Weaves, webs and flows

Jan M. Swart (Czech Academy of Sciences)

joint with Nic Freeman

Jan M. Swart (Czech Academy of Sciences) Weaves, webs and flows

Let $(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{X} be a probability space and a measurable space. By definition, a *stochastic flow* on \mathcal{X} is a collection $(\mathbb{X}_{s,t})_{s \leq t}$ of random maps $\mathbb{X}_{s,t} : \mathcal{X} \to \mathcal{X}$, such that:

(i). $(s, t, \omega, x) \mapsto \mathbb{X}_{s,t}[\omega](x)$ is jointly measurable as a function on $\{(s, t) \in \mathbb{R}^2 : s \leq t\} \times \Omega \times \mathcal{X}.$

(ii).
$$\mathbb{X}_{s,s} = \mathrm{Id} \text{ and } \mathbb{X}_{t,u} \circ \mathbb{X}_{s,t} = \mathbb{X}_{s,u} \ (s \leq t \leq u).$$

Sometimes (ii) is required only for deterministic $s \leq t \leq u$, i.e., (ii)'. $\mathbb{X}_{s,s} = \text{Id}$ and $\mathbb{X}_{t,u} \circ \mathbb{X}_{s,t} = \mathbb{X}_{s,u}$ a.s. $(s \leq t \leq u)$.

A stochastic flow $(\mathbb{X}_{s,t})_{s \leq t}$ is *stationary* if: (iii). $(\mathbb{X}_{s,t})_{s \leq t}$ is equal in law to $(\mathbb{X}_{s+r,t+r})_{s \leq t}$ for all $r \in \mathbb{R}$, and we say that $(\mathbb{X}_{s,t})_{s \leq t}$ has *independent increments* if: (iv). $X_{t_0,t_1}, \ldots, X_{t_{n-1},t_n}$ are independent for all $t_0 \leq \cdots \leq t_n$.

・ロト ・回 ト ・ヨト ・ヨト

If $(X_{s,t})_{s \leq t}$ is a stochastic flow with independent increments, $s \in \mathbb{R}$, and X_0 is an independent \mathcal{X} -valued random variable, then setting

$$X_t := \mathbb{X}_{s,s+t}(X_0) \qquad (t \ge 0)$$

defines a Markov process $(X_t)_{t\geq 0}$. If $(\mathbb{X}_{s,t})_{s\leq t}$ is stationary, then $(X_t)_{t\geq 0}$ is time-homogeneous.

Many Markov processes can be constructed from stochastic flows. Examples:

- Markov processes constructed from Poisson point processes.
- Strong solutions to stochastic differential equations relative to a fixed driving Brownian motion.

・ 同 ト ・ ヨ ト ・ ヨ ト

If $\vec{X}_0 = (X_0^1, \dots, X_0^n)$ is an \mathcal{X}^n -valued random variable, independent of $(\mathbb{X}_{s,t})_{s \leq t}$, then setting

$$X_t^i := \mathbb{X}_{s,s+t}(X_0^i) \qquad (t \ge 0, \ 1 \le i \le n)$$

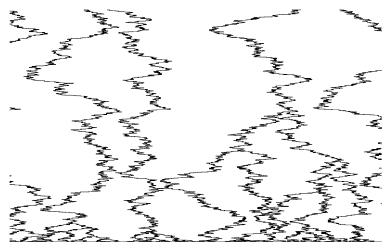
defines a stochastic process $(\vec{X}_t)_{t\geq 0}$. These *n*-point motions satisfy a natural consistency property.

Le Jan and Raimond (AoP 2004) have shown that each consistent family of Feller processes gives rise to a stationary stochastic flow (in the weak sense of (ii)') with independent increments.

・ 同 ト ・ ヨ ト ・ ヨ ト

Def a stochastic flow $(\mathbb{X}_{s,t})_{s \leq t}$ on \mathbb{R} is *monotone* if for each $s \leq t$, the map $\mathbb{X}_{s,t} : \mathbb{R} \to \mathbb{R}$ is nondecreasing and right-continuous with $\lim_{x \to \pm \infty} \mathbb{X}_{s,t}(x) = \pm \infty$.

The Arratia flow



The *n*-point motions of the Arratia flow are coalescing Brownian motions.

ヘロト ヘヨト ヘヨト ヘヨト

By definition, a correlation function is a continuous function $\rho:\mathbb{R}\to [-1,1]$ such that:

- (i). ρ is continuous with $\rho(0) = 1$,
- (ii). for each $x_1, \ldots, x_n \in \mathbb{R}$, setting $M_{ij} := \rho(x_i x_j)$ defines a positive semidefinite matrix.

By Bochner's theorem, if μ is a symmetric probability measure on $\mathbb{R},$ then

$$\rho(x) := \int_{-\infty}^{\infty} \mu(\mathrm{d} y) e^{-2\pi i x y} \qquad (x \in \mathbb{R})$$

defines a correlation function, and each correlation function is of this form.

同トメミトメミト

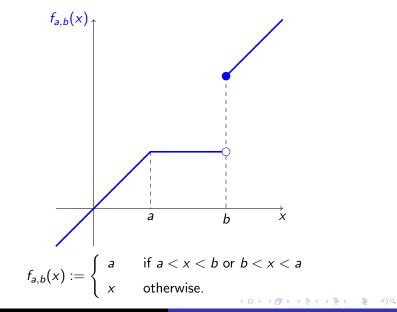
Harris (SPA 1984) proved that if ρ is a correlation function, then for each initial state in \mathbb{R}^n , there exists a unique solution to the martingale problem for the operator

$$Gf(x_1,\ldots,x_n):=\frac{1}{2}\sum_{i,j=1}^n \rho(x_i-x_j)\frac{\partial^2}{\partial x_i\partial x_j}f(x),$$

with the additional condition that paths coalesce once they meet.¹ The solutions to this martingale problem are correlated Brownian motions that form the *n*-point motions for a *Harris flow* $(X_{s,t})_{s \le t}$.

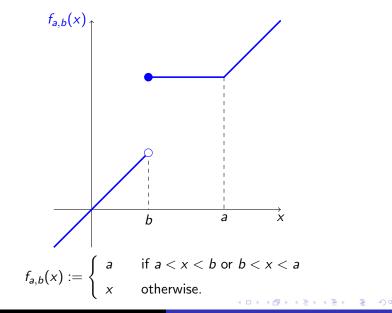
$$\lim_{t\to 0} t^{-1}\mathbb{E}\big[(\mathbb{X}_{0,t}(x)-x)(\mathbb{X}_{0,t}(y)-y)\big] = \rho(x-y).$$

¹Paths meet a.s. iff
$$\int_{0+} \frac{x}{1-\rho(x)} \mathrm{d}x < \infty$$
.



Jan M. Swart (Czech Academy of Sciences)

Weaves, webs and flows



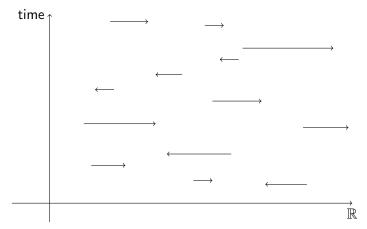
Jan M. Swart (Czech Academy of Sciences)

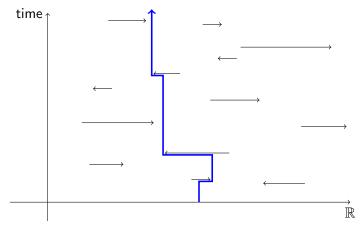
Weaves, webs and flows

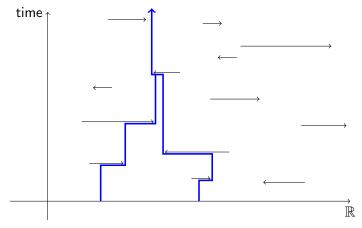
Let ν be a locally finite measure on $\mathcal{A} := \mathbb{R}^2 \setminus \{(a, a) : a \in \mathbb{R}\}$ and let ℓ denote the Lebesgue measure on \mathbb{R} . Let $\omega \subset \mathcal{A} \times \mathbb{R}$ be a Poisson point set with intensity $\nu \otimes \ell$.

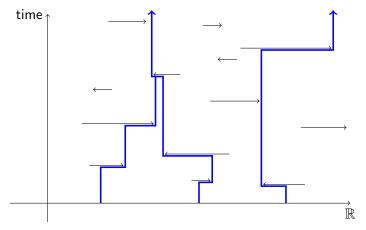
Under suitable assumptions in ν , it should be possible to define a stochastic flow with the following informal description:

For each $(a, b, t) \in \omega$, we apply the map $f_{a,b}$ at time t.









Let \mathcal{M} be the space of nondecreasing and right-continuous functions $f : \mathbb{R} \to \mathbb{R}$ with $\lim_{x \to \pm \infty} f(x) = \pm \infty$. We define the *generalised inverse* of $f \in \mathcal{M}$ as

$$f^{-1}(y) := \inf \big\{ x \in \mathbb{R} : f(x) > y \big\}.$$

Let $(X_{s,t})_{s \leq t}$ be a monotone stochastic flow on \mathbb{R} .

Then setting

$$\hat{\mathbb{X}}_{t,s} := \mathbb{X}_{s,t}^{-1} \qquad (s \leq t)$$

defines a dual stochastic flow in the sense that

$$\hat{\mathbb{X}}_{s,s} = \mathrm{Id} \quad \text{and} \quad \hat{\mathbb{X}}_{t,s} \circ \hat{\mathbb{X}}_{u,t} = \hat{\mathbb{X}}_{u,s} \qquad (u \ge t \ge s).$$

For the Arratia flow, the *n*-point motions of the dual stochastic flow are backward coalescing Brownian motions.

For Harris flows, the *n*-point motions of the dual stochastic flow are correlated backward coalescing Brownian motions.

For monotone Lévy flows, the *n*-point motions of the dual stochastic flow are coalescing Lévy processes.

The Hausdorff metric

Let (\mathcal{X}, d) be a metric space. Let $d(x, A) := \inf\{d(x, y) : y \in A\}$. Let $\mathcal{K}(\mathcal{X})$ be the set of all compact subsets of \mathcal{X} and let $\mathcal{K}_+(\mathcal{X}) := \{\mathcal{K} \in \mathcal{K}(\mathcal{X}) : \mathcal{K} \neq \emptyset\}$.

The Hausdorff metric on $\mathcal{K}_+(\mathcal{X})$ is defined as

$$d_{\mathrm{H}}(K_1, K_2) := \sup_{x_1 \in K_1} d(x_1, K_2) \lor \sup_{x_2 \in K_2} d(x_2, K_1).$$

A correspondence between A_1, A_2 is a set $R \subset A_1 \times A_2$ such that:

$$\forall x_i \in A_i \; \exists x_j \in A_j \; \text{s.t.} \; (x_i, x_j) \in R \qquad ((i, j) = (1, 2), (2, 1)).$$

Let $\operatorname{Cor}(A_1, A_2)$ denote the set of all correspondences between A_1, A_2 . Then

$$d_{\mathrm{H}}(K_1, K_2) = \inf_{R \in \mathrm{Cor}(K_1, K_2)} \sup_{(x_1, x_2) \in R} d(x_1, x_2).$$

• • = • • = •

The Hausdorff metric

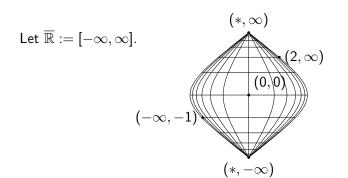
Lemma If (\mathcal{X}, d) is separable, then so is $(\mathcal{K}_+(\mathcal{X}), d_H)$. If (\mathcal{X}, d) is complete, then so is $(\mathcal{K}_+(\mathcal{X}), d_H)$.

Lemma A set $\mathcal{A} \subset \mathcal{K}_+(\mathcal{X})$ is compact iff there exists a compact $\mathcal{C} \subset \mathcal{X}$ such that $\mathcal{K} \subset \mathcal{C}$ for all $\mathcal{K} \in \mathcal{A}$.

Lemma Let $K_n \in \mathcal{K}_+(\mathcal{X})$ and let

$$\operatorname{Lim}((K_n)) := \{ x \in \mathcal{X} : \exists x_n \in K_n \text{ s.t. } x_n \xrightarrow[n \to \infty]{} x \}, \\ \operatorname{Clus}((K_n)) := \{ x \in \mathcal{X} : \exists n(k) \to \infty, x_{n(k)} \in K_{n(k)} \text{ s.t. } x_{n(k)} \xrightarrow[k \to \infty]{} x \}.$$

Then $d_{\mathrm{H}}(K_n, K) \xrightarrow[n \to \infty]{} 0$ iff (i). $\exists C \subset \mathcal{K}_+(\mathcal{X}) \text{ s.t. } K_n \subset C \forall n$, (ii). $\mathrm{Lim}(K) = K = \mathrm{Clus}(K)$. The topology on $\mathcal{K}_+(\mathcal{X})$ does not depend on the choice of the metric on \mathcal{X} .



It is possible to equip $\mathcal{R}(\overline{\mathbb{R}}) := \overline{\mathbb{R}} \times \mathbb{R} \cup \{(*, -\infty), (*, -\infty)\}$ with a metrisable topology such that $(x_n, t_n) \to (x, t)$ iff

・ 同 ト ・ ヨ ト ・ ヨ ト

(i).
$$t_n \rightarrow t$$
,
(ii). if $t \in \mathbb{R}$, then $x_n \rightarrow x$

The space of continuous paths

Let
$$\Pi_c$$
 denote the set of all π such that
(i). π is a compact subset of $\mathcal{R}(\overline{\mathbb{R}})$,
(ii). $(*, \pm \infty) \in \pi$,
(iii). $|\{x \in \overline{\mathbb{R}} : (x, t) \in \pi\}| \leq 1 \quad \forall t \in \mathbb{R}$.
For $\pi \in \Pi_c$, we set

$$I_{\pi} := \big\{ t \in \mathbb{R} : \exists x \in \overline{\mathbb{R}} \text{ s.t. } (x,t) \in \pi \big\},$$

and for $t \in I_{\pi}$, we let $\pi(t)$ denote the unique element of \mathbb{R} such that $(\pi(t), t) \in \pi$. Then $I_{\pi} \subset \mathbb{R}$ is closed and $\pi : I_{\pi} \to \mathbb{R}$ is continuous. Conversely, for each continuous function $f : I \to \mathbb{R}$ defined on a closed set $I \subset \mathbb{R}$, there exists a unique $\pi \in \Pi_c$ such that $I_{\pi} = I$ and p(t) = f(t) $(t \in I)$.

• • = • • = •

The space of continuous paths

Naturally $\Pi_c \subset \mathcal{K}_+(\mathcal{R}(\mathbb{R}))$. We equip Π_c with the induced topology. Informally, $\pi_n \to \pi$ iff $I_{\pi_n} \to I_{\pi}$ and the function $t \mapsto \pi_n(t)$ converges locally uniformly to $t \mapsto \pi(t)$.

We set

 $\Pi_{\mathrm{c}}^{|} := \big\{ \pi \in \Pi_{\mathrm{c}} : I_{\pi} \text{ is an interval} \big\}.$

For $\pi \in \Pi_c^{\downarrow}$, we call $\sigma_{\pi} := \inf I_{\pi}$ the starting time and $\tau_{\pi} := \sup I_{\pi}$ the final time,² and we set

$$\Pi_{\mathbf{c}}^{\uparrow} := \big\{ \pi \in \Pi_{\mathbf{c}}^{\mid} : \tau_{\pi} = \infty \big\}, \\ \Pi_{\mathbf{c}}^{\downarrow} := \big\{ \pi \in \Pi_{\mathbf{c}}^{\mid} : \sigma_{\pi} = -\infty \big\}.$$

Then $\Pi_c^{\dagger}, \Pi_c^{\uparrow}$, and Π_c^{\downarrow} are closed subsets of Π_c .

²By definition $\sigma_{\pi} := -\infty$ and $\tau_{\pi} := \infty$ if $I_{\pi} = \emptyset$.

The modulus of continuity of a path $\pi \in \Pi_c$ is defined as

$$m_{\mathcal{T},\delta}(\pi) := \sup \{ |x_1 - x_2| : (x_1, t_1), (x_2, t_2) \in \pi \cap [-\mathcal{T}, \mathcal{T}]^2, \\ |t_1 - t_2| \le \delta \}.$$

Recall that a set is called *precompact* if its closure is compact.

Compactness criterion A set $A \subset \Pi_c$ is precompact if and only if it is *equicontinuous*, i.e.,

$$\lim_{\delta\to 0}\sup_{\pi\in\mathcal{A}}m_{\mathcal{T},\delta}(\pi)=0\quad (\mathcal{T}<\infty).$$

This generalises the classical Arzela-Ascoli theorem.

Theorem Π_c is a Polish space.

Continuous streams

Let $\Pi_c^{\uparrow} := \Pi_c^{\uparrow} \cap \Pi_c^{\downarrow}$ denote the space of bi-infinite continuous paths. For $\pi_1, \pi_2 \in \Pi_c^{\uparrow}$, define $\pi_1 \lhd \pi_2$ iff $\pi_1(t) \le \pi_2(t)$ $(t \in \mathbb{R})$.

Def A stream³ is a set $\mathcal{F} \subset \Pi_c^{\updownarrow}$ such that

- *F* is compact,
- ► \mathcal{F} is *pervasive*, i.e., $\forall (x, t) \in \mathbb{R}^2 \exists \pi \in \mathcal{F} \text{ s.t. } (x, t) \in \pi$,

► \mathcal{F} is *noncrossing*, i.e., $\forall \pi_1, \pi_2 \in \mathcal{F}$ either $\pi_1 \triangleleft \pi_2$ or $\pi_2 \triangleleft \pi_1$. Given a random stream \mathcal{F} , we can define random maps $(\mathbb{X}_{s,t})_{s \leq t}$ and $(\hat{\mathbb{X}}_{t,s})_{t \geq s}$ on \mathbb{R} by

$$\begin{split} \mathbb{X}_{s,t}(x) &:= \sup \left\{ \pi(t) : \pi \in \mathcal{F}, \ \pi(s) = x \right\}, \\ \hat{\mathbb{X}}_{t,s}(x) &:= \sup \left\{ \pi(s) : \pi \in \mathcal{F}, \ \pi(t) = x \right\}, \end{split} \right\} \quad (s \leq t, \ x \in \overline{\mathbb{R}}).$$

Many monotone stochastic flows and their duals can be obtained from a stream in this way.

通 とう ほ とう ほう

³Or flow of paths.

Jan M. Swart (Czech Academy of Sciences) Weaves, webs and flows

Random streams \mathcal{F} and monotone stochastic flows $(\mathbb{X}_{s,t})_{s \leq t}$ are not in a one-to-one correspondence.

In general, the maps $(\mathbb{X}_{s,t})_{s \leq t}$ defined in terms of \mathcal{F} may fail to satisfy the stochastic flow property $\mathbb{X}_{t,u} \circ \mathbb{X}_{s,t} = \mathbb{X}_{s,u}$.

Let
$$\mathcal{F}_{(x,s)} := \{ \pi \in \mathcal{F} : \pi(s) = x \}.$$

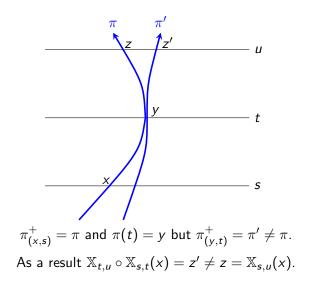
For each $x \in \mathbb{R}$ and $s \in \mathbb{R}$, there exist $\pi_{(x,s)}^{\pm} \in \mathcal{F}_{(x,s)}$ such that
 $\pi_{(x,s)}^{-} \lhd \pi \lhd \pi_{(x,s)}^{+} \qquad \forall \pi \in \mathcal{F}_{(x,s)}.$

One has

$$\mathbb{X}_{s,t}(x) = \pi^+_{(x,s)}(t).$$

向下 イヨト イヨト

Continuous streams



< ≣ ▶

Recall that the stochastic flow property

(ii)
$$\mathbb{X}_{t,u} \circ \mathbb{X}_{s,t} = \mathbb{X}_{s,u} \ (s \leq t \leq u)$$
 a.s.

sometimes has to be weakened to

(ii)'
$$\mathbb{X}_{t,u} \circ \mathbb{X}_{s,t} = \mathbb{X}_{s,u}$$
 a.s. $(s \leq t \leq u)$.

These difficulties stem from the need to make a choice (left- or right-continuous) at jumps of the function $x \mapsto X_{s,t}(x)$.

In a stream \mathcal{F} , multiple paths can pass through a point (x, s).

In many ways, a stream \mathcal{F} captures the intuitive idea of the "flow property" better than a stochastic flow $(\mathbb{X}_{s,t})_{s \leq t}$.

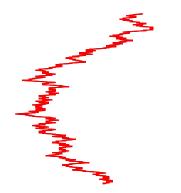
The Arratia flow $(\mathbb{X}_{s,t})_{s \leq t}$ and its dual $(\hat{\mathbb{X}}_{t,s})_{t \geq s}$ can be constructed in terms of a random stream \mathcal{F} .

This stream \mathcal{F} is known as the *full Brownian web*, introduced in [Fontes & Newman '06].

[Fontes, Isopi, Newman & Ravishankar (AoP 2004)] There exists a random compact subset $W \subset \Pi_c^{\uparrow}$, called the *Brownian web*, such that:

- (i). For deterministic $(x, s) \in \mathbb{R}^2$, there a.s. exists a unique $\pi_{(x,s)} \in \mathcal{W}$ with $\sigma_{\pi} = s$ and $\pi(s) = x$.
- (ii). For deterministic z₁,..., z_n, the paths π_{z1},..., π_{zn} are distributed as coalescing Brownian motions.
- (iii). For deterministic dense countable $\mathcal{D} \subset \mathbb{R}^2$, one has $\mathcal{W} = \overline{\{\pi_z : z \in \mathcal{D}\}}$ a.s.

通 と く ヨ と く ヨ と



Coalescing Brownian motions.

メロト メタト メヨト メヨト

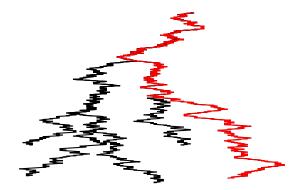
Jan M. Swart (Czech Academy of Sciences) Weaves, webs and flows

Coalescing Brownian motions.

<ロ> <四> <四> <三</p>

Coalescing Brownian motions.

Coalescing Brownian motions.



Coalescing Brownian motions.

Coalescing Brownian motions.

For a set $A \subset \mathbb{R}^2$, write $-A := \{-z : z \in A\}$. In particular, $-\pi$ is the path π rotated over 180°. Write $-W := \{-\pi : \pi \in W\}$.

Let $\mathcal W$ be a Brownian web. Then there exists an a.s. unique random set of paths $\hat{\mathcal W}\subset \Pi_c^\downarrow$ such that

(i). $\hat{\mathcal{W}}$ is equally distributed with $-\mathcal{W}$,

(ii). paths in $\hat{\mathcal{W}}$ do not cross paths in \mathcal{W} .

We call $\hat{\mathcal{W}}$ the *dual Brownian web* associated with \mathcal{W} .

For deterministic $(x, s) \in \mathbb{R}^2$, define

$$\overline{\pi}_{(x,s)}(t) := \left\{ egin{array}{ll} \pi_{(x,s)}(t) & ext{ if } s \leq t, \ \widehat{\pi}_{(x,s)}(t) & ext{ if } t \leq s, \end{array}
ight.$$

where $\hat{\pi}_{(x,s)}$ is the a.s. unique path in $\hat{\mathcal{W}}$ starting in (x, s). The *full Brownian web* is the random stream \mathcal{F} defined as

$$\mathcal{F}:=\overline{\{\overline{\pi}_{(x,s)}:(x,s)\in\mathcal{D}\}},$$

where \mathcal{D} is any deterministic countable dense subset of \mathbb{R}^2 .

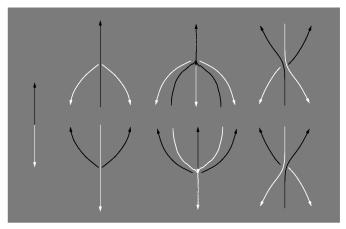
The web / stream point of view has lead to a better understanding of the Arratia flow.

A natural concept of convergence. Webs and streams are random variables taking values in the spaces $\mathcal{K}_+(\Pi_c^{\uparrow})$ and $\mathcal{K}_+(\Pi_c^{\downarrow})$, which are naturally equipped with the Hausdorff topology.

A better understanding of discontinuities. Points (x, t) where $\mathcal{F}_{(x,t)}$ contains more than one path correspond to discontinuities of the maps $x \mapsto \mathbb{X}_{t,u}(x)$ and $x \mapsto \hat{\mathbb{X}}_{t,s}(x)$ (s < t < u).

• • = • • = •

Special points of the Brownian web



Special points of the Brownian web.

I ← E → I ← E →

Aim Develop a general theory of streams \mathcal{F} and webs \mathcal{W} , which allows for monotone stochastic flows with discontinuous *n*-point motions.

On the following slide, we use the notation $[a, b] := [a \land b, a \lor b]$.

向下 イヨト イヨト

The space of cadlag paths

Let Π denote the set of all pairs (π, \preceq) such that (i). π is a compact subset of $\mathcal{R}(\overline{\mathbb{R}})$, (ii). $(*, \pm \infty) \in \pi$, (iii). $\{x \in \overline{\mathbb{R}} : (x, t) \in \pi\}$ is an interval $\forall t \in \mathbb{R}$, (iv). \preceq is a total order on π , (v). $\pi^{\langle 2 \rangle} := \{(z, z') \in \pi^2 : z \preceq z'\}$ is a closed subset of $\mathcal{R}(\overline{\mathbb{R}})^2$, (vi). $(x, s) \preceq (y, t)$ for all $(x, s), (y, t) \in \pi$ with s < t. For $\pi \in \Pi$, we set

$$I_{\pi} := \big\{ t \in \mathbb{R} : \exists x \in \overline{\mathbb{R}} \text{ s.t. } (x, t) \in \pi \big\},$$

and for $t\in \mathit{I}_{\pi}$, we define $\pi(t\pm)$ by

$$\{x \in \overline{\mathbb{R}} : (x,t) \in \pi\} =: [\pi(t-),\pi(t+)]$$

with $(\pi(t-),t) \preceq (\pi(t-),t).$

• • = • • = •

For all $(\pi, \preceq) \in \Pi$,

► $I := I_{\pi} \subset \mathbb{R}$ is closed,

►
$$I \ni t \mapsto \pi(t-)$$
 is left-continuous,

- ▶ $I \ni t \mapsto \pi(t+)$ is right-continuous,
- ▶ if $t \in I$ can be approximated from the left, then $\pi(t-) = \lim_{I \ni s \uparrow t} \pi(s+)$,
- ▶ if $t \in I$ can be approximated from the right, then $\pi(t+) = \lim_{I \ni u \downarrow t} \pi(u-)$.

Conversely, each pair of functions $I \ni t \mapsto \pi(t-)$ and $I \ni t \mapsto \pi(t+)$ with these properties, defined on a closed subset $I \subset \mathbb{R}$, corrresponds to a path $(\pi, \preceq) \in \Pi$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

We can think of $t \mapsto \pi(t+)$ as a cadlag function whose left-continuous modification is $t \mapsto \pi(t-)$.

However, the functions $t \mapsto \pi(t+)$ and $t \mapsto \pi(t-)$ do not determine each other uniquely, since $\pi(t-) = \lim_{I \ni s \uparrow t} \pi(s+)$ only if $t \in I$ can be approximated from the left, and $\pi(t+) = \lim_{I \ni u \downarrow t} \pi(u-)$. only if $t \in I$ can be approximated from the right.

We allow for the case that $\pi(t-) \neq \pi(t+)$ at such points.

In particular, if $I_{\pi} = [s, \infty)$, then we allow for the case that $\pi(s-) \neq \pi(s+)$.

In this case $t \mapsto \pi(t+)$ is uniquely determined by $t \mapsto \pi(t-)$ but not vice versa.

日本・モト・モト・モ

The space of cadlag paths

Recall $\pi^{\langle 2 \rangle} := \{(z, z') \in \pi^2 : z \leq z'\} \subset \mathcal{R}(\overline{\mathbb{R}})^2 \text{ is compact.}$ Let *d* be any metric generating the topology on $\mathcal{R}(\overline{\mathbb{R}})$. Let d^2 be the metric on $\mathcal{R}(\overline{\mathbb{R}})^2$ defined as

$$d^{2}((z_{1},z_{1}'),(z_{2},z_{2}')) := d(z_{1},z_{2}) \vee d(z_{1}',z_{2}'),$$

let $d_{
m H}^2$ denote the associated Hausdorff metric on $\mathcal{K}_+(\mathcal{R}(\overline{\mathbb{R}})^2)$, and set

$$d_{\mathrm{part}}(\pi_1,\pi_2) := d_{\mathrm{H}}^2(\pi_1^{\langle 2
angle},\pi_2^{\langle 2
angle}) \qquad ig(\pi_1,\pi_2\in \mathsf{\Pi}ig).$$

Let $\operatorname{Corr}_+(\pi_1, \pi_2)$ denote the set of all correspondences R between π_1 and π_2 that are *monotone* in the sense that

there are no $(z_1, z_2), (z_1', z_2') \in R$ such that $z_1 \prec_1 z_1'$ and $z_2' \prec_2 z_2$, and set

$$d_{\text{tot}}(\pi_1, \pi_2) := \inf_{R \in \text{Cor}_+(\pi_1, \pi_2)} \sup_{(z_1, z_2) \in R} d(z_1, z_2) \qquad (\pi_1, \pi_2 \in \Pi).$$

Theorem One has

$$d_{\mathrm{H}}(\pi_1,\pi_2) \leq d_{\mathrm{part}}(\pi_1,\pi_2) \leq d_{\mathrm{tot}}(\pi_1,\pi_2) \qquad (\pi_1,\pi_2\in\Pi),$$

and $d_{\rm part}$ and $d_{\rm tot}$ generate the same topology on Π .

We can naturally view Π_c as a subset of $\Pi.$ Then the topology on Π_c is the induced topology from $\Pi.$

Informally, $\pi_n \to \pi$ iff $I_{\pi_n} \to I_{\pi}$ and the function $t \mapsto \pi_n(t)$ converges in *Skorohod's M1-topology* to $t \mapsto \pi(t)$.

If we replace

3. $\{x \in \overline{\mathbb{R}} : (x, t) \in \pi\}$ is an interval $\forall t \in \mathbb{R}$,

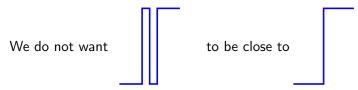
by

3'.
$$|\{x \in \overline{\mathbb{R}} : (x, t) \in \pi\}| \le 2 \ \forall t \in \mathbb{R},$$

then we obtain Skorohod's J1-topology.

If we ignore the total order of paths and just measure their Hausdorff distance as sets, then we obtain *Skorohod's M2-topology* and *Skorohod's J2-topology* instead.

Problem of these topologies:



The space of cadlag paths

We define $\Pi^{\uparrow}, \Pi^{\uparrow}, \Pi^{\downarrow}$, and Π^{\updownarrow} as before. Paths in Π^{\uparrow} can jump at their starting time.

We define the *M1-modulus of continuity* $m_{T,\delta}^{\mathrm{M1}}(\pi)$ of a path $\pi \in \Pi$ as

$$\sup \left\{ d(x_2, [x_1, x_3]) : (x_1, t_1), (x_2, t_2), (x_3, t_3) \in \pi \cap [-T, T]^2, \\ (x_1, t_1) \preceq (x_2, t_2) \preceq (x_3, t_3), \ t_3 - t_1 \leq \delta \right\}.$$

Compactness criterion A set $A \subset \Pi$ is precompact if and only if it is *M1-equicontinuous*, i.e.,

$$\lim_{\delta\to 0}\sup_{\pi\in\mathcal{A}}m_{T,\delta}^{\mathrm{M1}}(\pi)=0\quad (T<\infty).$$

Theorem Π is a Polish space and $\Pi^{|}, \Pi^{\uparrow}, \Pi^{\downarrow}$, and Π^{\updownarrow} are closed subsets of Π .

Recall that $\pi_1 \lhd \pi_2$ for $\pi_1, \pi_2 \in \Pi^{\uparrow}$ is defined as $\pi_1(t\pm) \le \pi_2(t\pm)$ $(t \in \mathbb{R}).$

For $\pi_1, \pi_2 \in \Pi^{\uparrow}$, we define $\pi_1 \lhd \pi_2$ iff

there exist $\pi'_1, \pi'_2 \in \Pi^{\updownarrow}$ s.t. $\pi_i \subset \pi'_i$ (i = 1, 2) and $\pi'_1 \lhd \pi'_2$.

Def A *weave* is a set $\mathcal{A} \subset \Pi^{\uparrow}$ such that

- A is compact,
- \mathcal{A} is pervasive, i.e., $\forall (x,t) \in \mathbb{R}^2 \ \exists \pi \in \mathcal{A} \text{ s.t. } (x,t) \in \pi$,

• \mathcal{A} is noncrossing, i.e., $\forall \pi_1, \pi_2 \in \mathcal{A}$ either $\pi_1 \lhd \pi_2$ or $\pi_2 \lhd \pi_1$. A stream is a weave \mathcal{F} such that $\mathcal{F} \subset \Pi^{\updownarrow}$.

• • = • • = •

For any $\mathcal{A} \subset \Pi^{\uparrow}$, we define

$$\mathcal{A}_{\mathrm{in}} := \left\{ \pi \in \Pi^{\uparrow} : \exists \pi' \in \mathcal{A} \text{ s.t. } \pi \subset \pi'
ight\}.$$

We say that \mathcal{A} is inclusion-closed if $\mathcal{A}_{\mathrm{in}} = \mathcal{A}$.

A web is a minimal inclusion-closed weave, i.e., a weave $\ensuremath{\mathcal{W}}$ such that

(i). $\mathcal{W}_{in} = \mathcal{W}$, (ii). if \mathcal{A} is a weave such that $\mathcal{A}_{in} = \mathcal{A}$ and $\mathcal{A} \subset \mathcal{W}$, then $\mathcal{A} = \mathcal{W}$. **Theorem** For each weave \mathcal{A} , there exist a unique web $\mathcal{W} =: web(\mathcal{A})$ and stream $\mathcal{F} =: stream(\mathcal{A})$ such that $\mathcal{W} \subset \mathcal{A}_{in}$ and $\mathcal{A} \subset \mathcal{F}_{in}$.

> < E > < E > <</p>

Note that $\mathcal{A} \subset \mathcal{F}_{in}$ implies that the paths of a weave can be extended to bi-infinite paths that do not cross!

Let ${\mathscr W}$ be the space of weaves. Setting

$$\mathcal{A} \leq \mathcal{B} \quad \textit{iff} \quad \mathcal{A}_{\mathrm{in}} \cap \mathcal{B} \subset \mathcal{A} \subset \mathcal{B}$$

defines a partial order on ${\mathscr W}$ such that

•
$$\mathcal{A}$$
 is a web $\Leftrightarrow \mathcal{A} = \mathcal{A}'$ for all $\mathcal{A}' \leq \mathcal{A}$,

•
$$\mathcal{A}$$
 is a stream $\Leftrightarrow \mathcal{A} = \mathcal{A}'$ for all $\mathcal{A} \leq \mathcal{A}'$.

Edges

For $\pi \in \Pi^{\updownarrow}$ and $z \in \pi$, let

 $\pi^{\uparrow}(z):=\{z'\in\pi: z\prec z'\} \quad ext{and} \quad \pi^{\downarrow}(z):=\{z'\in\pi: z'\prec z\}.$

A separation point of paths $\pi_1, \pi_2 \in \Pi^{\updownarrow}$ is a point $z \in \pi_1 \cap \pi_2$ such that

$$\pi_1^{\downarrow}(z) = \pi_2^{\downarrow}(z),$$

and no point $z' \in \pi_1 \cap \pi_2$ with $z \prec z'$ has this property.

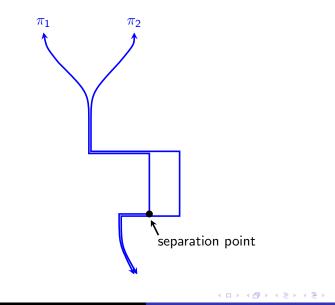
For $\pi_1, \pi_2 \in \Pi^{\updownarrow}$ with $\pi_1 \lhd \pi_2$, we define $B = B(\pi_1, \pi_2)$ by

$$\mathcal{B} := \{(x,t) \in \mathbb{R}^2 : \pi_1(t-) \land \pi_1(t+) \le x \le \pi_2(t-) \lor \pi_2(t+)\}.$$

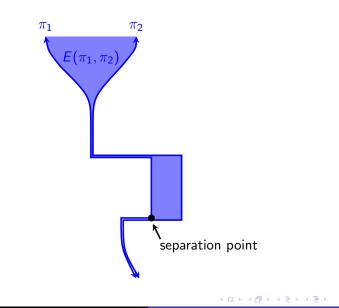
If π_1, π_2 have a separation point z, then we define the *edge* created by π_1 and π_2 as

$$E(\pi_1,\pi_2):=B(\pi_1,\pi_2)\backslash \pi_1^{\downarrow}(z),$$

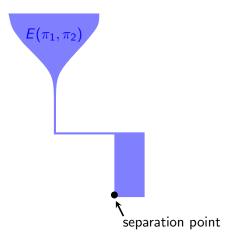
and we set $E(\pi_1,\pi_2):=B(\pi_1,\pi_2)$ otherwise.



æ,



æ



ヘロア 人間 アメヨア 人間 アー

æ,

We say that π_1 crosses π_2 if neither $\pi_1 \lhd \pi_2$ nor $\pi_2 \lhd \pi_1$.

A path π enters an edge E if $\exists z, z' \in \pi$ with $z \leq z'$, $z \notin E$, $z' \in \mathring{E}$.

For a weave ${\mathcal A}$ and stream ${\mathcal F}$, one has

stream(
$$\mathcal{A}$$
) = { $\pi \in \Pi^{\uparrow} : \pi$ does not cross paths $\pi' \in \mathcal{A}$ },
web(\mathcal{F}) = { $\pi \in \Pi^{\uparrow} : \pi$ does not enter $E(\pi_1, \pi_2)$
for $\pi_1, \pi_2 \in \mathcal{F}, \ \pi_1 \lhd \pi_2$ }.

For the Brownian web \mathcal{W} and full Browian web \mathcal{F} one has $\mathcal{F} = \operatorname{stream}(\mathcal{W})$ and $\mathcal{W} = \operatorname{web}(\mathcal{F})$.

We equip the space of weaves $\mathscr{W} \subset \mathcal{K}_+(\Pi)$ with the Hausdorff topology.

Theorem \mathscr{W} is a Polish space.

We define the antagonism modulus $\mathfrak{a}_{\mathcal{T},\delta}(\mathcal{A})$ of a weave \mathcal{A} as

$$\sup \left\{ \begin{array}{l} |z_2 - z_1| \lor |z'_2 - z'_1| : z_i, z'_i \in [-T, T]^2, \ |z_i - z'_i| \le \delta \ (i = 1, 2) \\ \exists \pi, \pi' \in \mathcal{A} \text{ s.t. } z_1, z_2 \in \pi, \ z_1 \preceq z_2, \ z'_1, z'_2 \in \pi', \ z'_2 \preceq z'_1 \end{array} \right\}$$

Compactness criterion A set $\mathscr{A} \subset \mathscr{W}$ is precompact if and only if

$$\lim_{\delta\to 0} \sup_{\mathcal{A}\in\mathscr{A}} \mathfrak{a}_{\mathcal{T},\delta}(\mathcal{A}) = 0 \quad (\mathcal{T} < \infty).$$

• • = • • = •

A ramification point of a stream \mathcal{F} is a point $z \in \mathbb{R}^2$ such that $|\mathcal{F}_z| > 1$.

Theorem The set of ramification points of a stream has Lebesgue measure zero.

For a path π and $z' \in \mathbb{R}^2$ set $\pi + z' := \{z + z' : z \in \pi\}$. For a set of paths \mathcal{A} set $\mathcal{A} + z' := \{\pi + z' : \pi \in \mathcal{A}\}$.

A random stream \mathcal{F} is *homogeneous* if $\mathcal{F} \stackrel{d}{=} \mathcal{F} + z'$ $(z' \in \mathbb{R}^2)$.

Corollary If \mathcal{F} is a homogeneous random stream, then for each deterministic $(x, s) \in \mathbb{R}^2$, there a.s. exists a unique $\pi_{(x,s)} := \pi \in \mathcal{F}$ such that $\pi(s) = x$.

ヨト イヨト イヨト

Theorem Let $\mathcal{F}^n, \mathcal{F}$ be homogeneous streams. Then

$$\mathbb{P}\big[\mathcal{F}^n \in \,\cdot\,\big] \underset{n \to \infty}{\Longrightarrow} \mathbb{P}\big[\mathcal{F} \in \,\cdot\,\big]$$

in the sense of weak convergence of probability laws on ${\mathscr W}$ if and only if

$$\mathbb{P}\big[(\pi_{z_1}^n,\ldots,\pi_{z_m}^n)\in\,\cdot\,\big] \underset{n\to\infty}{\Longrightarrow} \mathbb{P}\big[(\pi_{z_1},\ldots,\pi_{z_m})\in\,\cdot\,\big]$$

in the sense of weak convergence of probability laws on $(\Pi^{\uparrow})^n$ for all $z_1, \ldots, z_m \in \mathbb{R}^2$.

The map $\operatorname{stream}(\cdot): \mathscr{W} \to \mathscr{W}$ is continuous but $\operatorname{web}(\cdot)$ is not.

Weak convergence in law of webs implies the same for streams, but the converse implication does not hold.

• (1) • (2) • (3) • (3) • (3)

For a path π set $\pi \cap [s, u] := \{(x, t) \in \pi : t \in [s, u]\}.$ For a set of paths \mathcal{A} set $\mathcal{A} \cap [s, u] := \{\pi \cap [s, u] : \pi \in \mathcal{A}\}.$

A random stream \mathcal{F} has independent increments if

 $\mathcal{F} \cap [t_0, t_1], \ldots \mathcal{F} \cap [t_{n-1}, t_n] \quad \text{are independent } \forall t_0 < \cdots < t_n.$

Theorem Let $\ensuremath{\mathcal{F}}$ be a homogeneous stream with independent increments. Then

$$\begin{split} \mathbb{X}_{s,t}(x) &:= \sup \left\{ \pi(t) : \pi \in \mathcal{F}, \ \pi(s) = x \right\}, \\ \hat{\mathbb{X}}_{t,s}(x) &:= \sup \left\{ \pi(s) : \pi \in \mathcal{F}, \ \pi(t) = x \right\}, \end{split} \right\} \quad (s \leq t, \ x \in \overline{\mathbb{R}}).$$

define a monotone stochastic flow (in the weak sense of (ii)') and its associated dual flow.

(日本)(日本)(日本)