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Probability kernels

For general sets S ,T , let F(S ,T ) denote the set of all functions
f : S → T .

Let S ,T be finite sets. A linear operator A : F(T ,R)→ F(S ,R)
is uniquely characterized by its matrix (A(x , y))x∈S , y∈T through
the formula

Af (x) :=
∑
y∈T

A(x , y)f (y) (x ∈ S).

A linear operator K : F(T ,R)→ F(S ,R) is a probability kernel
from S to T if and only if

K (x , y) ≥ 0 and
∑
z∈T

K (x , z) = 1 (x ∈ S , y ∈ T ).
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Random mapping representations

Let K be a probability kernel from S to T .

A random mapping representation of K is an F(S ,T )-valued
random variable M such that

K (x , y) = P[M(x) = y ] (x ∈ S , y ∈ T ).

We say that K is representable in G ⊂ F(S ,T ) if M can be chosen
so that it takes values in G.
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Monotone probability kernels

For partially ordered sets S ,T , let Fmon(S ,T ) be the set of all
monotone maps m : S → T , i.e., those for which x ≤ x ′ implies
m(x) ≤ m(x ′).

A probability kernel K is called monotone if

Kf ∈ Fmon(S ,R) ∀f ∈ Fmon(T ,R),

and monotonically representable if K is representable in
Fmon(S ,T ).

Monotonical representability implies monotonicity:

f ∈ Fmon(T ,R) and x ≤ x ′ ⇒
Kf (x) = E

[
f
(
M(x)

)]
≤ E

[
f
(
M(x ′)

)]
= Kf (x ′).
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Monotone probability kernels

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross
(unpublished)) discovered that the converse does not hold. There
are counterexamples with S = T = {0, 1}2.

On the positive side, Kamae, Krengel & O’Brien (1977) and Fill &
Machida (2001) have shown that:

(Sufficient conditions for monotone representability)
Let S ,T be finite partially ordered sets and assume that at least
one of the following conditions is satisfied:

(i) S is totally ordered.

(ii) T is totally ordered.

Then any monotone probability kernel from S to T is
monotonically representable.
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Stochastic order

In particular, setting S = {1, 2}, this proves that if µ1, µ2 are
probability laws on T such that

µ1f ≤ µ2f ∀f ∈ Fmon(T ,R),

then it is possible to couple random variables M1,M2 with laws
µ1, µ2 such that M1 ≤ M2.
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Markov semigroups

Let S be finite. By definition, a Markov semigroup is a collection
of probability kernels (Pt)t≥0 on S such that

P0 = lim
t↓0

Pt = 1 and PsPt = Ps+t .

Each Markov semigroup is of the form

Pt := e tG =
∞∑
n=0

1

n!
tnGn (t ≥ 0),

where the generator G satisfies

G (x , y) ≥ 0 (x 6= y) and
∑
y∈S

G (x , y) = 0 (x ∈ S).
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Representability of semigroups

By definition, G is representable in G ⊂ F(S ,S) if G can be
written as

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
,

where (rm)m∈G are nonnegative constants (rates).

(Representability of semigroups)
Assume that G is closed under composition and contains the
identity map. Then the following statements are equivalent:

(i) G can be represented in G.

(ii) Pt can be represented in G for all t ≥ 0.
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Stochastic flows

Proof of (i)⇒(ii) Let ω be a Poisson subset of G × R with local
intensity rmdt and let ωs,u := {(m, t) ∈ ω : s < t ≤ u}.
Define random maps (Xs,u)s≤u by composing the maps in ωs,u in
the order of the time at which they occur:

Xs,u := mn ◦ · · · ◦m1

with ωs,u =
{

(m1, t1), . . . , (mn, tn)
}
, t1 < · · · < tn.

The (Xs,u)s≤u form a stochastic flow:

Xs,s = 1 and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u),

with independent increments:

Xt0,t1 , . . . ,Xtn−1,tn independent for t0 < · · · < tn.
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Stochastic flows

If X0 is independent of ω, then

Xt := X0,t(X0) (t ≥ 0)

defines a Markov process (Xt)t≥0 with generator G , and

Pt(x , y) = P[X0,t(x) = y ]

gives the desired random mapping representation of the Markov
semigroup (Pt)t≥0 with generator G .

We call the Poisson set ω a graphical representation of X .

Note: We have defined Xs,t right-continuous in s and t.
As a result, (Xt)t≥0 has right-continuous sample paths.
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Duality

Two Markov processes X and Y with state spaces S and T are
dual with duality function ψ : S × T → R iff

E
[
ψ(Xt ,Y0)

]
= E

[
ψ(X0,Yt)

]
(∗).

for all deterministic initial states X0 and Y0.
If (∗) holds for deterministic initial states, then also for random
initial states, provided Xt is independent of Y0 and X0 is
independent of Yt .

In terms of semigroups (Pt)t≥0, (Qt)t≥0 and generators G ,H,
duality says

Ptψ=ψQ†t (t ≥ 0),

⇔ Gψ=ψH†,

where A† denotes the adjoint of a matrix A.
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Pathwise duality

Two maps m : S → S and m̂ : T → T are dual w.r.t. the duality
function ψ iff

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
(x ∈ S , y ∈ T ).

Two stochastic flows (Xs,t)s≤t and (Ys,t)s≤t with independent
increments are dual w.r.t. the duality function ψ if:

(i) A.s. ∀ s ≤ t, the maps X−s,t and Y−t,−s are dual w.r.t. ψ.

(ii) (X−t0,t1
,Y−t1,−t0), . . . , (X−tn−1,tn ,Y−tn,−tn−1) are independent

for t0 < · · · < tn.

To get a sensible definition, we have to take the left-continuous
modification X−s,t := Xs−,t− (if Ys,t is right-continuous as usual).
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Pathwise duality

Two Markov processes X and Y are pathwise dual if they can be
constructed from stochastic flows that are dual.
Pathwise duality implies duality:

E
[
ψ(Xt ,Y0)

]
= E

[
ψ
(
X−0,t(X0),Y0

)]
= E

[
ψ
(
X0,Y−t,0(Y0)

)]
= E

[
ψ(X0,Yt)

]
.

Even though pathwise duality is much stronger than duality, lots of
well-known dualities can be realized as pathwise dualities.
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Pathwise duality

(Pathwise duality) If the generators G and H of X and Y have
random mapping representations of the form

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
,

Hf (x) =
∑
m∈G

rm
(
f (m̂(y))− f (y)

)
,

where each map m̂ is a dual of m, then X and Y are pathwise dual.

Proof Given a graphical representation ω of X , we can define a
graphical representation ω̂ for Y by

ω̂ :=
{

(m̂,−t) : (m, t) ∈ ω
}
.

Then the stochastic flows (Xs,t)s≤t and (Ys,t)s≤t associated with
ω and ω̂ are dual.
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Pathwise duality

time

m1

m3

m2

m4

x

X−0,t(x)

time

m̂1

m̂3

m̂2

m̂4

Y−t,0(y)

y

In this picture

X−0,t = m4 ◦ · · · ◦m1 is dual to Y−t,0 = m̂1 ◦ · · · ◦ m̂4.
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Invariant subspaces

Let P(S) be the set of all subsets of S .
Let m−1 : P(S)→ P(S) denote the inverse image map

m−1(A) := {x ∈ S : m(x) ∈ A}.

Observation m−1 is dual to m w.r.t. to the duality function

ψ(x ,A) := 1{x ∈ A}.

Consequence Each Markov process X with state space S (and
given random mapping representation) has a pathwise dual Y with
state space P(S) and generator

Hf (A) :=
∑
m∈G

rm
(
f (m−1(A))− f (A)

)
In practice, this dual is not very useful since the space P(S) is very
big. Useful duals are associated with invariant subspaces of P(S).
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A bit of order theory

Let S be a finite partially ordered space. The “upset” and
“downset” of A ⊂ S are defined as

A↑ := {x ∈ S : x ≥ a for some a ∈ A},

A↓ := {x ∈ S : x ≤ a for some a ∈ A}.

A set A ⊂ S is increasing (resp. decreasing) if A↑ = A (resp.
A↓ = A) and a principal filter (resp. principal ideal) if A is of the
form A = {a}↑ (resp. A = {a}↓) for some a ∈ S . We let

Pinc(S) := {A ⊂ S : A is increasing},
P!inc(S) := {A ⊂ S : A is a principal filter},
Pdec(S) := {A ⊂ S : A is decreasing},
P!dec(S) := {A ⊂ S : A is a principal ideal}.
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A bit of order theory

A partially ordered set S is bounded from below resp. above if
there exists an element 0 resp. 1 such that

0 ≤ x (x ∈ S) resp. x ≤ 1 (x ∈ S).

A lattice is a partially ordered set such that for every x , y ∈ S
there exist x ∨ y ∈ S and x ∧ y ∈ S called the supremum or join
and infimum or meet of x and y , respectively, such that

{x}↑ ∩ {y}↑ = {x ∨ y}↑ and {x}↓ ∩ {y}↓ = {x ∧ y}↓.

Finite lattices are bounded from below and above.

A map m : S → S is additive if

m(0) = 0 and m(x ∨ y) = m(x) ∨m(y) (x , y ∈ S).
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Monotone and additive maps

(Monotone and additive maps)
(i) Let S and T be partially ordered sets and let m : S → T be a
map. Then m is monotone if and only if

m−1(A) ∈ Pdec(S) for all A ∈ Pdec(T ).

(ii) If S and T are finite lattices, then m is additive if and only if

m−1(A) ∈ P!dec(S) for all A ∈ P!dec(S).
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Dual spaces

Let S be a partially ordered set. A dual of S is a partially ordered
set S ′ together with a bijection S 3 x 7→ x ′ ∈ S ′ such that

x ≤ y if and only if x ′ ≥ y ′.

Example 1: For any partially ordered set S , we may take S ′ := S
but equipped with the reversed order, and x 7→ x ′ the identity map.

Example 2: If Λ is a set and S ⊂ P(Λ) is a set of subsets of Λ,
equipped with the partial order of inclusion, then we may take for
x ′ := Λ\x the complement of x and S ′ := {x ′ : x ∈ S}.
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Additive systems duality

Let X be a Markov process in a finite lattice S .
Assume that the generator of X is representable in additive maps.
Then X has a pathwise dual that takes values in the invariant
subspace P!dec(S) ⊂ P(S).
A convenient way to encode an element A ∈ P!dec(S) is to write

A = {y ′}↓ with y ∈ S ′.

Identifying P!dec(S) ∼= S ′, the duality function becomes

ψ(x , y) = 1{x ≤ y ′} = 1{y ≤ x ′} (x ∈ S , y ∈ S ′).

(Additive duality) A map m : S → S has a dual m′ : S ′ → S ′

w.r.t. ψ if and only if m is additive. The dual map m′ is unique
and also an additive map.
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Siegmund’s duality

Let S = {0, . . . , n} be totally ordered and let S ′ := S equipped
with the reversed order.
A map m : S → S is additive iff m is monotone and m(0) = 0.
Each such map has a dual m′ : S ′ → S ′ that is monotone and
satisfies m′(n) = n.

(Siegmund’s dual) Let X be a monotone Markov process in S
such that 0 is a trap. Then X has a dual Y w.r.t. to the duality
function ψ(x , y) := 1{x≤y}. The dual process is also monotone and
has n as a trap. Moreover, the duality can be realized in a
pathwise way.
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Additive particle systems

Let S = P(Λ) with Λ a finite set, and let x 7→ x ′ ∈ S ′ := P(Λ)
denote the complement map x ′ := Λ\x .

(Additive particle systems) Let X be a Markov process in S
whose generator can be represented in additive maps. Then X
has a pathwise dual Y w.r.t. to the duality function
ψ(x , y) := 1{x∩y=∅}, and Y is also an additively representable
Markov process.

Examples: Voter model, contact process, exclusion process,
systems of coalescing random walks.

Jan M. Swart (Prague) Pathwise duality for monotone systems



Krone’s duality

Steve Krone [AAP 1999] has studied a two-stage contact process,
with state space of the form S = {0, 1, 2}Λ.
He interprets x(i) = 0, 1, or 2 as an empty site, young, or adult
organism, and defines maps

grow up ai · · · 1 · · · · 7→ · · · 2 · · · ·
give birth bij · · · 20 · · · 7→ · · · 21 · · ·
young dies ci · · · 1 · · · · 7→ · · · 0 · · · ·
death di · · · 1 · · · · 7→ · · · 0 · · · ·

or · · · 2 · · · · 7→ · · · 0 · · · ·
grow younger ei · · · 2 · · · · 7→ · · · 1 · · · ·

where in all cases not mentioned, the maps have no effect.
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Krone’s duality

We set S ′ := S and define S 3 x 7→ x ′ ∈ S ′ by x ′(i) := 2− x(i).
Then the duality function becomes

ψ(x , y) = 1{x ≤ y ′} = 1{x(i) + y(i) ≤ 2 ∀ i ∈ Λ}.

(Krone’s dual) The maps ai , bij , ci , di , ei are all additive and their
duals are given by

a′i = ai , b′ij = bji , c ′i = ei , d ′i = di , e ′i = ci .
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Percolation representations

Xt

X0

Y0

Yt

Additive particle systems and their duals can be constructed in
terms of open paths. In this example, X is a voter model and Y
are coalescing random walks.
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Percolation representations

0 1 0 2

0 1 2 0

X0

Xt

0 2 2 1

2 0 1 2

Yt

Y0

We can also give a percolation representation of Krone’s duality.
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Percolation representations

By definition, a lattice S is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (x , y , z ∈ S).

If Λ is a partially ordered set, then S := Pdec(Λ) with the order of
set inclusion is a distributive lattice. Birkhoff’s representation
theorem says that every distributive lattice is of this form.

(Percolation representation) An additive Markov process taking
values in Pdec(Λ) has a percolation representation together with its
dual, which takes values in S ′ = Pinc(Λ), with the duality function
ψ(x , y) = 1{x∩y 6=∅}.

If Λ is equipped with the trivial order x 6≤ y for all x 6= y , then
Pdec(Λ) = P(Λ) = Pinc(Λ).

In Krone’s example, Λ = {1, 2}∆ with the product order.
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Monotone systems duality

Let S be a finite lattice and let m : S → S be monotone. Then m
is automatically superadditive:

m(x ∨ y) ≥ m(x) ∨m(y)

For monotone maps that are not additive, this inequality is strict.
A good example is the cooperative branching map

110 7→ 111,
100 7→ 100,
010 7→ 010,

which can be interpreted as two individuals cooperating to give
birth to a third one.
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Monotone systems duality

Let X be a Markov process in a finite partially ordered set S .
Assume that the generator of X is representable in monotone
maps.
Let (Xs,t)s≤t be the associated stochastic flow. The maps Xs,t are
now monotone, but in general not additive. It follows that

X−1
s,t (A) ∈ Pdec(S) for all A ∈ Pdec(S),

X−1
s,t (A) ∈ Pinc(S) for all A ∈ Pinc(S).

Setting Zs,t(A) := X−1
−t,−s(A) defines a dual stochastic flow with

values in Pdec(S) or Pinc(S). This yields two distinct pathwise
duals that are related by taking complements.

If X is not additive, then Zs,t sometimes maps elements of
P!dec(S) into sets that have more than one maximal element.
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Monotone systems duality

A convenient way to encode an element A ∈ Pdec(S) is to write
down its maximal elements. By definition, x ∈ A is a maximal
element of A if

w ∈ A, w ≥ x implies w = x .

Setting

Yt := {y ∈ S ′ : y ′ is a maximal element of Z0,t(A)} (t ≥ 0)

yields a Markov process taking values in the finite subsets of S ′

that is dual to (Xt)t≥0 w.r.t. the duality function

ψ(x ,Y ) = 1{x ≤ y ′ for some y ∈ Y }.

In the special case that (Xt)t≥0 is additive, (Yt)t≥0 has the
property that

Y0 = {y0} implies Yt = {yt} (t ≥ 0),

where (yt)t≥0 is the additive dual of (Xt)t≥0.
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Monotone systems duality

Alternatively, encode increasing sets by their minimal elements.
Let Λ be countable and equip S = {0, 1}Λ with the product order
and topology. For each Y ⊂ S , let

Y ↑ := {z ∈ S : z ≥ y for some y ∈ Y },
Y ◦ := {y ∈ Y : y is a minimal element of Y }.

It is easy to see that (Y ↑)↑ = Y ↑ and (Y ◦)◦ = Y ◦. Set
Sfin := {y ∈ S : |y | <∞} with |y | :=

∑
i y(i) and

I(Λ) := {Y : Y is open and Y ↑ = Y },
H(Λ) := {Y : Y ⊂ Sfin and Y ◦ = Y }.

(Encoding open increasing sets)The map Y 7→ Y ↑ is a bijection
from H(Λ) to I(Λ), and Y 7→ Y ◦ is its inverse.
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Monotone systems duality

Equip I(Λ) with a topology such that Y (n) → Y if and only if
their complements converge in the Hausdorff topology. Then each
monotonely representable interacting particle system with values in
S = {0, 1}Λ has a pathwise dual with values in I(Λ), or
alternatively H(Λ).

If we take H(Λ) as the state space of the dual, then the duality
function becomes

ψ(x ,Y ) = 1{x ≥ y for some y ∈ Y }
(
x ∈ S , Y ∈ H(Λ)

)
.
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Monotone systems duality

In the special case that (Xt)t≥0 is additive, the H(Λ)-valued dual
process preserves the subspace of all Yt of the form

Yt = {δi : i ∈ ∆t} with ∆t ⊂ Λ.

Now the process (∆t)t≥0 is the additive dual of (Xt)t≥0.

In general, Yt is a set whose elements y ∈ {0, 1}Λ satisfy
|y | :=

∑
i∈Λ y(i) <∞.

For example, if Y0 = δk and Yt contains an element
Yt 3 y = δi + δj , this may express that k contains a particle at
time 0 provided both its parents i and j are alive at time −t.
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Monotone systems duality

By monotonicity, the process X has an upper invariant law

P1[Xt ∈ · ] =⇒
t→∞

ν.

By definition, Y survives if

P{δi}[Yt 6= ∅ ∀t ≥ 0] > 0

for some i ∈ Λ.

(Nontrivial upper invariant law) One has ν 6= δ0 if and only if Y
survives. The law ν is uniquely characterized by

E
[
ψ(X , {y})

]
= P{y}

[
Yt 6= ∅ ∀t ≥ 0

]
.

where X denotes a r.v. with law ν.
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Monotone systems duality

Proof

E1
[
ψ(Xt , {y})

]
= E{y}

[
ψ(1,Yt)

]
= E{y}

[
∃y ∈ Yt s.t. 1 ≥ y

]
= E{y}

[
Yt 6= ∅

]
−→
t→∞

P{y}
[
Yt 6= ∅ ∀t ≥ 0

]
.
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Monotone systems duality

We equip H(Λ) with a partial order by setting

Y ≤ Z iff Y ↑ ⊂ Z ↑.

The largest element of H(Λ) is

{0} with {0}↑ = {0, 1}Λ.

The second largest element of H(Λ) is

Y∗ := {δi : i ∈ Λ} with Y ↑∗ = {x : x 6= 0}.

If 0 is a trap for (Xt)t≥0, then Y0 6= {0} implies Yt 6= {0} (t ≥ 0).
Now, by monotonicity,

PY∗ [Yt ∈ · ] =⇒
t→∞

µ.

We call µ the upper invariant law of (Yt)t≥0.
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Monotone systems duality

We say that X survives if

∃i ∈ Λ s.t. Pδi
[
Xt 6= 0 ∀t ≥ 0

]
> 0.

(Nontrivial upper invariant law) One has µ 6= δ∅ if and only if X
survives. The law µ is uniquely characterized by

E
[ n∏
k=1

ψ(xk ,Y )
]

= P
[
X0,t(xk) 6= 0 ∀t ≥ 0, k = 1, . . . , n

]
.

where Y denotes a r.v. with law µ.

Proof

EY∗
[ n∏
k=1

ψ(xk ,Yt)
]

= E
[ n∏
k=1

ψ(X0,t(xk),Y∗)
]

= P
[
X0,t(xk) 6= 0 ∀k = 1, . . . , n

]
.
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The sexual reproduction process

DeMasi, Ferrari & Lebowitz [JSP 1986], C. Noble [AOP 1992],
R. Durrett [JAP 1992], and C. Neuhauser and S.W. Pacala
[AAP 1999] consider a sexual reproduction process (Xt)t≥0 taking
values in the space of all configurations . . . 101101001001 . . ., that
evolves as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

Interpretation:

I ‘Sexual’ reproduction.

I Competition for limited space.

I Death.
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values in the space of all configurations . . . 101101001001 . . ., that
evolves as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

Interpretation:

I ‘Sexual’ reproduction.
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The sexual reproduction process

Consider the maps

deathi (x) := x − 1{x(i)=1}δi ,

coopijk(x) :=
[
x + 1{x(i)=1, x(j)=1}δk

]
∧ 1,

brankij(x) :=
[
x + 1{x(k)=1}(δi + δj − δk)

]
∧ 1,

i.e.,
death · · · 1 · · · 7→ · · · 0 · · · ,
coop · · · 110 · · · 7→ · · · 111 · · · ,
bran · · · 001 · · · 7→ · · · 110 · · · ,

· · · 011 · · · 7→ · · · 110 · · · ,
· · · 101 · · · 7→ · · · 110 · · · , . . . etc.
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The sexual reproduction process

Then the maps

death•i (Y ) := {y ∈ Y : y(i) 6= 1},
coop•ijk(x) := Y ∪ brankij(Y )

are dual to deathi and coopijk w.r.t. the duality function

ψ(x ,Y ) = 1{x ≥ y for some y ∈ Y }
(
x ∈ S , Y ∈ H(Λ)

)
.

If (Yt)t≥0 is the Markov process with generator

G•(Y ) :=
∑
i

{
f
(
death•i (Y )

)
− f
(
Y
)}

1
2λ
∑
ijk

{
f
(
coop•ijk(Y )

)
− f
(
Y
)}
,

then (Y ◦t )t≥0 is the H(Λ)-valued dual process w.r.t. the duality
function ψ.
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Gray’s duality

Gray [AOP 1986] introduced a dual for monotone spin systems
that is essentially the Markov process (Yt)t≥0 of the previous slide,
started in an initial state of the form Y0 = {y} for some y ∈ S .

In particular, the associated process (Y ◦t )t≥0 with
Y ◦ := {y ∈ Y : y is a minimal element of Y } is our H(Λ)-valued
dual.
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The sexual reproduction process

Recall that:

I (Xt)t≥0 has a nontrivial invariant law iff (Y ◦t )t≥0 survives.

I (Y ◦t )t≥0 has a nontrivial invariant law iff (Xt)t≥0 survives.

Let

λc := inf{λ ≥ 0 : (Xt)t≥0 survives},
λ′c := inf{λ ≥ 0 : (Xt)t≥0 has a nontrivial invariant law}

Conjecture λ′c ≤ λc with equality on Zd .

Theorem On trees of sufficiently high degree, λ′c < λc.

Proof (Y ◦t )t≥0 survives while (Xt)t≥0 dies out.
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The sexual reproduction process

It seems quite plausible that

X survives ⇒ ν nontrivial.

(Warning: Not true for coalescing random walks.)
However, it is not clear why this should hold for Y since it may
happen that Y survives but

inf{|y | : y ∈ Yt} −→
t→∞

∞.

In this case Y ↑t ↓ ∅ as t →∞.

Durrett and Gray [1985] gave an example of a model with
cooperative branching on Z2 that cannot escape a bounding
rectangle and hence does not survive, yet has a nontrivial upper
invariant law.
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Fast stirring

Let (Xt)t≥0 evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

(stirring) 10 7→ 01 with rate ε−1,

(stirring) 01 7→ 10 with rate ε−1.

Set
mε(x , t) := P[Xε−2t(bε−1xc) (x ∈ R, t ≥ 0).

[DeMasi, Ferrari & Lebowitz ’86] In the fast stirring limit ε ↓ 0,
the particle density mε converges to a solution of

∂
∂t m = ∂2

∂x2 m + λm2(1−m)−m.
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Constant densities

λm2(1−m)−m

m

λ = 3
0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

For λ < 4, the equation ∂
∂t m = λm2(1−m)−m has only one

stable fixed point m = 0.
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Constant densities

λm2(1−m)−m

mλ = 4

0.2 0.4 0.6 0.8 1

-0.3

-0.2
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0

0.1

0.2

0.3

For λ = 4, the equation ∂
∂t m = λm2(1−m)−m obtains a second

fixed point at m = 0.5.
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Constant densities

λm2(1−m)−m

m

λ = 5

0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

For λ > 4, the equation ∂
∂t m = λm2(1−m)−m has one unstable

and two stable fixed points.

Jan M. Swart (Prague) Pathwise duality for monotone systems



Constant densities

λm2(1−m)−m

m

λ = 5

0.2 0.4 0.6 0.8 1

-0.3

-0.2
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0

0.1

0.2

0.3

The unstable fixed point represents a critical density below which
the population is doomed to die out.
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Constant densities

Starting with density m(x , 0) ≡ 1, the hydrodynamic limit
converges to the upper fixed point limt→∞m(x , t) = mupp.

mupp(λ)

λ

2 4 6 8
0

0.2

0.4

0.6

0.8

1.0

We observe a first-order phase transition.
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The stochastic model

Define

I The process survives if Px [Xt 6= 0 ∀t ≥ 0] > 0 for some, and
hence for all initial states with 1 < |x | <∞.

I The process is stable if the upper invariant law is nontrivial.

Monotonicity implies that there exist λc, λ
′
c such that

I The process survives for λ > λc and dies out for λ < λc.

I The process is stable for λ > λ′c and unstable for λ < λ′c.

Open problem: Prove that λc = λ′c.

[Noble ’92] 2 ≤ λ′c(ε) for all ε > 0 and lim supε↓0 λ
′
c(ε) ≤ 4.5.

Conjecture: limε↓0 λ
′
c(ε) = 4.5.
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Travelling waves

For λ > 4, the equation ∂
∂t m = ∂2

∂x2 m + λm2(1−m)−m has
travelling wave solutions.

m(x , t)

x

[DeMasi, Ianiro, Pellegrinotti, & Presutti ’84] The propagation
speed is positive for λ > 4.5, and negative for 4 < λ < 4.5.
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Metastability

For 4 < λ < 4.5 and ε small, rare random events bring the local
particle density below a critical value.

m(x , t)

x

The interval of low population density spreads in both directions.
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The upper invariant law

mupp(λ)

λ

2 4 6 8
0

0.2

0.4

0.6

0.8

1.0

[Noble ’92] For small ε > 0, the density of the upper invariant law
is at least mupp(λ) for λ > 4.5 and close to zero for λ < 4.5.
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The upper invariant law

mupp(λ)

λ

2 4 6 8
0

0.2

0.4

0.6

0.8

1.0

continuous function

Conjecture For fixed ε > 0, the phase transition is second order
and in the same universality class as the contact process.
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The upper invariant law

λ

θ(λ)

λc1 2 3 4

0.2

0.4

0.6

0.8

1

critical exponent

β ≈ 0.27648

Density of the upper invariant law of the 1D contact process.
θ(λ) ∝ (λ− λc)β as λ ↓ λc
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Equality of the critical points

Recall that λc and λ′c are the critical points for survival of finite
systems resp. for the density of the upper invariant law.

For the contact process, λc = λ′c by self-duality.

The sexual reproduction process without stirring is an attractive
spin system.
For such systems, Bezuidenhout and Gray (1994) prove that
survival implies a lower bound in terms of supercritical oriented
percolation and hence nontriviality of the upper invariant law.
It follows that λ′c ≤ λc (without stirring).

Conversely, nontriviality of the upper invariant law seems to imply
a positive propagation speed and hence survival. Proof?
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A cooperative branching-coalescent

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(coal. RW) 10 7→ 01 with rate 1
2 ,

(coal. RW) 01 7→ 10 with rate 1
2 ,

(coal. RW) 11 7→ 01 with rate 1
2 ,

(coal. RW) 11 7→ 10 with rate 1
2 .

Interpretation:

I Cooperative reproduction.

I Competition for limited space.

I Migration.

I No spontaneous deaths!
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A cooperative branching-coalescent

Time = upwards, black = a particle, λ = 2.333.
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Critical points

Define

I The process survives if Px
[
|Xt | > 1 ∀t ≥ 0

]
> 0 for some, and

hence for all initial states with 1 < |x | <∞ particles. Note: a
single particle can neither die nor reproduce!

I The process is stable if there exists an invariant law that is
concentrated on nonzero states.

Monotonicity implies that there exist λc, λ
′
c such that

I The process survives for λ > λc and dies out for λ < λc.

I The process is stable for λ > λ′c and unstable for λ < λ′c.

[Sturm & S. ’14] 1 ≤ λc, λ
′
c <∞.

Numerically: λc ≈ λ′c ≈ 2.47± 0.02.

Open problem: Prove that λc = λ′c.
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Proof of the phase transition

Note: If we combine normal branching:

01 7→ 11 and 10 7→ 11 at rate 1
2λ each,

with coalescence, then the process converges to an invariant law
that is product measure with intensity λ/(1 + λ)
-no phase transition!

For the cooperative branching-coalescent, particles die at a rate
proportional to the number of neighboring pairs 11, and particles
are born at a rate less than λ times that number
-no survival and no nontrivial invariant law for λ ≤ 1.

For large λ, survival and existence of a nontrivial invariant law
follow from comparison with oriented percolation.
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Critical points

λ

θ(λ)
ψ(λ)

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

ψ(λ) := P
[
|Xt | > 1 ∀t ≥ 0

]
starting with two particles on

neighboring sites.

θ(λ) := P[X∞(0) = 1] where X∞ distributed according to the
upper invariant law.

Jan M. Swart (Prague) Pathwise duality for monotone systems



Critical exponent

Numerically, the density of the upper invariant law satisfies

θ(λ) ∝ (λ− λc)β as λ ↓ λc,

with
β ≈ 0.5± 0.1,

which differs from the β ≈ 0.27648 of the contact process.
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The subcritical regime

Consider

P
[
|Xt | > 1

]
with X0 = δ0 + δ1 (two particles),

P
[
Xt(0) = 1

]
with X0 = 1 (fully occupied).

[Bezuidenhout & Grimmett ’91] For the contact process, in the
subcritical regime λ < λc, both quantities decay exponentially fast
to zero.

[Sturm & S. ’14] For the cooperative branching-coalescent, both
quantities decay not faster than as t−1/2. For λ ≤ 1

2 , this is the
exact rate of convergence.

Proof of the lower bound: By monotonicity, we can estimate the
cooperative branching-coalescent by a pure coalescent, for which
both quantities decay like t−1/2.
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The subcritical regime

Proof of the upper bound: Write x(i , j , k) := (x(i), x(j), x(k)).
Since

∂
∂tP[Xt(0) = 1] = (λ− 1)P[Xt(0, 1) = 11]− λP[Xt(0, 1, 2) = 111]

it suffices to prove

P[Xt(0, 1) = 11] ≤ Ct−3/2.

We use the duality function

ψ(x ,Y ) = 1{x ≤ y ′ for some y ∈ Y },

or equivalently

φ(x ,Y ) := 1− ψ(x ,Y ) = 1{x ∧ y 6= 0 for all y ∈ Y }.

Our quantity of interest is

P[Xt(0, 1) = 11] = E[φ(Xt ,Y0)] = E[φ(X0,Yt)],

where Y0 = {δ0, δ1}.
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The subcritical regime

We need to show that

P[0 6∈ Yt ] ≤ Ct−3/2,

since 0 ∈ Y implies

φ(x ,Y ) = 1{x ∧ y 6= 0 for all y ∈ Y } = 0 ∀x .

In the absence of cooperative branching, when there is only
coalescing random walk evolution, the dual process (Yt)t≥0 evolves
as a collection of coupled voter models.
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The subcritical regime

If the cooperative branching rate λ is zero, then the first time that
0 ∈ Yt is the first time that two out of three walkers meet.

time

0 0 0 1 0 0 0
0 0 0 0 1 0 0

1 2 3

Y0

0 1 1 1 0 0 0
0 0 0 0 1 1 0

ξ1
t ξ2

t ξ3
t

Yt

Jan M. Swart (Prague) Pathwise duality for monotone systems



Coalescing random walks

Let (ξit)
i∈Z
t≥0 be coalescing random walks, started from every site

i ∈ Z.

Let τij := inf{t ≥ 0 : ξit = ξjt}.

Facts:

P[τ12 ∧ τ23 > t] ∼ 1

2
√
π

t−3/2,

E[τ ij ∧ τ jk ] = (j − i)(k − j) (i < j < k).
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The case with branching

If a cooperative branching event occurs, then we use subduality: it
suffices to show that both Y ′t+s and Y ′′t+s die out.

time

0 1 1 1 0 0 0
0 0 0 0 1 1 0

Yt

0 1 1 1 0 0 0
0 0 1 0 1 1 0
0 0 0 1 1 1 0

Yt+s

0 1 1 1 0 0 0
0 0 0 0 1 1 0

Y ′t+s

0 0 1 0 0 0 0
0 0 0 1 0 0 0

Y ′′t+s
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The case with branching

This leads to a (dependent) branching process where triples of
random walks die as soon as two out of the three meet, but before
it dies, with rate 2λ, a triple can give birth to a new triple of
random walks, started on neighboring positions. As long as λ < 1

2 ,
it can be shown that this branching process dies out and the
probability to be alive at time t decays as t−3/2.
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