Pathwise duality for monotone Markov processes.

Jan M. Swart

joint with A. Sturm and N. Latz (in progress)

Thursday, December 15th, 2022

A. A. T. A. A.

- Monotone probability kernels
- Poisson construction of Markov processes
- Pathwise duality
- Additive systems duality
- Percolation representations
- Monotone systems duality

4 B K 4 B K

For general sets S, T, let $\mathcal{F}(S, T)$ denote the set of all functions $f : S \to T$.

A random mapping representation of a probability kernel K from S to T is an $\mathcal{F}(S, T)$ -valued random variable M such that

$$K(x,y) = \mathbb{P}[M(x) = y]$$
 $(x \in S, y \in T).$

We say that K is *representable* in $\mathcal{G} \subset \mathcal{F}(S, T)$ if M can be chosen so that it takes values in \mathcal{G} . We set

$$\begin{aligned} & \mathcal{K}f(x) := \sum_{y \in \mathcal{T}} \mathcal{K}(x,y)f(y) = \mathbb{E}\big[f\big(\mathcal{M}(x)\big)\big] \\ & (x \in \mathcal{S}, \ f \in \mathcal{F}(\mathcal{T},\mathbb{R})). \end{aligned}$$

伺下 イヨト イヨト

For partially ordered sets S, T, let $\mathcal{F}_{mon}(S, T)$ be the set of all monotone maps $m: S \to T$, i.e., those for which $x \leq x'$ implies $m(x) \leq m(x')$.

A probability kernel K is called *monotone* if

$$Kf \in \mathcal{F}_{\mathrm{mon}}(S,\mathbb{R}) \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T,\mathbb{R}),$$

and monotonically representable if K is representable in $\mathcal{F}_{mon}(S, T)$.

Monotonical representability implies monotonicity:

$$f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}) \quad \text{and} \quad x \leq x' \quad \Rightarrow$$

 $Kf(x) = \mathbb{E} \big[f \big(M(x) \big) \big] \leq \mathbb{E} \big[f \big(M(x') \big) \big] = Kf(x').$

向下 イヨト イヨト

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross (unpublished)) discovered that the converse does not hold. There are counterexamples with $S = T = \{0, 1\}^2$.

On the positive side, Kamae, Krengel & O'Brien (1977) and Fill & Machida (2001) have shown that:

(Sufficient conditions for monotone representability) Let S, T be finite partially ordered sets and assume that at least one of the following conditions is satisfied:

- (i) *S* is totally ordered.
- (ii) *T* is totally ordered.

Then any monotone probability kernel from S to T is monotonically representable.

In particular, setting $S = \{1, 2\}$, this proves that if μ_1, μ_2 are probability laws on T such that

$$\mu_1 f \leq \mu_2 f \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}),$$

then it is possible to couple random variables M_1, M_2 with laws μ_1, μ_2 such that $M_1 \leq M_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Markov semigroups

Let S be finite. By definition, a Markov semigroup is a collection of probability kernels $(P_t)_{t\geq 0}$ on S such that

$$P_0 = \lim_{t \downarrow 0} P_t = 1$$
 and $P_s P_t = P_{s+t}$.

Each Markov semigroup is of the form

$$P_t := e^{tG} = \sum_{n=0}^{\infty} \frac{1}{n!} t^n G^n \qquad (t \ge 0),$$

where the generator G satisfies

$$G(x,y) \geq 0 \quad (x
eq y) \quad ext{and} \quad \sum_{y \in S} G(x,y) = 0 \quad (x \in S).$$

We write

$$Gf(x) := \sum_{y \in T} G(x, y) f(y) \qquad (x \in S, f \in \mathcal{F}(T, \mathbb{R})).$$

A B K A B K

By definition, G is representable in $\mathcal{G} \subset \mathcal{F}(S,S)$ if G can be written as

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \big(f(m(x)) - f(x) \big),$$

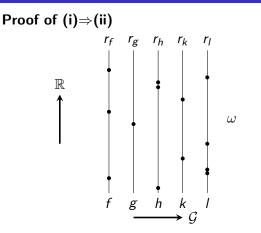
where $(r_m)_{m \in \mathcal{G}}$ are nonnegative constants (rates).

(Representability of semigroups)

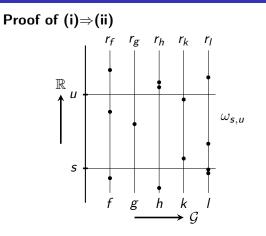
Assume that G is closed under composition and contains the identity map. Then the following statements are equivalent:

- (i) G can be represented in \mathcal{G} .
- (ii) P_t can be represented in \mathcal{G} for all $t \geq 0$.

伺 とうき とうとう



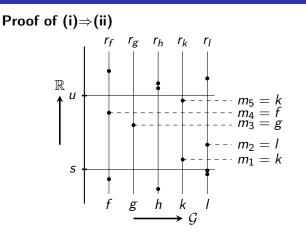
Let ρ be the measure on \mathcal{G} defined by $\rho(\{m\}) := r_m$. Let ℓ denote the Lebesgue measure on \mathbb{R} . Let ω be a Poisson subset of $\mathcal{G} \times \mathbb{R}$ with intensity measure $\rho \otimes \ell$.



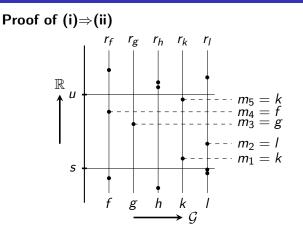
Let
$$\omega_{s,u} := \{(m,t) \in \omega : s < t \le u\}$$

< 注 → < 注 →

Э



Order the elements of $\omega_{s,u} := \{(m, t) \in \omega : s < t \le u\}$ as $\omega_{s,u} = \{(m_1, t_1), \dots, (m_n, t_n)\}$ with $t_1 < \dots < t_n$.



Define $\mathbb{X}_{s,u} := m_n \circ \cdots \circ m_1$.

臣

The random maps $(\mathbb{X}_{s,u})_{s \leq u}$ form a *stochastic flow:*

$$\mathbb{X}_{s,s} = 1$$
 and $\mathbb{X}_{t,u} \circ \mathbb{X}_{s,t} = \mathbb{X}_{s,u}$ $(s \leq t \leq u)$,

with independent increments:

$$\mathbb{X}_{t_0,t_1},\ldots,\mathbb{X}_{t_{n-1},t_n}$$
 independent for $t_0 < \cdots < t_n$.

If X_0 is independent of ω , then

$$X_t := \mathbb{X}_{0,t}(X_0) \qquad (t \ge 0)$$

defines a Markov process $(X_t)_{t\geq 0}$ with generator G, and

$$P_t(x,y) = \mathbb{P}[\mathbb{X}_{0,t}(x) = y]$$

gives the desired random mapping representation of the Markov semigroup $(P_t)_{t\geq 0}$ with generator G.

→ ∃ →

We call the Poisson set ω a graphical representation of X.

Note: Since $\omega_{s,u} := \{(m, t) \in \omega : s < t \le u\}$, the stochastic flow $\mathbb{X}_{s,t}$ is right-continuous in s and t. As a result, $(X_t)_{t\geq 0}$ has right-continuous sample paths. Setting $\omega_{s,u}^- := \{(m, t) \in \omega : s \le t < u\}$

yields a stochastic flow $\mathbb{X}_{s,t}^-$ with left-continuous sample paths.

白 ト イ ヨ ト イ ヨ ト

Duality

Two Markov processes X and Y with state spaces S and R are dual with duality function $\psi : S \times R \to \mathbb{R}$ iff

$$\mathbb{E}\big[\psi(X_t,Y_0)\big] = \mathbb{E}\big[\psi(X_0,Y_t)\big] \qquad (*).$$

for all deterministic initial states X_0 and Y_0 .

If (*) holds for deterministic initial states, then also for random initial states, provided X_t is independent of Y_0 and X_0 is independent of Y_t .

In terms of semigroups $(P_t)_{t\geq 0}, (Q_t)_{t\geq 0}$ and generators G, H, duality says

$$egin{aligned} & P_t\psi = \psi Q_t^\dagger & (t\geq 0) \ & G\psi = \psi H^\dagger, \end{aligned}$$

where A^{\dagger} denotes the transpose of a matrix A.

 \Leftrightarrow

Pathwise duality

Two maps $m: S \to S$ and $\hat{m}: R \to R$ are *dual* w.r.t. a duality function $\psi: S \times R \to T$ iff

$$\psi(m(x), y) = \psi(x, \hat{m}(y)) \qquad (x \in S, y \in R).$$

Assume that each $m \in \mathcal{G}$ has a dual map \hat{m} .

Let ω be a graphical representation for the process with generator

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m (f(m(x)) - f(x)).$$

Then

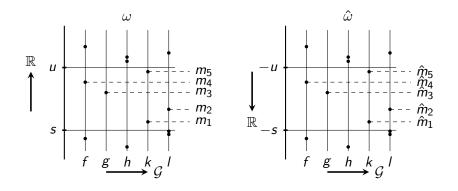
$$\hat{\omega} := \left\{ (\hat{m}, -t) : (m, t) \in \omega \right\}$$

is a graphical representation for the process with generator

$$Hf(y) = \sum_{m \in \mathcal{G}} r_m \big(f(\hat{m}(y)) - f(y) \big).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Pathwise duality



$$\mathbb{X}^-_{s,u} = m_1 \circ \cdots \circ m_1$$
 and $\mathbb{Y}_{-u,-s} = \hat{m}_1 \circ \cdots \hat{m}_5$.

< 注 > < 注 >

æ

The stochastic flows $(\mathbb{X}_{s,u})_{s \leq u}$ constructed from ω and $(\mathbb{Y}_{s,u})_{s \leq u}$ constructed from $\hat{\omega}$ are dual:

$$\psi(\mathbb{X}^{-}_{s,u}(x), y) = \psi(x, \mathbb{Y}_{-u,-s}(y)) \qquad (x \in S, y \in R),$$

where $\mathbb{X}_{s,u}^-$ denotes the left-continuous modification of $\mathbb{X}_{s,u}$. **Proof**

$$\begin{split} \psi & \left(m_5 \circ m_4 \circ m_3 \circ m_2 \circ m_1(x), y \right) \\ &= \psi \begin{pmatrix} m_4 \circ m_3 \circ m_2 \circ m_1(x), \hat{m}_5(y) \end{pmatrix} \\ &= \psi \begin{pmatrix} m_3 \circ m_2 \circ m_1(x), \hat{m}_4 \circ \hat{m}_5(y) \end{pmatrix} \\ &= \cdots = \psi \begin{pmatrix} x, \hat{m}_1 \circ \hat{m}_2 \circ \hat{m}_3 \circ \hat{m}_4 \circ \hat{m}_5(y) \end{pmatrix}. \end{split}$$

回 とう モン・モン

Two Markov processes X and Y are *pathwise dual* if they can be constructed from stochastic flows that are dual.

For duality functions $\psi: S \times R \to \mathbb{R}$, pathwise duality implies duality:

$$\begin{split} & \mathbb{E}\big[\psi(X_t, Y_0)\big] = \mathbb{E}\big[\psi\big(\mathbb{X}_{0,t}^-(X_0), Y_0\big)\big] \\ & = \mathbb{E}\big[\psi\big(X_0, \mathbb{Y}_{-t,0}(Y_0)\big)\big] = \mathbb{E}\big[\psi(X_0, Y_t)\big]. \end{split}$$

Even though pathwise duality is much stronger than duality, lots of well-known dualities can be realized as pathwise dualities.

・ 同 ト ・ ヨ ト ・ ヨ ト …

(Pathwise duality) If the generators G and H of X and Y have random mapping representations of the form

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m(f(m(x)) - f(x)),$$

$$Hf(x) = \sum_{m \in \mathcal{G}} r_m(f(\hat{m}(y)) - f(y)),$$

where each map \hat{m} is a dual of m, then X and Y are pathwise dual.

向下 イヨト イヨト

A formal dual

Let $\mathcal{F}(S, T)$ be the set of functions $f : S \to T$. Let $(\mathbb{X}_{s,u})_{s \leq u}$ be a stochastic flow on S. Then

$$\mathbb{F}_{s,u}(f) := f \circ \mathbb{X}^-_{-u,-s} \qquad (f \in \mathcal{F}(S,T))$$

defines a stochastic flow $(\mathbb{F}_{s,u})_{s \leq u}$ on $\mathcal{F}(S, T)$. If F_0 is an $\mathcal{F}(S, T)$ -valued random variable, independent of $(\mathbb{X}_{s,u})_{s \leq u}$, then

$$F_t := \mathbb{F}_{0,t}(F_0) = F_0 \circ \mathbb{X}_{-t,0}^- \qquad (t \ge 0)$$

defines a Markov process $(F_t)_{t\geq 0}$ with values in $\mathcal{F}(S, T)$. This Markov process is pathwise dual to X with duality function

$$\psi(x,f) := f(x) \qquad (x \in S, f \in \mathcal{F}(S,T)).$$

Indeed

$$\psi\big(\mathbb{X}^{-}_{s,u}(x),f\big)=f\circ\mathbb{X}^{-}_{s,u}(x)=\mathbb{F}_{-u,-s}(f)(x)=\psi\big(x,\mathbb{F}_{-u,-s}(f)\big).$$

Invariant subspaces

Def A subspace $\mathcal{H} \subset \mathcal{F}(S, T)$ is *invariant* under the action of $(\mathbb{F}_{s,u})_{s \leq u}$ if $f \in \mathcal{H}$ implies $\mathbb{F}_{s,u}(f) \in \mathcal{H}$. That means

$$f \in \mathcal{H} \quad \Rightarrow \quad f \circ \mathbb{X}_{s,u} \in \mathcal{H} \qquad (s \leq u).$$

Interesting pathwise duals are associated with invariant subspaces of $\mathcal{F}(S, T)$.

Assume that $\mathcal{H} \subset \mathcal{F}(S, T)$ is invariant and

$$R \ni y \mapsto \psi(\cdot, y) \in \mathcal{H}$$

is a bijection. Then setting

$$\mathbb{F}_{s,u}(\psi(\cdot,y)) =: \psi(\cdot,\mathbb{Y}_{s,u}(y))$$

defines a stochastic flow $(\mathbb{Y}_{s,u})_{s \leq u}$ on R that is dual to $(\mathbb{X}_{s,u})_{s \leq u}$ with duality function ψ .

向下 イヨト イヨト

Let S be a finite partially ordered space. The "upset" and "downset" of $A \subset S$ are defined as

$$A^{\uparrow} := \{ x \in S : x \ge a \text{ for some } a \in A \},\$$
$$A^{\downarrow} := \{ x \in S : x \le a \text{ for some } a \in A \}.$$

A set $A \subset S$ is increasing (resp. decreasing) if $A^{\uparrow} = A$ (resp. $A^{\downarrow} = A$).

A *lattice* is a partially ordered set such that for every $x, y \in S$ there exist $x \lor y \in S$ and $x \land y \in S$, called the *supremum* or *join* and *infimum* or *meet* of x and y, respectively, such that

$$\{x\}^{\uparrow}\cap\{y\}^{\uparrow}=\{x\lor y\}^{\uparrow}$$
 and $\{x\}^{\downarrow}\cap\{y\}^{\downarrow}=\{x\land y\}^{\downarrow}.$

向下 イヨト イヨト

Let S be a partially ordered set. A map $m: S \rightarrow S$ is monotone if

$$x \leq y \quad \Rightarrow \quad m(x) \leq m(y) \qquad (x, y \in S).$$

We say that S is bounded from below resp. above if there exists an element 0 resp. 1 (necessarily unique) such that

$$0 \le x \quad (x \in S) \quad \text{resp. } x \le 1 \quad (x \in S).$$

Finite lattices are bounded from below and above.

A map $m: S \rightarrow S$ is additive if

$$m(0) = 0$$
 and $m(x \lor y) = m(x) \lor m(y)$ $(x, y \in S)$.

Additive maps are monotone.

• • = • • = •

Monotone and additive duality

Let S be a partially ordered set (lattice), let $\mathcal{T}:=\{0,1\}$, and let

$$\begin{split} \mathcal{F}_{\mathrm{mon}}(S,T) &:= \big\{ f \in \mathcal{F}(S,T) : f \text{ is monotone} \big\}, \\ \mathcal{F}_{\mathrm{add}}(S,T) &:= \big\{ f \in \mathcal{F}(S,T) : f \text{ is additive} \big\}. \end{split}$$

Let X be a Markov process with state space S and generator

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m (f(m(x)) - f(x)).$$

If all maps $m \in \mathcal{G}$ are monotone (resp. additive), then $\mathbb{X}_{s,t}$ is monotone (resp. additive) and hence $f \circ \mathbb{X}_{s,t}$ is monotone (resp. additive) for all $f \in \mathcal{F}_{mon}(S,T)$ (resp. $f \in \mathcal{F}_{add}(S,T)$).

Thus $\mathcal{F}_{mon}(S, T)$ (resp. $\mathcal{F}_{add}(S, T)$) is invariant.

4 E N 4 E N

Let S be a partially ordered set. A *dual* of S is a partially ordered set S' together with a bijection $S \ni x \mapsto x' \in S'$ such that

 $x \le y$ if and only if $x' \ge y'$.

Example 1: For any partially ordered set S, we may take S' := S but equipped with the reversed order, and $x \mapsto x'$ the identity map.

Example 2: If Λ is a set and $S \subset \mathcal{P}(\Lambda)$ is a set of subsets of Λ , equipped with the partial order of inclusion, then we may take for $x' := \Lambda \setminus x$ the complement of x and $S' := \{x' : x \in S\}$.

イロト 不得 トイラト イラト 二日

Let S be a finite lattice and let S' be its dual. Define $\psi: S \times S' \to T = \{0,1\}$ by

$$\psi(x,y) = 1_{\{x \leq y'\}} = 1_{\{y \leq x'\}}$$
 $(x \in S, y \in S').$

(Additive functions) For each $f \in \mathcal{F}_{add}(S, T)$, there exists a unique $y \in S'$ such that

$$f(x) = \psi(x, y)$$
 $(x \in S).$

(Additive duality) A map $m : S \to S$ has a dual $m' : S' \to S'$ w.r.t. ψ if and only if m is additive. The dual map m' is unique and also an additive map.

(1) マント (1) マント

Let $S = \{0, ..., n\}$ be totally ordered and let S' := S equipped with the reversed order. A map $m : S \to S$ is additive iff m is monotone and m(0) = 0. Each such map has a dual $m' : S' \to S'$ that is monotone and

satisfies m'(n) = n.

(Siegmund's dual) Let X be a monotone Markov process in S such that 0 is a trap. Then X has a dual Y w.r.t. to the duality function $\psi(x, y) := 1_{\{x \leq y\}}$. The dual process is also monotone and has n as a trap. Moreover, the duality can be realized in a pathwise way.

• (1) • (

Let $S = \mathcal{P}(\Lambda)$ with Λ a finite set, and let $x \mapsto x' \in S' := \mathcal{P}(\Lambda)$ denote the complement map $x' := \Lambda \setminus x$.

Then $1_{\{x \not\subset y'\}} = 1_{\{x \cap y \neq \emptyset\}}$.

(Additive particle systems) Let X be a Markov process in S whose generator can be represented in additive maps. Then X has a pathwise dual Y w.r.t. to the duality function $\psi(x,y) := 1_{\{x \cap y \neq \emptyset\}}$, and Y is also an additively representable Markov process.

Examples: Voter model, contact process, exclusion process, systems of coalescing random walks.

イロト イポト イヨト イヨト

Steve Krone [AAP 1999] has studied a two-stage contact process, with state space of the form $S = \{0, 1, 2\}^{\Lambda}$. He interprets x(i) = 0, 1, or 2 as an empty site, young, or adult organism, and defines maps

grow up	ai	$\cdots 1 \cdots \mapsto \cdots 2 \cdots \cdots$
give birth	b _{ij}	$\cdots 20 \cdots \mapsto \cdots 21 \cdots$
young dies	Ci	$\cdots 1 \cdots \mapsto \cdots 0 \cdots \cdots$
death	di	$\cdots 1 \cdots \mapsto \cdots 0 \cdots \cdots$
or		$\cdots 2 \cdots \mapsto \cdots 0 \cdots \cdots$
grow younger	ei	$\cdots 2 \cdots \mapsto \cdots 1 \cdots$

where in all cases not mentioned, the maps have no effect.

・ 同 ト ・ ヨ ト ・ ヨ ト

We set S' := S and define $S \ni x \mapsto x' \in S'$ by x'(i) := 2 - x(i). Then the duality function becomes

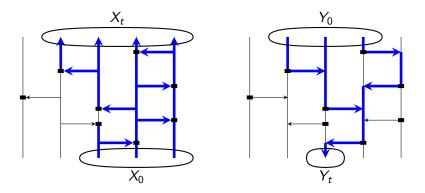
$$\psi(x,y) = 1_{\{x \leq y'\}} = 1_{\{\exists i \in \Lambda \text{ s.t. } x(i) + y(i) > 2\}}$$

(Krone's dual) The maps $a_i, b_{ij}, c_i, d_i, e_i$ are all additive and their duals are given by

$$a_i'=a_i, \quad b_{ij}'=b_{ji}, \quad c_i'=e_i, \quad d_i'=d_i, \quad e_i'=c_i.$$

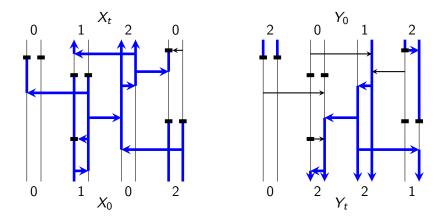
向下 イヨト イヨト

Percolation representations



Additive particle systems and their duals can be constructed in terms of open paths. In this example, X is a voter model and Y are coalescing random walks.

Percolation representations



We can also give a percolation representation of Krone's duality.

By definition, a lattice S is *distributive* if

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 $(x, y, z \in S).$

If Λ is a partially ordered set, then $S := \mathcal{P}_{dec}(\Lambda)$ with the order of set inclusion is a distributive lattice. *Birkhoff's representation theorem* says that every distributive lattice is of this form.

(Percolation representation) An additive Markov process taking values in $\mathcal{P}_{dec}(\Lambda)$ has a percolation representation together with its dual, which takes values in $S' = \mathcal{P}_{inc}(\Lambda)$, with the duality function $\psi(x, y) = 1_{\{x \cap y \neq \emptyset\}}$.

If Λ is equipped with the trivial order $x \not\leq y$ for all $x \neq y$, then $\mathcal{P}_{dec}(\Lambda) = \mathcal{P}(\Lambda) = \mathcal{P}_{inc}(\Lambda)$.

In Krone's example, $\Lambda=\{1,2\}^\Delta$ with the product order.

・ 同 ト ・ ヨ ト ・ ヨ ト

Interacting particle systems

Let Λ be countable and let $S := \{0, 1\}^{\Lambda}$, equipped with the product topology. A map $m : S \to S$ is *local* if

(i) *m* is continuous,

(ii)
$$\{i \in \Lambda : \exists x \in S \text{ s.t. } m(x)(i) \neq x(i)\}$$
 is finite.

Note (i) is equivalent to:

(i)' for each $i \in \Lambda$, the function $x \mapsto m(x)(i)$ depends on finitely many coordinates.

Assume all $m \in \mathcal{G}$ are local. Under suitable assumptions, the interacting particle system X with generator

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m (f(m(x)) - f(x))$$

can be constructed from a stochastic flow $(\mathbb{X}_{s,u})_{s\leq u}$ based on a graphical representation ω .

< ロ > < 同 > < 三 > < 三 >

Notation:

$$\mathcal{C}(S,R) := \{ f \in \mathcal{F}(S,R) : f \text{ is continuous} \},\\ \mathcal{L}(S,R) := \{ f \in \mathcal{F}(S,R) : f \text{ is lower semi-continuous} \}.$$

Also: $C_{\text{mon}}(S, R) := C(S, R) \cap \mathcal{F}_{\text{mon}}(S, R)$ etc. If all local maps $m \in \mathcal{G}$ are monotone, then a.s.

$$\mathbb{X}_{s,u} \in \mathcal{C}_{\mathrm{mon}}(S,S)$$
 $(s \leq u).$

Let $T := \{0, 1\}$. Then

 $egin{aligned} & f \in \mathcal{C}_{\mathrm{mon}}(S,T) & \Rightarrow & f \circ \mathbb{X}_{s,u} \in \mathcal{C}_{\mathrm{mon}}(S,T), \ & f \in \mathcal{L}_{\mathrm{mon}}(S,T) & \Rightarrow & f \circ \mathbb{X}_{s,u} \in \mathcal{L}_{\mathrm{mon}}(S,T). \end{aligned}$

Thus, $\mathcal{L}_{mon}(S, T)$ is preserved under $(\mathbb{F}_{s,u})_{s \leq u}$.

• • = • • = •

Recall that $Y^{\uparrow} := \{z \in S : z \ge y \text{ for some } y \in Y\}$. One has

$$\begin{split} \mathcal{L}_{\mathrm{mon}}(S,T) &= \{ \mathbf{1}_Y : Y \in \mathcal{I} \} \\ \text{with} \quad \mathcal{I} := \{ Y \in \mathcal{P}(S) : Y \text{ is open and } Y^{\uparrow} = Y \}. \end{split}$$

A convenient way to encode an open, increasing set is by writing down its minimal elements. A *minimal element* is an $y \in Y$ such that

$$z \in Y, z \leq y \text{ implies } z = y.$$

For each $Y \subset S$, let

 $Y^{\circ} := \{y \in Y : y \text{ is a minimal element of } Y\}.$

It is easy to see that $(Y^{\uparrow})^{\uparrow} = Y^{\uparrow}$ and $(Y^{\circ})^{\circ} = Y^{\circ}$.

(4月) トイヨト イヨト

$$\begin{array}{ll} \mathsf{Let} \ \mathcal{S}_{\mathrm{fin}} := \big\{ y \in \mathcal{S} : |y| < \infty \big\} & \mathsf{with} & |y| := \sum_{i \in \Lambda} y(i), \\ \\ \mathcal{H} := \{ Y \in \mathcal{P}(\mathcal{S}_{\mathrm{fin}}) : \, Y^\circ = Y \}. \end{array}$$

(Encoding open increasing sets) The map $Y \mapsto Y^{\uparrow}$ is a bijection from \mathcal{H} to \mathcal{I} , and $Y \mapsto Y^{\circ}$ is its inverse.

Define $\psi: \mathcal{S} \times \mathcal{H} \rightarrow \mathcal{T}$ by

$$\psi(x, Y) := \mathbb{1}_{\{\exists y \in Y \text{ s.t. } x \ge y\}} \qquad (x \in S, Y \in \mathcal{H}).$$

Then $\mathcal{H} \ni Y \mapsto \psi(\cdot, Y) \in \mathcal{L}_{\text{mon}}(S, T)$ is a bijection. There exists a unique stochastic flow $(\mathbb{Y}_{s,u})_{s \le u}$ on \mathcal{H} such that

$$\psi(\mathbb{X}^{-}_{s,u}(x), y) = \psi(x, \mathbb{Y}_{-u,-s}(Y)) \qquad (x \in S, Y \in \mathcal{H}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Monotone systems duality

Define constant configurations $\underline{0}(i) := 0$, $\underline{1}(i) := 1$ $(i \in \Lambda)$. By monotonicity, the process X has an *upper invariant law*

$$\mathbb{P}^{\underline{1}}[X_t \in \cdot] \underset{t \to \infty}{\Longrightarrow} \overline{\nu}.$$

By definition, the \mathcal{H} -valued process Y survives if

$$\mathbb{P}^{\{e_i\}}[Y_t
eq \emptyset \ orall t \geq 0] > 0$$
 for some $i \in \Lambda,$

where $e_i(j) := 1_{\{i=j\}} (i, j \in \Lambda)$.

(Nontrivial upper invariant law) One has $\overline{\nu} \neq \delta_{\underline{0}}$ if and only if Y survives. The law $\overline{\nu}$ is uniquely characterized by

$$\mathbb{E}\big[\psi(\overline{X},\{y\})\big] = \mathbb{P}^{\{y\}}\big[Y_t \neq \emptyset \ \forall t \ge 0\big].$$

where \overline{X} denotes a r.v. with law $\overline{\nu}$.

Proof

$$\begin{split} \mathbb{E}^{\underline{1}} \big[\psi(X_t, \{y\}) \big] &= \mathbb{E}^{\{y\}} \big[\psi(\underline{1}, Y_t) \big] = \mathbb{E}^{\{y\}} \big[\exists y \in Y_t \text{ s.t. } \underline{1} \ge y \big] \\ &= \mathbb{E}^{\{y\}} \big[Y_t \neq \emptyset \big] \xrightarrow[t \to \infty]{} \mathbb{P}^{\{y\}} \big[Y_t \neq \emptyset \ \forall t \ge 0 \big]. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

э

Equip the space ${\mathcal H}$ with an order such that

$$Y \leq Z \quad \Leftrightarrow \quad \psi(x,Y) \leq \psi(x,Z) \quad \forall x \in S,$$

and with a topology such that

$$Y_n \to Y \quad \Leftrightarrow \quad \psi(x, Y_n) \to \psi(x, Y) \quad \forall x \in S_{\text{fin}}.$$

The minimal and maximal elements of \mathcal{H} are \emptyset and $\{\underline{0}\}$ since

$$\psi(x, \emptyset) = 0 \quad \psi(x, \{\underline{0}\}) = 1 \qquad (x \in S).$$

The second largest element of \mathcal{H} is $Y_{sec} := \{e_i : i \in \Lambda\}$, since

$$\psi(x, Y_{\text{sec}}) = 1_{\{x \neq \underline{0}\}}$$
 $(x \in S).$

(Recall $e_i(j) := 1_{\{i=j\}}$ $(i, j \in \Lambda)$.)

オロト オポト オモト オモト

Monotone systems duality

We say that X survives if

$$\mathbb{P}^{e_i}[X_t \neq \underline{0} \ \forall t \ge 0] > 0 \text{ for some } i \in \Lambda.$$

If $\underline{0}$ is a trap for $(X_t)_{t\geq 0}$, then $Y_0 \neq \{\underline{0}\}$ implies $Y_t \neq \{\underline{0}\}$ $(t \geq 0)$. Work in progress We believe that

$$\mathbb{P}^{Y_{\text{sec}}}[Y_t \in \,\cdot\,] \underset{t \to \infty}{\Longrightarrow} \overline{\mu}.$$

We call $\overline{\mu}$ the upper invariant law of $(Y_t)_{t\geq 0}$. We believe that $\overline{\mu} \neq \delta_{\emptyset}$ if and only if X survives. The law $\overline{\mu}$ is uniquely characterized by

$$\mathbb{E}\big[\prod_{k=1}^{n}\psi(x_k,\overline{Y})\big]=\mathbb{P}\big[\mathbb{X}_{0,t}(x_k)\neq\underline{0}\;\forall t\geq 0,\;k=1,\ldots,n\big].$$

where \overline{Y} denotes a r.v. with law $\overline{\mu}$ and $x_1, \ldots, x_n \in S_{\text{fin}} \subseteq \mathbb{R}$ and $x_1, \ldots, x_n \in S_{\text{fin}} \subseteq \mathbb{R}$

For each
$$i = (i_1, i_2) \in \mathbb{Z}^2$$
, let
 $i^{\rightarrow} := (i_1 + 1, i_2) \text{ and } i^{\uparrow} := (i_1, i_2 + 1).$
Let $p, d \in [0, 1]$ and let $X = (X_t)_{t \in \mathbb{N}}$ be a Markov chain with
values in $\{0, 1\}^{\mathbb{Z}^2}$ such that independently for each i and t ,
 $X_{t+1}(i) = X_t(i) \lor (X_t(i^{\rightarrow}) \land X_t(i^{\uparrow}))$ w. prob. $p(1 - d)$,
 $X_{t+1}(i) = X_t(i) \lor X_t(i^{\rightarrow})$ w. prob. $\frac{1}{2}(1 - p)(1 - d)$,
 $X_{t+1}(i) = X_t(i) \lor X_t(i^{\uparrow})$ w. prob. $\frac{1}{2}(1 - p)(1 - d)$,
 $X_{t+1}(i) = 0$ w. prob. d .

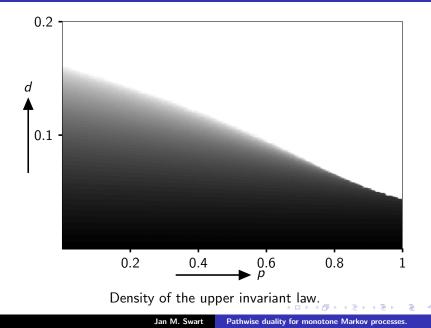
For p = 0 this model is additive. For p = 1, it does not survive for any d > 0.

~

i

向下 イヨト イヨト

Some simulations



Some simulations

