Cooperative branching and pathwise duality for monotone systems

Jan M. Swart (Prague)

joint with A. Sturm and T. Mach (Göttingen)

Thursday, April 27th, 2017

A (1) > (1) > (1)

∃ >

Pathwise duality for monotone systems

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

- Pathwise duality for monotone systems
- Cooperative branching

イロン イヨン イヨン イヨン

æ

For general sets S, T, let $\mathcal{F}(S, T)$ denote the set of all functions $f: S \to T$.

Let S, T be finite sets. A linear operator $A : \mathcal{F}(T, \mathbb{R}) \to \mathcal{F}(S, \mathbb{R})$ is uniquely characterized by its matrix $(A(x, y))_{x \in S, y \in T}$ through the formula

$$Af(x) := \sum_{y \in T} A(x, y) f(y) \qquad (x \in S).$$

A linear operator $K : \mathcal{F}(T, \mathbb{R}) \to \mathcal{F}(S, \mathbb{R})$ is a *probability kernel* from S to T if and only if

$$\mathcal{K}(x,y) \geq 0 \quad ext{and} \quad \sum_{z \in \mathcal{T}} \mathcal{K}(x,z) = 1 \qquad (x \in \mathcal{S}, \ y \in \mathcal{T}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let K be a probability kernel from S to T.

A random mapping representation of K is an $\mathcal{F}(S, T)$ -valued random variable M such that

$$K(x,y) = \mathbb{P}[M(x) = y]$$
 $(x \in S, y \in T).$

We say that K is *representable* in $\mathcal{G} \subset \mathcal{F}(S, T)$ if M can be chosen so that it takes values in \mathcal{G} .

For partially ordered sets S, T, let $\mathcal{F}_{mon}(S, T)$ be the set of all monotone maps $m: S \to T$, i.e., those for which $x \leq x'$ implies $m(x) \leq m(x')$.

A probability kernel K is called *monotone* if

$$Kf \in \mathcal{F}_{\mathrm{mon}}(S,\mathbb{R}) \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T,\mathbb{R}),$$

and monotonically representable if K is representable in $\mathcal{F}_{mon}(S, T)$.

Monotonical representability implies monotonicity:

$$f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}) \quad \text{and} \quad x \leq x' \quad \Rightarrow$$

 $Kf(x) = \mathbb{E} \big[f \big(M(x) \big) \big] \leq \mathbb{E} \big[f \big(M(x') \big) \big] = Kf(x').$

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross (unpublished)) discovered that the converse does not hold. There are counterexamples with $S = T = \{0, 1\}^2$.

On the positive side, Kamae, Krengel & O'Brien (1977) and Fill & Machida (2001) have shown that:

(Sufficient conditions for monotone representability) Let S, T be finite partially ordered sets and assume that at least one of the following conditions is satisfied:

- (i) *S* is totally ordered.
- (ii) *T* is totally ordered.

Then any monotone probability kernel from S to T is monotonically representable.

・ 同 ト ・ ヨ ト ・ ヨ ト

In particular, setting $S = \{1, 2\}$, this proves that if μ_1, μ_2 are probability laws on T such that

$$\mu_1 f \leq \mu_2 f \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}),$$

then it is possible to couple random variables M_1, M_2 with laws μ_1, μ_2 such that $M_1 \leq M_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let S be finite. By definition, a Markov semigroup is a collection of probability kernels $(P_t)_{t>0}$ on S such that

$$P_0 = \lim_{t \downarrow 0} P_t = 1 \quad \text{and} \quad P_s P_t = P_{s+t}.$$

Each Markov semigroup is of the form

$$P_t := e^{tG} = \sum_{n=0}^{\infty} \frac{1}{n!} t^n G^n \qquad (t \ge 0),$$

where the generator G satisfies

$$G(x,y) \ge 0 \quad (x
eq y) \quad ext{and} \quad \sum_{y \in S} G(x,y) = 0 \quad (x \in S).$$

By definition, G is representable in $\mathcal{G} \subset \mathcal{F}(S,S)$ if G can be written as

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \big(f(m(x)) - f(x) \big),$$

where $(r_m)_{m \in \mathcal{G}}$ are nonnegative constants (rates).

(Representability of semigroups)

Assume that G is closed under composition and contains the identity map. Then the following statements are equivalent:

- (i) G can be represented in \mathcal{G} .
- (ii) P_t can be represented in \mathcal{G} for all $t \geq 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Stochastic flows

Proof of (i) \Rightarrow (ii) Let ω be a Poisson subset of $\mathcal{G} \times \mathbb{R}$ with local intensity $r_m dt$ and let $\omega_{s,u} := \{(m, t) \in \omega : s < t \le u\}$. Define random maps $(\mathbf{X}_{s,u})_{s \le u}$ by composing the maps in $\omega_{s,u}$ in the order of the time at which they occur:

$$\mathbf{X}_{s,u} := m_n \circ \cdots \circ m_1$$

with $\omega_{s,u} = \{(m_1, t_1), \dots, (m_n, t_n)\}, \quad t_1 < \cdots < t_n.$

The $(\mathbf{X}_{s,u})_{s \leq u}$ form a stochastic flow:

$$\mathbf{X}_{s,s} = 1$$
 and $\mathbf{X}_{t,u} \circ \mathbf{X}_{s,t} = \mathbf{X}_{s,u}$ $(s \leq t \leq u),$

with independent increments:

$$\mathbf{X}_{t_0,t_1}, \ldots, \mathbf{X}_{t_{n-1},t_n}$$
 independent for $t_0 < \cdots < t_n$.

If X_0 is independent of ω , then

$$X_t := \mathbf{X}_{0,t}(X_0) \qquad (t \ge 0)$$

defines a Markov process $(X_t)_{t\geq 0}$ with generator G, and

$$P_t(x,y) = \mathbb{P}[\mathbf{X}_{0,t}(x) = y]$$

gives the desired random mapping representation of the Markov semigroup $(P_t)_{t\geq 0}$ with generator G.

We call the Poisson set ω a graphical representation of X.

Note: We have defined $\mathbf{X}_{s,t}$ right-continuous in s and t. As a result, $(X_t)_{t\geq 0}$ has right-continuous sample paths.

Duality

Two Markov processes X and Y with state spaces S and T are dual with duality function $\psi : S \times T \to \mathbb{R}$ iff

$$\mathbb{E}\big[\psi(X_t,Y_0)\big] = \mathbb{E}\big[\psi(X_0,Y_t)\big] \qquad (*).$$

for all deterministic initial states X_0 and Y_0 .

If (*) holds for deterministic initial states, then also for random initial states, provided X_t is independent of Y_0 and X_0 is independent of Y_t .

In terms of semigroups $(P_t)_{t\geq 0}, (Q_t)_{t\geq 0}$ and generators G, H, duality says

$$egin{aligned} & P_t\psi=\psi Q_t^\dagger & (t\geq 0), \ & G\psi=\psi H^\dagger, \end{aligned}$$

where A^{\dagger} denotes the adjoint of a matrix A.

 \Leftrightarrow

向下 イヨト イヨト

Two maps $m: S \rightarrow S$ and $\hat{m}: T \rightarrow T$ are *dual* w.r.t. the duality function ψ iff

$$\psi(m(x), y) = \psi(x, \hat{m}(y)) \qquad (x \in S, y \in T).$$

Two stochastic flows $(\mathbf{X}_{s,t})_{s \leq t}$ and $(\mathbf{Y}_{s,t})_{s \leq t}$ with independent increments are *dual* w.r.t. the duality function ψ if:

(i) A.s.
$$\forall s \leq t$$
, the maps $\mathbf{X}_{s,t}^-$ and $\mathbf{Y}_{-t,-s}$ are dual w.r.t. ψ .
(ii) $(\mathbf{X}_{t_0,t_1}^-, \mathbf{Y}_{-t_1,-t_0}), \dots, (\mathbf{X}_{t_{n-1},t_n}^-, \mathbf{Y}_{-t_n,-t_{n-1}})$ are independent for $t_0 < \dots < t_n$.

To get a sensible definition, we have to take the left-continuous modification $\mathbf{X}_{s,t}^- := \mathbf{X}_{s-,t-}$ (if $\mathbf{Y}_{s,t}$ is right-continuous as usual).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Two Markov processes X and Y are *pathwise dual* if they can be constructed from stochastic flows that are dual. Pathwise duality implies duality:

$$\begin{split} & \mathbb{E}\big[\psi(X_t, Y_0)\big] = \mathbb{E}\big[\psi\big(\mathbf{X}_{0,t}^-(X_0), Y_0\big)\big] \\ & = \mathbb{E}\big[\psi\big(X_0, \mathbf{Y}_{-t,0}^-(Y_0)\big)\big] = \mathbb{E}\big[\psi(X_0, Y_t)\big]. \end{split}$$

Even though pathwise duality is much stronger than duality, lots of well-known dualities can be realized as pathwise dualities.

向下 イヨト イヨト

Pathwise duality

(Pathwise duality) *If the generators G and H of X and Y have random mapping representations of the form*

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m(f(m(x)) - f(x)),$$

$$Hf(x) = \sum_{m \in \mathcal{G}} r_m(f(\hat{m}(y)) - f(y)),$$

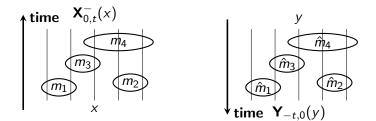
where each map \hat{m} is a dual of m, then X and Y are pathwise dual.

Proof Given a graphical representation ω of X, we can define a graphical representation $\hat{\omega}$ for Y by

$$\hat{\omega} := \{(\hat{m}, -t) : (m, t) \in \omega\}.$$

Then the stochastic flows $(\mathbf{X}_{s,t})_{s \leq t}$ and $(\mathbf{Y}_{s,t})_{s \leq t}$ associated with ω and $\hat{\omega}$ are dual.

ヨト イヨト イヨト



In this picture

$$\mathbf{X}_{0,t}^- = m_4 \circ \cdots \circ m_1$$
 is dual to $\mathbf{Y}_{-t,0} = \hat{m}_1 \circ \cdots \circ \hat{m}_4$.

・ロト ・回ト ・ヨト ・ヨト

æ

Invariant subspaces

Let $\mathcal{P}(S)$ be the set of all subsets of S. Let $m^{-1}: \mathcal{P}(S) \to \mathcal{P}(S)$ denote the *inverse image map*

$$m^{-1}(A) := \{x \in S : m(x) \in A\}.$$

Observation m^{-1} is dual to m w.r.t. to the duality function

$$\psi(x,A) := 1_{\{x \in A\}}.$$

Consequence Each Markov process X with state space S (and given random mapping representation) has a pathwise dual Y with state space $\mathcal{P}(S)$ and generator

$$Hf(A) := \sum_{m \in \mathcal{G}} r_m \big(f(m^{-1}(A)) - f(A) \big)$$

In practice, this dual is not very useful since the space $\mathcal{P}(S)$ is very big. Useful duals are associated with invariant subspaces of $\mathcal{P}(S)$.

A bit of order theory

Let S be a finite partially ordered space. The "upset" and "downset" of $A \subset S$ are defined as

$$A^{\uparrow} := \{ x \in S : x \ge a \text{ for some } a \in A \},\ A^{\downarrow} := \{ x \in S : x \le a \text{ for some } a \in A \}.$$

A set $A \subset S$ is increasing (resp. decreasing) if $A^{\uparrow} = A$ (resp. $A^{\downarrow} = A$) and a principal filter (resp. principal ideal) if A is of the form $A = \{a\}^{\uparrow}$ (resp. $A = \{a\}^{\downarrow}$) for some $a \in S$. We let

$$\begin{split} \mathcal{P}_{\mathrm{inc}}(S) &:= \{ A \subset S : A \text{ is increasing} \}, \\ \mathcal{P}_{\mathrm{linc}}(S) &:= \{ A \subset S : A \text{ is a principal filter} \}, \\ \mathcal{P}_{\mathrm{dec}}(S) &:= \{ A \subset S : A \text{ is decreasing} \}, \\ \mathcal{P}_{\mathrm{ldec}}(S) &:= \{ A \subset S : A \text{ is a principal ideal} \}. \end{split}$$

向下 イヨト イヨト

A bit of order theory

A partially ordered set S is bounded from below resp. above if there exists an element 0 resp. 1 such that

$$0 \le x$$
 $(x \in S)$ resp. $x \le 1$ $(x \in S)$.

A *lattice* is a partially ordered set such that for every $x, y \in S$ there exist $x \lor y \in S$ and $x \land y \in S$ called the *supremum* or *join* and *infimum* or *meet* of x and y, respectively, such that

$$\{x\}^{\uparrow} \cap \{y\}^{\uparrow} = \{x \lor y\}^{\uparrow} \text{ and } \{x\}^{\downarrow} \cap \{y\}^{\downarrow} = \{x \land y\}^{\downarrow}.$$

Finite lattices are bounded from below and above.

A map $m: S \rightarrow S$ is additive if

$$m(0) = 0$$
 and $m(x \lor y) = m(x) \lor m(y)$ $(x, y \in S)$.

(Monotone and additive maps)

(i) Let S and T be partially ordered sets and let $m : S \to T$ be a map. Then m is monotone if and only if

$$m^{-1}(A) \in \mathcal{P}_{\operatorname{dec}}(S)$$
 for all $A \in \mathcal{P}_{\operatorname{dec}}(T)$.

(ii) If S and T are finite lattices, then m is additive if and only if $m^{-1}(A) \in \mathcal{P}_{!dec}(S)$ for all $A \in \mathcal{P}_{!dec}(S)$.

向下 イヨト イヨト

Let S be a partially ordered set. A *dual* of S is a partially ordered set S' together with a bijection $S \ni x \mapsto x' \in S'$ such that

 $x \le y$ if and only if $x' \ge y'$.

Example 1: For any partially ordered set S, we may take S' := S but equipped with the reversed order, and $x \mapsto x'$ the identity map.

Example 2: If Λ is a set and $S \subset \mathcal{P}(\Lambda)$ is a set of subsets of Λ , equipped with the partial order of inclusion, then we may take for $x' := \Lambda \setminus x$ the complement of x and $S' := \{x' : x \in S\}$.

Let X be a Markov process in a finite lattice S.

Assume that the generator of X is representable in additive maps. Then X has a pathwise dual that takes values in the invariant subspace $\mathcal{P}_{!dec}(S) \subset \mathcal{P}(S)$.

A convenient way to encode an element $A \in \mathcal{P}_{! ext{dec}}(S)$ is to write

$$A = \{y'\}^{\downarrow}$$
 with $y \in S'$.

Identifying $\mathcal{P}_{!\mathrm{dec}}(S)\cong S'$, the duality function becomes

$$\psi(x,y) = 1_{\{x \le y'\}} = 1_{\{y \le x'\}}$$
 $(x \in S, y \in S').$

(Additive duality) A map $m : S \to S$ has a dual $m' : S' \to S'$ w.r.t. ψ if and only if m is additive. The dual map m' is unique and also an additive map.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $S = \{0, ..., n\}$ be totally ordered and let S' := S equipped with the reversed order. A map $m : S \to S$ is additive iff m is monotone and m(0) = 0. Each such map has a dual $m' : S' \to S'$ that is monotone and

satisfies m'(n) = n.

(Siegmund's dual) Let X be a monotone Markov process in S such that 0 is a trap. Then X has a dual Y w.r.t. to the duality function $\psi(x, y) := 1_{\{x \le y\}}$. The dual process is also monotone and has n as a trap. Moreover, the duality can be realized in a pathwise way.

(四) (日) (日)

Let $S = \mathcal{P}(\Lambda)$ with Λ a finite set, and let $x \mapsto x' \in S' := \mathcal{P}(\Lambda)$ denote the complement map $x' := \Lambda \backslash x$.

(Additive particle systems) Let X be a Markov process in S whose generator can be represented in additive maps. Then X has a pathwise dual Y w.r.t. to the duality function $\psi(x,y) := 1_{\{x \cap y = \emptyset\}}$, and Y is also an additively representable Markov process.

Examples: Voter model, contact process, exclusion process, systems of coalescing random walks.

・ 同 ト ・ ヨ ト ・ ヨ ト

Steve Krone [AAP 1999] has studied a two-stage contact process, with state space of the form $S = \{0, 1, 2\}^{\Lambda}$. He interprets x(i) = 0, 1, or 2 as an empty site, young, or adult organism, and defines maps

grow up	ai	$\cdots 1 \cdots \mapsto \cdots 2 \cdots$
give birth	b _{ij}	$\cdots 20 \cdots \mapsto \cdots 21 \cdots$
young dies	Ci	$\cdots 1 \cdots \mapsto \cdots 0 \cdots \cdots$
death	di	$\cdots 1 \cdots \mapsto \cdots 0 \cdots \cdots$
or		$\cdots 2 \cdots \mapsto \cdots 0 \cdots \cdots$
grow younger	ei	$\cdots 2 \cdots \mapsto \cdots 1 \cdots \cdots$

where in all cases not mentioned, the maps have no effect.

A (1) > A (2) > A

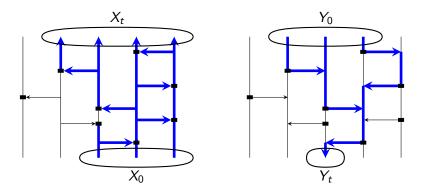
We set S' := S and define $S \ni x \mapsto x' \in S'$ by x'(i) := 2 - x(i). Then the duality function becomes

$$\psi(x,y) = 1_{\{x \le y'\}} = 1_{\{x(i) + y(i) \le 2 \forall i \in \Lambda\}}$$

(Krone's dual) The maps $a_i, b_{ij}, c_i, d_i, e_i$ are all additive and their duals are given by

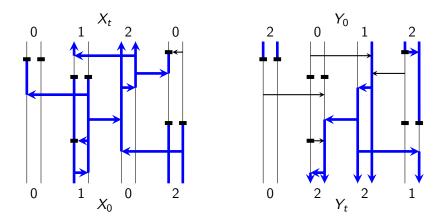
$$a_i'=a_i, \quad b_{ij}'=b_{ji}, \quad c_i'=e_i, \quad d_i'=d_i, \quad e_i'=c_i.$$

Percolation representations



Additive particle systems and their duals can be constructed in terms of open paths. In this example, X is a voter model and Y are coalescing random walks.

Percolation representations



We can also give a percolation representation of Krone's duality.

∃ >

By definition, a lattice S is *distributive* if

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 $(x, y, z \in S).$

If Λ is a partially ordered set, then $S := \mathcal{P}_{dec}(\Lambda)$ with the order of set inclusion is a distributive lattice. *Birkhoff's representation theorem* says that every distributive lattice is of this form.

(Percolation representation) An additive Markov process taking values in $\mathcal{P}_{dec}(\Lambda)$ has a percolation representation together with its dual, which takes values in $S' = \mathcal{P}_{inc}(\Lambda)$, with the duality function $\psi(x, y) = 1_{\{x \cap y \neq \emptyset\}}$.

If Λ is equipped with the trivial order $x \leq y$ for all $x \neq y$, then $\mathcal{P}_{dec}(\Lambda) = \mathcal{P}(\Lambda) = \mathcal{P}_{inc}(\Lambda)$.

In Krone's example, $\Lambda=\{1,2\}^\Delta$ with the product order.

向下 イヨト イヨト

Let S be a finite lattice and let $m : S \rightarrow S$ be monotone. Then m is automatically superadditive:

$$m(x \lor y) \ge m(x) \lor m(y)$$

For monotone maps that are not additive, this inequality is strict. A good example is the *cooperative branching map*

 $\begin{array}{c} 110\mapsto 111,\\ 100\mapsto 100,\\ 010\mapsto 010, \end{array}$

which can be interpreted as two individuals cooperating to give birth to a third one.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X be a Markov process in a finite partially ordered set S. Assume that the generator of X is representable in monotone maps.

Let $(\mathbf{X}_{s,t})_{s \leq t}$ be the associated stochastic flow. The maps $\mathbf{X}_{s,t}$ are now monotone, but in general not additive. It follows that

$$\mathbf{X}_{s,t}^{-1}(A) \in \mathcal{P}_{ ext{dec}}(S) ext{ for all } A \in \mathcal{P}_{ ext{dec}}(S),$$

 $\mathbf{X}_{s,t}^{-1}(A) \in \mathcal{P}_{ ext{inc}}(S) ext{ for all } A \in \mathcal{P}_{ ext{inc}}(S).$

Setting $\mathbf{Z}_{s,t}(A) := \mathbf{X}_{-t,-s}^{-1}(A)$ defines a dual stochastic flow with values in $\mathcal{P}_{dec}(S)$ or $\mathcal{P}_{inc}(S)$. This yields two distinct pathwise duals that are related by taking complements.

If X is not additive, then $Z_{s,t}$ sometimes maps elements of $\mathcal{P}_{!dec}(S)$ into sets that have more than one maximal element.

・ 同 ト ・ ヨ ト ・ ヨ ト

Monotone systems duality

A convenient way to encode an element $A \in \mathcal{P}_{dec}(S)$ is to write down its maximal elements. By definition, $x \in A$ is a maximal element of A if

$$w \in A, w \ge x$$
 implies $w = x$.

Setting

$$Y_t := \{y \in S' : y' \text{ is a maximal element of } \mathsf{Z}_{0,t}(A)\}$$
 $(t \ge 0)$

yields a Markov process taking values in the finite subsets of S' that is dual to $(X_t)_{t\geq 0}$ w.r.t. the duality function

$$\psi(x, Y) = 1_{\{x \le y' \text{ for some } y \in Y\}}.$$

In the special case that $(X_t)_{t\geq 0}$ is additive, $(Y_t)_{t\geq 0}$ has the property that

$$Y_0 = \{y_0\}$$
 implies $Y_t = \{y_t\}$ $(t \ge 0)$,

where $(y_t)_{t\geq 0}$ is the additive dual of $(X_t)_{t\geq 0}$.

Monotone systems duality

Alternatively, encode *increasing* sets by their *minimal* elements. Let Λ be countable and equip $S = \{0, 1\}^{\Lambda}$ with the product order and topology. For each $Y \subset S$, let

$$Y^{\uparrow} := \{z \in S : z \ge y \text{ for some } y \in Y\},\$$

 $Y^{\circ} := \{y \in Y : y \text{ is a minimal element of } Y\}.$

It is easy to see that $(Y^{\uparrow})^{\uparrow} = Y^{\uparrow}$ and $(Y^{\circ})^{\circ} = Y^{\circ}$. Set $S_{\text{fin}} := \{y \in S : |y| < \infty\}$ with $|y| := \sum_{i} y(i)$ and

$$\mathcal{I}(\Lambda) := \{ Y : Y \text{ is open and } Y^{\uparrow} = Y \},$$

 $\mathcal{H}(\Lambda) := \{ Y : Y \subset S_{\text{fin}} \text{ and } Y^{\circ} = Y \}.$

(Encoding open increasing sets) The map $Y \mapsto Y^{\uparrow}$ is a bijection from $\mathcal{H}(\Lambda)$ to $\mathcal{I}(\Lambda)$, and $Y \mapsto Y^{\circ}$ is its inverse.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Equip $\mathcal{I}(\Lambda)$ with a topology such that $Y^{(n)} \to Y$ if and only if their complements converge in the Hausdorff topology. Then each monotonely representable interacting particle system with values in $S = \{0,1\}^{\Lambda}$ has a pathwise dual with values in $\mathcal{I}(\Lambda)$, or alternatively $\mathcal{H}(\Lambda)$.

If we take $\mathcal{H}(\Lambda)$ as the state space of the dual, then the duality function becomes

$$\psi(x,Y) = 1_{\{x \ge y \text{ for some } y \in Y\}} \qquad (x \in S, \ Y \in \mathcal{H}(\Lambda)).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

In the special case that $(X_t)_{t\geq 0}$ is additive, the $\mathcal{H}(\Lambda)$ -valued dual process preserves the subspace of all Y_t of the form

$$Y_t = \{\delta_i : i \in \Delta_t\} \quad \text{with} \quad \Delta_t \subset \Lambda.$$

Now the process $(\Delta_t)_{t\geq 0}$ is the additive dual of $(X_t)_{t\geq 0}$.

In general, Y_t is a set whose elements $y \in \{0,1\}^{\Lambda}$ satisfy $|y| := \sum_{i \in \Lambda} y(i) < \infty$. For example, if $Y_0 = \delta_k$ and Y_t contains an element $Y_t \ni y = \delta_i + \delta_j$, this may express that k contains a particle at time 0 provided both its parents i and j are alive at time -t.

(1) マン・ション・

Monotone systems duality

By monotonicity, the process X has an *upper invariant law*

$$\mathbb{P}^{\underline{1}}[X_t \in \cdot] \underset{t \to \infty}{\Longrightarrow} \overline{\nu}.$$

By definition, Y survives if

$$\mathbb{P}^{\{\delta_i\}}[Y_t \neq \emptyset \ \forall t \ge 0] > 0$$

for some $i \in \Lambda$.

(Nontrivial upper invariant law) One has $\overline{\nu} \neq \delta_{\underline{0}}$ if and only if Y survives. The law $\overline{\nu}$ is uniquely characterized by

$$\mathbb{E}\big[\psi(\overline{X},\{y\})\big] = \mathbb{P}^{\{y\}}\big[Y_t \neq \emptyset \ \forall t \ge 0\big].$$

where \overline{X} denotes a r.v. with law $\overline{\nu}$.

Proof

$$\begin{split} \mathbb{E}^{\underline{1}} \big[\psi(X_t, \{y\}) \big] &= \mathbb{E}^{\{y\}} \big[\psi(\underline{1}, Y_t) \big] = \mathbb{E}^{\{y\}} \big[\exists y \in Y_t \text{ s.t. } \underline{1} \ge y \big] \\ &= \mathbb{E}^{\{y\}} \big[Y_t \neq \emptyset \big] \xrightarrow[t \to \infty]{} \mathbb{P}^{\{y\}} \big[Y_t \neq \emptyset \ \forall t \ge 0 \big]. \end{split}$$

・ 回 と く ヨ と く ヨ と

æ

Monotone systems duality

We equip $\mathcal{H}(\Lambda)$ with a partial order by setting

 $Y \leq Z$ iff $Y^{\uparrow} \subset Z^{\uparrow}$.

The largest element of $\mathcal{H}(\Lambda)$ is

$$\{\underline{0}\}$$
 with $\{\underline{0}\}^{\uparrow} = \{0,1\}^{\Lambda}$.

The second largest element of $\mathcal{H}(\Lambda)$ is

$$Y_* := \{\delta_i : i \in \Lambda\}$$
 with $Y_*^{\uparrow} = \{x : x \neq \underline{0}\}.$

If $\underline{0}$ is a trap for $(X_t)_{t\geq 0}$, then $Y_0 \neq \{\underline{0}\}$ implies $Y_t \neq \{\underline{0}\}$ $(t \geq 0)$. Now, by monotonicity,

$$\mathbb{P}^{Y_*}[Y_t \in \cdot] \underset{t \to \infty}{\Longrightarrow} \overline{\mu}.$$

We call $\overline{\mu}$ the upper invariant law of $(Y_t)_{t \ge 0}$, $\overline{\mu} \in \mathbb{R}$

Monotone systems duality

We say that X survives if

$$\exists i \in \Lambda \quad \text{s.t.} \quad \mathbb{P}^{\delta_i} \left[X_t \neq \underline{0} \ \forall t \geq 0 \right] > 0.$$

(Nontrivial upper invariant law) One has $\overline{\mu} \neq \delta_{\emptyset}$ if and only if X survives. The law $\overline{\mu}$ is uniquely characterized by

$$\mathbb{E}\big[\prod_{k=1}^n\psi(x_k,\overline{Y})\big]=\mathbb{P}\big[\mathbf{X}_{0,t}(x_k)\neq\underline{0}\;\forall t\geq 0,\;k=1,\ldots,n\big].$$

where \overline{Y} denotes a r.v. with law $\overline{\mu}$.

Proof

$$\mathbb{E}^{Y_*}\left[\prod_{k=1}^n\psi(x_k,Y_t)\right] = \mathbb{E}\left[\prod_{k=1}^n\psi(\mathbf{X}_{0,t}(x_k),Y_*)\right]$$
$$= \mathbb{P}\left[\mathbf{X}_{0,t}(x_k) \neq \underline{0} \ \forall k = 1,\ldots,n\right].$$

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(death)	1	\mapsto	0	with rate	1,

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(death)	1	\mapsto	0	with rate	1,

Interpretation:

'Sexual' reproduction.

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(death)	1	\mapsto	0	with rate	1,

- 'Sexual' reproduction.
- Competition for limited space.

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(death)	1	\mapsto	0	with rate	1,

- 'Sexual' reproduction.
- Competition for limited space.
- Death.

Consider the maps

$$\begin{split} \mathtt{death}_{i}(x) &:= x - \mathbf{1}_{\{x(i)=1\}} \delta_{i}, \\ \mathtt{coop}_{ijk}(x) &:= \left[x + \mathbf{1}_{\{x(i)=1, \ x(j)=1\}} \delta_{k} \right] \wedge \mathbf{1}, \\ \mathtt{bran}_{kij}(x) &:= \left[x + \mathbf{1}_{\{x(k)=1\}} (\delta_{i} + \delta_{j} - \delta_{k}) \right] \wedge \mathbf{1}, \end{split}$$

i.e.,

< ≣ >

æ

The sexual reproduction process

Then the maps

$$\texttt{death}^{ullet}_i(Y) := \{y \in Y : y(i) \neq 1\}, \\ \texttt{coop}^{ullet}_{ijk}(x) := Y \cup \texttt{bran}_{kij}(Y)$$

are dual to $death_i$ and $coop_{ijk}$ w.r.t. the duality function

$$\psi(x, Y) = 1_{\{x \ge y \text{ for some } y \in Y\}}$$
 $(x \in S, Y \in \mathcal{H}(\Lambda)).$

If $(Y_t)_{t\geq 0}$ is the Markov process with generator

$$egin{aligned} G_ullet(Y) &:= \sum_i ig\{fig(ext{death}^ullet_i(Y)ig) - fig(Y)ig\} \ rac{1}{2}\lambda \sum_{ijk}ig\{fig(ext{coop}^ullet_{ijk}(Y)ig) - fig(Y)ig\}, \end{aligned}$$

then $(Y_t^{\circ})_{t\geq 0}$ is the $\mathcal{H}(\Lambda)$ -valued dual process w.r.t. the duality function ψ .

Gray [AOP 1986] introduced a dual for monotone spin systems that is essentially the Markov process $(Y_t)_{t\geq 0}$ of the previous slide, started in an initial state of the form $Y_0 = \{y\}$ for some $y \in S$.

In particular, the associated process $(Y_t^\circ)_{t\geq 0}$ with $Y^\circ := \{y \in Y : y \text{ is a minimal element of } Y\}$ is our $\mathcal{H}(\Lambda)$ -valued dual.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Recall that:

- $(X_t)_{t\geq 0}$ has a nontrivial invariant law iff $(Y_t^\circ)_{t\geq 0}$ survives.
- $(Y_t^{\circ})_{t\geq 0}$ has a nontrivial invariant law iff $(X_t)_{t\geq 0}$ survives. Let

$$\lambda_c := \inf \{ \lambda \ge 0 : (X_t)_{t \ge 0} \text{ survives} \},\ \lambda'_c := \inf \{ \lambda \ge 0 : (X_t)_{t \ge 0} \text{ has a nontrivial invariant law} \}$$

Conjecture $\lambda'_{c} \leq \lambda_{c}$ with equality on \mathbb{Z}^{d} .

Theorem On trees of sufficiently high degree, $\lambda'_c < \lambda_c$. **Proof** $(Y_t^\circ)_{t>0}$ survives while $(X_t)_{t>0}$ dies out.

・ 同 ト ・ ヨ ト ・ ヨ ト …

It seems quite plausible that

X survives $\Rightarrow \overline{\nu}$ nontrivial.

(*Warning:* Not true for coalescing random walks.) However, it is not clear why this should hold for Y since it may happen that Y survives but

$$\inf\{|y|: y \in Y_t\} \underset{t \to \infty}{\longrightarrow} \infty.$$

In this case $Y_t^{\uparrow} \downarrow \emptyset$ as $t \to \infty$.

Durrett and Gray [1985] gave an example of a model with cooperative branching on \mathbb{Z}^2 that cannot escape a bounding rectangle and hence does not survive, yet has a nontrivial upper invariant law.

Fast stirring

Let $(X_t)_{t\geq 0}$ evolve as:

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(death)	1	\mapsto	0	with rate	1,
(stirring)	10	\mapsto	01	with rate	$\varepsilon^{-1},$
(stirring)	01	\mapsto	10	with rate	$\varepsilon^{-1}.$

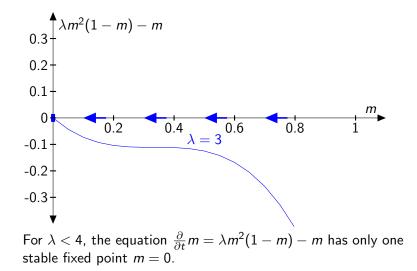
Set

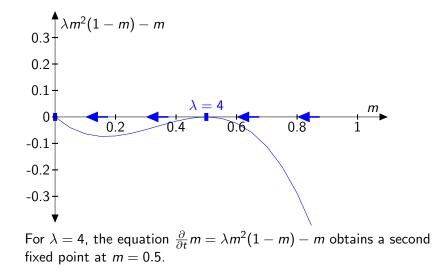
$$m_{\varepsilon}(x,t) := \mathbb{P}[X_{\varepsilon^{-2}t}(\lfloor \varepsilon^{-1}x \rfloor) \qquad (x \in R, t \ge 0).$$

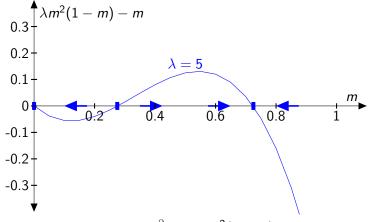
[DeMasi, Ferrari & Lebowitz '86] In the fast stirring limit $\varepsilon \downarrow 0$, the particle density m_{ε} converges to a solution of

$$\frac{\partial}{\partial t}m = \frac{\partial^2}{\partial x^2}m + \lambda m^2(1-m) - m.$$

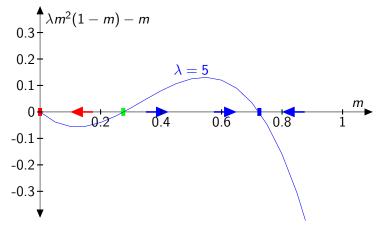
・ 同 ト ・ ヨ ト ・ ヨ ト …







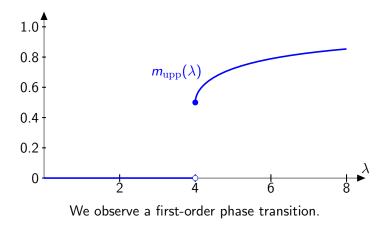
For $\lambda > 4$, the equation $\frac{\partial}{\partial t}m = \lambda m^2(1-m) - m$ has one unstable and two stable fixed points.



The unstable fixed point represents a critical density below which the population is doomed to die out.

∃ >

Starting with density $m(x, 0) \equiv 1$, the hydrodynamic limit converges to the upper fixed point $\lim_{t\to\infty} m(x, t) = m_{upp}$.



Define

The process survives if P^x[X_t ≠ 0 ∀t ≥ 0] > 0 for some, and hence for all initial states with 1 < |x| < ∞.</p>

• The process is *stable* if the upper invariant law is nontrivial. Monotonicity implies that there exist λ_c, λ'_c such that

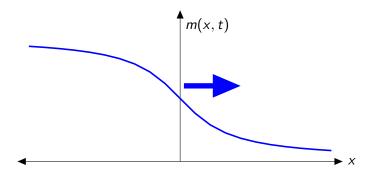
• The process survives for $\lambda > \lambda_c$ and dies out for $\lambda < \lambda_c$.

The process is stable for λ > λ'_c and unstable for λ < λ'_c.
 Open problem: Prove that λ_c = λ'_c.
 [Noble '92] 2 ≤ λ'_c(ε) for all ε > 0 and lim sup_{ε↓0} λ'_c(ε) ≤ 4.5.

Conjecture: $\lim_{\varepsilon \downarrow 0} \lambda'_{\rm c}(\varepsilon) = 4.5.$

Travelling waves

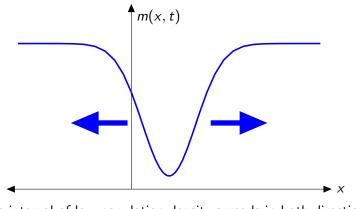
For $\lambda > 4$, the equation $\frac{\partial}{\partial t}m = \frac{\partial^2}{\partial x^2}m + \lambda m^2(1-m) - m$ has travelling wave solutions.



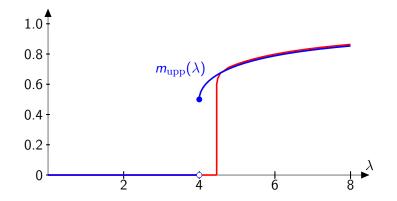
[DeMasi, Ianiro, Pellegrinotti, & Presutti '84] The propagation speed is positive for $\lambda > 4.5$, and negative for $4 < \lambda < 4.5$.

Metastability

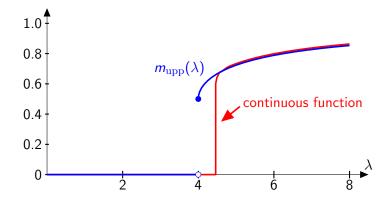
For 4 < λ < 4.5 and ε small, rare random events bring the local particle density below a critical value.



The interval of low population density spreads in both directions.

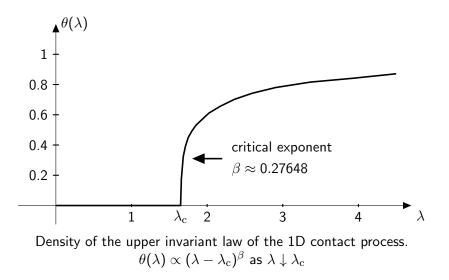


[Noble '92] For small $\varepsilon > 0$, the density of the upper invariant law is at least $m_{\rm upp}(\lambda)$ for $\lambda > 4.5$ and close to zero for $\lambda < 4.5$.



Conjecture For fixed $\varepsilon > 0$, the phase transition is second order and in the same universality class as the contact process.

The upper invariant law



Recall that λ_c and λ_c' are the critical points for survival of finite systems resp. for the density of the upper invariant law.

For the contact process, $\lambda_{\rm c}=\lambda_{\rm c}'$ by self-duality.

The sexual reproduction process without stirring is an attractive spin system.

For such systems, Bezuidenhout and Gray (1994) prove that survival implies a lower bound in terms of supercritical oriented percolation and hence nontriviality of the upper invariant law. It follows that $\lambda'_{\rm c} \leq \lambda_{\rm c}$ (without stirring).

Conversely, nontriviality of the upper invariant law seems to imply a positive propagation speed and hence survival. Proof?

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	$10 \mapsto$	01	with rate	$\frac{1}{2},$
(coal. RW)	01 \mapsto	10	with rate	$\frac{1}{2},$
(coal. RW)	$11 \mapsto$	01	with rate	$\frac{1}{2},$
(coal. RW)	$11 \mapsto$	10	with rate	$\frac{1}{2}$.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	$10 \mapsto$	01	with rate	$\frac{1}{2},$
(coal. RW)	01 \mapsto	10	with rate	$\frac{1}{2},$
(coal. RW)	$11 \mapsto$	01	with rate	$\frac{1}{2}$,
(coal. RW)	$11 \mapsto$	10	with rate	$\frac{1}{2}$.

Interpretation:

Cooperative reproduction.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	$10 \mapsto$	01	with rate	$\frac{1}{2},$
(coal. RW)	01 \mapsto	10	with rate	$\frac{1}{2},$
(coal. RW)	$11 \mapsto$	01	with rate	$\frac{1}{2}$,
(coal. RW)	$11 \mapsto$	10	with rate	$\frac{1}{2}$.

- Cooperative reproduction.
- Competition for limited space.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

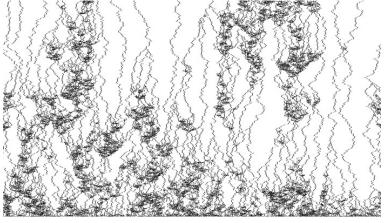
(coop. bra.)	110 ⊢	> 111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 ⊢	> 111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	10 ⊢	→ 01	with rate	$\frac{1}{2},$
(coal. RW)	01 ⊢	→ 10	with rate	$\frac{1}{2},$
(coal. RW)	11 H	→ 01	with rate	$\frac{1}{2},$
(coal. RW)	11 ⊢	→ 10	with rate	$\frac{1}{2}$.

- Cooperative reproduction.
- Competition for limited space.
- Migration.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 ⊢	> 111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 ⊢	> 111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	10 ⊢	→ 01	with rate	$\frac{1}{2},$
(coal. RW)	01 ⊢	→ 10	with rate	$\frac{1}{2},$
(coal. RW)	11 H	→ 01	with rate	$\frac{1}{2},$
(coal. RW)	11 ⊢	→ 10	with rate	$\frac{1}{2}$.

- Cooperative reproduction.
- Competition for limited space.
- Migration.
- No spontaneous deaths!



Time = upwards, black = a particle, $\lambda = 2.333$.

・ 同 ト ・ 臣 ト ・ 臣 ト

Define

- The process survives if P^x [|X_t| > 1 ∀t ≥ 0] > 0 for some, and hence for all initial states with 1 < |x| < ∞ particles. Note: a single particle can neither die nor reproduce!</p>
- The process is stable if there exists an invariant law that is concentrated on nonzero states.

Monotonicity implies that there exist λ_c, λ_c' such that

- The process survives for $\lambda > \lambda_c$ and dies out for $\lambda < \lambda_c$.
- The process is stable for $\lambda > \lambda'_c$ and unstable for $\lambda < \lambda'_c$.

[Sturm & S. '14] $1 \leq \lambda_c, \lambda'_c < \infty$.

Numerically: $\lambda_c \approx \lambda_c' \approx 2.47 \pm 0.02$.

Open problem: Prove that $\lambda_c = \lambda'_c$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Note: If we combine normal branching:

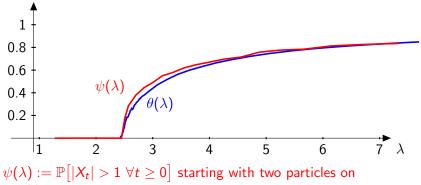
```
01 \mapsto 11 and 10 \mapsto 11 at rate \frac{1}{2}\lambda each,
```

with coalescence, then the process converges to an invariant law that is product measure with intensity $\lambda/(1 + \lambda)$ -no phase transition!

For the *cooperative* branching-coalescent, particles die at a rate proportional to the number of neighboring pairs 11, and particles are born at a rate less than λ times that number -no survival and no nontrivial invariant law for $\lambda \leq 1$.

For large λ , survival and existence of a nontrivial invariant law follow from comparison with oriented percolation.

・ 同 ト ・ ヨ ト ・ ヨ ト



neighboring sites.

 $\theta(\lambda) := \mathbb{P}[X_{\infty}(0) = 1]$ where X_{∞} distributed according to the upper invariant law.

Numerically, the density of the upper invariant law satisfies

$$heta(\lambda) \propto (\lambda-\lambda_{
m c})^eta \qquad {
m as} \; \lambda \downarrow \lambda_{
m c},$$

with

$$\beta \approx 0.5 \pm 0.1$$
,

which differs from the $\beta \approx$ 0.27648 of the contact process.

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider

$$\begin{split} & \mathbb{P}\big[|X_t|>1\big] & \text{with} \quad X_0=\delta_0+\delta_1 \quad (\text{two particles}), \\ & \mathbb{P}\big[X_t(0)=1\big] & \text{with} \quad X_0=\underline{1} \quad (\text{fully occupied}). \end{split}$$

[Bezuidenhout & Grimmett '91] For the contact process, in the subcritical regime $\lambda < \lambda_c$, both quantities decay exponentially fast to zero.

[Sturm & S. '14] For the cooperative branching-coalescent, both quantities decay not faster than as $t^{-1/2}$. For $\lambda \leq \frac{1}{2}$, this is the exact rate of convergence.

Proof of the lower bound: By monotonicity, we can estimate the cooperative branching-coalescent by a pure coalescent, for which both quantities decay like $t^{-1/2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The subcritical regime

Proof of the upper bound: Write x(i, j, k) := (x(i), x(j), x(k)). Since

$$\frac{\partial}{\partial t}\mathbb{P}[X_t(0)=1]=(\lambda-1)\mathbb{P}[X_t(0,1)=11]-\lambda\mathbb{P}[X_t(0,1,2)=111]$$

it suffices to prove

$$\mathbb{P}[X_t(0,1)=11] \leq Ct^{-3/2}.$$

We use the duality function

$$\psi(x, Y) = 1_{\{x \le y' \text{ for some } y \in Y\}},$$

or equivalently

$$\phi(x,Y):=1-\psi(x,Y)=1_{\{x\,\wedge\,y
eq0 ext{ for all }y\in Y\}}.$$

Our quantity of interest is

$$\mathbb{P}[X_t(0,1) = 11] = \mathbb{E}[\phi(X_t, Y_0)] = \mathbb{E}[\phi(X_0, Y_t)],$$

where $Y_0 = \{\delta_0, \delta_1\}.$

We need to show that

$$\mathbb{P}[\underline{0}\not\in Y_t]\leq Ct^{-3/2},$$

since $\underline{0} \in Y$ implies

$$\phi(x, Y) = 1_{\{x \land y \neq 0 \text{ for all } y \in Y\}} = 0 \quad \forall x.$$

In the absence of cooperative branching, when there is only coalescing random walk evolution, the dual process $(Y_t)_{t\geq 0}$ evolves as a collection of coupled voter models.

If the cooperative branching rate λ is zero, then the first time that $\underline{0} \in Y_t$ is the first time that two out of three walkers meet.

伺 と く き と く き と

Let $(\xi_t^i)_{t\geq 0}^{i\in\mathbb{Z}}$ be coalescing random walks, started from every site $i\in\mathbb{Z}$.

Let
$$\tau_{ij} := \inf\{t \ge 0 : \xi_t^i = \xi_t^j\}.$$

Facts:

$$\mathbb{P}[au^{12} \wedge au^{23} > t] \sim rac{1}{2\sqrt{\pi}}t^{-3/2},$$

 $\mathbb{E}[au^{ij} \wedge au^{jk}] = (j-i)(k-j) \quad (i < j < k).$

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

The case with branching

If a cooperative branching event occurs, then we use *subduality:* it suffices to show that both Y'_{t+s} and Y''_{t+s} die out.

イロン イ部ン イヨン イヨン 三日

This leads to a (dependent) branching process where triples of random walks die as soon as two out of the three meet, but before it dies, with rate 2λ , a triple can give birth to a new triple of random walks, started on neighboring positions. As long as $\lambda < \frac{1}{2}$, it can be shown that this branching process dies out and the probability to be alive at time t decays as $t^{-3/2}$.