A Fresh Look at R-positivity

Jan M. Swart (ÚTIA AV ČR)

Wednesday, February 28th, 2018

Jan M. Swart (ÚTIA AV ČR) A Fresh Look at R-positivity

< 用 → < 用 →

The spectral radius of a nonnegative matrix

æ

- The spectral radius of a nonnegative matrix
- One-dimensional Gibbs measures

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

- The spectral radius of a nonnegative matrix
- One-dimensional Gibbs measures
- Equivalence of transfer matrices

▲ 문 ▶ | ▲ 문 ▶

- The spectral radius of a nonnegative matrix
- One-dimensional Gibbs measures
- Equivalence of transfer matrices
- R-recurrence and the Perron-Frobenius theorem

- The spectral radius of a nonnegative matrix
- One-dimensional Gibbs measures
- Equivalence of transfer matrices
- R-recurrence and the Perron-Frobenius theorem
- Conditions for (strong) R-positivity

- The spectral radius of a nonnegative matrix
- One-dimensional Gibbs measures
- Equivalence of transfer matrices
- R-recurrence and the Perron-Frobenius theorem
- Conditions for (strong) R-positivity
- Pinning models

글 🕨 🔸 글 🕨

Let $A = (A(x, y))_{x,y \in S}$ be a nonnegative matrix indexed by a countable set S.

We assume that A is *irreducible*, i.e.,

 $\forall x, y \in S \exists n \ge 0 \text{ s.t. } A^n(x, y) > 0$, and *aperiodic* i.e., the greatest common divisor of $\{n \ge 1 : A^n(x, x) > 0\}$ is one $\forall x$.

[Kingman 1963] The limit

$$\rho(A) := \lim_{n \to \infty} \left(A^n(x, y) \right)^{1/n} \in (0, \infty]$$

exists and does not depend on $x, y \in S$.

We call $\rho(A)$ the spectral radius of A.

We assume from now on that $\rho(A) < \infty$.

Let Ω^n denote the space of all functions $\omega : \{0, \ldots, n\} \to S$. Let $\mu_{x,y}^{A,n}$ be the measure on Ω^n defined by

$$\mu_{x,y}^{A,n}(\omega) := \mathbb{1}_{\{\omega_0 = x, \ \omega_n = y\}} \prod_{k=1}^n A(\omega_{k-1}, \omega_k).$$

We normalize $\mu_{\mathbf{x},\mathbf{y}}^{\mathbf{A},\mathbf{n}}$ to a probability measure

$$\overline{\mu}_{x,y}^{A,n} := \frac{1}{A^n(x,y)} \mu_{x,y}^{A,n}.$$

We call $\overline{\mu}_{x,y}^{A,n}$ the Gibbs measure on Ω^n with transfer matrix A and boundary conditions x, y.

Equivalence

[Equivalence of transfer matrices] Let A, B be nonnegative matrices with A(x, y) > 0 ⇔ B(x, y) > 0 (x, y ∈ S). Then the following conditions are equivalent.
1. µ^{A,n}_{x,y} = µ^{B,n}_{x,y} for all x, y, n.
2. There exists a c > 0 and h : S → (0,∞) such that B(x, y) := c⁻¹h(x)⁻¹A(x, y)h(y).
Moreover, in 2., the matrices A and B determine the

constant c uniquely and the function h uniquely up to a multiplicative constant.

We write $A \sim_{h,c} B$, $A \sim_{c} B$, or $A \sim B$ and call A, B equivalent if

$$B(x,y) := c^{-1}h(x)^{-1}A(x,y)h(y)$$
 $(x,y \in S).$

One has $A \sim_c B \Rightarrow \rho(A) = c\rho(B)$.

(《圖》 《문》 《문》 - 문

Equivalence

lf

$$B(x,y) := c^{-1}h(x)^{-1}A(x,y)h(y)$$
 $(x, y \in S),$

then for $\omega \in \Omega^n$ one has

$$\prod_{k=1}^{n} B(\omega_{k-1}, \omega_{k})$$

= $c^{-1}h(\omega_{0})^{-1}A(\omega_{0}, \omega_{1})h(\omega_{1})c^{-1}h(\omega_{1})^{-1}A(\omega_{1}, \omega_{2})h(\omega_{2})$
 $\cdots c^{-1}h(\omega_{n-1})^{-1}A(\omega_{n-1}, \omega_{n})h(\omega_{n})$
= $c^{-n}h(\omega_{0})^{-1}\prod_{k=1}^{n}A(\omega_{k-1}, \omega_{k})h(\omega_{n}).$

Summing over all paths with $\omega_0 = x$, $\omega_n = y$, yields

$$B^n(x,y):=c^{-n}h(x)^{-1}A^n(x,y)h(y)\qquad (x,y\in S).$$

▲御★ ▲注★ ▲注★

3

Observation Let A, P be nonnegative matrices such that $A \sim_{h,c} P$. Then the following conditions are equivalent.

- 1. Ah = ch.
- 2. *P* is a probability kernel.

 $P \text{ recurrent} \Rightarrow \rho(P) = 1 \Rightarrow \rho(A) = c.$

[David Vere-Jones 1962, 1967] There exists at most one recurrent probability kernel P such that $A \sim P$.

Call A R-recurrent if such a P exists and R-transient otherwise.

[David Vere-Jones 1962, 1967] If A is R-recurrent, then there exists a function $h: S \to (0, \infty)$, unique up to scalar multiples, such that $Ah = \rho(A)h$.

(4回) (注) (注) (注) (注)

It can be shown that every finite nonnegative matrix A is R-recurrent.

Combining this with the result of Vere-Jones, using the fact that finite probability kernels are always recurrent, we obtain:

[Perron-Frobenius (1912)] Let A be finite. Then there exist a unique constant c > 0 and a function $h: S \rightarrow (0, \infty)$ that is unique up to scalar multiples, such that Ah = ch.

Where, in fact $c = \rho(A)$.

For infinite matrices, there may exist positive eigenfunctions h corresponding to eigenvalues $c > \rho(A)$. In such cases, the probability kernel defined by $A \sim_{h,c} P$ is transient.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

(x,

Let $(X_k)_{k\geq 0}$ be a Markov chain with irreducible transition kernel *P*. Let $\sigma_x := \inf\{k > 0 : X_k = x\}$ denote the first return time to *x*.

Def *P* is strongly positive recurrent if for some, and hence for all $x \in S$, there exists an $\varepsilon > 0$ s.t. $\mathbb{E}^{x}[e^{\varepsilon \sigma_{x}}] < \infty$.

[Kendall '59, Vere-Jones '62] Let P be irreducible and aperiodic with invariant law π . Then P is strongly positive recurrent if and only if it is *geometrically ergodic* in the sense that

$$\begin{aligned} \exists \varepsilon > 0, \ M_{x,y} < \infty \text{ s.t. } \left| P^n(x,y) - \pi(y) \right| &\leq M_{x,y} e^{-\varepsilon n}. \\ y \in S, \ n \geq 0 \end{aligned}$$

• • = • • = •

Let A be R-recurrent and let P be the unique recurrent probability kernel such that $A \sim P$.

We call *A R*-*null recurrent* if *P* is null recurrent, we call *A R*-*positive* if *P* is positively recurrent, we call *A* strongly *R*-positive if *P* is strongly positively recurrent.

[David Vere-Jones 1962, 1967] For any reference point x:

$$A \text{ is } \mathsf{R}\text{-recurrent} \Leftrightarrow \sum_{n=1}^{\infty} \rho(A)^{-n} A^n(x, x) = \infty.$$

$$A \text{ is } \mathsf{R}\text{-positive} \Leftrightarrow \lim_{n \to \infty} \rho(A)^{-n} A^n(x, x) > 0.$$

Proof $A \sim_c B \Rightarrow A^n(x,x) = c^n B^n(x,x)$. Now use well-known characterizations of (positive) recurrence.

・日・ ・ ヨ・ ・ ヨ・

Finite modifications

Def A and B are *finite modifications* of each other iff $A(x,y) > 0 \Leftrightarrow B(x,y) > 0$ $(x, y \in S)$ and $\{(x,y) : A(x,y) < B(x,y)\}$ is finite and nonempty.

[Swart 2017] Let $A \leq B$ be finite modifications of each other. Then:

(a) *B* is strongly R-positive if and only if $\rho(A) < \rho(B)$.

(b) A is R-transient if and only if $\rho(A) = \rho(A + \varepsilon(B - A))$ for some $\varepsilon > 0$.

Note: This implies in particular that finite matrices are strongly R-positive.

Def spectral radius at infinity

 $\rho_{\infty}(B) := \inf\{\rho(A) : A \leq B \text{ finite modification}\}.$

Then *B* strongly R-positive if and only if $\rho_{\infty}(B) < \rho(B)$.

Heuristics

Recall spectral radius $\rho(A) := \lim_{n \to \infty} (A^n(x, y))^{1/n}$. Recall unnormalized Gibbs measure

$$\mu_{x,y}^{A,n}(\omega) := \mathbb{1}_{\{\omega_0 = x, \ \omega_n = y\}} \prod_{k=1}^{\infty} A(\omega_{k-1}, \omega_k).$$

As
$$n \to \infty$$

 $\sum_{\omega \in \Omega^n} \mu_{x,y}^{A,n}(\omega) = e^{n \log \rho(A)} + o(n).$

Likewise, $\rho_{\infty}(A)$ measures, on an exponential scale, the weight of paths ω that "venture far away from x and y".

If $\rho_{\infty}(A) < \rho(A)$, paths that stay close to x and y have more weight, on an exponential scale, then paths that venture far away.

▲圖▶ ▲屋▶ ▲屋▶

[Infinite volume limit] Let A be R-positive and let P be the positive recurrent kernel s.t. $A \sim P$.

Then, for any x, y, one has the one-sided infinite-volume limit

$$\overline{\mu}_{x,y}^{A,n} \underset{n \to \infty}{\Longrightarrow} \nu_x^P,$$

where ν_x^P is the law of the Markov chain with transition kernel *P* and initial state *x*.

伺 とう ヨン うちょう

Pinning models

Let Q denote the transition kernel of nearest-neighbor random walk on \mathbb{Z}^d . Define

$$egin{aligned} &\mathcal{A}_eta(x,y) := \left\{egin{aligned} &e^eta Q(x,y) & ext{ if } x=0, \ &Q(x,y) & ext{ otherwise.} \end{aligned}
ight. \end{aligned}$$

[Giacomin, Caravenna, Zambotti 2006] There exists a $-\infty < \beta_c < \infty$ such that:

- A_{β} is R-transient for $\beta < \beta_{c}$.
- A_{β} is R-null recurrent or weakly R-positive for $\beta = \beta_{c}$.
- A_{β} is strongly R-positive for $\beta > \beta_{c}$.

Moreover, $\beta \mapsto \rho(A_{\beta})$ is constant on $(-\infty, \beta_c]$ and stricty increasing on $[\beta_c, \infty)$. One has $\beta_c = 0$ in dimensions d = 1, 2 and $\beta_c > 0$ in dimensions $d \ge 3$. In fact, $e^{-\beta_c}$ is the return probability of the random walk. Sharp upper bounds on $\rho(A)$ can (in principle) be obtained from

$$\rho(A) = \inf \left\{ K < \infty : \exists f : S \to (0, \infty) \text{ s.t. } Af \le Kf \right\}.$$

Let (π, Q) be a pair such that 1. π is a probability measure on some finite $S' \subset S$, 2. Q is a transition kernel on S' with invariant law π . Define a large deviations *rate function*

$$I_A(\pi, Q) := \sum_{x,y} \pi(x)Q(x,y)\log\Big(\frac{Q(x,y)}{A(x,y)}\Big).$$

Sharp lower bounds on $\rho(A)$ can be obtained from

$$\rho(A) = \sup_{(\pi,Q)} e^{-I_A(\pi,Q)}.$$

Open problem Necessary and sufficient conditions for strong *R*-positivity of semigroups $(A_t)_{t\geq 0}$ of nonnegative matrices.

Open problem Prove that $\rho_{\infty}(A^n) = \rho_{\infty}(A)^n$.

Open problem A finite modification of $B \not\Rightarrow$ A^n finite modification of B^n . Weaken the concept of "finite modification" so that this holds.

Open problem Show that the contact process modulo translations is strongly R-positive for all $\lambda \neq \lambda_c$.

[Sturm & Swart 2014] The contact process modulo translations is R-positive for all $\lambda < \lambda_c$.

(ロ) (同) (E) (E) (E)

Proof of the main result

The most interesting part of the main theorem is:

Let A be irreducible. If there exists a finite modification $B \le A$ such that $\rho(B) < \rho(A)$, then $A \sim P$ for some strongly positive recurrent probability kernel P.

Sketch of the proof Fix a reference point $z \in S$. Let $\widehat{\Omega}_z$ denote the space of all *excursions* away from z, i.e., functions $\omega : \{0, \ldots, n\} \to S$ with $\omega_0 = z = \omega_n$ and $\omega_k \neq z$ for all 0 < k < n. Let $\ell_{\omega} := n$ denote the length of ω . Define

$$e^{\psi_{\mathcal{Z}}(\lambda)}:=\sum_{\omega\in\widehat{\Omega}_{\mathcal{Z}}}
u_{\lambda}(\omega) \hspace{0.2cm} ext{with} \hspace{0.2cm}
u_{\lambda}(\omega):=e^{\lambda\ell_{\omega}}\prod_{k=1}^{\ell_{\omega}}\mathcal{A}(\omega_{k-1},\omega_{k})$$

STEP I: If there exists some λ such that $\psi_z(\lambda) = 0$, then the process that makes i.i.d. excursions away from z with law ν_{λ} is a recurrent Markov chain with transition kernel $P \sim A$.

The logarithmic moment generating function

Sketch of the proof (continued)

Let G be the directed graph with vertex set S and edge set $\{(x, y) : A(x, y) > 0\}$. For any subgraph $F \subset G$ and vertices $x, y \in F$, define $\psi_{x,y}^F(\lambda) = \log \phi_{x,y}^F(\lambda)$ with

$$\phi_{x,y}^{F}(\lambda) := \sum_{\omega \in \widehat{\Omega}_{x,y}(F)} e^{\lambda \ell_{\omega}} \prod_{k=1}^{\ell_{\omega}} A(\omega_{k-1}, \omega_{k}),$$

where $\widehat{\Omega}_{x,y}(F)$ denotes the space of excursions away from F starting in x and ending in y.

Removal of an edge Let $F' = F \setminus \{e\}$ be obtained from F by the removal of an edge e. Then

$$\phi_{x,y}^{F'}(\lambda) = \begin{cases} \phi_{x,y}^{F}(\lambda) + e^{\lambda}A(x,y) & \text{ if } e = (x,y), \\ \phi_{x,y}^{F}(\lambda) & \text{ otherwise} \end{cases} \quad (\lambda \in \mathbb{R}).$$

御 と く ヨ と く ヨ と … ヨ

Sketch of the proof

Removal of an isolated vertex Let $F' = F \setminus \{z\}$ be obtained from *F* by the removal of an isolated vertex *z*. Then

$$\phi_{x,y}^{F'}(\lambda) = \phi_{x,y}^{F}(\lambda) + \sum_{k=0}^{\infty} \phi_{x,z}^{F}(\lambda) \phi_{z,z}^{F}(\lambda)^{k} \phi_{z,y}^{F}(\lambda).$$

Proof: Set $\mathcal{A}(\omega) := \prod_{k=1}^{\ell_{\omega}} \mathcal{A}(\omega_{k-1}, \omega_k)$. Distinguishing excursions away from F' according to how often they visit the vertex z, we have

$$\phi_{x,y}^{F'}(\lambda) = \sum_{\omega_{x,y}} e^{\lambda \ell_{\omega_{x,y}}} \mathcal{A}(\omega_{x,y})$$

+
$$\sum_{k=0}^{\infty} \sum_{\omega_{x,z}} \sum_{\omega_{z,y}} \sum_{\omega_{z,z}^{1}} \cdots \sum_{\omega_{z,z}^{k}} e^{\lambda (\ell_{\omega_{x,z}} + \ell_{\omega_{z,y}} + \ell_{\omega_{z,z}^{1}} + \dots + \ell_{\omega_{z,z}^{k}})}$$

$$\times \mathcal{A}(\omega_{x,z}) \mathcal{A}(\omega_{z,y}) \mathcal{A}(\omega_{z,z}^{1}) \cdots \mathcal{A}(\omega_{z,z}^{k}),$$

where we sum over $\omega_{x,y} \in \widehat{\Omega}_{x,y}(F)$ etc.

Rewriting gives

・回 ・ ・ ヨ ・ ・ ヨ ・ …

2

Lemma (Exponential moments of excursions) Let *P* be an irreducible subprobability kernel. Set

$$\lambda_{x,y}^{\mathcal{F}} := \sup\{\lambda : \psi_{x,y}^{\mathcal{F}}(\lambda) < \infty\}.$$

Then, if

$$\lambda_{x,y,+}^{F} > 0$$
 for all $x, y \in F \cap S$

holds for some finite nonempty subgraph F of G, it holds for all such subgraphs.

Proof: By induction, removing edges and isolated vertices.

A 3 5 A 3 5

Lemma Set $\lambda_* := \sup\{\lambda : \psi_z(\lambda) = 0\}$. Then $\lambda_* = -\log \rho(A)$.

Proof of the theorem: Assume that A is not strongly positive recurrent. Let $A' \leq A$ be a finite modification. We must show that $\rho(A') = \rho(A)$. By a similarity transformation, we may assume w.l.o.g. that A is a subprobability kernel and $\lambda_* = 0$. We need to show $\lambda'_* = 0$. It suffices to show that for the subgraph $F = \{z\}$, we have $\lambda'_{z,+} = 0$. Since A is not strongly positive, we have $\lambda_{z,+} = 0$. Since B is a finite modification, we can choose a finite subgraph F such that $\lambda^F_{x,y,+}$ is the same for A and A'. Now

$$\lambda_{z,+} \leq 0 \quad \Leftrightarrow \quad \lambda_{x,y,+}^{F} \leq 0 \text{ for some } x,y \in F \quad \Leftrightarrow \quad \lambda_{z,+}' \leq 0.$$

白 と く ヨ と く ヨ と