{R}$ jump rates satisfying

- 1. nonnegative $q(i,j) \ge 0$
- 2. summable $\sup_i \sum_j q(i,j) < \infty$
- 3. weakly irreducible $\forall \Delta \subset \Lambda$, $\Delta \neq \emptyset$, Λ there exists $i \in \Delta$, $j \in \Lambda \setminus \Delta$ such that either q(i,j) > 0 or q(j,i) > 0 (or both).

4. influx equals outflux $|q| := \sum_j q(i,j) = \sum_j q(j,i)$.

We say that $\xi = (\xi_t)_{t\geq 0}$ is a random walk with kernel q if ξ is a Markov process in Λ that stays in a state i for an exponential time with mean $|q|^{-1}$ and then jumps to the state j with probability $|q|^{-1}q(i,j)$. Condition 4 says that counting measure is an invariant measure for this process. The process is reversible if and only if $q^{\dagger} = q$ where $q^{\dagger}(i,j) := q(j,i)$ are the time-reversed jump rates.

Let (Λ, q) be a lattice equipped with a random walk kernel. An *automorphism* of (Λ, q) is a bijection $g : \Lambda \to \Lambda$ such that q(gi, gj) = q(i, j) for all $i, j \in \Lambda$. Let $\operatorname{Aut}(\Lambda, q)$ be the group of all automorphisms of (Λ, q) . We say that a subgroup $G \subset \operatorname{Aut}(\Lambda, q)$ is *transitive* if for each $i, j \in \Lambda$ there exists a $g \in G$ such that gi = j.

Example $\Lambda = \mathbb{Z}^d$, q(i,j) = 1 if |i - j| = 1 and 0 otherwise. Aut (Λ, q) contains, e.g., translations, rotations by 90° along an axis, mirroring in a point, axis, or plane spanned by two axes, etc. The translations form a transitive subgroup.

Other examples Nearest neighbor random walks on regular trees or Cayley graphs. Random walks on groups.

A particle system

Fix (Λ, q) and rates $a, b, c, d \ge 0$. Consider a system of particles such that

Each particle jumps, independently of the others, from site i to site j with rate q(i, j).

A particle system

Fix (Λ, q) and rates $a, b, c, d \ge 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate q(i, j).
- Each pair of particles, present on the same site, annihilates with rate 2a, resulting in the disappearance of both particles.

A particle system

Fix (Λ, q) and rates $a, b, c, d \ge 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate q(i, j).
- Each pair of particles, present on the same site, annihilates with rate 2a, resulting in the disappearance of both particles.
- Each particle *branches* with rate *b* into two new particles, created on the position of the old one.

Fix (Λ, q) and rates $a, b, c, d \ge 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate q(i, j).
- Each pair of particles, present on the same site, annihilates with rate 2a, resulting in the disappearance of both particles.
- Each particle *branches* with rate *b* into two new particles, created on the position of the old one.
- Each pair of particles, present on the same site, *coalesces* with rate 2*c*, resulting in the creation of one new particle on the position of the two old ones.

Fix (Λ, q) and rates $a, b, c, d \ge 0$. Consider a system of particles such that

- Each particle jumps, independently of the others, from site i to site j with rate q(i, j).
- Each pair of particles, present on the same site, annihilates with rate 2a, resulting in the disappearance of both particles.
- Each particle *branches* with rate *b* into two new particles, created on the position of the old one.
- Each pair of particles, present on the same site, *coalesces* with rate 2*c*, resulting in the creation of one new particle on the position of the two old ones.
- Each particle *dies* (disappears) with rate *d*.

Generator description

Let $X_t(i)$ be the number of particles at site $i \in \Lambda$ at time $t \ge 0$. Then $X = (X_t)_{t \ge 0}$ with $X_t = (X_t(i))_{i \in \Lambda}$ is a Markov process in \mathbb{N}^{Λ} with generator

$$Gf(x) := \sum_{ij} q(i,j)x(i) \{ f(x + \delta_j - \delta_i) - f(x) \} \\ + a \sum_i x(i)(x(i) - 1) \{ f(x - 2\delta_i) - f(x) \} \\ + b \sum_i x(i) \{ f(x + \delta_i) - f(x) \} \\ + c \sum_i x(i)(x(i) - 1) \{ f(x - \delta_i) - f(x) \} \\ + d \sum_i x(i) \{ f(x - \delta_i) - f(x) \},$$

where $\delta_i(j) := 1$ if i = j and 0 otherwise. We call X the (q, a, b, c, d)-branco-process. X is well-defined for initial states with finitely many particles and also for some infinite initial states.

Survival

Assume that $Aut(\Lambda, q)$ is transitive.

We define shift operators $T_g : \mathbb{N}^{\Lambda} \to \mathbb{N}^{\Lambda}$ by

$$T_g x(i) := x(g^{-1}i) \qquad ig(i \in \Lambda, \ x \in \mathbb{N}^\Lambda, \ g \in \operatorname{Aut}(\Lambda, q)ig).$$

If G is a subgroup of Aut(Λ , q), then we say that a probability measure ν on \mathbb{N}^{Λ} is G-homogeneous if $\nu \circ T_g^{-1} = \nu$ for all $g \in G$. We say that ν is *nontrivial* if $\nu(\underline{0}) = 0$, where $\underline{0}$ denotes the configuration with no particles.

We say that the (q, a, b, c, d)-branco-process survives if

$$\mathbb{P}^{\delta_i} ig[X_t
eq \underline{0} \ orall t \geq 0 ig] > 0 \quad (i \in \Lambda).$$

The process survives locally if

$$\liminf_{t\to\infty}\mathbb{P}^{\delta_i}[X_t(i)>0]>0.$$

伺下 イヨト イヨト

Let $\Lambda = \mathbb{Z}^d$, let G be the group of translations, and assume $G \subset \operatorname{Aut}(\Lambda, q)$. Assume a = 0 and let c, d > 0 be fixed. Thm 1.3 in Shiga & Uchiyama (1986) and Thm 1 in Athreya & S. (2005) imply:

Theorem There exists a $0 < b_c < \infty$ such that:

For b > b_c, the process survives and has a unique nontrivial, G-homogeneous invariant law *v̄*.

Let $\Lambda = \mathbb{Z}^d$, let G be the group of translations, and assume $G \subset \operatorname{Aut}(\Lambda, q)$. Assume a = 0 and let c, d > 0 be fixed. Thm 1.3 in Shiga & Uchiyama (1986) and Thm 1 in Athreya & S. (2005) imply:

Theorem There exists a $0 < b_c < \infty$ such that:

- For b > b_c, the process survives and has a unique nontrivial, G-homogeneous invariant law *v̄*.
- ▶ For b < b_c, the process dies out and the delta measure on <u>0</u> is the only invariant law.

Cayley graphs

Let Λ be a group with symmetric finite generating set Δ . Draw the associated (left) Cayley graph which has a vertex between i, j if and only if j = ki for some $k \in \Delta$. Let d denote the graph distance and let 0 denote the unit element (origin).

The Cayley graph has subexponential growth if

$$\lim_{n\to\infty}\frac{1}{n}\log\left|\{i:d(i,0)\leq n\}\right|=0.$$

The Cayley graph is amenable if

$$\forall \varepsilon > 0 \exists$$
 finite nonempty A s.t. $\frac{|\partial A|}{|A|} \leq \varepsilon$,

where $\partial A := \{i : d(i, A) = 1\}$. Subexponential growth implies amenability but not vice versa.

イロト イポト イヨト イヨト

Assume a = d = 0 and let c > 0 be fixed. Then survival is trivial. Frank Schirmeier (Erlangen) has shown:

Theorem

► If the Cayley graph has subexponential growth, then one has local survival for all b > 0.

・回 と く ヨ と く ヨ と

Assume a = d = 0 and let c > 0 be fixed. Then survival is trivial. Frank Schirmeier (Erlangen) has shown:

Theorem

- ► If the Cayley graph has subexponential growth, then one has local survival for all b > 0.
- If the Cayley graph is nonamenable, then one has local extinction for all b sufficiently small.

Open problems:

- What if the Cayley graph is amenable but has exponential growth?
- For positive death rate, on subexponential graphs, does survival imply local survival?

(日本) (日本) (日本)

Implosion

Let $X^{(n)}$ be (q, a, b, c, d)-branco-processes started in initial states $x^{(n)}$ such that

$$\mathbf{x}^{(n)}(i)\uparrow\infty$$
 $(i\in\Lambda).$

Assume a + c > 0. Then Athreya & S. (2012) have shown (Thm. 1.4) that $X^{(n)}$ converges in law to a process $(X_t^{(\infty)})_{t>0}$ with

$$\mathbb{E}[X_t^{(\infty)}(i)] \leq \begin{cases} \frac{\gamma}{(2a+c)(1-e^{-\gamma t})} & \text{if } \gamma \neq 0, \\ \frac{1}{(2a+c)t} & \text{if } \gamma = 0 \end{cases} \quad (i \in \Lambda),$$

where $\gamma := a + b + c - d$. Moreover,

$$\mathbb{P}\big[X_t^{(\infty)} \in \cdot\,\big] \underset{t \to \infty}{\Longrightarrow} \overline{\nu},$$

where $\overline{\nu}$ is an invariant law.

If a = 0, then it is known that $\overline{\nu}$ is the maximal invariant law w.r.t. the stochastic order (Thm 2 in Athreya & S. (2005)).

Consider the case a = b = d = 0 and c > 0 (pure coalescent). Let q be a nearest-neighbor kernel on an infinite graph of bounded degree and fix some element $0 \in \Lambda$. Let $X^{(n)}$ be the process started with n particles at 0.

Theorem (Angel, Berestycki & Limic 2010): For fixed t > 0,

$$\left|X^{(n)}_t
ight|pprox\left|\{i:d(0,i)\leq \log^*(n)\}
ight|$$
 as $n
ightarrow\infty,$

where

$$\log^*(n) := \inf\{m \ge 0 : \underbrace{\exp \circ \cdots \circ \exp(1) \ge n}_{m \text{ times}} (1) \ge n\}.$$

Assume that $Aut(\Lambda, q)$ has a transitive subgroup G. Assume that $\mathbb{P}[X_0 \in \cdot]$ is nontrivial and G-homogeneous.

Theorem (Athreya & S. '05, '12) Assume a + c > 0. Then

$$\mathbb{P}\big[X_t\in\cdot\,\big]\underset{t\to\infty}{\Longrightarrow}\overline{\nu}.$$

Let (Λ, q) be as before and let $r, s, m \ge 0$. Let $\mathcal{X} = (\mathcal{X}_t)_{t \ge 0}$ be the $[0, 1]^{\Lambda}$ -valued diffusion given by the infinite-dimensional SDE

$$d\mathcal{X}_t(i) = \sum_j q(j,i)(\mathcal{X}_t(j) - \mathcal{X}_t(i)) dt + s\mathcal{X}_t(i)(1 - \mathcal{X}_t(i)) dt$$
$$-m\mathcal{X}_t(i) dt + \sqrt{2r\mathcal{X}_t(i)(1 - \mathcal{X}_t(i))} dB_t(i),$$

where $(B(i))_{i \in \Lambda}$ is a collection of independent Brownian motions.

 \mathcal{X} models local gene frequencies in the presence of *resampling* (rate *r*), positive *selection* (rate *s*), and negative *mutation* (rate *m*). We call \mathcal{X} the (q, r, s, m)-resem-process.

向下 イヨト イヨト

Moment duality

For $\phi \in [0,1]^{\Lambda}$ and $x \in \mathbb{N}^{\Lambda}$, define

$$\phi^{\mathsf{x}} := \prod_{i} \phi(i)^{\mathsf{x}(i)}.$$

Proposition (Athreya & S. 2012) Assume a + c > 0. Let

$$\alpha = a/(a+c), \quad r = a+c, \quad s = (1+\alpha)b, \quad \text{and} \quad m = \alpha b + d.$$

Let X and \mathcal{X}^{\dagger} be a (q, a, b, c, d)-branco-process and (q^{\dagger}, r, s, m) -resem-process, independent of each other. Then

$$\mathbb{E}\big[(1-(1+\alpha)\mathcal{X}_0^{\dagger})^{X_t}\big] = \mathbb{E}\big[(1-(1+\alpha)\mathcal{X}_t^{\dagger})^{X_0}\big] \qquad (t \ge 0),$$

provided one or more of the following conditions are satisfied:

(i)
$$\alpha < 1$$
, (ii) $|X_0| < \infty$ a.s., (iii) $|X_0^{\dagger}| < \infty$ a.s.

If a = 0 and hence $\alpha = 0$ the duality reads

$$\mathbb{E}ig[(1-\mathcal{X}_0^\dagger)^{oldsymbol{\chi}_t}ig] = \mathbb{E}ig[(1-\mathcal{X}_t^\dagger)^{oldsymbol{\chi}_0}ig] \qquad (t\geq 0).$$

For $\phi \in [0, 1]^{\Lambda}$ and $x \in \mathbb{N}^{\Lambda}$, let $Thin_{\phi}(x)$ be a random particle configuration obtained from x by keeping a particle at *i* with probability $\phi(i)$, independently for each particle.

If ϕ and / or x are random, we construct $Thin_{\phi}(x)$ so that its conditional law given ϕ and x is as described.

Then the duality can be written as

$$\mathbb{P}\big[\mathrm{Thin}_{\mathcal{X}_0^{\dagger}}(X_t) = \underline{0}\big] = \mathbb{P}\big[\mathrm{Thin}_{\mathcal{X}_t^{\dagger}}(X_0) = \underline{0}\big] \qquad (t \ge 0).$$

Interpretation: X_t are the potential ancestors of X_0 (Krone & Neuhauser '97).

• (1) • (2) • (2) •

If c = 0 and hence $\alpha = 1$ the duality reads

$$\mathbb{E}ig[(1-2\mathcal{X}_0^\dagger)^{oldsymbol{X}_t}ig] = \mathbb{E}ig[(1-2\mathcal{X}_t^\dagger)^{oldsymbol{X}_0}ig] \qquad (t\geq 0).$$

Since

$$\mathbb{E}[(-1)^{\mathrm{Thin}_{\phi}(\mathbf{x})}] = \mathbb{E}[(1-2\phi)^{\mathbf{x}}],$$

the duality can be rewritten as

$$\mathbb{P}\big[|\mathrm{Thin}_{\mathcal{X}_0^{\dagger}}(X_t)| \text{ is odd}\big] = \mathbb{P}\big[|\mathrm{Thin}_{\mathcal{X}_t^{\dagger}}(X_0)| \text{ is odd}\big] \qquad (t \ge 0).$$

General case: Lloyd & Sudbury '97 and local mean field limit S. '06.

(4回) (4回) (4回)

Self-duality

Assume r > 0. It has been proved in Athreya & S. (2005) Thm 1 that the (q, r, s, m)-resem-process \mathcal{X} and the (q^{\dagger}, r, s, m) -resem-process \mathcal{X}^{\dagger} are dual in the sense that

$$\mathbb{E}\left[e^{-\frac{s}{r}|\mathcal{X}_{0}\mathcal{X}_{t}^{\dagger}|}\right] = \mathbb{E}\left[e^{-\frac{s}{r}|\mathcal{X}_{t}\mathcal{X}_{0}^{\dagger}|}\right] \qquad (t \ge 0).$$

This can be rewritten as

$$\mathbb{P}\big[\operatorname{Pois}(\frac{s}{r}|\mathcal{X}_{0}\mathcal{X}_{t}^{\dagger}|) = \underline{0}\big] = \mathbb{P}\big[\operatorname{Pois}(\frac{s}{r}|\mathcal{X}_{t}\mathcal{X}_{0}^{\dagger}|) = \underline{0}\big] \qquad (t \ge 0),$$

where $\text{Pois}(\phi)$ denotes a configuration which has at site *i* a Poisson number of particles with mean $\phi(i)$, independently for each site (conditional given ϕ).

Application: critical points for survival and nontriviality of $\overline{\nu}$ are the same.

Fix $s, m \ge 0$, r > 0 and $0 \le \alpha \le 1$. Let \mathcal{X} be the (q, r, s, m)-resem-process. Let X be the $(q, \alpha r, \frac{1}{1+\alpha}s, (1-\alpha)r, m - \frac{\alpha}{1+\alpha}s)$ -branco-process. Then

$$\mathbb{P}[X_0 \in \cdot] = \mathbb{P}[\operatorname{Pois}(\frac{s}{(1+\alpha)r}\mathcal{X}_0) \in \cdot]$$

implies $\mathbb{P}[X_t \in \cdot] = \mathbb{P}[\operatorname{Pois}(\frac{s}{(1+\alpha)r}\mathcal{X}_t) \in \cdot]$

The invariant law $\overline{\nu}$ is a Poissonization of the upper invariant law of the (q, r, s, m)-resem-process.

向下 イヨト イヨト

Thinning

Fix $s, m \ge 0$, r > 0 and $0 \le \beta \le \alpha \le 1$. Let \overline{X} be the $(q, \alpha r, \frac{1}{1+\alpha}s, (1-\alpha)r, m - \frac{\alpha}{1+\alpha}s)$ -branco-process. Let X be the $(q, \beta r, \frac{1}{1+\beta}s, (1-\beta)r, m - \frac{\beta}{1+\beta}s)$ -branco-process. Then

$$\mathbb{P}[X_0 \in \cdot] = \mathbb{P}[\operatorname{Thin}_{\frac{1+\beta}{1+\alpha}}(\overline{X}_0) \in \cdot]$$

implies $\mathbb{P}[X_t \in \cdot] = \mathbb{P}[\operatorname{Thin}_{\frac{1+\beta}{1+\alpha}}(\overline{X}_t) \in \cdot]$

Every process with a > 0 can be obtained a the thinning of some process with a = 0.

The process X started at infinity is a $(1 + \beta)/(1 + \alpha)$ -thinning of \overline{X} started at infinity.

Proof: Lloyd & Sudbury have shown that when two particle processes have the same dual, one is a thinning of the other.

Proof of ergodicity

Assume that $\mathbb{P}[X_0 \in \cdot\,]$ is nontrivial and G-homogeneous. To prove that

$$\mathbb{P}\big[X_t\in\cdot\,\big]\underset{t\to\infty}{\Longrightarrow}\overline{\nu},$$

by duality, it suffices to show that

$$\begin{split} \mathbb{E}\big[(1-(1+\alpha)\mathcal{X}_0^{\dagger})^{X_t}\big] &= \mathbb{E}\big[(1-(1+\alpha)\mathcal{X}_t^{\dagger})^{X_0}\big] \\ & \underset{t \to \infty}{\longrightarrow} \mathbb{P}\big[|\mathcal{X}_t^{\dagger}| = 0 \text{ for some } t \geq 0], \end{split}$$

where $|\mathcal{X}_t^{\dagger}| := \sum_i \mathcal{X}_t^{\dagger}(i)$. It has been shown in Athreya & S. ('05) that with probability one either $|\mathcal{X}_t^{\dagger}| = 0$ at some $t \ge 0$ (and hence thereafter), or $|\mathcal{X}_t^{\dagger}| \to \infty$ as $t \to \infty$. This and a sufficient amount of 'local randomness' does the job.

向下 イヨト イヨト