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Cooperative branching

Cooperative branching is a type of dynamics for interacting particle
systems, where two particles together produce a third particle.

In physics notation for reaction-diffusion models: 2A 7→ 3A.

This sort of dynamics, together with 3A 7→ 2A, was already
considered by F. Schlögl [Z. Phys. 1972].

Lebowiz, Presutti and Spohn [JSP 1988] call this binary
reproduction.

C. Noble [AOP 1992], R. Durrett [JAP 1992], and C. Neuhauser
and S.W. Pacala [AAP 1999] consider a model with 2A 7→ 3A
(cooperative branching) and A 7→ ∅ (deaths). They call this the
sexual reproduction process.

J. Blath and N. Kurt [ECP 2011] considered a cooperative caring
double-branching annihilating random walk, and A. Sturm and J.S.
[AAP 2014] studied a cooperative branching-coalescent.
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The sexual reproduction process

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

(stirring) 10 7→ 01 with rate ε−1,

(stirring) 01 7→ 10 with rate ε−1.

Interpretation:

I ‘Sexual’ reproduction.

I Competition for limited space.

I Death.

I Migration.

Jan M. Swart (Prague) Cooperative branching



The sexual reproduction process

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

(stirring) 10 7→ 01 with rate ε−1,

(stirring) 01 7→ 10 with rate ε−1.

Interpretation:

I ‘Sexual’ reproduction.

I Competition for limited space.

I Death.

I Migration.

Jan M. Swart (Prague) Cooperative branching



The sexual reproduction process

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

(stirring) 10 7→ 01 with rate ε−1,

(stirring) 01 7→ 10 with rate ε−1.

Interpretation:

I ‘Sexual’ reproduction.

I Competition for limited space.

I Death.

I Migration.

Jan M. Swart (Prague) Cooperative branching



The sexual reproduction process

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

(stirring) 10 7→ 01 with rate ε−1,

(stirring) 01 7→ 10 with rate ε−1.

Interpretation:

I ‘Sexual’ reproduction.

I Competition for limited space.

I Death.

I Migration.

Jan M. Swart (Prague) Cooperative branching



The sexual reproduction process

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

(stirring) 10 7→ 01 with rate ε−1,

(stirring) 01 7→ 10 with rate ε−1.

Interpretation:

I ‘Sexual’ reproduction.

I Competition for limited space.

I Death.

I Migration.

Jan M. Swart (Prague) Cooperative branching



Fast stirring

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

(stirring) 10 7→ 01 with rate ε−1,

(stirring) 01 7→ 10 with rate ε−1.

Set
mε(x , t) := P[Xε−2t(bεxc) (x ∈ R, t ≥ 0).

[DeMasi, Ferrari & Lebowitz ’86] In the fast stirring limit ε ↓ 0,
the particle density mε converges to a solution of

∂
∂tm = ∂2

∂x2m + λm2(1−m)−m.
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Constant densities

λm2(1−m)−m

m

λ = 3
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For λ < 4, the equation ∂
∂tm = λm2(1−m)−m has only the

stable fixed point m = 0.
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Constant densities

λm2(1−m)−m

mλ = 4
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For λ = 4, the equation ∂
∂tm = λm2(1−m)−m obtains a second

fixed point at m = 0.5.
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Constant densities

λm2(1−m)−m

m

λ = 5
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For λ > 4, the equation ∂
∂tm = λm2(1−m)−m has one unstable

and two stable fixed points.
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Constant densities

λm2(1−m)−m

m
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The unstable fixed point represents a critical density below which
the population is doomed to die out.
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Constant densities

Starting with density m(x , 0) ≡ 1, the hydrodynamic limit
converges to the upper fixed point limt→∞m(x , t) = mupp.

mupp(λ)

λ

2 4 6 8
0

0.2

0.4

0.6

0.8

1.0

We observe a first-order phase transition.
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The stochastic model

Define

I The process survives if Px [Xt 6= 0 ∀t ≥ 0] > 0 for some, and
hence for all finite nonzero initial states x .

I The process is stable if there exists an invariant law that is
concentrated on nonzero states.

Monotonicity implies that there exist λc, λ
′
c such that

I The process survives for λ > λc and dies out for λ < λc.

I The process is stable for λ > λ′c and unstable for λ < λ′c.

Open problem: Prove that λc = λ′c.

[Noble ’92] 2 ≤ λ′c(ε) for all ε > 0 and lim supε↓0 λ
′
c(ε) ≤ 4.5.

Conjecture: limε↓0 λ
′
c(ε) = 4.5.
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Travelling waves

For λ > 4, the equation ∂
∂tm = ∂2

∂x2m + λm2(1−m)−m has
travelling wave solutions.

m(x , t)

x

[DeMasi, Ianiro, Pellegrinotti, & Presutti ’84] The propagation
speed is positive for λ > 4.5, and negative for 4 < λ < 4.5.
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Metastability

For 4 < λ < 4.5 and ε small, rare random events bring the local
particle density below a critical value.

m(x , t)

x

The interval of low population density spreads in both directions.
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The upper invariant law

mupp(λ)

λ
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[Noble ’92] For small ε > 0, the density of the upper invariant law
is at least mupp(λ) for λ > 4.5 and close to zero for λ < 4.5.
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The upper invariant law

mupp(λ)

λ
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continuous function

Conjecture For fixed ε > 0, the phase transition is second order
and in the same universality class as the contact process.
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The upper invariant law

λ

θ(λ)

λc1 2 3 4
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1

critical exponent

β ≈ 0.27648

Density of the upper invariant law of the 1D contact process.
θ(λ) ∝ (λ− λc)β as λ ↓ λc
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Equality of the critical points

Recall that λc and λ′c are the critical points for survival of finite
systems resp. for the density of the upper invariant law.

For the contact process, λc = λ′c by self-duality.

The sexual reproduction process without stirring is an attractive
spin system.
For such systems, Bezuidenhout and Gray (1994) prove that
survival implies a lower bound in terms of supercritical oriented
percolation and hence nontriviality of the upper invariant law.
It follows that λ′c ≤ λc (without stirring).

Conversely, nontriviality of the upper invariant law seems to imply
a positive propagation speed and hence survival. Proof?
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A cooperative branching-coalescent

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(coal. RW) 10 7→ 01 with rate 1
2 ,

(coal. RW) 01 7→ 10 with rate 1
2 ,

(coal. RW) 11 7→ 01 with rate 1
2 ,

(coal. RW) 11 7→ 10 with rate 1
2 .

Interpretation:

I Cooperative reproduction.

I Competition for limited space.

I Migration.

I No spontaneous deaths!
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A cooperative branching-coalescent

Time = upwards, black = a particle, λ = 2.333.
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Critical points

Define

I The process survives if Px
[
|Xt | > 1 ∀t ≥ 0

]
> 0 for some, and

hence for all initial states with 1 < |x | <∞ particles. Note: a
single particle can neither die nor reproduce!

I The process is stable if there exists an invariant law that is
concentrated on nonzero states.

Monotonicity implies that there exist λc, λ
′
c such that

I The process survives for λ > λc and dies out for λ < λc.

I The process is stable for λ > λ′c and unstable for λ < λ′c.

[Sturm & S. ’14] 1 ≤ λc, λ′c <∞.

Numerically: λc ≈ λ′c ≈ 2.47± 0.02.

Open problem: Prove that λc = λ′c.
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Proof of the phase transition

Note: If we combine normal branching:

01 7→ 11 and 10 7→ 11 at rate 1
2λ each,

with coalescence, then the process converges to an invariant law
that is product measure with intensity λ/(1 + λ)
-no phase transition!

For the cooperative branching-coalescent, particles die at a rate
proportional to the number of neighboring pairs 11, and particles
are born at a rate less than λ times that number
-no survival and no nontrivial invariant law for λ ≤ 1.

For large λ, survival and existence of a nontrivial invariant law
follow from comparison with oriented percolation.
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Critical points

λ

θ(λ)
ψ(λ)

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

ψ(λ) := P
[
|Xt | > 1 ∀t ≥ 0

]
starting with two particles on

neighboring sites.

θ(λ) := P[X∞(0) = 1] where X∞ distributed according to the
upper invariant law.
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Critical exponent

Numerically, the density of the upper invariant law satisfies

θ(λ) ∝ (λ− λc)β as λ ↓ λc,

with
β ≈ 0.5± 0.1,

which differs from the β ≈ 0.27648 of the contact process.
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The subcritical regime

Consider

P
[
|Xt | > 1

]
with X0 = δ0 + δ1 (two particles),

P
[
Xt(0) = 1

]
with X0 = 1 (fully occupied).

[Bezuidenhout & Grimmett ’91] For the contact process, in the
subcritical regime λ < λc, both quantities decay exponentially fast
to zero.

[Sturm & S. ’14] For the cooperative branching-coalescent, both
quantities decay not faster than as t−1/2. For λ ≤ 1

2 , this is the
exact rate of convergence.

Proof of the lower bound: By monotonicity, we can estimate the
cooperative branching-coalescent by a pure coalescent, for which
both quantities decay like t−1/2.
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Graphical representations

-To prepare for the upper bound, we need a bit of theory.-

Let (Xt)t≥0 be a Markov process with state space of the form
S = {0, 1}Λ, where Λ is a countable set, and generator of the form

Gf (x) =
∑
m∈M

rm
(
f (m(x))− f (x)

)
,

where rm ≥ 0 are rates and m ∈M are local maps m : S → S .

Then (Xt)t≥0 can be constructed with a graphical representation
where each local map m is applied at the times of an independent
Poisson process with rate rm.
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Local maps

Example: coalescing random walk jump.

time

0 0

0 0

x

m(x)

0 1

0 1

x

m(x)

1 0

0 1

x

m(x)

1 1

0 1

x

m(x)

Example: cooperative branching.

time

1 1 0

1 1 1

x

m(x)

in all other cases
nothing happens
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Dual maps

Two local maps m : S → S and m̂ : Ŝ → Ŝ are dual with respect
to a duality function ψ : S × Ŝ → R if

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
(x ∈ S , y ∈ Ŝ).

time

m1

m2

m3

m4

x

X x
t

time

m̂1

m̂2

m̂3

m̂4

Y y
t

y

[JK] pathwise duality ψ
(
X x
t , y

)
= ψ

(
x ,Y y

t

)
a.s.

[0, t] 3 s 7→ ψ
(
X x
s−,Y

y
t−s
)

a.s. constant, X x
s− indep. of Y y

t−s .
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A formal dual

Let m : S → S and let m−1 : P(S)→ P(S) be the inverse image
map, where P(S) := {A : A ⊂ S}.

Then m−1 is dual to m w.r.t. the function ψ(x ,A) := 1{x ∈ A}.

ψ
(
m(x),A

)
= 1{m(x) ∈ A} = 1{x ∈ m−1(A)} = ψ

(
x ,m−1(A)

)
.

Every Markov process (Xt)t≥0 in S has a pathwise dual (At)t≥0

taking values in P(S).

Idea: Look for invariant subspaces of P(S).
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Monotone maps

Def m montone iff x ≤ y ⇒ m(x) ≤ m(y).

Def B↓ := {x ∈ S : x ≤ y for some y ∈ B}.

Def A decreasing iff x ≤ y ∈ A ⇒ x ∈ A

⇔ A = B↓ for some B.

Lemma m monotone iff m−1 maps decreasing sets
into decreasing sets

⇔ ∃ dual m̂ w.r.t. ψ(x ,B) = 1{x ∈ B↓}.

Gray’s (1986) dual (Bt)t≥0 for general monotone (spin) systems.
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Additive maps

Def m additive iff

I m(0) = 0

I m(x ∨ y) = m(x) ∨m(y)

Def A ideal iff A = {y}↓ for some y ∈ S .

Lemma m additive iff m−1 maps ideals into ideals

⇔ ∃ dual m̂ w.r.t. ψ(x , y) = 1{x ≤ y}.

Additive systems duality [Griffeath 1979].
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Coalescing random walk duality

Example: The coalescing random walk map is additive.

time

0 0

0 0

x

m(x)

0 1

0 1

x

m(x)

1 0

0 1

x

m(x)

1 1

0 1

x

m(x)

Its dual w.r.t. ψ(x , y) = 1{x ≤ y} is the voter model map.

time

0 0

0 0

m̂(y)

y

1 1

0 1

m̂(y)

y

0 0

1 0

m̂(y)

y

1 1

1 1

m̂(y)

y
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Cooperative branching duality

Example: The cooperative branching map is monotone, but only
superadditive: m(x ∨ y) ≥ m(x) ∨m(y).

time

0 0 1 1 0 0 1

0 0 1 1 1 0 1

x

m(x)

Jan M. Swart (Prague) Cooperative branching



Cooperative branching duality

time

1 0 0 0 1 1 1
1 1 1 0 0 0 1
1 1 0 1 0 0 1

1 0 0 0 1 1 1
1 1 1 1 0 0 1

y

z

y
z ′

z ′′
m̂(B)

B

m(x) ∈ B↓ iff x ∈
(
m̂(B)

)↓
.

m(x) ≤ y for some y ∈ B iff x ≤ y ′ for some y ∈ m̂(B).
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Cooperative branching duality

The dual process (Bt)t≥0 of the cooperative branching-coalescent
takes values in the space P

(
{0, 1}Z

)
.

Each element of Bt evolves as a voter model.

At a cooperative branching event, some elements of Bt split into
two new elements.

time

1 0 0 0 1 1 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1

1 0 0 0 1 1 1
1 1 1 1 0 0 1

Bt+s

Bt
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Extinction

Start X0 = 1 = . . . 1111111 . . .

B0 = {y0} with y0 = . . . 1110111 . . .
↑
origin

P[Xt(0) = 0] = P[Xt ≤ y0] = P[1 ≤ y for some y ∈ Bt ] = P[1 ∈ Bt ].

Lemma The cooperative branching-coalescent is stable if and only
if the dual “survives” in the sense that

P[1 6∈ Bt ∀t ≥ 0] > 0.

(Alternatively, let Bc := {1− y : y ∈ B}.
Then x ∈ B↓ if and only if “x ∩ y 6= ∅” for some y ∈ Bc.
Extinction now means that 0 ∈ Bc

t for some t ≥ 0.)
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Extinction

Start X0 = 1 = . . . 1111111 . . .

B0 = {y0} with y0 = . . . 1110111 . . .
↑
origin

Claim
P[Xt(0) = 1] = P[1 6∈ Bt ] ≤ Ct−1/2.

Proof

∂
∂tP[Xt(0) = 1] = (λ− 1)P[Xt(0 : 1) = 11]− λP[Xt(0 : 2) = 111]

Suffices to prove:

P[Xt(0 : 1) = 11] ≤ Ct−3/2.
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Extinction

Start X0 = 1 = . . . 1111111 . . .

B0 = {y0, y1} with y0 = . . . 1110111 . . .
y1 = . . . 1111011 . . .

Claim
P[Xt(0 : 1) = 11] = P[1 6∈ Bt ] ≤ Ct−3/2.
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The case without branching

If the cooperative branching rate λ is zero, then the first time that
1 ∈ Bt is the first time that two out of three walkers meet.

time

1 1 1 0 1 1 1
1 1 1 1 0 1 1

1 2 3

B0

1 0 0 0 1 1 1
1 1 1 1 0 0 1

ξ1
t ξ2

t ξ3
t

Bt
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Coalescing random walks

Let (ξit)
i∈Z
t≥0 be coalescing random walks, started from every site

i ∈ Z.

Let τij := inf{t ≥ 0 : ξit = ξjt}.

Facts:

P[τ12 ∧ τ23 > t] ∼ 1

2
√
π
t−3/2,

E[τ ij ∧ τ jk ] = (j − i)(k − j) (i < j < k).
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The case with branching

If a cooperative branching event occurs, then we use subduality: it
suffices to show that both B ′t+s and B ′′t+s die out.

time

1 0 0 0 1 1 1
1 1 1 1 0 0 1

Bt

1 0 0 0 1 1 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1

Bt+s

1 0 0 0 1 1 1
1 1 1 1 0 0 1

B ′t+s

1 1 0 1 1 1 1
1 1 1 0 1 1 1

B ′′t+s
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The case with branching

This leads to a (dependent) branching process where triples of
random walks die as soon as two out of the three meet, but before
it dies, with rate 2λ, a triple can give birth to a new triple of
random walks, started on neighboring positions. As long as λ < 1

2 ,
it can be shown that this branching process dies out and the
probability to be alive at time t decays as t−3/2.
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