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Wednesday, February 28th, 2018
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The spectral radius

Let A = (A(x , y))x ,y∈S be a nonnegative matrix indexed by a
countable set S .
We assume that A is irreducible, i.e.,
∀x , y ∈ S ∃n ≥ 0 s.t. An(x , y) > 0, and aperiodic i.e., the greatest
common divisor of {n ≥ 1 : An(x , x) > 0} is one ∀x .

[Kingman 1963] The limit

ρ(A) := lim
n→∞

(
An(x , y)

)1/n ∈ (0,∞]

exists and does not depend on x , y ∈ S .

We call ρ(A) the spectral radius of A.

We assume from now on that ρ(A) <∞.
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Gibbs measures

Let Ωn denote the space of all functions ω : {0, . . . , n} → S .

Let µA,nx ,y be the measure on Ωn defined by

µA,nx ,y (ω) := 1{ω0=x , ωn=y}

n∏
k=1

A(ωk−1, ωk).

We normalize µA,nx ,y to a probability measure

µA,nx ,y :=
1

An(x , y)
µA,nx ,y .

We call µA,nx ,y the Gibbs measure on Ωn with transfer matrix A and
boundary conditions x , y .
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Equivalence

[Equivalence of transfer matrices] Let A,B be
nonnegative matrices with A(x , y) > 0⇔ B(x , y) > 0
(x , y ∈ S). Then the following conditions are equivalent.

1. µA,nx ,y = µB,nx ,y for all x , y , n.
2. There exists a c > 0 and h : S → (0,∞) such that

B(x , y) := c−1h(x)−1A(x , y)h(y).

Moreover, in 2., the matrices A and B determine the
constant c uniquely and the function h uniquely up to a
multiplicative constant.

We write A ∼h,c B, A ∼c B, or A ∼ B and call A,B equivalent if

B(x , y) := c−1h(x)−1A(x , y)h(y) (x , y ∈ S).

One has A ∼c B ⇒ ρ(A) = cρ(B).
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Equivalence

If
B(x , y) := c−1h(x)−1A(x , y)h(y) (x , y ∈ S),

then for ω ∈ Ωn one has

n∏
k=1

B(ωk−1, ωk)

= c−1h(ω0)−1A(ω0, ω1)h(ω1)c−1h(ω1)−1A(ω1, ω2)h(ω2)

· · · c−1h(ωn−1)−1A(ωn−1, ωn)h(ωn)

= c−nh(ω0)−1
n∏

k=1

A(ωk−1, ωk)h(ωn).

Summing over all paths with ω0 = x , ωn = y , yields

Bn(x , y) := c−nh(x)−1An(x , y)h(y) (x , y ∈ S).
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R-recurrence

Observation Let A,P be nonnegative matrices such that
A ∼h,c P. Then the following conditions are equivalent.

1. Ah = ch.

2. P is a probability kernel.

P recurrent ⇒ ρ(P) = 1 ⇒ ρ(A) = c.

[David Vere-Jones 1962, 1967] There exists at most one
recurrent probability kernel P such that A ∼ P.

Call A R-recurrent if such a P exists and R-transient otherwise.

[David Vere-Jones 1962, 1967] If A is R-recurrent, then there
exists a function h : S → (0,∞), unique up to scalar multiples,
such that Ah = ρ(A)h.
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The Perron-Frobenius theorem

It can be shown that every finite nonnegative matrix A is
R-recurrent.
Combining this with the result of Vere-Jones, using the fact that
finite probability kernels are always recurrent, we obtain:

[Perron-Frobenius (1912)] Let A be finite. Then there
exist a unique constant c > 0 and a function
h : S → (0,∞) that is unique up to scalar multiples, such
that Ah = ch.

Where, in fact c = ρ(A).

For infinite matrices, there may exist positive eigenfunctions h
corresponding to eigenvalues c > ρ(A). In such cases, the
probability kernel defined by A ∼h,c P is transient.
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Strong positive recurrence

Let (Xk)k≥0 be a Markov chain with irreducible transition kernel P.
Let σx := inf{k > 0 : Xk = x} denote the first return time to x .

Def P is strongly positive recurrent if for some, and hence for all
x ∈ S , there exists an ε > 0 s.t. Ex

[
eεσx

]
<∞.

[Kendall ’59, Vere-Jones ’62] Let P be irreducible and aperiodic
with invariant law π. Then P is strongly positive recurrent if and
only if it is geometrically ergodic in the sense that

∃ε > 0, Mx ,y <∞ s.t.
∣∣Pn(x , y)− π(y)

∣∣ ≤ Mx ,ye
−εn.

(x , y ∈ S , n ≥ 0).
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R-positivity

Let A be R-recurrent and let P be the unique recurrent probability
kernel such that A ∼ P.

We call A R-null recurrent if P is null recurrent,
we call A R-positive if P is positively recurrent,
we call A strongly R-positive if P is strongly positively recurrent.

[David Vere-Jones 1962, 1967] For any reference point x :

A is R-recurrent ⇔
∞∑
n=1

ρ(A)−nAn(x , x) =∞.

A is R-positive ⇔ lim
n→∞

ρ(A)−nAn(x , x) > 0.

Proof A ∼c B ⇒ An(x , x) = cnBn(x , x). Now use well-known
characterizations of (positive) recurrence.

Jan M. Swart (ÚTIA AV ČR) A Fresh Look at R-positivity



Finite modifications

Def A and B are finite modifications of each other iff
A(x , y) > 0 ⇔ B(x , y) > 0 (x , y ∈ S) and{

(x , y) : A(x , y) < B(x , y)
}

is finite and nonempty.

[Swart 2017] Let A ≤ B be finite modifications of each other.
Then:

(a) B is strongly R-positive if and only if ρ(A) < ρ(B).

(b) A is R-transient if and only if ρ(A) = ρ
(
A + ε(B − A)

)
for

some ε > 0.

Note: This implies in particular that finite matrices are strongly
R-positive.

Def spectral radius at infinity

ρ∞(B) := inf{ρ(A) : A ≤ B finite modification}.

Then B strongly R-positive if and only if ρ∞(B) < ρ(B).
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Heuristics

Recall spectral radius ρ(A) := lim
n→∞

(
An(x , y)

)1/n
.

Recall unnormalized Gibbs measure

µA,nx ,y (ω) := 1{ω0=x , ωn=y}

n∏
k=1

A(ωk−1, ωk).

As n→∞ ∑
ω∈Ωn

µA,nx ,y (ω) = en log ρ(A) + o(n).

Likewise, ρ∞(A) measures, on an exponential scale, the weight of
paths ω that “venture far away from x and y”.

If ρ∞(A) < ρ(A), paths that stay close to x and y have more
weight, on an exponential scale, then paths that venture far away.

Jan M. Swart (ÚTIA AV ČR) A Fresh Look at R-positivity



The infinite volume limit

[Infinite volume limit] Let A be R-positive and let P be the
positive recurrent kernel s.t. A ∼ P.

Then, for any x , y , one has the one-sided infinite-volume limit

µA,nx ,y =⇒
n→∞

νPx ,

where νPx is the law of the Markov chain with transition kernel P
and initial state x .
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Pinning models

Let Q denote the transition kernel of nearest-neighbor random
walk on Zd . Define

Aβ(x , y) :=

{
eβQ(x , y) if x = 0,

Q(x , y) otherwise.

[Giacomin, Caravenna, Zambotti 2006] There exists a
−∞ < βc <∞ such that:

I Aβ is R-transient for β < βc.

I Aβ is R-null recurrent or weakly R-positive for β = βc.

I Aβ is strongly R-positive for β > βc.

Moreover, β 7→ ρ(Aβ) is constant on (−∞, βc] and stricty
increasing on [βc,∞).
One has βc = 0 in dimensions d = 1, 2 and βc > 0 in dimensions
d ≥ 3. In fact, e−βc is the return probability of the random walk.
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Bounds on the spectral radius

Sharp upper bounds on ρ(A) can (in principle) be obtained from

ρ(A) = inf
{

K <∞ : ∃f : S → (0,∞) s.t. Af ≤ Kf
}
.

Let (π,Q) be a pair such that 1. π is a probability measure on
some finite S ′ ⊂ S , 2. Q is a transition kernel on S ′ with invariant
law π. Define a large deviations rate function

IA(π,Q) :=
∑
x ,y

π(x)Q(x , y) log
(Q(x , y)

A(x , y)

)
.

Sharp lower bounds on ρ(A) can be obtained from

ρ(A) = sup
(π,Q)

e−IA(π,Q).
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Open problems

Open problem Necessary and sufficient conditions for strong
R-positivity of semigroups (At)t≥0 of nonnegative matrices.

Open problem Prove that ρ∞(An) = ρ∞(A)n.

Open problem A finite modification of B 6⇒
An finite modification of Bn. Weaken the concept of “finite
modification” so that this holds.

Open problem Show that the contact process modulo translations
is strongly R-positive for all λ 6= λc.

[Sturm & Swart 2014] The contact process modulo translations
is R-positive for all λ < λc.
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Proof of the main result

The most interesting part of the main theorem is:

Let A be irreducible. If there exists a finite modification
B ≤ A such that ρ(B) < ρ(A), then A ∼ P for some
strongly positive recurrent probability kernel P.

Sketch of the proof Fix a reference point z ∈ S . Let Ω̂z denote
the space of all excursions away from z , i.e., functions
ω : {0, . . . , n} → S with ω0 = z = ωn and ωk 6= z for all
0 < k < n. Let `ω := n denote the length of ω. Define

eψz(λ) :=
∑
ω∈Ω̂z

νλ(ω) with νλ(ω) := eλ`ω
`ω∏
k=1

A(ωk−1, ωk)

STEP I: If there exists some λ such that ψz(λ) = 0, then the
process that makes i.i.d. excursions away from z with law νλ is a
recurrent Markov chain with transition kernel P ∼ A.
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The logarithmic moment generating function

ψz(λ)

λλz,+λ∗

∞
strong R-positivity

ψz(λ)

λλ∗

∞
weak R-positivity

ψz(λ)

λλ∗

∞
R-null recurrence

ψz(λ)

λ

λ∗

∞
R-transience
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Sketch of the proof (continued)

Let G be the directed graph with vertex set S and edge set
{(x , y) : A(x , y) > 0}. For any subgraph F ⊂ G and vertices
x , y ∈ F , define ψF

x ,y (λ) = log φFx ,y (λ) with

φFx ,y (λ) :=
∑

ω∈Ω̂x,y (F )

eλ`ω
`ω∏
k=1

A(ωk−1, ωk),

where Ω̂x ,y (F ) denotes the space of excursions away from F
starting in x and ending in y .
Removal of an edge Let F ′ = F\{e} be obtained from F by the
removal of an edge e. Then

φF
′

x ,y (λ) =

{
φFx ,y (λ) + eλA(x , y) if e = (x , y),

φFx ,y (λ) otherwise
(λ ∈ R).

Jan M. Swart (ÚTIA AV ČR) A Fresh Look at R-positivity



Sketch of the proof

Removal of an isolated vertex Let F ′ = F\{z} be obtained from
F by the removal of an isolated vertex z . Then

φF
′

x ,y (λ) = φFx ,y (λ) +
∞∑
k=0

φFx ,z(λ)φFz,z(λ)kφFz,y (λ).

Proof: Set A(ω) :=
∏`ω

k=1 A(ωk−1, ωk). Distinguishing excursions
away from F ′ according to how often they visit the vertex z , we
have

φF
′

x ,y (λ) =
∑
ωx,y

eλ`ωx,yA(ωx ,y )

+
∞∑
k=0

∑
ωx,z

∑
ωz,y

∑
ω1
z,z

· · ·
∑
ωk
z,z

e
λ(`ωx,z + `ωz,y + `ω1

z,z
+ · · ·+ `ωk

z,z
)

×A(ωx ,z)A(ωz,y )A(ω1
z,z) · · · A(ωk

z,z),

where we sum over ωx ,y ∈ Ω̂x ,y (F ) etc.
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Sketch of the proof

Rewriting gives

φF
′

x ,y (λ) =
∑
ωx,y

eλ`ωx,yA(ωx ,y )+

(∑
ωx,z

eλ`ωx,zA(ωx ,z)
)(∑

ωz,y

eλ`ωz,yA(ωz,y )
) ∞∑
k=0

(∑
ωz,z

eλ`ωz,zA(ωz,z)
)k
.
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Sketch of the proof

Lemma (Exponential moments of excursions) Let P be an
irreducible subprobability kernel. Set

λFx ,y := sup{λ : ψF
x ,y (λ) <∞}.

Then, if
λFx ,y ,+ > 0 for all x , y ∈ F ∩ S

holds for some finite nonempty subgraph F of G , it holds for all
such subgraphs.

Proof: By induction, removing edges and isolated vertices.
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Sketch of the proof

Lemma Set λ∗ := sup{λ : ψz(λ) = 0}. Then λ∗ = − log ρ(A).

Proof of the theorem: Assume that A is not strongly positive
recurrent. Let A′ ≤ A be a finite modification. We must show that
ρ(A′) = ρ(A). By a similarity transformation, we may assume
w.l.o.g. that A is a subprobability kernel and λ∗ = 0. We need to
show λ′∗ = 0. It suffices to show that for the subgraph F = {z},
we have λ′z,+ = 0. Since A is not strongly positive, we have
λz,+ = 0. Since B is a finite modification, we can choose a finite
subgraph F such that λFx ,y ,+ is the same for A and A′. Now

λz,+ ≤ 0 ⇔ λFx ,y ,+ ≤ 0 for some x , y ∈ F ⇔ λ′z,+ ≤ 0.
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