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The contact process

Λ Lattice e.g. Λ = Zd , more generally any infinite graph.
Usually, with a translation-invariant structure, e.g. Cayley graph.

Definition The contact process (ηt)t≥0 with infection rate λ is a
Markov process taking values in the subets of Λ. Sites i ∈ ηt are
called infected.

I An infected site at i infects each neighboring healthy site j
with rate λ.

I Infected sites recover with rate one.
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Graphical representation

Draw recovery symbols with Poisson rate 1.
Draw an arrow from i to neighbor j with rate λ.

Λ

t

A

ηAt

ηAt = {j ∈ Λ : (i , 0) (j , t) for some i ∈ A}.

Open paths may follow arrows but must avoid recovery symbols.
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Duality

For the dual process η†Bt time runs backwards and all arrows are
reversed.

A

ηAt

η†Bt

B

{ηAt ∩ B 6= ∅} = {∃ open path from A to B} = {A ∩ η†Bt 6= ∅}.

Jan M. Swart Sharpness of the phase transition for the contact process



The percolation probability

λ

θ(λ)

λc

≈ (λ− λc)β

θ(λ) := P[(0, 0) ∞] = P
[
η
{0}
t 6= ∅ ∀t ≥ 0

]
= lim

t→∞
P
[
η†Λ
t 3 0

]
.
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Exponential growth or decay rate

A simple subadditivity argument proves the existence of the limit

r(λ) = r := lim
t→∞

1

t
logE

[
|η{0}t |

]
.

For processes on Λ = Zd and more generally on
Cayley graphs of subexponential growth, one has r ≤ 0.

On the other hand, on nonamenable graphs,
it is known that θ(λ) > 0 implies r(λ) > 0 [Swa09].
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Sharpness of the phase transition

λ

r(λ)

λc

≈ (λc − λ)ν

On general graphs, it is known that r(λ) < 0 iff λ < λc.

Sharpness of the phase transition.
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Proofs of sharpness of the phase transition

Proof strategies:

I Assume θ(λ∗) = 0, conclude r(λ) < 0 for λ < λ∗.

II Assume r(λ∗) = 0, conclude θ(λ) > 0 for λ > λ∗.

For unoriented percolation:

I Menshikov (1986) ≈ Strategy I.

I Aizenman & Barsky (1987) Strategy II.

I Duminil-Copin & Tassion (2016) Strategy II.

For oriented percolation & the contact process

I Bezuidenhout & Grimmett (1991) adapted the method of
Aizenman & Barsky (1987).

I Method of Duminil-Copin & Tassion (2016) carries over
without a change to oriented percolation; with some work also
to the contact process.

I S. (2016) method based on harmonic functions &
eigenmeasures.
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Proofs of sharpness of the phase transition

λ

r(λ)

λc

≈ (λc − λ)ν

The problem with Strategy I seems to be that it is hard to get
universal upper bounds on r(λ). . .
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Proofs of sharpness of the phase transition

λ

θ(λ)

λc

≈ (λ− λc)β

. . . whereas there seems to be hope to prove universal lower bounds
on θ(λ). Indeed, all known proofs yield as a side result β ≤ 1.
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Proofs of sharpness of the phase transition

The method of Aizenman & Barsky (1987) requires the
introduction of an external field / spontaneous disease and
depends on differential inequalities involving the two parameters
(infection and spontaneous disease) of the process.

The method of Duminil-Copin & Tassion (2016) does away with
the external field and depends on a single differential inequality
involving only the infection rate.
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The process modulo translations

Define an equivalence relation on the set of all finite subsets of Λ
by A ∼ B WV A is a translation of B.

Let Ã denote the equivalence class containing A. Let P̃fin,+ denote
the space of finite, nonzero subsets of Λ modulo translation.

[Sturm & S. ’14] If r < 0, then the contact process modulo
translations (η̃t)t≥0 has a unique quasi-invariant law µ. Moreover,

e−rtP
[
η̃
{0}
t ∈ ·

]∣∣∣
P̃fin,+

=⇒
t→∞

µ.
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Eigenmeasures

A different way to view the previous result is as follows. Let P+

denote the space of all nonempty subsets of the lattice. Then

e−rt
∑
i∈Λ

P[η
{i}
t ∈ ·

]∣∣∣
P+

=⇒
t→∞

ν,

where ⇒ denotes vague convergence and ν is a locally finite
measure on P+ that evolves under the semigroup (Pt)t≥0 of the
contact process as

νPt = e−rtν (t ≥ 0),

i.e., ν is an eigenmeasure with eigenvalue r .

This different point of view is valid even if r ≥ 0:

[S. ’09] Each translation-invariant contact process defined on a
countable group Λ has a translation-invariant eigenmeasure with
eigenvalue r .
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An eigenfunction

If two Markov processes X and Y are dual, then invariant laws of
X give rise to harmonic functions of Y .

Similarly, an eigenmeasure ν† for the dual contact process η† gives
rise to an eigenfunction for the generator G of the contact process
η through the formula

h(A) :=

∫
ν†(dB)1{A ∩ B 6= ∅} (A ∈ Pfin).

This satisfies G h = rh and moreover:

h(∅) = 0
h(A) ≤ h(A) ∀A ⊂ B monotone
h(A ∪ B) ≤ h(A) + h(B) subadditive
h({0}) = 1 normalization
h(i + A) = h(A) translation invariance.
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Harmonic function

In particular, if r = 0, then G h = 0, i.e., h is a harmonic function.
This is good news for:

Strategy II Assume r(λ∗) = 0, conclude θ(λ) > 0 for λ > λ∗.

The harmonic function h for λ∗ turns into a subharmonic function
for λ > λ∗.
Let Gλ denote the generator of the contact process with infection
rate λ.

Lemma For each ε > 0, there exists a δ > 0 such that Gλ∗h = 0
implies Gλ∗+εf δ ≥ 0, where

f δ := δ−1(1− e−δh).

Consequence:
P[ηAt 6= ∅ ∀t ≥ 0] ≥ δf δ(A).
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Additive particle systems

Both the method of Duminil-Copin & Tassion and the method
with harmonic functions work more generally.

Additive particle systems can be constructed with a graphical
representation involving infection arrows and recovery symbols.
One can expect sharpness of the phase transition if, fixing all other
parameters, the system goes through a phase transition at some
critical recovery rate δc > 0.

The method of Duminil-Copin & Tassion confirms this if
connection probabilities inside and outside space-time boxes are
positively correlated.

The method with harmonic functions confirms this provided there
is only a single parameter describing the proportion of
infection/recovery.
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Additive particle systems

Example of a result that can be proved using Duminil-Copin &
Tassion but not using harmonic functions:
For a range-two contact process, sharpness as we increase the
nearest-neighbor infection rate while keeping the infection rate at
distance two constant.

Example of a result that can be proved using harmonic functions
but not using Duminil-Copin & Tassion:
Sharpness for a contact process where two neighboring sites always
recover together.

The method using harmonic functions is technically easier in a
continuous-time setting.

Open problem Monotone systems that are not additive.
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