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Arrow configurations

Z2
even := {(x , t) ∈ Z2 : x + t is even}.
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Arrow configurations

With probability pl we draw an arrow to the left.
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Arrow configurations

With probability pr we draw an arrow to the right.
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Arrow configurations

With probability pb we draw two arrows.
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Arrow configurations

And with probability pk we draw no arrows at all.
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Arrow configurations

We do this independently for each point.
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Arrow configurations

We are interested in open paths.
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Arrow configurations

Paths can start at any point in Z2
even.
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Arrow configurations

Paths either end at killing points. . .
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Arrow configurations

. . . or carry on forever.
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Scaling limit

We rescale diffusively, multiplying all spatial distances with ε and
all temporal distances with ε2.
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Scaling limit

Claim Assume that

ε−1(pr − pl − pb)→β−,

ε−1(pr − pl + pb)→β+,

ε−2pk→ δ.

Then the collection U converges to a diffusive scaling limit N δ
β−,β+

.
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Scaling limit

At each point z ∈ Z2
even there starts an a.s. unique

left-most path lz and right-most path rz .
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Scaling limit

Under the assumptions

ε−1(pr − pl − pb)→β−,

ε−1(pr − pl + pb)→β+,

ε−2pk→ δ,

left- and right-most paths converge to Brownian motions with drift
β− and β+, respectively, and exponential lifetimes with mean 1/δ.
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Topological matters

(0, 0)

(∞, 2)

(−∞,−1)

(−1,∞)

(∞,−∞)

We first compactify R2 to [−∞,∞]2. . .
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Topological matters

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

. . . and then contract [−∞,∞]× {−∞}
and [−∞,∞]× {∞} to single points.
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Topological matters

Alternatively, map R2 into itself with the map

Θ(x , t) :=
( tanh(x)

1 + |t|
, tanh(t)

)
,

and take the closure.
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Topological matters

Another equivalent formulation is: take the
completion of R2 w.r.t. the metric

d(z , z ′) :=
∣∣Θ(z)−Θ(z ′)

∣∣.
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Topological matters

A path is a continuous function π : [σπ, τπ]→ [−∞,∞],
with −∞ ≤ σπ ≤ τπ ≤ ∞.
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Topological matters

We identify a path with its graph{
(π(t), t) : t ∈ [σπ, τπ]

}
.
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Topological matters

π2

π1

d(π1,π2)

We equip the space Π of all paths with the Hausdorff metric

d(π1, π2) = sup
z1∈π1

inf
z2∈π2

d(z1, z2) ∨ sup
z2∈π2

inf
z1∈π1

d(z1, z2).
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Topological matters

By adding trivial paths that are constantly −∞ or +∞, we can
make the set U of open paths into a compact subset of Π.
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Topological matters

We equip the space K(Π) of all compact subsets of the space of
paths Π with the Hausdorff metric

d(U1,U2) = sup
π1∈U1

inf
π2∈U2

d(π1, π2) ∨ sup
π2∈U2

inf
π1∈U1

d(π1, π2).

We define a diffusive scaling map Sε by

Sε(x , t) := (εx , ε2t).
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Topological matters

Theorem Let εn ↓ 0 and let Un be the sets of open paths in arrow
configurations with parameters satisfying

ε−1
n

(
pr(n)− pl(n)− pb(n)

)
→β−,

ε−1
n

(
pr(n)− pl(n) + pb(n)

)
→β+,

ε−2
n pk(n)→ δ.

Then
P[Sεn(Un) ∈ · ] =⇒

n→∞
P[N δ

β−,β+
∈ · ],

where ⇒ denotes weak convergence of probability laws on K(Π).
The limiting object is a Brownian net with killing.
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The Brownian web

If β = β− = β+ and δ = 0, then the limiting object Wβ := N 0
β,β is

a Brownian web with drift β. In particular, W :=W0 is the
standard Brownian web.

I For each deterministic z ∈ R2, almost surely there is a unique
path pz ∈ W.

I For any deterministic finite set of points z1, . . . , zk ∈ R2, the
collection (pz1 , . . . , pzk ) is distributed as coalescing Brownian
motions.

I For any deterministic countable dense subset D ⊂ R2, almost
surely, W is the closure of {pz : z ∈ D}.
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The Brownian web

If β = β− = β+ and δ = 0, then the limiting object Wβ := N 0
β,β is

a Brownian web with drift β. In particular, W :=W0 is the
standard Brownian web.

I For each deterministic z ∈ R2, almost surely there is a unique
path pz ∈ W.

I For any deterministic finite set of points z1, . . . , zk ∈ R2, the
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I For any deterministic countable dense subset D ⊂ R2, almost
surely, W is the closure of {pz : z ∈ D}.
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The Brownian web

Artist’s impression of the Brownian web.
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The Brownian web

Paths started at time zero.
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The Brownian web

There exists random points where two paths start.
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Special points

(0, 1)

(1, 1) (2, 1) (1, 2)l

(0, 2) (0, 3)
(1, 2)r

Special points are classified according to the number of incoming
and outgoing paths. There exists 7 types of special points.
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Dual arrows

Forward and dual arrows.
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Dual Brownian web

Approximation of the forward and dual Brownian web.
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Special points revisited

Structure of dual paths at special points.
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Dual Brownian web

To each Brownian web W, we can associate an a.s. unique dual
web Ŵ that is equally distributed with W except for a rotation
over 180◦.

Fix a deterministic finite set of starting points and condition on the
forward paths starting at these points.
Then paths of the dual web are Brownian motions with immediate
reflection off the fixed forward paths.
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Dual Brownian web

Forward and dual paths started from fixed times.
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Left- and right-most paths

Consider an arrow configuration with
branching probability pb > 0 but killing probability pk = 0.
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Left- and right-most paths

Artist’s impression of the Brownian net.
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Left- and right-most paths

Left- and right-most paths interact with a form of sticky
interaction.
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Left- and right-most paths

In the limit, left- and right-most paths are
Brownian motions with drift β− < β+.
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Left- and right-most paths

The interaction between left-most and right-most paths is
described by the stochastic differential equation (SDE):

dLt = 1{Lt 6=Rt}dB
l
t + 1{Lt=Rt}dB

s
t + β−dt,

dRt = 1{Lt 6=Rt}dB
r
t + 1{Lt=Rt}dB

s
t + β+dt,

where B l
t ,B

r
t ,B

s
t are independent Brownian motions,

and Lt and Rt are subject to the constraint that
Lt ≤ Rt for all t ≥ τ := inf{u ≥ 0 : Lu = Ru}.

The set {t : Lt = Ru} is nowhere dense and has positive Lebesgue
measure whenever it is nonempty.
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The left Brownian web

The left-most paths converge to a left Brownian web. . .
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The right Brownian web

. . . and the right-most paths to a right Brownian web.
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Hopping construction of the Brownian net

By definition, an intersection time of two paths π1, π2 is a time
t > σπ1 ∨ σπ2 such that π1(t) = π2(t).
We may concatenate two paths at an intersection time by putting

π(s) :=

{
π1(s)

(
s ∈ [σπ1 , t]

)
,

π2(s)
(
s ∈ [t,∞]

)
.

Let (W l,Wr), be a left-right Brownian web.
Let D ⊂ R2 be deterministic, countable, and dense and let W l(D)
and Wr(D) denote the left- and right-most paths started from D.

Let Hop
(
W l(D) ∪Wr(D)

)
denote the smallest set containing

W l(D) ∪Wr(D) that is closed under concatenation of paths at
intersection times.

Hopping construction N 0
β−,β+

= Hop
(
W l(D) ∪Wr(D)

)
.
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Hopping construction of the Brownian net

It is not allowed to “hop” from π1 onto π2

at the starting time σπ2 of π2.

In view of the special points of type (1, 2), if we would allow this
sort of hopping, then we would obtain too many paths.

(In fact, after taking the closure, we’d obtain the whole space Π.)

We will later see, however, that we do get a sensible limit if we
allow hopping only at a cleverly chosen Poisson subset of the
points of type (1, 2). . .
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Wedge construction of the Brownian net

Let (W l,Wr, Ŵ l, Ŵr), be a left-right Brownian web together with
its dual left and right webs.
This object is symmetric w.r.t. rotation over 180◦.

W

r̂

l̂

A dual left and right path together define a wedge W .
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Wedge construction of the Brownian net

Given an open set A ⊂ R2 and a path π ∈ Π, we say π enters A if
there exist σπ < s < t such that π(s) /∈ A and π(t) ∈ A. We say π
enters A from outside if there exists σπ < s < t such that
π(s) /∈ A and π(t) ∈ A.

A wedge is an open set of the form:

W (r̂ , l̂) := {(x , t) ∈ R2 : τ̂r̂ ,̂l < t < σ̂l̂ ∧ σ̂r̂ , r̂(t) < x < l̂(t)},

where τ̂r̂ ,̂l is the first meeting time of r̂ and l̂ .

Wedge construction
N 0
β−,β+

= {π ∈ Π : π does not enter wedges of (Ŵ l, Ŵr) from outside}.
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Wedge construction of the Brownian net

The wedge construction shows that paths of N 0
β−,β+

cannot cross
dual left- or right-most in the wrong direction.
But this condition alone is not enough to guarantee that a path
lies in N 0

β−,β+
.

In the special case β− = β+, the left and right webs coincide.
In this case, wedges can still be defined and the wedges give an
a.s. construction of the Brownian web in terms of its dual.

Also for the Brownian web W, the condition that a path π does
not cross any dual path π̂ ∈ Ŵ is not enough to guarantee that
π ∈ W.

(A counterexample can be constructed by concatenating a piece of
a dual path with a forward path.)
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Wedge construction of the Brownian net

The equivalence of the hopping and wedge constructions can be
used to prove convergence of diffusively rescaled discrete nets to
the Brownian net.
Tightness comes for free from the tightness of the left- and right
webs while any limit point N∗ satisfies

Nhop ⊂ N∗ ⊂ Nwedge.

However, this proof works only because the discrete nets are
nearest-neighbor and (hence) the associated discrete left and right
webs have duals.
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Mesh construction of the Brownian net

M

rl

A mesh M is the open area enclosed by a right- and left-most
path, starting from the same point,

that are initially ordered the “wrong” way.

Mesh construction
N 0
β−,β+

= {π ∈ Π : π does not enter meshes of (W l,Wr)}.
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Marking constructions

Recall that points of the Brownian web are classified according to
the number of incoming and outgoing paths (min,mout).

With respect to Lebesgue measure, a.e. point is of type (0, 1).
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Marking constructions

The sets of points of types (2, 1) and (0, 3) are countable.
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Marking constructions

With respect to the length measure µlength
of the forward web, a.e. point is of type (1, 1).
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Marking constructions

With respect to the intersection local measure µint of the
forward and dual webs, a.e. point is of type (1, 2).
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Marking constructions

The length measure µlength is a measure on R2 that is
concentrated on points of type (1, 1) such that for every path
π ∈ W and σπ ≤ s ≤ u <∞,

µlength({(π(t), t) : t ∈ [s, u]}) = u − s.

The intersection local measure µint is a measure on R2 that is
concentrated on points of type (1, 2) such that for every two paths
π ∈ W and π̂ ∈ Ŵ,

µint
({

(x , t) ∈ R2 : σπ < t < σ̂π̂, π(t) = x = π̂(t)
})

= lim
ε↓0

ε−1
∣∣{t ∈ R : σπ < t < σ̂π̂, |π(t)− π̂(t)| ≤ ε

}∣∣.
These measures are σ-finite, but not locally finite; they give infinite
measure to any nonempty open subset of R2.
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Marking constructions

Let µlint and µrint be the restrictions of µint to the set of points of
type (1, 2)l and (1, 2)r, respectively.

Modified web Let W be a Brownian web with drift β and let S be
a Poisson set with intensity clµ

l
int + crµ

r
int. Then, for any finite

∆n ↑ S , the limit

W ′ := lim
∆n↑S

switch∆n(W)

exists and is a Brownian web with drift β′ = β + cl − cr.

In particular, if cr = 0, then (W,W ′) is a left-right Brownian web.
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Marking constructions

Let W be a “reference” Brownian web with drift β.
Let S12 be a Poisson set with intensity clµ

l
int + crµ

r
int.

Let S11 be a Poisson set with intensity δµlength.
Marking construction For any finite ∆n ↑ S12, the limit

N := lim
∆n↑S12

hop∆n
(W)

exists and is a Brownian net (without killing) with left and right
drifts

β− = β − cr and β+ = β + cl.

Moreover, the set of all paths in N stopped at the first time they
hit a point in S11 is a Brownian net with left and right drifts
β−, β+ and killing rate δ.
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Marking constructions

Modulo symmetry, there exist 9 types of special points of
a left-right Brownian web, or equivalently, a Brownian net.
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Marking constructions

Separation points (on the right) are of type (1, 2) in both the left
and right web, but differently oriented.

There are countably many separation points.
In a marking construction starting from only the left web, these are

the Poisson points where we change the reference web.
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Marking constructions

Web inside net Let S be the set of separation points of a
Brownian net N 0

β−,β+
. Conditional on N , let (αz)z∈S be i.i.d.

{−1,+1}-valued random variables with P[αz = +1] = r . Then

W := {π ∈ Π : π leaves each z ∈ S in the direction αz}

is a Brownian web with drift (1− r)β− + rβ+.
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Relevant separation points

By definition, a separation point z = (x , t) with S < t < U is
S ,U-relevant if there is a path π ∈ N entering z starting at time
S , and there are l ∈ W l(z), r ∈ Wr(z) such that l < r on (t,U).
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Relevant separation points

‘Relevant’ separation points, where the forward Brownian net
crosses its dual, are locally finite (with an explicit density).
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Relevant separation points

S

U

The finite graph representation says that we only need to know the
orientation of relevant separation points to decide how a path
moves between deterministic times.
This construction is closely linked to the construction of the
Brownian net using meshes.
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Fractal structure

(Cn)(Cl)

The Brownian net has a fractal structure. There are random times
where infinitely many choices are needed to pass through certain
points.
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Historical notes

I R. Arratia (’79,’81), motivated by scaling limits of the 1D
voter model, studies coalescing Brownian motions started
from each point in space and time.

I B. Tóth and W. Werner (’98) arrive at the same object by
studying the true self-repellent motion. They classify special
points and use right-continuity to choose a unique path at
points of multiplicity.

I F. Soucaliuc, B. Tóth, and W. Werner (’00) prove that paths
in the dual web are reflected off forward paths.

I L. Fontes, M. Isopi, C. Newman, and K. Ravishankar (’04)
invent the name “Brownian web”, viewed this as a compact
set of paths, and prove weak convergence w.r.t. to the
Hausdorff topology.

I C. Newman, K. Ravishankar, and R. Sun (’05) prove
convergence of coalescing non-nearest neighbor random walks
to the Brownian web.
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Historical notes

I R. Sun and J.S. (’08) invent the name Brownian net and the
hopping, wedge, and mesh constructions, which are all based
on the left-right SDE.

I E. Schertzer, R. Sun and J.S. (’09) classify special points of
the Brownian net.

I C. Howitt and J. Warren (’09) construct sticky pairs of
Brownian webs by means of a martingale problem.

I C. Newman, K. Ravishankar, and E. Schertzer (’10) publish
the marking construction of the Brownian net, conceived
around ’05.

I C. Newman, K. Ravishankar, and E. Schertzer (’13) construct
the Brownian net with killing.

I E. Schertzer, R. Sun and J.S. (’14) study stochastic flows
using marked webs.

I C. Newman, K. Ravishankar, and E. Schertzer (announced)
study voter model perturbations.
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Branching-coalescing point set

For any closed subset A ⊂ R,

ξt :=
{
π(t) : ∃π ∈ N δ

β−,β+
s.t. σπ = 0, π(0) ∈ A

}
defines a Feller process taking values in the closed subsets of R.

(i) Reversible invariant law: the law of a Poisson point set with
intensity β+ − β−.

(ii) For deterministic t > 0, a.s. ξt is a locally finite subset of R.

(iii) There exists a dense set of random times τ > 0 such that ξτ
has no isolated points.

Open problem: generator characterization!

Thm Phase transition between survival and extinction at some δc.
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The branching-coalescing point set

The branching-coalescing point set with
β− = −1, β+ = 1, δ = 0 started in ξ0 = R.
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Howitt-Warren flows

A one-sided erosion flow.
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A one-dimensional Potts model
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time
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A low-temperature one-dimensional Potts model.
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