The mean-field dual of systems with cooperative reproduction

Tibor Mach and Jan M. Swart (ÚTIA AV ČR)

joint with A. Sturm (Göttingen) Friday, January 5th, 2018

The contact process

Let (Λ, E) be a finite graph with vertex set Λ and edge set E. Let $S := \{0, 1\}^{\Lambda}$. For $i \in \Lambda$, define a *death map* dth_i : $S \to S$ by

$$\mathtt{dth}_i(x)(k) := \left\{ egin{array}{cc} 0 & ext{if } j=k, \ x(k) & ext{otherwise} \end{array}
ight.$$

For each (i,j) with $\{i,j\} \in E$, define a reproduction map $\operatorname{rep}_{ij} : S \to S$ by

$$\operatorname{rep}_{ij}(x)(k) := \left\{egin{array}{ll} x(i) \lor x(j) & ext{if } k=j, \ x(k) & ext{otherwise.} \end{array}
ight.$$

The contact process with infection rate λ is the Markov process obtained by applying the maps dth_i and rep_{ij} with the Poisson rates

$$r_{\mathtt{dth}_i} := 1 \quad ext{and} \quad r_{\mathtt{rep}_{ij}} := \lambda.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

The graphical representation

We denote rep_{ij} by an arrow from *i* to *j* and dth_i by a rectangle at *i*.

 -

The graphical representation

This construction defines random maps $(X_{s,u})_{s \leq u}$ such that

 $X_t := \mathbf{X}_{0,t}(X_0) \qquad (t \ge 0)$

yields a contact process $(X_t)_{t\geq 0}$ for any initial state $X_0 \in S$.

 $X_t(i) = 1 \Leftrightarrow \exists \text{ open path from } (j,0) \text{ with } X_0(j) = 1 \text{ to } (i,t).$

・ロト ・回ト ・ヨト ・ヨト

 $X_t(i) = 1 \Leftrightarrow \exists \text{ open path from } (j,0) \text{ with } X_0(j) = 1 \text{ to } (i,t).$

・ロト ・回ト ・ヨト ・ヨト

 $X_t(i) = 1 \Leftrightarrow \exists \text{ open path from } (j,0) \text{ with } X_0(j) = 1 \text{ to } (i,t).$

・ロト ・回ト ・ヨト ・ヨト

 $X_t(i) = 1 \Leftrightarrow \exists \text{ open path from } (j,0) \text{ with } X_0(j) = 1 \text{ to } (i,t).$

・ロト ・回ト ・ヨト ・ヨト

Dual process

All open paths with given endpoints form a dual process.

$$\mathbb{P}[X_t \cap Y_0 \neq \emptyset] = \mathbb{P}[X_0 \cap Y_t \neq \emptyset] \qquad (t \ge 0).$$

• 3 >

Let (Λ, E) be a finite graph with vertex set Λ and edge set E. Let $S := \{0, 1\}^{\Lambda}$. For each (i, j, k) with $\{i, j\} \in E$ and $\{j, k\} \in E$, define a *cooperative reproduction map* $\operatorname{coop}_{ijk} : S \to S$ by

$$\operatorname{coop}_{ijk}(x)(l) := \begin{cases} (x(i) \wedge x(j)) \lor x(k) & \text{if } l = k, \\ x(l) & \text{otherwise.} \end{cases}$$

Give death and cooperative reproduction maps the Poisson rates

$$r_{\mathtt{dth}_i} := 1$$
 and $r_{\mathtt{coop}_{iik}} := \alpha$.

向下 イヨト イヨト

The graphical representation

We denote $\operatorname{coop}_{ijk}$ by a suitable symbol and denote dth_i as before.

Tibor Mach and Jan M. Swart (ÚTIA AV ČR) Mean-field dual of cooperative reproduction

The graphical representation

・ 回 ・ ・ ヨ ・ ・ ヨ ・

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

▲圖▶ ▲屋▶ ▲屋▶

The dual process Y_t takes value in $\mathcal{H}_0(\Lambda)$, where:

$$\begin{split} S_{\mathrm{fin}}(\Lambda) &:= \big\{ y : \Lambda \to \{0,1\} : \sum_{i} y(i) < \infty \big\}. \\ \mathcal{H}_0(\Lambda) &:= \big\{ Y \subset S_{\mathrm{fin}}(\Lambda) : Y \text{ is finite and each } y \in Y \\ & \text{ is a minimal element of } Y \big\} \end{split}$$

Pathwise duality:

$$1\{X_t \ge y \text{ for some } y \in Y_0\} = 1\{X_0 \ge y \text{ for some } y \in Y_t\} \quad \text{a.s.}$$

We can view $Y \in \mathcal{H}_0(\Lambda)$ as a *hypergraph* with vertex set Λ and set of *hyperedges* Y.

向下 イヨト イヨト

э

Consider the contact process on the complete graph K_N , where the following maps are applied with the following rates:

 $\begin{array}{lll} \texttt{rep}_{ij} & \texttt{with rate} & \lambda N/N^2 & \forall 1 \leq i,j \leq N, \\ \texttt{dth}_i & \texttt{with rate} & 1N/N & \forall 1 \leq i \leq N. \end{array}$

Then the fraction of occupied sites $\overline{X}_t := N^{-1} \sum_{i=1}^N X_t(i)$ converges to the solution of the mean-field ODE

$$\frac{\partial}{\partial t}\overline{X}_t = \lambda \overline{X}_t (1 - \overline{X}_t) - \overline{X}_t =: F_{\lambda}(\overline{X}_t).$$

向下 イヨト イヨト

The mean-field limit of the contact process

The mean-field limit of the contact process

For $\lambda > 1$, the fixed point at 0 becomes unstable and a new, stable fixed point appears.

The mean-field limit of the contact process

Fixed points of $\frac{\partial}{\partial t} \overline{X}_t = F_{\lambda}(\overline{X}_t)$ for different values of λ .

3

Mean-field limit of the dual process

In the mean-field limit, the dual process is a branching process.

Mean-field limit of the dual process

Mean-field duality

Let Y be an \mathbb{N} -valued random variable and let $\overline{x} \in [0, 1]$. Let $B(\overline{x}) = (B_i(\overline{x}))_{i \in \mathbb{N}_+}$ be i.i.d. Bernoulli random variables with $\mathbb{P}[B_i(\overline{x}) = 1] = \overline{x}$, independent of Y. Define

$$\operatorname{Test}_{\boldsymbol{B}(\overline{x})}(Y) := 1\{\boldsymbol{B}_i(\overline{x}) = 1 \text{ for some } 1 \le i \le Y\}.$$

Let $(\overline{Y}_t)_{t\geq 0}$ be a Markov process in \mathbb{N} that jumps

 $y\mapsto y+1$ with rate λy and $y\mapsto y-1$ with rate y.

Then

$$\mathbb{P}\big[\mathrm{Test}_{\boldsymbol{B}(\overline{X}_0)}(\overline{Y}_t) = 1\big] = \mathbb{P}\big[\mathrm{Test}_{\boldsymbol{B}(\overline{X}_t)}(\overline{Y}_0) = 1\big],$$

where $(\overline{X}_t)_{t\geq 0}$ solves the mean-field ODE

$$\frac{\partial}{\partial t}\overline{X}_t = \lambda \overline{X}_t (1 - \overline{X}_t) - \overline{X}_t.$$

・吊り イヨト イヨト ニヨ

The survival of the \mathbb{N} -valued branching process $(\overline{Y}_t)_{t\geq 0}$ started in $\overline{Y}_0 = 1$ is given by

$$\mathbb{P}^1\big[\overline{Y}_t \neq 0 \ \forall t \geq 0\big] = \mathsf{z}_{\mathrm{upp}}(\lambda).$$

Proof

$$\mathbb{P}^{1} \big[\operatorname{Test}_{B(1)}(\overline{Y}_{t}) = 1 \big]$$

= $\mathbb{P}^{1} \big[\operatorname{Test}_{B(\overline{X}_{t})}(1) = 1 \big] = \overline{X}_{t} \underset{t \to \infty}{\longrightarrow} z_{\operatorname{upp}}(\lambda).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider a cooperative reproduction process on the complete graph K_N , where the following maps are applied with the following rates:

Then the fraction of occupied sites $\overline{X}_t := N^{-1} \sum_{i=1}^N X_t(i)$ converges to the solution of the *mean-field ODE*

$$\frac{\partial}{\partial t}\overline{X}_t = \alpha \overline{X}_t^2 (1 - \overline{X}_t) - \overline{X}_t =: F_\alpha(\overline{X}_t).$$

向下 イヨト イヨト

For $\alpha > 4$, there are two stable fixed points and one unstable fixed point, which separates the domains of attraction of the other two.

∃ >

- 4 回 2 4 注 2 4 注 3

Mean-field limit of the dual process

The mean-field dual can be embedded in a branching process.

æ

< ≣ >

Mean-field limit of the dual process

The mean-field dual

For $Y, Y' \in \mathcal{H}_0(\mathbb{N}_+)$, write $Y \sim Y'$ if they are equal up to a permutation of \mathbb{N}_+ . Denote the corresponding equivalence class by $\overline{Y} := \{Y' \in \mathcal{H}_0(\mathbb{N}_+) : Y \sim Y'\}$ and set $\overline{\mathcal{H}}_0(\mathbb{N}_+) := \{\overline{Y} : Y \in \mathcal{H}_0(\mathbb{N}_+)\}.$

We view \overline{Y}_t as a Markov process in $\overline{\mathcal{H}}_0(\mathbb{N}_+)$. Let $\mathcal{B}(\overline{x}) = (\mathcal{B}_i(\overline{x}))_{i \in \mathbb{N}_+}$ be i.i.d. Bernoulli with $\mathbb{P}[\mathcal{B}_i(\overline{x}) = 1] = \overline{x}$, independent of Y. Define

$$\operatorname{Test}_{B(\overline{x})}(Y) := 1_{\{B \ge y \text{ for some } y \in Y\}}.$$

Then

$$\mathbb{P}\big[\mathrm{Test}_{\boldsymbol{B}(\overline{X}_0)}(\overline{Y}_t) = 1\big] = \mathbb{P}\big[\mathrm{Test}_{\boldsymbol{B}(\overline{X}_t)}(\overline{Y}_0) = 1\big],$$

where $(\overline{X}_t)_{t\geq 0}$ solves the mean-field ODE

$$\frac{\partial}{\partial t}\overline{X}_t = \alpha \overline{X}_t^2 (1 - \overline{X}_t) - \overline{X}_t.$$

向下 イヨト イヨト

Let $\{\{1\}\}\$ denote the simplest nontrivial initial state for $(\overline{Y}_t)_{t\geq 0}$, i.e., the hypergraph with a single vertex and a single hyperedge. Then

$$\mathbb{P}^{\{\{1\}\}}\left[\overline{Y}_t \neq \overline{\emptyset} \ \forall t \geq 0\right] = \mathsf{z}_{\mathrm{upp}}(\alpha).$$

Proof

$$\mathbb{P}^{\{\{1\}\}}\left[\operatorname{Test}_{B(1)}(\overline{Y}_t) = 1\right]$$
$$= \mathbb{P}^1\left[\operatorname{Test}_{B(\overline{X}_t)}(\{\{1\}\}) = 1\right] = \overline{X}_t \xrightarrow[t \to \infty]{} z_{\operatorname{upp}}(\alpha).$$

伺 とう ヨン うちょう

э

The law of an \mathbb{N} -valued random variable Y is uniquely determined by the function $\phi : [0,1] \to [0,1]$ defined as

$$\phi(\overline{x}) := \mathbb{P}\big[\mathrm{Test}_{\mathbf{B}(\overline{x})}(Y) = 1\big] = \mathbb{E}\big[1 - (1 - \overline{x})^{Y}\big].$$

But the law of an $\overline{\mathcal{H}}_0$ -valued random variable \overline{Y} is *not* uniquely determined by the analogue function.

What have we missed?

Recall that $(X_t)_{t\geq 0}$ is constructed from a stochastic flow $(X_{s,u})_{s\leq u}$. Using *the same* stochastic flow, we can *couple* processes started in initial states X_0^1, \ldots, X_0^n by setting

$$X_t^k := \mathbf{X}_{0,t}(X_0^k) \qquad (t \ge 0, \ k = 1, \dots, n).$$

The coupled process $(X_t^1, \ldots, X_t^n)_{t\geq 0}$ is a Markov process. Pathwise duality:

$$\begin{split} & {}^{1}\{X_{t}^{1} \geq y \text{ for some } y \in Y_{0}\}^{1}\{X_{t}^{2} \geq y \text{ for some } y \in Y_{0}\} \\ & = {}^{1}\{X_{0}^{1} \geq y \text{ for some } y \in Y_{t}\}^{1}\{X_{0}^{2} \geq y \text{ for some } y \in Y_{t}\} \quad \text{a.s.} \end{split}$$

And similarly for three or more coupled processes.

・ 同 ト ・ ヨ ト ・ ヨ ト

On the complete graph, let

$$\mu_t^{(n)}(\sigma) := N^{-1} \sum_{i=1}^n \mathbb{1}_{\{(X_t^1, \dots, X_t^n) = \sigma\}} \qquad (\sigma \in \{0, 1\}^n).$$

In the mean-field limit, $(\mu_t^{(n)})_{t\geq 0}$ solves an ODE. Let $(B_i(\mu^{(n)}))_{i\in\mathbb{N}_+} = ((B_i^1,\ldots,B_i^n)(\mu^{(n)}))_{i\in\mathbb{N}_+}$ be i.i.d. with law $\mu^{(n)}$, independent of Y. Then

$$\mathbb{P}\left[\left(\operatorname{Test}_{B^{1}(\mu_{0}^{(n)})}(\overline{Y}_{t}),\ldots,\operatorname{Test}_{B^{n}(\mu_{0}^{(n)})}(\overline{Y}_{t})\right)=\sigma\right]\\=\mathbb{P}\left[\left(\operatorname{Test}_{B^{1}(\mu_{t}^{(n)})}(\overline{Y}_{0}),\ldots,\operatorname{Test}_{B^{n}(\mu_{t}^{(n)})}(\overline{Y}_{0})\right)=\sigma\right]$$

 $(\sigma \in \{0,1\}^n)$. In particular, for n = 1 and $\sigma = 1$ we retrieve our previous formula.

ヨット イヨット イヨッ

For each $Y \in \overline{\mathcal{H}}_0(\mathbb{N}_+)$ and $\mu^{(n)} \in \mathcal{P}(\{0,1\}^n)$, define $\eta_n(\mu^{(n)}, Y) \in \mathcal{P}(\{0,1\}^n)$ by

 $\eta_n(\mu^{(n)}, Y)(\sigma) := \mathbb{P}\big[\big(\mathrm{Test}_{B^1(\mu^{(n)})}(\overline{Y}), \dots, \mathrm{Test}_{B^n(\mu^{(n)})}(\overline{Y})\big) = \sigma\big].$

Then our duality formula reads

$$\mathbb{E}\big[\eta_n(\mu_0^{(n)},Y_t)\big]=\mathbb{E}\big[\eta_n(\mu_t^{(n)},Y_0)\big].$$

Conjecture Knowing $\mathbb{E}[\eta_n(\mu_0^{(n)}, Y_t)]$ for all $\mu_0^{(n)} \in \mathcal{P}(\{0, 1\}^n)$ determines the law of Y_t uniquely.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let ω be a [0,1]-valued random variable with law μ . Conditionally on ω , let $B^1(\omega), \ldots, B^n(\omega)$ be i.i.d. Bernoulli random variables with $\mathbb{P}[B^k(\omega) = 1] = \omega$. Then $(B^1(\omega), \ldots, B^n(\omega))$ has law $\mu^{(n)}$, given by

$$\mu^{(n)}(\sigma_1,\ldots,\sigma_n):=\int \mu(\mathrm{d}\omega)\prod_{k=1}^n \mathrm{Ber}_\omega(\sigma_k),$$

where Ber_z denotes the Bernoulli distribution with mean z.

$$\mu \in \mathcal{P}([0,1])$$
 and $\mu^{(n)} \in \mathcal{P}(\{0,1\}^n).$

The measure $\mu^{(n)}$ is the *n*-th moment measure of μ .

Note: Not every measure $\mu^{(n)} \in \mathcal{P}(\{0,1\}^n)$ arises in this way.

(4月) イヨト イヨト

Define $\psi: \mathcal{P}([0,1]) \rightarrow \mathcal{P}([0,1])$ by

 $\psi(\mu) := \mathbb{P}[\omega_1 + (1 - \omega_1)\omega_2\omega_3 \in \cdot] \text{ with } \omega_1, \omega_2, \omega_3 \text{ i.i.d. } \mu.$

Proposition If $(\mu_t)_{t\geq 0}$ solves the higher-level ODE

$$\frac{\partial}{\partial t}\mu_t = \alpha \big(\psi(\mu_t) - \mu_t\big) + \big(\delta_0 - \mu_t\big),$$

then its *n*-th moment measures $(\mu_t^{(n)})_{t\geq 0}$ solve the *n*-variate ODE. **Conjecture** To determine the law of Y uniquely, it suffices to know $\mathbb{E}[\eta_n(\mu^{(n)}, Y)]$ for all $\mu^{(n)} \in \mathcal{P}(\{0, 1\}^n)$ that are the moment measure of some $\mu \in \mathcal{P}([0, 1])$.

Duality with the higher-level ODE

Let $\mu \in \mathcal{P}([0,1])$. Let $\omega(\mu) = (\omega_i(\mu))_{i \in \mathbb{N}_+}$ be i.i.d. with law μ . Conditionally on ω , let $\mathcal{B}(\omega(\mu)) = (\mathcal{B}_i(\omega(\mu)))_{i \in \mathbb{N}_+}$ be independent with $\mathbb{P}[\mathcal{B}_i(\omega(\mu)) = 1 | \omega(\mu)] = \omega_i(\mu)$. For each $Y \in \overline{\mathcal{H}}_0(\mathbb{N}_+)$ and $\mu \in \mathcal{P}([0,1])$, define $\rho(\mu, Y) \in \mathcal{P}([0,1])$ by

$$\rho(\mu, Y) := \mathbb{P}\big[\mathbb{P}[\operatorname{Test}_{\boldsymbol{B}(\omega(\mu))}(Y) = 1 \,|\, \omega(\mu)] \in \,\cdot\,\big].$$

Then we have the duality

$$\mathbb{E}\big[\rho(\mu_0, Y_t)\big] = \mathbb{E}\big[\rho(\mu_t, Y_0)\big],$$

where $(\mu_t)_{t\geq 0}$ solves the higher-level ODE. Note: the *n*-th moment measure of $\rho(\mu, Y)$ is given by

$$\rho^{(n)}(\mu, Y) = \eta_n(\mu^{(n)}, Y).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Long-time behavior

Just as we did for the mean-field ODE, we wish to find all fixed points of the higher-level ODE and their domains of attraction.

For measures μ, ν on [0, 1], define the *convex order*

$$\mu \leq_{\mathrm{cv}} \nu \quad \Leftrightarrow \quad \int f \mathrm{d}\mu \leq \int f \mathrm{d}\nu \quad \forall \mathsf{convex} \ f.$$

 $\mu \leq_{\mathrm{cv}} \nu$ implies that μ and ν have the same mean.

A general measure μ with mean z satisfies $\underline{\mu}_z \leq_{\mathrm{cv}} \mu \leq_{\mathrm{cv}} \overline{\mu}_z$, where

$$\underline{\mu}_z := \delta_z$$
 and $\overline{\mu}_z := (1-z)\delta_0 + z\delta_1$.

The *n*-th moment measures of these measures are

$$\underline{\mu}_{z}^{(n)} = \mathbb{P}[(X^{1}, \dots, X^{n}) \in \cdot], \\ \overline{\mu}_{z}^{(n)} = \mathbb{P}[(X, \dots, X) \in \cdot],$$
 $X, X^{1}, \dots, X^{n} \text{ i.i.d. Ber}_{z}.$

伺 とう ヨン うちょう

If $(\mu_t)_{t\geq 0}$ solves the higher-level ODE, then its mean $(\mu_t^{(1)}(1))_{t\geq 0}$ solves the mean-field ODE.

Let $(\underline{\mu}_{z,t})_{t\geq 0}$ denote the solution of the higher-level ODE with initial state $\underline{\mu}_{z,0} := \underline{\mu}_z$.

Proposition If $z = z_{low}, z_{mid}, z_{upp}$ is a fixed point of the mean-field ODE, then

(a) $\overline{\mu}_z$ is a fixed point of the higher-level ODE.

- (b) There exists a fixed point $\underline{\nu}_z$ of the higher-level ODE such that $\underline{\mu}_{z,t} \underset{t \to \infty}{\Longrightarrow} \underline{\nu}_z$.
- (c) Any fixed point ν of the higher-level ODE with mean z satisfies $\underline{\nu}_z \leq_{cv} \nu \leq_{cv} \overline{\mu}_z$.

Write $\overline{\mu}_{low} := \overline{\mu}_{z_{low}}$ etc. **Proposition** $\underline{\nu}_{low} = \overline{\mu}_{low}$ and $\underline{\nu}_{upp} = \overline{\mu}_{upp}$, but $\underline{\nu}_{mid} \neq \overline{\mu}_{mid}$. **Theorem** Let $\alpha > 4$ and let $(\mu_t)_{t>0}$ be a solution of the higher-level ODE with initial mean $\int x \mu_0(dx) = z$. (a) If $z > z_{\text{mid}}$, then $\mu_t \Longrightarrow \overline{\mu}_{\text{upp}}$. (b) If $z < z_{\text{mid}}$, then $\mu_t \underset{t \to \infty}{\Longrightarrow} \overline{\mu}_{\text{low}}$. (c) If $z = z_{\text{mid}}$ and $\mu_0 \neq \overline{\mu}_{\text{mid}}$, then $\mu_t \underset{t \to \infty}{\Longrightarrow} \underline{\nu}_{\text{mid}}$. (d) If $\mu_0 = \overline{\mu}_{mid}$, then $\mu_t = \overline{\mu}_{mid} \quad \forall t \ge 0$.

向下 イヨト イヨト

In a 3-regular tree, place death symbols with probability $1/(1 + \alpha)$ and color the leaves blue with probability $z_{\rm mid}$. In the limit of an infinite tree, this yields a stationary picture. Such a process is called a *Random Tree Process*. A Markov chain with *tree-like time*.

Each fixed point $z = z_{low}, z_{mid}, z_{upp}$ of the mean-field ODE defines a Random Tree Process (RTP).

Following Aldous and Bandyopahyay [AB '04], we call a RTP *endogenous* if the state at the root (blue or black) is a function of the random variables at the nodes (death or coop maps).

Proposition The RTPs corresponding to z_{low} and z_{upp} are endogenous, but the RTP corresponding to z_{mid} is not.

Proof Following [AB '04], this follows from an analysis of the bivariate ODE. Alternatively, for z_{low} and z_{upp} , in [AB '04] it is proved that for monotone systems, the RTP corresponding to a lower or upper fixed point is always endogenous.

æ

3

A ■

3

回 と く ヨ と く ヨ と

A higher level RTP

The Random Tree Process $(\gamma_i, X_i)_{i \in \mathbb{T}}$ is endogenous iff

$$X_{\emptyset} = \mathbb{P} [X_{\emptyset} = 1 | (\gamma_{\mathbf{i}})_{\mathbf{i} \in \mathbb{T}}]$$
 a.s.

Observation: Setting

$$\omega_{\mathbf{i}} := \mathbb{P}\big[\mathbf{X}_{\mathbf{i}} = 1 \,|\, (\gamma_{\mathbf{ij}})_{\mathbf{j} \in \mathbb{T}}\big]$$

defines a higher-level RTP $(\check{\gamma}_i, \omega_i)_{i \in \mathbb{T}}$ corresponding to the higher-level maps

$$\operatorname{coop}(\omega_1, \omega_2, \omega_3) = \omega_1 + (1 - \omega_1)\omega_2\omega_3$$
 and $\operatorname{d\check{t}h}(\omega_1, \omega_2, \omega_3) := 0$.
Moreover

$$\underline{\nu}_{\mathrm{mid}} = \mathbb{P}[\omega_{\emptyset} \in \cdot].$$

向下 イヨト イヨト

3

On finite trees, if we assign the leaves i.i.d. ω_i with law μ_0 , then *n* levels above this the ω_i are i.i.d. with law μ_n , where

$$\mu_{n} = \frac{\alpha}{\alpha+1}\psi(\mu_{n-1}) + \frac{1}{\alpha+1}\delta_{0}.$$

We start with $\mu_{\rm 0}=\delta_{z_{\rm mid}}$ and plot the distribution function

$$F_n(s) := \mu_nig([0,s]ig) \qquad ig(s \in [0,1]ig)$$

for the parameters $\alpha=9/2$, $z_{\rm mid}=1/3$, $z_{\rm upp}=2/3.$

As $n \to \infty$, this converges to the distribution function of $\underline{\nu}_{\rm mid}$.

伺 とう ヨン うちょう

< 🗇 🕨

< ∃⇒

< 🗗 >

< ∃→

- 170

< ∃⇒

< (10 b)

< ∃⇒

< (10 b)

< ∃⇒

< (10 b)

< ∃⇒

< 🗇 🕨

< ∃⇒

< 🗇 🕨

< ∃⇒

< 🗗 >

< ∃⇒

For Recursive Tree Processes and endogeny:

 D.J. Aldous and A. Bandyopadhyay. A survey of max-type recursive distributional equations. *Ann. Appl. Probab.* 15(2) (2005), 1047–1110.

For monotone systems duality:

 A. Sturm and J.M. Swart. Pathwise duals of monotone and additive Markov processes. J. Theor. Probab. (2016). doi:10.1007/s10959-016-0721-5.

For the convex order:

V. Strassen. The existence of probability measures with given marginals. Ann. Math. Stat. 36 (1965), 423–439.

・ 同 ト ・ ヨ ト ・ ヨ ト

Literature

For models with cooperative reproduction:

- A. de Masi, P.A. Ferrari, and J.L. Lebowitz.
 Reaction-diffusion equations for interacting particle systems.
 J. Stat. Phys. 44 (1986), 589–644.
- R. Durrett. Stochastic growth models: Bounds on critical values. J. Appl. Probab. 29(1) (1992), 11–20.
- C. Noble. Equilibrium behavior of the sexual reproduction process with rapid diffusion. Ann. Probab. 20(2) (1992), 724–745.
- C. Neuhauser. A long range sexual reproduction process. Stochastic Processes Appl. 53 (1994), 193–220.
- E. Foxall and N. Lanchier. Survival and extinction results for a patch model with sexual reproduction. Preprint (2015), 37 pages, arXiv1504.01409v1.
- A. Sturm and J.M. Swart. A particle system with cooperative branching and coalescence. Ann. Appl. Probab. 25(3) (2015), 1616–1649.