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Probability kernels

For general sets S ,T , let F(S ,T ) denote the set
of all functions f : S → T .

A random mapping representation of a probability kernel K from S
to T is an F(S ,T )-valued random variable M such that

K (x , y) = P[M(x) = y ] (x ∈ S , y ∈ T ).

We say that K is representable in G ⊂ F(S ,T ) if M can be chosen
so that it takes values in G. We set

Kf (x) :=
∑
y∈T

K (x , y)f (y) = E
[
f
(
M(x)

)]
(
x ∈ S , f ∈ F(T ,R)

)
.
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Monotone probability kernels

For partially ordered sets S ,T , let Fmon(S ,T ) be the set of all
monotone maps m : S → T , i.e., those for which x ≤ x ′ implies
m(x) ≤ m(x ′).

A probability kernel K is called monotone if

Kf ∈ Fmon(S ,R) ∀f ∈ Fmon(T ,R),

and monotonically representable if K is representable in
Fmon(S ,T ).

Monotonical representability implies monotonicity:

f ∈ Fmon(T ,R) and x ≤ x ′ ⇒
Kf (x) = E

[
f
(
M(x)

)]
≤ E

[
f
(
M(x ′)

)]
= Kf (x ′).
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Monotone probability kernels

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross
(unpublished)) discovered that the converse does not hold. There
are counterexamples with S = T = {0, 1}2.

On the positive side, Kamae, Krengel & O’Brien (1977) and Fill &
Machida (2001) have shown that:

(Sufficient conditions for monotone representability)
Let S ,T be finite partially ordered sets and assume that at least
one of the following conditions is satisfied:

(i) S is totally ordered.

(ii) T is totally ordered.

Then any monotone probability kernel from S to T is
monotonically representable.
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Stochastic order

In particular, setting S = {1, 2}, this proves that if µ1, µ2 are
probability laws on T such that

µ1f ≤ µ2f ∀f ∈ Fmon(T ,R),

then it is possible to couple random variables M1,M2 with laws
µ1, µ2 such that M1 ≤ M2.
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Markov semigroups

Let S be finite. By definition, a Markov semigroup is a collection
of probability kernels (Pt)t≥0 on S such that

P0 = lim
t↓0

Pt = 1 and PsPt = Ps+t .

Each Markov semigroup is of the form

Pt := e tG =
∞∑
n=0

1

n!
tnGn (t ≥ 0),

where the generator G satisfies

G (x , y) ≥ 0 (x 6= y) and
∑
y∈S

G (x , y) = 0 (x ∈ S).

We write

Gf (x) :=
∑
y∈T

G (x , y)f (y)
(
x ∈ S , f ∈ F(T ,R)

)
.
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Representability of semigroups

By definition, G is representable in G ⊂ F(S ,S) if G can be
written as

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
,

where (rm)m∈G are nonnegative constants (rates).

(Representability of semigroups)
Assume that G is closed under composition and contains the
identity map. Then the following statements are equivalent:

(i) G can be represented in G.

(ii) Pt can be represented in G for all t ≥ 0.
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Stochastic flows

Proof of (i)⇒(ii)
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Let ρ be the measure on G defined by ρ({m}) := rm.
Let ` denote the Lebesgue measure on R.
Let ω be a Poisson subset of G × R with intensity measure ρ⊗ `.
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Stochastic flows

Proof of (i)⇒(ii)

R

G

rf

f

rg

g

rh

h

rk

k

rl

l

s

u

m1 = k
m2 = l

m3 = g
m4 = f
m5 = k

H

ωs,u

Let ωs,u := {(m, t) ∈ ω : s < t ≤ u}.
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Stochastic flows

Proof of (i)⇒(ii)
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Order the elements of ωs,u := {(m, t) ∈ ω : s < t ≤ u}
as ωs,u =

{
(m1, t1), . . . , (mn, tn)

}
with t1 < · · · < tn.
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Stochastic flows

Proof of (i)⇒(ii)
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Define Xs,u := mn ◦ · · · ◦m1.

Jan M. Swart Pathwise duality for monotone Markov processes.



Stochastic flows

The random maps (Xs,u)s≤u form a stochastic flow:

Xs,s = 1 and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u),

with independent increments:

Xt0,t1 , . . . ,Xtn−1,tn independent for t0 < · · · < tn.

If X0 is independent of ω, then

Xt := X0,t(X0) (t ≥ 0)

defines a Markov process (Xt)t≥0 with generator G , and

Pt(x , y) = P[X0,t(x) = y ]

gives the desired random mapping representation of the Markov
semigroup (Pt)t≥0 with generator G .
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Stochastic flows

We call the Poisson set ω a graphical representation of X .

Note: Since ωs,u := {(m, t) ∈ ω : s < t ≤ u},
the stochastic flow Xs,t is right-continuous in s and t.
As a result, (Xt)t≥0 has right-continuous sample paths.

Setting ω−s,u := {(m, t) ∈ ω : s ≤ t < u}
yields a stochastic flow X−s,t with left-continuous sample paths.
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Duality

Two Markov processes X and Y with state spaces S and R are
dual with duality function ψ : S × R → R iff

E
[
ψ(Xt ,Y0)

]
= E

[
ψ(X0,Yt)

]
(∗).

for all deterministic initial states X0 and Y0.
If (∗) holds for deterministic initial states, then also for random
initial states, provided Xt is independent of Y0 and X0 is
independent of Yt .

In terms of semigroups (Pt)t≥0, (Qt)t≥0 and generators G ,H,
duality says

Ptψ=ψQ†t (t ≥ 0),

⇔ Gψ=ψH†,

where A† denotes the transpose of a matrix A.
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Pathwise duality

Two maps m : S → S and m̂ : R → R are dual w.r.t. a duality
function ψ : S × R → T iff

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
(x ∈ S , y ∈ R).

Assume that each m ∈ G has a dual map m̂.
Let ω be a graphical representation for the process with generator

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
.

Then
ω̂ :=

{
(m̂,−t) : (m, t) ∈ ω

}
is a graphical representation for the process with generator

Hf (y) =
∑
m∈G

rm
(
f (m̂(y))− f (y)

)
.
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Pathwise duality
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X−s,u = m1 ◦ · · · ◦m1 and Y−u,−s = m̂1 ◦ · · · m̂5.
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Pathwise duality

The stochastic flows (Xs,u)s≤u constructed from ω
and (Ys,u)s≤u constructed from ω̂ are dual:

ψ
(
X−s,u(x), y

)
= ψ

(
x ,Y−u,−s(y)

)
(x ∈ S , y ∈ R),

where X−s,u denotes the left-continuous modification of Xs,u.

Proof

ψ
(
m5 ◦m4 ◦m3 ◦m2 ◦m1(x), y

)
= ψ

(
m4 ◦m3 ◦m2 ◦m1(x), m̂5(y)

)
= ψ

(
m3 ◦m2 ◦m1(x), m̂4 ◦ m̂5(y)

)
= · · · = ψ

(
x , m̂1 ◦ m̂2 ◦ m̂3 ◦ m̂4 ◦ m̂5(y)

)
.
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Pathwise duality

Two Markov processes X and Y are pathwise dual if they can be
constructed from stochastic flows that are dual.

For duality functions ψ : S × R → R, pathwise duality implies
duality:

E
[
ψ(Xt ,Y0)

]
= E

[
ψ
(
X−0,t(X0),Y0

)]
= E

[
ψ
(
X0,Y−t,0(Y0)

)]
= E

[
ψ(X0,Yt)

]
.

Even though pathwise duality is much stronger than duality, lots of
well-known dualities can be realized as pathwise dualities.
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Pathwise duality

(Pathwise duality) If the generators G and H of X and Y have
random mapping representations of the form

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
,

Hf (x) =
∑
m∈G

rm
(
f (m̂(y))− f (y)

)
,

where each map m̂ is a dual of m, then X and Y are pathwise dual.
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A formal dual

Let F(S ,T ) be the set of functions f : S → T .
Let (Xs,u)s≤u be a stochastic flow on S . Then

Fs,u(f ) := f ◦ X−−u,−s
(
f ∈ F(S ,T )

)
defines a stochastic flow (Fs,u)s≤u on F(S ,T ).
If F0 is an F(S ,T )-valued random variable, independent of
(Xs,u)s≤u, then

Ft := F0,t(F0) = F0 ◦ X−−t,0 (t ≥ 0)

defines a Markov process (Ft)t≥0 with values in F(S ,T ).
This Markov process is pathwise dual to X with duality function

ψ(x , f ) := f (x)
(
x ∈ S , f ∈ F(S ,T )

)
.

Indeed

ψ
(
X−s,u(x), f

)
= f ◦ X−s,u(x) = F−u,−s(f )(x) = ψ

(
x ,F−u,−s(f )

)
.

Jan M. Swart Pathwise duality for monotone Markov processes.



Invariant subspaces

Def A subspace H ⊂ F(S ,T ) is invariant under the action of
(Fs,u)s≤u if f ∈ H implies Fs,u(f ) ∈ H. That means

f ∈ H ⇒ f ◦ Xs,u ∈ H (s ≤ u).

Interesting pathwise duals are associated
with invariant subspaces of F(S ,T ).

Assume that H ⊂ F(S ,T ) is invariant and

R 3 y 7→ ψ( · , y) ∈ H

is a bijection. Then setting

Fs,u

(
ψ( · , y)

)
=: ψ( · ,Ys,u(y)

)
defines a stochastic flow (Ys,u)s≤u on R that is dual
to (Xs,u)s≤u with duality function ψ.
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A bit of order theory

Let S be a finite partially ordered space. The “upset” and
“downset” of A ⊂ S are defined as

A↑ := {x ∈ S : x ≥ a for some a ∈ A},

A↓ := {x ∈ S : x ≤ a for some a ∈ A}.

A set A ⊂ S is increasing (resp. decreasing) if A↑ = A
(resp. A↓ = A).

A lattice is a partially ordered set such that for every x , y ∈ S
there exist x ∨ y ∈ S and x ∧ y ∈ S , called the supremum or join
and infimum or meet of x and y , respectively, such that

{x}↑ ∩ {y}↑ = {x ∨ y}↑ and {x}↓ ∩ {y}↓ = {x ∧ y}↓.
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A bit of order theory

Let S be a partially ordered set. A map m : S → S is monotone if

x ≤ y ⇒ m(x) ≤ m(y) (x , y ∈ S).

We say that S is bounded from below resp. above if there exists an
element 0 resp. 1 (necessarily unique) such that

0 ≤ x (x ∈ S) resp. x ≤ 1 (x ∈ S).

Finite lattices are bounded from below and above.

A map m : S → S is additive if

m(0) = 0 and m(x ∨ y) = m(x) ∨m(y) (x , y ∈ S).

Additive maps are monotone.
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Monotone and additive duality

Let S be a partially ordered set (lattice), let T := {0, 1}, and let

Fmon(S ,T ) :=
{

f ∈ F(S ,T ) : f is monotone
}
,

Fadd(S ,T ) :=
{

f ∈ F(S ,T ) : f is additive
}
.

Let X be a Markov process with state space S and generator

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
.

If all maps m ∈ G are monotone (resp. additive), then
Xs,t is monotone (resp. additive) and hence
f ◦ Xs,t is monotone (resp. additive) for all
f ∈ Fmon(S ,T ) (resp. f ∈ Fadd(S ,T )).

Thus Fmon(S ,T ) (resp. Fadd(S ,T )) is invariant.
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Dual spaces

Let S be a partially ordered set. A dual of S is a partially ordered
set S ′ together with a bijection S 3 x 7→ x ′ ∈ S ′ such that

x ≤ y if and only if x ′ ≥ y ′.

Example 1: For any partially ordered set S , we may take S ′ := S
but equipped with the reversed order, and x 7→ x ′ the identity map.

Example 2: If Λ is a set and S ⊂ P(Λ) is a set of subsets of Λ,
equipped with the partial order of inclusion, then we may take for
x ′ := Λ\x the complement of x and S ′ := {x ′ : x ∈ S}.
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Additive duality

Let S be a finite lattice and let S ′ be its dual. Define
ψ : S × S ′ → T = {0, 1} by

ψ(x , y) = 1{x 6≤ y ′} = 1{y 6≤ x ′} (x ∈ S , y ∈ S ′).

(Additive functions) For each f ∈ Fadd(S ,T ), there exists a
unique y ∈ S ′ such that

f (x) = ψ(x , y) (x ∈ S).

(Additive duality) A map m : S → S has a dual m′ : S ′ → S ′

w.r.t. ψ if and only if m is additive. The dual map m′ is unique
and also an additive map.
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Siegmund’s duality

Let S = {0, . . . , n} be totally ordered and let S ′ := S equipped
with the reversed order.
A map m : S → S is additive iff m is monotone and m(0) = 0.
Each such map has a dual m′ : S ′ → S ′ that is monotone and
satisfies m′(n) = n.

(Siegmund’s dual) Let X be a monotone Markov process in S
such that 0 is a trap. Then X has a dual Y w.r.t. to the duality
function ψ(x , y) := 1{x 6≤y}. The dual process is also monotone and
has n as a trap. Moreover, the duality can be realized in a
pathwise way.
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Additive particle systems

Let S = P(Λ) with Λ a finite set, and let x 7→ x ′ ∈ S ′ := P(Λ)
denote the complement map x ′ := Λ\x .
Then 1{x 6⊂y ′} = 1{x∩y 6=∅}.

(Additive particle systems) Let X be a Markov process in S
whose generator can be represented in additive maps. Then X
has a pathwise dual Y w.r.t. to the duality function
ψ(x , y) := 1{x∩y 6=∅}, and Y is also an additively representable
Markov process.

Examples: Voter model, contact process, exclusion process,
systems of coalescing random walks.
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Krone’s duality

Steve Krone [AAP 1999] has studied a two-stage contact process,
with state space of the form S = {0, 1, 2}Λ.
He interprets x(i) = 0, 1, or 2 as an empty site, young, or adult
organism, and defines maps

grow up ai · · · 1 · · · · 7→ · · · 2 · · · ·
give birth bij · · · 20 · · · 7→ · · · 21 · · ·
young dies ci · · · 1 · · · · 7→ · · · 0 · · · ·
death di · · · 1 · · · · 7→ · · · 0 · · · ·

or · · · 2 · · · · 7→ · · · 0 · · · ·
grow younger ei · · · 2 · · · · 7→ · · · 1 · · · ·

where in all cases not mentioned, the maps have no effect.
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Krone’s duality

We set S ′ := S and define S 3 x 7→ x ′ ∈ S ′ by x ′(i) := 2− x(i).
Then the duality function becomes

ψ(x , y) = 1{x 6≤ y ′} = 1{∃i ∈ Λ s.t. x(i) + y(i) > 2}.

(Krone’s dual) The maps ai , bij , ci , di , ei are all additive and their
duals are given by

a′i = ai , b′ij = bji , c ′i = ei , d ′i = di , e ′i = ci .
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Percolation representations

Xt

X0

Y0

Yt

Additive particle systems and their duals can be constructed in
terms of open paths. In this example, X is a voter model and Y
are coalescing random walks.
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Percolation representations

0 1 0 2

0 1 2 0

X0

Xt

0 2 2 1

2 0 1 2

Yt

Y0

We can also give a percolation representation of Krone’s duality.
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Percolation representations

By definition, a lattice S is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (x , y , z ∈ S).

If Λ is a partially ordered set, then S := Pdec(Λ) with the order of
set inclusion is a distributive lattice. Birkhoff’s representation
theorem says that every distributive lattice is of this form.

(Percolation representation) An additive Markov process taking
values in Pdec(Λ) has a percolation representation together with its
dual, which takes values in S ′ = Pinc(Λ), with the duality function
ψ(x , y) = 1{x∩y 6=∅}.

If Λ is equipped with the trivial order x 6≤ y for all x 6= y , then
Pdec(Λ) = P(Λ) = Pinc(Λ).

In Krone’s example, Λ = {1, 2}∆ with the product order.
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Interacting particle systems

Let Λ be countable and let S := {0, 1}Λ, equipped with the
product topology. A map m : S → S is local if

(i) m is continuous,

(ii)
{

i ∈ Λ : ∃x ∈ S s.t. m(x)(i) 6= x(i)
}

is finite.

Note (i) is equivalent to:

(i)’ for each i ∈ Λ, the function x 7→ m(x)(i) depends on finitely
many coordinates.

Assume all m ∈ G are local. Under suitable assumptions, the
interacting particle system X with generator

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
can be constructed from a stochastic flow (Xs,u)s≤u based on a
graphical representation ω.
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Monotone systems duality

Notation:

C(S ,R) :=
{

f ∈ F(S ,R) : f is continuous
}
,

L(S ,R) :=
{

f ∈ F(S ,R) : f is lower semi-continuous
}
.

Also: Cmon(S ,R) := C(S ,R) ∩ Fmon(S ,R) etc.
If all local maps m ∈ G are monotone, then a.s.

Xs,u ∈ Cmon(S , S) (s ≤ u).

Let T := {0, 1}. Then

f ∈ Cmon(S ,T ) ⇒ f ◦ Xs,u ∈ Cmon(S ,T ),

f ∈ Lmon(S ,T ) ⇒ f ◦ Xs,u ∈ Lmon(S ,T ).

Thus, Lmon(S ,T ) is preserved under (Fs,u)s≤u.
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Monotone systems duality

Recall that Y ↑ := {z ∈ S : z ≥ y for some y ∈ Y }. One has

Lmon(S ,T ) = {1Y : Y ∈ I}
with I := {Y ∈ P(S) : Y is open and Y ↑ = Y }.

A convenient way to encode an open, increasing set is by writing
down its minimal elements. A minimal element is an y ∈ Y such
that

z ∈ Y , z ≤ y implies z = y .

For each Y ⊂ S , let

Y ◦ := {y ∈ Y : y is a minimal element of Y }.

It is easy to see that (Y ↑)↑ = Y ↑ and (Y ◦)◦ = Y ◦.
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Monotone systems duality

Let Sfin :=
{

y ∈ S : |y | <∞
}

with |y | :=
∑
i∈Λ

y(i),

H := {Y ∈ P(Sfin) : Y ◦ = Y }.

(Encoding open increasing sets)The map Y 7→ Y ↑ is a bijection
from H to I, and Y 7→ Y ◦ is its inverse.

Define ψ : S ×H → T by

ψ(x ,Y ) := 1{∃y ∈ Y s.t. x ≥ y}
(
x ∈ S , Y ∈ H

)
.

Then H 3 Y 7→ ψ( · ,Y ) ∈ Lmon(S ,T ) is a bijection.
There exists a unique stochastic flow (Ys,u)s≤u on H such that

ψ
(
X−s,u(x), y

)
= ψ

(
x ,Y−u,−s(Y )

)
(x ∈ S , Y ∈ H).
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Monotone systems duality

Define constant configurations 0(i) := 0, 1(i) := 1 (i ∈ Λ).
By monotonicity, the process X has an upper invariant law

P1[Xt ∈ · ] =⇒
t→∞

ν.

By definition, the H-valued process Y survives if

P{ei}[Yt 6= ∅ ∀t ≥ 0] > 0 for some i ∈ Λ,

where ei (j) := 1{i=j} (i , j ∈ Λ).

(Nontrivial upper invariant law) One has ν 6= δ0 if and only if Y
survives. The law ν is uniquely characterized by

E
[
ψ(X , {y})

]
= P{y}

[
Yt 6= ∅ ∀t ≥ 0

]
.

where X denotes a r.v. with law ν.
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Monotone systems duality

Proof

E1
[
ψ(Xt , {y})

]
= E{y}

[
ψ(1,Yt)

]
= E{y}

[
∃y ∈ Yt s.t. 1 ≥ y

]
= E{y}

[
Yt 6= ∅

]
−→
t→∞

P{y}
[
Yt 6= ∅ ∀t ≥ 0

]
.
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Monotone systems duality

Equip the space H with an order such that

Y ≤ Z ⇔ ψ(x ,Y ) ≤ ψ(x ,Z ) ∀x ∈ S ,

and with a topology such that

Yn → Y ⇔ ψ(x ,Yn)→ ψ(x ,Y ) ∀x ∈ Sfin.

The minimal and maximal elements of H are ∅ and {0} since

ψ(x , ∅) = 0 ψ(x , {0}) = 1 (x ∈ S).

The second largest element of H is Ysec := {ei : i ∈ Λ}, since

ψ(x ,Ysec) = 1{x 6= 0} (x ∈ S).

(Recall ei (j) := 1{i=j} (i , j ∈ Λ).)
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Monotone systems duality

We say that X survives if

Pei
[
Xt 6= 0 ∀t ≥ 0

]
> 0 for some i ∈ Λ.

If 0 is a trap for (Xt)t≥0, then Y0 6= {0} implies Yt 6= {0} (t ≥ 0).

Work in progress We believe that

PYsec [Yt ∈ · ] =⇒
t→∞

µ.

We call µ the upper invariant law of (Yt)t≥0.
We believe that µ 6= δ∅ if and only if X survives.
The law µ is uniquely characterized by

E
[ n∏
k=1

ψ(xk ,Y )
]

= P
[
X0,t(xk) 6= 0 ∀t ≥ 0, k = 1, . . . , n

]
.

where Y denotes a r.v. with law µ and x1, . . . , xn ∈ Sfin.
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Some simulations

i i→
i↑

For each i = (i1, i2) ∈ Z2, let
i→ := (i1 + 1, i2) and i↑ := (i1, i2 + 1).

Let p, d ∈ [0, 1] and let X = (Xt)t∈N be a Markov chain with
values in {0, 1}Z2

such that independently for each i and t,

Xt+1(i) = Xt(i) ∨
(
Xt(i→) ∧ Xt(i↑)

)
w. prob. p(1− d),

Xt+1(i) = Xt(i) ∨ Xt(i→) w. prob. 1
2 (1− p)(1− d),

Xt+1(i) = Xt(i) ∨ Xt(i↑) w. prob. 1
2 (1− p)(1− d),

Xt+1(i) = 0 w. prob. d .

For p = 0 this model is additive.
For p = 1, it does not survive for any d > 0.
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Some simulations

p

d

0.1

0.2

0.2 0.4 0.6 0.8 1

Density of the upper invariant law.
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Some simulations

p

d

0.1

0.2

0.2 0.4 0.6 0.8 1

Survival probability started from a single one.
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