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Contact processes on groups

Λ: countable group with group action (i , j) 7→ ij , inverse
operation i 7→ i−1, and unit element (origin) 0.

a: function a : Λ× Λ→ [0,∞) s.t.

(i) a(i , j) = a(ki , kj) (i , j , k ∈ Λ),

(ii) |a| :=
∑
i∈Λ

a(0, i) <∞.

δ: nonnegative constant.

Definition The (Λ, a, δ)-contact process (ηt)t≥0 is a Markov
process taking values in the subets of Λ. Sites i ∈ ηt are called
infected.

I An infected site at i infects a healthy site at j with rate a(i , j).

I Infected sites recover with rate δ.
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Graphical representation

Draw recovery symbols with Poisson rate δ.
Draw an arrow from i to j with rate a(i , j).

Λ

t

A

ηAt

ηAt = {i ∈ Λ : (j , 0) (i , t) for some j ∈ A}.

Open paths may follow arrows but must avoid recovery symbols.
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Campbell/Palm laws

Let ω be the Poisson processes of the graphical representation.
Let A be finite and nonempty.
Define a (normalized) Campbell law:

P̂A
t [ω ∈ •, ι = i ] :=

P[ω ∈ •, i ∈ ηAt (ω)]

E[|ηAt |]
.

I P̂A
t [ω ∈ •] is the original law P size-biased on the number of

infected sites |ηAt |.
I Conditional on ηAt , the site ι is chosen uniformly from all

infected sites.
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A typical infected site

ι

time 0

time t

0

Size-biased population
Typical
infected site
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Typical particles in branching processes

ι

time 0

time t

0

Size-biased population
Typical
infected site

backward random walk

For branching processes, we have Kallenberg’s
backward tree construction.
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The exponential growth rate

Why look at Campbell laws for a contact process?

Campbell laws are related to the quantity:

r(Λ, a, δ) = r := lim
t→∞

1

t
logE

[
|η{0}t |

]
the exponential growth rate of the expected population size.

I δ 7→ r(δ) nonincreasing, Lipschitz continuous.

I r < 0 iff δ > δc. [Menshikov ’86, Aizenman & Barsky ’87,
Bezuidenhout & Grimmett ’91, Aizenman & Jung ’07].

Here δc := inf{δ > 0 : the (Λ, a, δ)-contact process dies out a.s.}
critical point for survival.
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Contact processes on nonamenable groups

Theorem (S. ’09) The critical contact process on any
nonamenable group dies out. Moreover, on nonamenable groups,
survival implies r > 0.

Idea of the Proof The first statement follows from the second
since δ 7→ r(δ) is continuous hence {δ : r(δ) > 0} is open.

Define

P̃{0}λ [ω ∈ •, ι = i , τ ∈ dt] :=
P[ω ∈ •, i ∈ η{0}t ]e−λtdt∫ t

0 E[|η{0}t |]e−λtdt
.

Claim Assume r = 0 and the upper invariant law ν is nontrivial.
Then

P̃{0}λ [ι−1η{0}τ ∈ • ] =⇒
λ↓0

ν̂,

where ν̂(dA) = ν(dA | 0 ∈ A) is the upper invariant law
conditioned on the origin being infected.
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Intermezzo: amenability

Let AB := {ij : i ∈ A, j ∈ B} and let AMB := (A\B) ∪ (B\A)
denote the symmetric difference of A and B.
By definition, Λ is amenable if

For every finite nonempty ∆ ⊂ Λ and ε > 0, there exists a finite
nonempty A ⊂ Λ such that |(A∆)MA| ≤ ε|A|.

If Λ is finitely generated, then it suffices to check this for one finite
symmetric generating set ∆. In this case, (A∆)MA is the
boundary of A in the Cayley graph associated with Λ and ∆.

In nonamenable groups, the boundary of a finite set
is never much smaller than its interior.

For example, Zd is amenable, but regular trees are not.
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Intermezzo: the upper invariant law

Set
ηt := {i ∈ Λ : −∞ (i , t)}

where −∞ indicates the presence of an open path in the
graphical representation started at time −∞.
Then ν := P[ηt ∈ • ] is the upper invariant law.
Definition A measure µ on the set of subsets of Λ is nontrivial if
µ({∅}) = 0 and homogeneous if µ is invariant under translations
A 7→ iA := {ij : j ∈ A}.
I ν is a homogeneous invariant law.

I ν is the largest invariant law (in the stochastic order).

I The only extremal homogeneous inv. laws are ν and δ∅.

I The process started in a homog. nontriv. law converges to ν.
(Harris, 1974)
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Idea of the proof (continued)

The fact that
P̃{0}λ [ι−1η{0}τ ∈ • ] =⇒

λ↓0
ν̂

means that for small λ, the law P̃{0}λ [ι−1η
{0}
τ ∈ • ] describes a

random finite set B, that looks something like this:

B

≈ ν
Origin = typical infected
site, chosen with equal

probabilities from B

Since the typical site lies far from the “boundary” of B, this
contradicts nonamenability.
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Derivative of the exponential growth rate

Theorem (Sturm & S. ’11) For each δ in the subcritical regime
δ > δc, there exists a ν̂δ concentrated on the finite subsets of Λ
such that

P̂A
t [ι−1ηAt ∈ • ] =⇒

t→∞
ν̂δ (A ⊂ Λ finite).

Theorem (Sturm & S. ’11) The function δ 7→ r(Λ, a, δ) is
continuously differentiable on (δc,∞) and satisfies

− ∂
∂δ r(Λ, a, δ) =

P
[
η̂δ ∩ η̂† δ = {0}

]
E
[
|η̂δ ∩ η̂† δ|−1

] > 0
(
δ ∈ (δc,∞)

)
where η̂δ and η̂† δ are independent random variables with laws ν̂δ
and ν̂†δ , respectively, and ν̂†δ is the analogue of ν̂δ for the dual
(Λ, a†, δ)-contact process.
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Intermezzo: duality

For the dual process η†Bt time runs backwards and all arrows are
reversed. Need to distinguish a from reversed a†(i , j) := a(j , i).

A

ηAt

η†Bt

B

{ηAt ∩ B 6= ∅} = {∃ open path from A to B} = {A ∩ η†Bt 6= ∅}.
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Russo’s formula

ι

time 0

time t

0

Say that a point (i , s) is pivotal if all paths (0, 0) (ι, t) pass
through it. Russo’s formula implies:

− ∂
∂δ r(Λ, a, δ) = lim

t→∞
E
[1

t

∫ t

0
1{∃ pivotal at s}ds

]
.
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Infinite starting measures

Let P+ := {B ⊂ Λ : B 6= ∅} and

µAt :=
∑
i∈Λ

P
[
η
{iA}
t ∈ •

]∣∣
P+

be the “law” of the process started in the finite configuration A
shifted to a “uniformly chosen” position in the lattice. This is an
infinite measure but it can still be used to define conditional
probabilities. In particular,

µAt
(
·
∣∣{B : 0 ∈ B}

)
= P̂A

t

[
ι−1ηAt ∈ •

]
.

The advantage of this approach is that it preserves the translation
invariance of the problem which is broken when we move the
typical site to the origin.
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Eigenmeasures

Equip P := {A : A ⊂ Λ} ∼= {0, 1}Λ with the product topology.

Definition An eigenmeasure with eigenvalue λ is a nonzero, locally
finite measure µ on P+ such that∫

µ(dA)P[ηAt ∈ • ]
∣∣
P+

= eλtµ (t ≥ 0).

Let
EA
t := E

[
|ηAt |

]
= µAt ({B : 0 ∈ B}).

Conjecture Each (Λ, a, δ)-contact process has an eigenmeasure
◦
ν

with eigenvalue r such that

1

EA
t

µAt =⇒
t→∞

◦
ν

for all finite nonempty A.

Jan M. Swart (Prague) joint with Anja Sturm (Göttingen) The contact process seen from a typical infected site



The upper invariant law revisited

Claim Set µ̃Aλ :=
∫
µAt e−λtdt and ẼA

λ :=
∫

EA
t e−λtdt. Then there

exist λn ↓ r such that

1

ẼA
λn

µ̃Aλn =⇒
n→∞

an eigenmeasure with eigenvalue r .

Theorem (S. ’09) If ν is nontrivial, then ν is the only nontrivial
spatially homogeneous eigenmeasure with eigenvalue 0.

Idea of proof Generalization of the proof that ν is the only
nontrivial spatially homogeneous invariant law.
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The subcritical case

Theorem (Sturm & S. ’11) Assume that r < 0. Then there
exists, up to a multiplicative constant, a unique homogeneous
eigenmeasure

◦
ν with eigenvalue r . For any nonzero, homogeneous,

locally finite measure µ on P+, one has

e−rt
∫
µ(dA)P[ηAt ∈ • ]

∣∣∣
P+(Λ)

=⇒
t→∞

c
◦
ν,

where ⇒ denotes vague convergence and c > 0.

Moreover,
◦
ν is concentrated on finite sets. There are no

homogeneous eigenmeasures with eigenvalues other than r .
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Backward path

The fact that
◦
ν is concentrated on finite sets means that there is

almost a single path leading up to the typical particle.
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Quasi-invariant laws

Define an equivalence relation on Pfin := {A ⊂ Λ : A is finite} by

A ∼ B iff A = iB for some i ∈ Λ,

and let Ã := {B : B ∼ A} denote the equivalence class containing
A. Then (η̃At )t≥0 is the (Λ, a, δ)-contact process modulo shifts.

Let
◦
ν be an eigenmeasure with eigenvalue r that is concentrated

on Pfin. Then there exists a random finite set ∆ such that

◦
ν =

∑
i

P[i∆ ∈ · ],

and P[∆̃ ∈ · ] is a quasi-invariant law of the (Λ, a, δ)-contact
process modulo shifts.
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The subcritical case revisited

Theorem (Sturm & S. ’11) In the subcritical regime δ > δc, the
(Λ, a, δ)-contact process modulo shifts has a unique quasi-invariant
law, which is the rescaled limit law starting from any finite initial
state.

Proof uses Doob h-transform where h is defined in terms of the
eigenmeasure of the dual process. In particular, the proof shows
that subcritical (Λ, a, δ)-contact processes modulo shifts are
R-positive. A similar discrete-time result has been derived earlier in
[Ferrari, Kesten & Mart́ınez ’96].
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Pivotal sites revisited

Define the intersection measure µ ∩× ν of two measures µ and ν on
P+ as the restriction to P+ of the image of the product measure
µ⊗ ν under the map (A,B) 7→ A ∩ B. Then

− ∂
∂δ r(Λ, a, δ) =

∫ ◦
ν ∩× ◦

ν†(dC )1{C={0}}∫ ◦
ν ∩× ◦

ν†(dC )|C |−11{0∈C}
.

If Λ is finite, then we can normalize
◦
ν ∩× ◦

ν† to a probability
measure. Let ζ have this law and choose κ uniformly from ζ. Then

− ∂
∂δ r(Λ, a, δ) =

P[ζ = {0}]
P[κ = 0]

=
|Λ|−1P[|ζ| = 1]

|Λ|−1
= P[|ζ| = 1]

is the probability that ζ consists of a single point.
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Outlook

Open Problem It can probably happen that
◦
ν ∩× ◦

ν† is
concentrated on finite sets but

◦
ν,

◦
ν† on their own are not.

Prove

− ∂
∂δ r(Λ, a, δ) =

∫ ◦
ν ∩× ◦

ν†(dC )1{C={0}}∫ ◦
ν ∩× ◦

ν†(dC )|C |−11{0∈C}
> 0

assuming that there exists a pair of eigenmeasures
◦
ν,

◦
ν† whose

intersection measure
◦
ν ∩× ◦

ν† is concentrated on finite sets.

In particular, is this always true in the regime r > 0?

Jan M. Swart (Prague) joint with Anja Sturm (Göttingen) The contact process seen from a typical infected site


