The contact process seen from a typical infected site

Jan M. Swart (Prague) joint with Anja Sturm (Göttingen)

September 9, 2011

(4) (E) (A) (E) (A)

Contact processes on groups

- A: countable group with group action $(i,j) \mapsto ij$, inverse operation $i \mapsto i^{-1}$, and unit element (origin) 0.
- a: function $a: \Lambda \times \Lambda \rightarrow [0,\infty)$ s.t.

(i)
$$a(i,j) = a(ki,kj)$$
 $(i,j,k \in \Lambda),$
(ii) $|a| := \sum_{i \in \Lambda} a(0,i) < \infty.$

 δ : nonnegative constant.

Definition The (Λ, a, δ) -contact process $(\eta_t)_{t\geq 0}$ is a Markov process taking values in the subets of Λ . Sites $i \in \eta_t$ are called *infected*.

An infected site at *i* infects a healthy site at *j* with rate a(i, j).

・ 同 ト ・ ヨ ト ・ ヨ ト

• Infected sites recover with rate δ .

Cayley graphs

Let $\Delta \subset \Lambda$ be a finite, symmetric generating set for Λ . **Definition** The (left) *Cayley graph* $\mathcal{G}(\Lambda, \Delta)$ is defined as

Vertex set Λ.

► An edge connects $i, j \in \Lambda$ iff there is a $k \in \Delta$ such that j = ki. **Examples** \mathbb{Z}^d with nearest-neighbor bonds, regular tree \mathbb{T}_d .

Jan M. Swart (Prague) joint with Anja Sturm (Göttingen) The contact process seen from a typical infected site

Let $\Delta \subset \Lambda$ be a finite, symmetric generating set for Λ .

Let $a(i,j) := \lambda \mathbb{1}_{\{i \in \Delta j\}}$, i.e., $a(i,j) = \lambda$ if i, j are connected by an edge in $\mathcal{G}(\Lambda, \Delta)$ and zero otherwise.

Then the (Λ, a, δ) -contact process is the *nearest-neighbor* contact process on $\mathcal{G}(\Lambda, \Delta)$ with infection rate λ and recovery rate δ .

Remark There are interesting contact processes on groups that are not finitely generated, e.g. the hierarchical group. *Graphs are not all that matters*.

Remark Asymmetric processes (with $a(i,j) \neq a(j,i)$) are also interesting.

Graphical representation

(B) (A) (B)

Set $a^{\dagger}(i,j) := a(j,i)$. Let $(\eta_t^A)_{t\geq 0}$ denote the (Λ, a, δ) -contact process started in $\eta_0^A = A$. Let $(\eta_t^{\dagger B})_{t\geq 0}$ denote the $(\Lambda, a^{\dagger}, \delta)$ -contact process started in $\eta_0^{\dagger B} = B$. Then

$$\mathbb{P}[\eta_t^A \cap B \neq \emptyset] = \mathbb{P}[A \cap \eta_t^{\dagger B} \neq \emptyset] \qquad (t \ge 0).$$

Remark The (Λ, a, δ) - and $(\Lambda, a^{\dagger}, \delta)$ -contact processes are in general different and need to be distinguished.

通 とう ほう とう マン・

Definition A (Λ, a, δ) -contact process *survives* if

$$\theta = \theta(\Lambda, \boldsymbol{a}, \delta) := \mathbb{P}\big[\eta_t^{\{0\}} \neq \emptyset \; \forall t \ge 0\big] > 0.$$

It survives locally if

$$\liminf_{t\to\infty} \mathbb{P}\big[0\in\eta_t^{\{0\}}\big]>0.$$

$$\begin{split} &\delta_{\rm c}(\Lambda,a) := \sup\{\delta \geq 0: \text{the } (\Lambda,a,\delta)\text{-contact process survives}\}, \\ &\delta_{\rm c}'(\Lambda,a) := \sup\{\delta \geq 0: \text{the } (\Lambda,a,\delta)\text{-contact process survives locally}\}. \end{split}$$

The upper invariant law

Definition A measure μ on the set of subsets of Λ is *nontrivial* if $\mu(\{\emptyset\}) = 0$ and *homogeneous* if μ is invariant under translations $A \mapsto iA := \{ij : j \in A\}.$ Set

$$\overline{\eta}_t := \{i \in \Lambda : -\infty \rightsquigarrow (i, t)\}$$

where $-\infty \rightsquigarrow$ indicates the presence of an open path in the graphical representation started at time $-\infty$. Then $\overline{\nu} := \mathbb{P}[\overline{\eta}_t \in \cdot]$ is the *upper invariant law*.

- $\overline{\nu}$ is a homogeneous invariant law.
- $\overline{\nu}$ is the *largest* invariant law (in the stochastic order).
- ▶ $\overline{\nu}$ is nontrivial iff the $(\Lambda, a^{\dagger}, \delta)$ -contact process survives.
- All homog. invar. laws are convex combinations of $\overline{\nu}$ and δ_{\emptyset} .
- The process started in a homog. nontriv. law converges to v. (Harris, 1974)

(四) (日) (日)

For symmetric, finite-range processes on \mathbb{Z}^d much more is known: (Bezuidenhout & Grimmett 1990 and references therein)

- Survival implies local survival, $\delta_c = \delta'_c$.
- The critical process dies out: no survival at $\delta = \delta_c$.
- Complete convergence:

$$\mathbb{P}[\eta_t^{\{0\}} \in \cdot] \underset{t \to \infty}{\Longrightarrow} heta \overline{
u} + (1 - heta) \delta_{\emptyset}.$$

- All invar. laws are convex combinations of $\overline{\nu}$ and δ_{\emptyset} .
- Shape theorem.

For *asymmetric* processes much less has been proved and statements need modifications!

向下 イヨト イヨト

For nearest-neighbor processes on regular trees \mathbb{T}_d , the situation is quite different: (See Liggett's 1999 book)

- $\blacktriangleright \ \delta_{\rm c}' < \delta_{\rm c}.$
- ► Local survival on $[0, \delta'_c)$, global but not local survival on $[\delta'_c, \delta_c)$.
- No complete convergence on $[\delta'_c, \delta_c)$.
- Many extremal invariant measures on $[\delta'_c, \delta_c)$.

Question Which properties of \mathbb{Z}^d resp. \mathbb{T}_d are responsible for the different behavior?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Amenability

Let $\mathcal{G}(\Lambda, \Delta)$ be a Cayley graph $\mathcal{G}(\Lambda, \Delta)$ and let d(i, j) denote the usual graph distance.

Definition $\mathcal{G}(\Lambda, \Delta)$ is *amenable* if for every $\varepsilon > 0$ there exists a finite nonzero $A \subset \Lambda$ such that

$$rac{|\partial A|}{|A|} \leq arepsilon \quad ext{where} \quad \partial A := ig\{ i
ot\in A : \exists j \in A ext{ s.t. } d(i,j) = 1 ig\}.$$

 $\mathcal{G}(\Lambda, \Delta)$ is said to have exponential growth (resp. subexponential growth) if the limit

$$\lim_{n\to\infty}\frac{1}{n}\log\left|\{i\in\Lambda:d(0,i)\leq n\}\right|$$

is positive (resp. zero).

subexponential growth
$$\Rightarrow$$

Excursion to another model

- Particles jump from *i* to *j* with rate a(i,j).
- Particles split into two with rate b > 0.
- Pairs of particles on one site coalesce with rate c > 0.

This model survives globally for all b, c > 0.

 $b_{c} = b_{c}(a, c) := \inf\{b > 0 : \text{ the process survives locally}\}.$

For the nearest-neighbor process on Cayley graphs, Frank Schirmeier (Erlangen) has shown:

- If Λ is nonamenable (e.g. a tree), then $b_c > 0$.
- If Λ is of subexponential growth (e.g. \mathbb{Z}^d), then $b_c = 0$.

Open problem Amenable graphs of exponential growth (e.g. the lamplighter group).

It follows from subadditivity that for each (Λ, a, δ) -contact process, the limit

$$r = r(\Lambda, a, \delta) := \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}[|\eta_t^{\{0\}}|]$$

exists. We call r the exponential growth rate.

- (i) r < 0 iff $\delta > \delta_c$ (Menshikov '86, Aizenman & Barsky '87, Aizenman & Jung '07).
- (ii) If r > 0 then $\theta > 0$ (i.e., the process survives).
- (iii) If A is nonamenable and $\theta > 0$, then r > 0 (S. 2009).
- (iv) For n.n. processes on subexponential groups, $r \leq 0$.

(v) The function $\delta \rightarrow r(\Lambda, a, \delta)$ is nonincreasing and continuous. Parts (ii), (iii) and (v) imply:

The critical contact process on a nonamenable group dies out.

Infinite starting measures

Let
$$\mathcal{P}_+ := \{A \subset \Lambda : A \neq \emptyset\}$$
 and
$$\mu_t := \sum_{i \in \Lambda} \mathbb{P}[\eta_t^{\{i\}} \in \cdot]|_{\mathcal{P}_+}$$

be the "law" of the process started with a single, uniformly chosen infected site. This is an infinite measure but conditional probabilities such as

$$\mu_t\big(\cdot | \{A: 0 \in A\}\big)$$

are well-defined. Note that

$$\mu_t \big(\{ A : 0 \in A \} \big) = \sum_{i \in \Lambda} \mathbb{P} \big[0 \in \eta_t^{\{i\}} \big]$$
$$= \sum_{i \in \Lambda} \mathbb{P} \big[i^{-1} \in \eta_t^{\{0\}} \big] = \mathbb{E} \big[|\eta_t^{\{0\}}| \big] =: E_t.$$

Jan M. Swart (Prague) joint with Anja Sturm (Göttingen)

伺い イヨト イヨト 三日

One has

$$\mu_t\big(\cdot \big| \{A: 0 \in A\}\big) = \hat{\mathbb{P}}\big[\iota^{-1}\eta_t^{\{0\}} \in \cdot \big],$$

where $\hat{\mathbb{P}}$ is a *Palm law*, i.e., $\hat{\mathbb{P}}$ is obtained from the old law \mathbb{P} by size-biasing on $|\eta_t^{\{0\}}|$ and then choosing a 'Palm site' $\iota \in \eta_t^{\{0\}}$ with equal probabilities from $\eta_t^{\{0\}}$.

The process seen from a typical infected site.

直 とう ゆう く ひょう

$$\mu_t\big(\cdot | \{A: 0 \in A\}\big)$$

・ロン ・回 と ・ヨン ・ヨン

Э

A typical infected site

Jan M. Swart (Prague) joint with Anja Sturm (Göttingen) The contact process seen from a typical infected site

回 と く ヨ と く ヨ と

æ

Let $\mathcal{P} := \{A : A \subset \Lambda\} \cong \{0, 1\}^{\Lambda}$, equipped with the product topology, and $\mathcal{P}_+ := \{A \in \mathcal{P} : A \neq \emptyset\}.$

Definition An *eigenmeasure* with *eigenvalue* λ is a nonzero, locally finite measure μ on \mathcal{P}_+ such that

$$\int \mu(\mathrm{d}A) \mathbb{P}[\eta^A_t \in \cdot]\big|_{\mathcal{P}_+} = e^{\lambda t} \mu \qquad (t \ge 0).$$

Conjecture

$$\frac{1}{E_t}\mu_t \underset{t \to \infty}{\Longrightarrow} \mu$$

where \Rightarrow denotes vague convergence on \mathcal{P}_+ and μ is an eigenmeasure with eigenvalue r.

伺い イヨト イヨト 三日

Proposition Let $\hat{\mu}_{\alpha}$ be the Laplace transform of $(\mu_t)_{t\geq 0}$, i.e.,

$$\hat{\mu}_{\alpha} := \int_{0}^{\infty} \mu_t \ e^{-\alpha t} \mathrm{d}t \qquad (\alpha > r).$$

Then

$$\hat{\mu}_{\alpha}(\{A: 0 \in A\}) = \int_0^\infty E_t e^{-\alpha t} \mathrm{d}t =: \hat{E}_{\alpha} \qquad (\alpha > r).$$

The measures $(\frac{1}{\hat{E}_{\alpha}}\hat{\mu}_{\alpha})_{\alpha>r}$ are relatively compact in the topology of vague convergence on \mathcal{P}_+ , and each subsequential limit as $\alpha \downarrow r$ is a homogeneous eigenmeasure with eigenvalue r.

Open Problems Uniqueness. Convergence of $\frac{1}{E_t}\mu_t$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (S. '09) Assume that the upper invariant law $\overline{\nu}$ is nontrivial. Then $\overline{\nu}$ is up to a multiplicative constant the unique homogeneous eigenmeasure with eigenvalue 0.

This says that if r = 0 and the process survives ($\theta > 0$), then the process seen from a typical infected site at large (Laplace) times looks locally like the upper invariant law.

Note that this also applies to *asymmetric* processes *regardless* of *local survival*.

Consequence If Λ is nonamenable and $\theta > 0$, then r > 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of the consequence

Assume that $\overline{\nu}$ is nontrivial and r = 0. Consider the law $\hat{\mu}_{\alpha}$, conditioned on the event $\{A : 0 \in A\}$. This law describes a random finite set B, containing the origin, that looks something like this:

This contradicts nonamenability.

Jan M. Swart (Prague) joint with Anja Sturm (Göttingen) The contact process seen from a typical infected site

(4月) (4日) (4日)

Theorem (Sturm & S. '11) Assume that r < 0. Then there exists, up to a multiplicative constant, a unique homogeneous eigenmeasure $\mathring{\nu}$ with eigenvalue r. For any nonzero, homogeneous, locally finite measure μ on \mathcal{P}_+ , one has

$$e^{-rt}\int \mu(\mathrm{d}A)\mathbb{P}[\eta^A_t\in\cdot\,]\big|_{\mathcal{P}_+(\Lambda)}\underset{t\to\infty}{\Longrightarrow}c\,\overset{\circ}{\nu},$$

where \Rightarrow denotes vague convergence and c > 0.

Moreover, $\mathring{\nu}$ is concentrated on finite sets. There are no homogeneous eigenmeasures with eigenvalues other than *r*.

伺 と く き と く き と

The fact that $\mathring{\nu}$ is concentrated on finite sets means that there is almost a single path leading up to the typical particle.

Russo's formula

Say that a point (i, t) is *pivotal* if all paths $(0, 0) \rightsquigarrow (\iota, T)$ pass through it. Russo's formula implies:

$$-\frac{\partial}{\partial \delta}r(\Lambda, a, \delta) = \lim_{T \to \infty} \mathbb{E}\big[\frac{1}{T}\int_0^T \mathbf{1}_{\{\exists \text{ pivotal at } t\}} \mathrm{d}t\big].$$

• 3 >

We wish to show that $\delta \mapsto r(\Lambda, a, \delta)$ is continuously differentiable on (δ_c, ∞) and satisfies $\frac{\partial}{\partial \delta}r(\Lambda, a, \delta) < 0$ on (δ_c, ∞) . Moreover, we conjecture that

$$-\frac{\partial}{\partial\delta}r(\Lambda, \mathbf{a}, \delta) = \frac{\int \mathring{\nu}(\mathrm{d}A) \int \mathring{\nu}^{\dagger}(\mathrm{d}B) \mathbf{1}_{\{A \cap B = \{0\}\}}}{\int \mathring{\nu}(\mathrm{d}A) \int \mathring{\nu}^{\dagger}(\mathrm{d}B) |A \cap B|^{-1} \mathbf{1}_{\{0 \in A \cap B\}}},$$

where $\overset{\circ}{\nu}$ and $\overset{\circ}{\nu^{\dagger}}$ denote the homogeneous eigenmeasures of the (Λ, a, δ) - and $(\Lambda, a^{\dagger}, \delta)$ -contact processes, respectively.

Open problem Is $\delta \mapsto r(\Lambda, a, \delta)$ concave?

Related problem Is $\mathring{\nu}$ decreasing in δ , in some sense?

伺下 イヨト イヨト