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Stochastic flows

Let (Ω,F ,P) and X be a probability space and a measurable space.
By definition, a stochastic flow on X is a collection (Xs,t)s≤t of
random maps Xs,t : X → X , such that:

(i). (s, t, ω, x) 7→ Xs,t [ω](x) is jointly measurable as a function on
{(s, t) ∈ R2 : s ≤ t} × Ω×X .

(ii). Xs,s = Id and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u).

Sometimes (ii) is required only for deterministic s ≤ t ≤ u, i.e.,

(ii)’. Xs,s = Id and Xt,u ◦ Xs,t = Xs,u a.s. (s ≤ t ≤ u).

A stochastic flow (Xs,t)s≤t is stationary if:

(iii). (Xs,t)s≤t is equal in law to (Xs+r ,t+r )s≤t for all r ∈ R,
and we say that (Xs,t)s≤t has independent increments if:

(iv). Xt0,t1 , . . . ,Xtn−1,tn are independent for all t0 ≤ · · · ≤ tn.
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Stochastic flows

If (Xs,t)s≤t is a stochastic flow with independent increments,
s ∈ R, and X0 is an independent X -valued random variable, then
setting

Xt := Xs,s+t(X0) (t ≥ 0)

defines a Markov process (Xt)t≥0. If (Xs,t)s≤t is stationary, then
(Xt)t≥0 is time-homogeneous.

Many Markov processes can be constructed from stochastic flows.
Examples:

▶ Markov processes constructed from Poisson point processes.

▶ Strong solutions to stochastic differential equations relative to
a fixed driving Brownian motion.
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Stochastic flows

If X⃗0 = (X 1
0 , . . . ,X

n
0 ) is an X n-valued random variable,

independent of (Xs,t)s≤t , then setting

X i
t := Xs,s+t(X

i
0) (t ≥ 0, 1 ≤ i ≤ n)

defines a stochastic process (X⃗t)t≥0. These n-point motions satisfy
a natural consistency property.
Le Jan and Raimond (AoP 2004) have shown that each consistent
family of Feller processes gives rise to a stationary stochastic flow
(in the weak sense of (ii)’) with independent increments.

Def a stochastic flow (Xs,t)s≤t on R is monotone if for each
s ≤ t, the map Xs,t : R → R is nondecreasing and
right-continuous with limx→±∞Xs,t(x) = ±∞.
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The Arratia flow

The n-point motions of the Arratia flow
are coalescing Brownian motions.
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Harris flows

By definition, a correlation function is a continuous function
ρ : R → [−1, 1] such that:

(i). ρ is continuous with ρ(0) = 1,

(ii). for each x1, . . . , xn ∈ R, setting Mij := ρ(xi − xj) defines a
positive semidefinite matrix.

By Bochner’s theorem, if µ is a symmetric probability measure on
R, then

ρ(x) :=

∫ ∞

−∞
µ(dy)e−2πixy (x ∈ R)

defines a correlation function, and each correlation function is of
this form.
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Harris flows

Harris (SPA 1984) proved that if ρ is a correlation function, then
for each initial state in Rn, there exists a unique solution to the
martingale problem for the operator

Gf (x1, . . . , xn) :=
1
2

n∑
i ,j=1

ρ(xi − xj)
∂2

∂xi∂xj
f (x),

with the additional condition that paths coalesce once they meet.1

The solutions to this martingale problem are correlated Brownian
motions that form the n-point motions for a Harris flow (Xs,t)s≤t .

lim
t→0

t−1E
[
(X0,t(x)− x)(X0,t(y)− y)

]
= ρ(x − y).

1Paths meet a.s. iff

∫
0+

x

1− ρ(x)
dx < ∞.

Ha
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Monotone Lévy flows

x

fa,b(x)

a b

fa,b(x) :=

{
a if a < x < b or b < x < a

x otherwise.
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Monotone Lévy flows
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Monotone Lévy flows

Let ν be a locally finite measure on A := R2\
{
(a, a) : a ∈ R

}
and let ℓ denote the Lebesgue measure on R.
Let ω ⊂ A× R be a Poisson point set with intensity ν ⊗ ℓ.

Under suitable assumptions in ν, it should be possible to define a
stochastic flow with the following informal description:

For each (a, b, t) ∈ ω, we apply the map fa,b at time t.
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Monotone Lévy flows

R

time

The n-point motions are then coalescing Lévy processes.
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Jan M. Swart (Czech Academy of Sciences) Weaves, webs and flows



Monotone Lévy flows
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Dual stochastic flows

Let M be the space of nondecreasing and right-continuous
functions f : R → R with limx→±∞ f (x) = ±∞.
We define the generalised inverse of f ∈ M as

f −1(y) := inf
{
x ∈ R : f (x) > y

}
.

Let (Xs,t)s≤t be a monotone stochastic flow on R.

Then setting
X̂t,s := X−1

s,t (s ≤ t)

defines a dual stochastic flow in the sense that

X̂s,s = Id and X̂t,s ◦ X̂u,t = X̂u,s (u ≥ t ≥ s).
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Dual stochastic flows

For the Arratia flow, the n-point motions of the dual stochastic
flow are backward coalescing Brownian motions.

For Harris flows, the n-point motions of the dual stochastic flow
are correlated backward coalescing Brownian motions.

For monotone Lévy flows, the n-point motions of the dual
stochastic flow are coalescing Lévy processes.
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The Hausdorff metric

Let (X , d) be a metric space. Let d(x ,A) := inf{d(x , y) : y ∈ A}.

Let K(X ) be the set of all compact subsets of X
and let K+(X ) := {K ∈ K(X ) : K ̸= ∅}.

The Hausdorff metric on K+(X ) is defined as

dH(K1,K2) := sup
x1∈K1

d(x1,K2) ∨ sup
x2∈K2

d(x2,K1).

A correspondence between A1,A2 is a set R ⊂ A1 × A2 such that:

∀xi ∈ Ai ∃xj ∈ Aj s.t. (xi , xj) ∈ R
(
(i , j) = (1, 2), (2, 1)

)
.

Let Cor(A1,A2) denote the set of all correspondences between
A1,A2. Then

dH(K1,K2) = inf
R∈Cor(K1,K2)

sup
(x1,x2)∈R

d(x1, x2).
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The Hausdorff metric

Lemma If (X , d) is separable, then so is (K+(X ), dH).
If (X , d) is complete, then so is (K+(X ), dH).

Lemma A set A ⊂ K+(X ) is compact iff there exists a compact
C ⊂ X such that K ⊂ C for all K ∈ A.

Lemma Let Kn ∈ K+(X ) and let

Lim
(
(Kn)

)
:=

{
x ∈ X : ∃xn ∈ Kn s.t. xn −→

n→∞
x
}
,

Clus
(
(Kn)

)
:=

{
x ∈ X : ∃ n(k)→∞, xn(k) ∈ Kn(k) s.t. xn(k) −→

k→∞
x
}
.

Then dH(Kn,K ) −→
n→∞

0 iff

(i). ∃C ⊂ K+(X ) s.t. Kn ⊂ C ∀n,
(ii). Lim(K ) = K = Clus(K ).

The topology on K+(X ) does not depend on the choice of the
metric on X .
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Squeezed space

Let R := [−∞,∞].

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

It is possible to equip R(R) := R× R ∪
{
(∗,−∞), (∗,−∞)

}
with

a metrisable topology such that (xn, tn) → (x , t) iff

(i). tn → t,

(ii). if t ∈ R, then xn → x .
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The space of continuous paths

Let Πc denote the set of all π such that

(i). π is a compact subset of R(R),
(ii). (∗,±∞) ∈ π,

(iii).
∣∣{x ∈ R : (x , t) ∈ π}

∣∣ ≤ 1 ∀t ∈ R.
For π ∈ Πc, we set

Iπ :=
{
t ∈ R : ∃x ∈ R s.t. (x , t) ∈ π

}
,

and for t ∈ Iπ, we let π(t) denote the unique element of R such
that

(
π(t), t

)
∈ π.

Then Iπ ⊂ R is closed and π : Iπ → R is continuous.
Conversely, for each continuous function f : I → R defined on a
closed set I ⊂ R, there exists a unique π ∈ Πc such that Iπ = I
and p(t) = f (t) (t ∈ I ).
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The space of continuous paths

Naturally Πc ⊂ K+(R(R)).
We equip Πc with the induced topology.
Informally, πn → π iff Iπn → Iπ and the function t 7→ πn(t)
converges locally uniformly to t 7→ π(t).

We set
Π|
c :=

{
π ∈ Πc : Iπ is an interval

}
.

For π ∈ Π
|
c, we call σπ := inf Iπ the starting time

and τπ := sup Iπ the final time,2 and we set

Π↑
c :=

{
π ∈ Π|

c : τπ = ∞
}
,

Π↓
c :=

{
π ∈ Π|

c : σπ = −∞
}
.

Then Π
|
c,Π

↑
c , and Π↓

c are closed subsets of Πc.

2By definition σπ := −∞ and τπ := ∞ if Iπ = ∅.
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The space of continuous paths

The modulus of continuity of a path π ∈ Πc is defined as

mT ,δ(π) := sup
{
|x1 − x2| : (x1, t1), (x2, t2) ∈ π ∩ [−T ,T ]2,

|t1 − t2| ≤ δ
}
.

Recall that a set is called precompact if its closure is compact.

Compactness criterion A set A ⊂ Πc is precompact if and only if
it is equicontinuous, i.e.,

lim
δ→0

sup
π∈A

mT ,δ(π) = 0 (T < ∞).

This generalises the classical Arzela-Ascoli theorem.

Theorem Πc is a Polish space.
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Continuous streams

Let Π
↕
c := Π↑

c ∩Π↓
c denote the space of bi-infinite continuous paths.

For π1, π2 ∈ Π
↕
c , define π1 ◁ π2 iff π1(t) ≤ π2(t) (t ∈ R).

Def A stream3 is a set F ⊂ Π
↕
c such that

▶ F is compact,

▶ F is pervasive, i.e., ∀(x , t) ∈ R2 ∃π ∈ F s.t. (x , t) ∈ π,

▶ F is noncrossing, i.e., ∀π1, π2 ∈ F either π1 ◁ π2 or π2 ◁ π1.

Given a random stream F , we can define random maps (Xs,t)s≤t

and (X̂t,s)t≥s on R by

Xs,t(x) := sup
{
π(t) : π ∈ F , π(s) = x

}
,

X̂t,s(x) := sup
{
π(s) : π ∈ F , π(t) = x

}
,

}
(s ≤ t, x ∈ R).

Many monotone stochastic flows and their duals can be obtained
from a stream in this way.

3Or flow of paths.
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Continuous streams

Random streams F and monotone stochastic flows (Xs,t)s≤t are
not in a one-to-one correspondence.

In general, the maps (Xs,t)s≤t defined in terms of F may fail to
satisfy the stochastic flow property Xt,u ◦ Xs,t = Xs,u.

Let F(x ,s) := {π ∈ F : π(s) = x}.

For each x ∈ R and s ∈ R, there exist π±
(x ,s) ∈ F(x ,s) such that

π−
(x ,s) ◁ π ◁ π+

(x ,s) ∀π ∈ F(x ,s).

One has
Xs,t(x) = π+

(x ,s)(t).
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Continuous streams

s

t

u

π π′

x

y

z z ′

π+
(x ,s) = π and π(t) = y but π+

(y ,t) = π′ ̸= π.

As a result Xt,u ◦ Xs,t(x) = z ′ ̸= z = Xs,u(x).
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Continuous streams

Recall that the stochastic flow property

(ii) Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u) a.s.

sometimes has to be weakened to

(ii)’ Xt,u ◦ Xs,t = Xs,u a.s. (s ≤ t ≤ u).

These difficulties stem from the need to make a choice (left- or
right-continuous) at jumps of the function x 7→ Xs,t(x).

In a stream F , multiple paths can pass through a point (x , s).

In many ways, a stream F captures the intuitive idea of the
“flow property” better than a stochastic flow (Xs,t)s≤t .
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The Brownian web

The Arratia flow (Xs,t)s≤t and its dual (X̂t,s)t≥s can be
constructed in terms of a random stream F .

This stream F is known as the full Brownian web,
introduced in [Fontes & Newman ’06].

[Fontes, Isopi, Newman & Ravishankar (AoP 2004)]

There exists a random compact subset W ⊂ Π↑
c , called the

Brownian web, such that:

(i). For deterministic (x , s) ∈ R2, there a.s. exists a unique
π(x ,s) ∈ W with σπ = s and π(s) = x .

(ii). For deterministic z1, . . . , zn, the paths πz1 , . . . , πzn are
distributed as coalescing Brownian motions.

(iii). For deterministic dense countable D ⊂ R2, one has
W = {πz : z ∈ D} a.s.
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The Brownian web

Coalescing Brownian motions.
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The Brownian web

Coalescing Brownian motions.
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The dual Brownian web

For a set A ⊂ R2, write −A := {−z : z ∈ A}.
In particular, −π is the path π rotated over 180◦.
Write −W := {−π : π ∈ W}.

Let W be a Brownian web. Then there exists an a.s. unique
random set of paths Ŵ ⊂ Π↓

c such that

(i). Ŵ is equally distributed with −W,

(ii). paths in Ŵ do not cross paths in W.

We call Ŵ the dual Brownian web associated with W.
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The full Brownian web

For deterministic (x , s) ∈ R2, define

π(x ,s)(t) :=

{
π(x ,s)(t) if s ≤ t,

π̂(x ,s)(t) if t ≤ s,

where π̂(x ,s) is the a.s. unique path in Ŵ starting in (x , s).

The full Brownian web is the random stream F defined as

F := {π(x ,s) : (x , s) ∈ D},

where D is any deterministic countable dense subset of R2.
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The full Brownian web

The web / stream point of view has lead to a better understanding
of the Arratia flow.

A natural concept of convergence. Webs and streams are random

variables taking values in the spaces K+(Π
↑
c) and K+(Π

↕
c), which

are naturally equipped with the Hausdorff topology.

A better understanding of discontinuities. Points (x , t) where
F(x ,t) contains more than one path correspond to discontinuities of

the maps x 7→ Xt,u(x) and x 7→ X̂t,s(x) (s < t < u).
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Special points of the Brownian web

Special points of the Brownian web.
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Streams and webs

Aim Develop a general theory of streams F and webs W, which
allows for monotone stochastic flows with discontinuous n-point
motions.

On the following slide, we use the notation [a, b] := [a ∧ b, a ∨ b].
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The space of cadlag paths

Let Π denote the set of all pairs (π,⪯) such that

(i). π is a compact subset of R(R),
(ii). (∗,±∞) ∈ π,

(iii). {x ∈ R : (x , t) ∈ π} is an interval ∀t ∈ R,
(iv). ⪯ is a total order on π,

(v). π⟨2⟩ := {(z , z ′) ∈ π2 : z ⪯ z ′} is a closed subset of R(R)2,
(vi). (x , s) ⪯ (y , t) for all (x , s), (y , t) ∈ π with s < t.

For π ∈ Π, we set

Iπ :=
{
t ∈ R : ∃x ∈ R s.t. (x , t) ∈ π

}
,

and for t ∈ Iπ, we define π(t±) by

{x ∈ R : (x , t) ∈ π} =: [π(t−), π(t+)]

with
(
π(t−), t

)
⪯

(
π(t−), t

)
.
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The space of cadlag paths

For all (π,⪯) ∈ Π,

▶ I := Iπ ⊂ R is closed,

▶ I ∋ t 7→ π(t−) is left-continuous,

▶ I ∋ t 7→ π(t+) is right-continuous,

▶ if t ∈ I can be approximated from the left, then
π(t−) = limI∋s↑t π(s+),

▶ if t ∈ I can be approximated from the right, then
π(t+) = limI∋u↓t π(u−).

Conversely, each pair of functions I ∋ t 7→ π(t−) and
I ∋ t 7→ π(t+) with these properties, defined on a closed subset
I ⊂ R, corrresponds to a path (π,⪯) ∈ Π.

We can think of t 7→ π(t+) as a cadlag function whose
left-continuous modification is t 7→ π(t−).
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The space of cadlag paths

However, the functions t 7→ π(t+) and t 7→ π(t−) do not
determine each other uniquely, since
π(t−) = limI∋s↑t π(s+) only if t ∈ I can be approximated
from the left, and
π(t+) = limI∋u↓t π(u−). only if t ∈ I can be approximated
from the right.

We allow for the case that π(t−) ̸= π(t+) at such points.

In particular, if Iπ = [s,∞), then we allow for the case that
π(s−) ̸= π(s+).

In this case t 7→ π(t+) is uniquely determined
by t 7→ π(t−) but not vice versa.
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The space of cadlag paths

Recall π⟨2⟩ := {(z , z ′) ∈ π2 : z ⪯ z ′} ⊂ R(R)2 is compact.
Let d be any metric generating the topology on R(R).
Let d2 be the metric on R(R)2 defined as

d2
(
(z1, z

′
1), (z2, z

′
2)
)
:= d(z1, z2) ∨ d(z ′1, z

′
2),

let d2
H denote the associated Hausdorff metric on K+

(
R(R)2

)
, and

set
dpart(π1, π2) := d2

H(π
⟨2⟩
1 , π

⟨2⟩
2 )

(
π1, π2 ∈ Π

)
.

Let Corr+(π1, π2) denote the set of all correspondences R between
π1 and π2 that are monotone in the sense that

there are no (z1, z2), (z
′
1, z

′
2) ∈ R such that z1 ≺1 z

′
1 and z ′2 ≺2 z2,

and set

dtot(π1, π2) := inf
R∈Cor+(π1,π2)

sup
(z1,z2)∈R

d(z1, z2)
(
π1, π2 ∈ Π

)
.
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The space of cadlag paths

Theorem One has

dH(π1, π2) ≤ dpart(π1, π2) ≤ dtot(π1, π2) (π1, π2 ∈ Π),

and dpart and dtot generate the same topology on Π.

We can naturally view Πc as a subset of Π. Then the topology on
Πc is the induced topology from Π.

Informally, πn → π iff Iπn → Iπ and the function t 7→ πn(t)
converges in Skorohod’s M1-topology to t 7→ π(t).

If we replace

3. {x ∈ R : (x , t) ∈ π} is an interval ∀t ∈ R,
by

3’.
∣∣{x ∈ R : (x , t) ∈ π}

∣∣ ≤ 2 ∀t ∈ R,
then we obtain Skorohod’s J1-topology.
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M2 and J2 topologies

If we ignore the total order of paths and just measure their
Hausdorff distance as sets, then we obtain Skorohod’s M2-topology
and Skorohod’s J2-topology instead.

Problem of these topologies:

We do not want to be close to
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The space of cadlag paths

We define Π|,Π↑,Π↓, and Π↕ as before.
Paths in Π↑ can jump at their starting time.

We define the M1-modulus of continuity mM1
T ,δ(π) of a path π ∈ Π

as

sup
{
d
(
x2, [x1, x3]

)
: (x1, t1), (x2, t2), (x3, t3) ∈ π ∩ [−T ,T ]2,

(x1, t1) ⪯ (x2, t2) ⪯ (x3, t3), t3 − t1 ≤ δ
}
.

Compactness criterion A set A ⊂ Π is precompact if and only if
it is M1-equicontinuous, i.e.,

lim
δ→0

sup
π∈A

mM1
T ,δ(π) = 0 (T < ∞).

Theorem Π is a Polish space and Π|,Π↑,Π↓, and Π↕ are closed
subsets of Π.
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Weaves

Recall that π1 ◁ π2 for π1, π2 ∈ Π↕ is defined as π1(t±) ≤ π2(t±)
(t ∈ R).

For π1, π2 ∈ Π↑, we define π1 ◁ π2 iff

there exist π′
1, π

′
2 ∈ Π↕ s.t. πi ⊂ π′

i (i = 1, 2) and π′
1 ◁ π′

2.

Def A weave is a set A ⊂ Π↑ such that

▶ A is compact,

▶ A is pervasive, i.e., ∀(x , t) ∈ R2 ∃π ∈ A s.t. (x , t) ∈ π,

▶ A is noncrossing, i.e., ∀π1, π2 ∈ A either π1 ◁ π2 or π2 ◁ π1.

A stream is a weave F such that F ⊂ Π↕.
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Webs and streams

For any A ⊂ Π↑, we define

Ain :=
{
π ∈ Π↑ : ∃π′ ∈ A s.t. π ⊂ π′}.

We say that A is inclusion-closed if Ain = A.

A web is a minimal inclusion-closed weave, i.e., a weave W such
that

(i). Win = W,

(ii). if A is a weave such that Ain = A and A ⊂ W, then A = W.

Theorem For each weave A, there exist a unique web
W =: web(A) and stream F =: stream(A)
such that W ⊂ Ain and A ⊂ Fin.

Note that A ⊂ Fin implies that the paths of a weave can be
extended to bi-infinite paths that do not cross!
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Efficient covering of space

Let W be the space of weaves. Setting

A ≤ B iff Ain ∩ B ⊂ A ⊂ B

defines a partial order on W such that

▶ A is a web ⇔ A = A′ for all A′ ≤ A,

▶ A is a stream ⇔ A = A′ for all A ≤ A′.
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Edges

For π ∈ Π↕ and z ∈ π, let

π↑(z) := {z ′ ∈ π : z ≺ z ′} and π↓(z) := {z ′ ∈ π : z ′ ≺ z}.

A separation point of paths π1, π2 ∈ Π↕ is a point z ∈ π1 ∩ π2 such
that

π↓
1(z) = π↓

2(z),

and no point z ′ ∈ π1 ∩ π2 with z ≺ z ′ has this property.

For π1, π2 ∈ Π↕ with π1 ◁ π2, we define B = B(π1, π2) by

B :=
{
(x , t) ∈ R2 : π1(t−) ∧ π1(t+) ≤ x ≤ π2(t−) ∨ π2(t+)

}
.

If π1, π2 have a separation point z , then we define the edge created
by π1 and π2 as

E (π1, π2) := B(π1, π2)\π↓
1(z),

and we set E (π1, π2) := B(π1, π2) otherwise.
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Webs and streams

We say that π1 crosses π2 if neither π1 ◁ π2 nor π2 ◁ π1.

A path π enters an edge E if ∃ z , z ′ ∈ π

with z ⪯ z ′, z ̸∈ E , z ′ ∈
◦
E .

For a weave A and stream F , one has

stream(A)=
{
π ∈ Π↕ :π does not cross paths π′ ∈ A

}
,

web(F)=
{
π ∈ Π↑ :π does not enter E (π1, π2)

for π1, π2 ∈ F , π1 ◁ π2
}
.

For the Brownian web W and full Browian web F
one has F = stream(W) and W = web(F).
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The space of weaves

We equip the space of weaves W ⊂ K+(Π) with the Hausdorff
topology.

Theorem W is a Polish space.

We define the antagonism modulus aT ,δ(A) of a weave A as

sup
{
|z2 − z1| ∨ |z ′2 − z ′1| : zi , z ′i ∈ [−T ,T ]2, |zi − z ′i | ≤ δ (i = 1, 2)

∃π, π′ ∈ A s.t. z1, z2 ∈ π, z1 ⪯ z2, z ′1, z
′
2 ∈ π′, z ′2 ⪯ z ′1

}
Compactness criterion A set A ⊂ W is precompact if and only if

lim
δ→0

sup
A∈A

aT ,δ(A) = 0 (T < ∞).

Jan M. Swart (Czech Academy of Sciences) Weaves, webs and flows



Ramification points

A ramification point of a stream F is
a point z ∈ R2 such that |Fz | > 1.

Theorem The set of ramification points of a stream
has Lebesgue measure zero.

For a path π and z ′ ∈ R2 set π + z ′ := {z + z ′ : z ∈ π}.
For a set of paths A set A+ z ′ := {π + z ′ : π ∈ A}.

A random stream F is homogeneous if F d
= F + z ′ (z ′ ∈ R2).

Corollary If F is a homogeneous random stream, then for each
deterministic (x , s) ∈ R2, there a.s. exists a unique
π(x ,s) := π ∈ F such that π(s) = x .
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Convergence of streams

Theorem Let Fn,F be homogeneous streams. Then

P
[
Fn ∈ ·

]
=⇒
n→∞

P
[
F ∈ ·

]
in the sense of weak convergence of probability laws on W if and
only if

P
[
(πn

z1 , . . . , π
n
zm) ∈ ·

]
=⇒
n→∞

P
[
(πz1 , . . . , πzm) ∈ ·

]
in the sense of weak convergence of probability laws on (Π↕)n for
all z1, . . . , zm ∈ R2.

The map stream(·) : W → W is continuous but web(·) is not.

Weak convergence in law of webs implies the same for streams,
but the converse implication does not hold.
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Stochastic flows

For a path π set π ∩ [s, u] :=
{
(x , t) ∈ π : t ∈ [s, u]

}
.

For a set of paths A set A ∩ [s, u] :=
{
π ∩ [s, u] : π ∈ A

}
.

A random stream F has independent increments if

F ∩ [t0, t1], . . .F ∩ [tn−1, tn] are independent ∀t0 < · · · < tn.

Theorem Let F be a homogeneous stream with independent
increments. Then

Xs,t(x) := sup
{
π(t) : π ∈ F , π(s) = x

}
,

X̂t,s(x) := sup
{
π(s) : π ∈ F , π(t) = x

}
,

}
(s ≤ t, x ∈ R).

define a monotone stochastic flow (in the weak sense of (ii)’) and
its associated dual flow.
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