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Arrow configurations

Z2
even := {(x , t) ∈ Z2 : x + t is even}.
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Arrow configurations

With probability pl we draw an arrow to the left.
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Arrow configurations

With probability pr we draw an arrow to the right.
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Arrow configurations

With probability pb we draw two arrows.
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Arrow configurations

And with probability pk we draw no arrows at all.
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Arrow configurations

We do this independently for each point.
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Arrow configurations

We are interested in open paths.
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Arrow configurations

Open paths can start at any point in Z2
even.
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Arrow configurations

Open paths either end at killing points. . .
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Arrow configurations

. . . or carry on forever.
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Scaling limit

We rescale diffusively, multiplying all spatial distances with ε and
all temporal distances with ε2.

Jan M. Swart The Brownian net



Scaling limit

Claim Assume that

ε−1(pr − pl − pb)→β−,

ε−1(pr − pl + pb)→β+,

ε−2pk→ δ.

Then the collection U of all open paths converges to a diffusive
scaling limit N δ

β−,β+
.
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Scaling limit

At each point z ∈ Z2
even there starts an a.s. unique

left-most open path lz and right-most open path rz .
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Scaling limit

Under the assumptions

ε−1(pr − pl − pb)→β−,

ε−1(pr − pl + pb)→β+,

ε−2pk→ δ,

left- and right-most open paths converge to Brownian motions
with drift β− and β+, respectively, and exponential lifetimes with
mean 1/δ.
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Topological matters

(0, 0)

(∞, 2)

(−∞,−1)

(−1,∞)

(∞,−∞)

We first compactify R2 to [−∞,∞]2. . .
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Topological matters

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

. . . and then contract [−∞,∞]× {−∞}
and [−∞,∞]× {∞} to single points.
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Topological matters

Alternatively, map R2 into itself with the map

Θ(x , t) :=
( tanh(x)

1 + |t|
, tanh(t)

)
,

and take the closure.
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Topological matters

Another equivalent formulation is: take the
completion of R2 w.r.t. the metric

d(z , z ′) :=
∣∣Θ(z)−Θ(z ′)

∣∣.
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Topological matters

A path is a continuous function π : [σπ, τπ]→ [−∞,∞],
with −∞ ≤ σπ ≤ τπ ≤ ∞.
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Topological matters

We identify a path with its graph{
(π(t), t) : t ∈ [σπ, τπ]

}
.
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Topological matters

π2

π1

d(π1,π2)

We equip the space Π of all paths with the Hausdorff metric

d(π1, π2) = sup
z1∈π1

inf
z2∈π2

d(z1, z2) ∨ sup
z2∈π2

inf
z1∈π1

d(z1, z2).
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Topological matters

By adding trivial paths that are constantly −∞ or +∞, we can
make the set U of open paths into a compact subset of Π.
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Topological matters

We equip the space K(Π) of all compact subsets of the space of
paths Π with the Hausdorff metric

d(U1,U2) = sup
π1∈U1

inf
π2∈U2

d(π1, π2) ∨ sup
π2∈U2

inf
π1∈U1

d(π1, π2).

We define a diffusive scaling map Sε by

Sε(x , t) := (εx , ε2t).
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Topological matters

Theorem Let εn ↓ 0 and let Un be the sets of open paths in arrow
configurations with parameters satisfying

ε−1
n

(
pr(n)− pl(n)− pb(n)

)
→β−,

ε−1
n

(
pr(n)− pl(n) + pb(n)

)
→β+,

ε−2
n pk(n)→ δ.

Then
P[Sεn(Un) ∈ · ] =⇒

n→∞
P[N δ

β−,β+
∈ · ],

where ⇒ denotes weak convergence of probability laws on K(Π).
The limiting object is a Brownian net with killing.
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The Brownian web

If β = β− = β+ and δ = 0, then the limiting object Wβ := N 0
β,β is

a Brownian web with drift β. In particular, W :=W0 is the
standard Brownian web.

I For each deterministic z ∈ R2, almost surely there is a unique
open path pz ∈ W.

I For any deterministic finite set of points z1, . . . , zk ∈ R2, the
collection (pz1 , . . . , pzk ) is distributed as coalescing Brownian
motions.

I For any deterministic countable dense subset D ⊂ R2, almost
surely, W is the closure of {pz : z ∈ D}.
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The Brownian web

If β = β− = β+ and δ = 0, then the limiting object Wβ := N 0
β,β is

a Brownian web with drift β. In particular, W :=W0 is the
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The Brownian web

Artist’s impression of the Brownian web.
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The Brownian web

Open paths started at time zero.
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The Brownian web

There exists random points where two open paths start.
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Special points

(0, 1)

(1, 1) (2, 1) (1, 2)l

(0, 2) (0, 3)
(1, 2)r

Special points are classified according to the number of incoming
and outgoing open paths. There exists 7 types of special points.
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Dual arrows

Forward and dual arrows.
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Dual Brownian web

Approximation of the forward and dual Brownian web.
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Dual Brownian web

To each Brownian web W, we can associate an a.s. unique dual
web Ŵ that is equally distributed with W except for a rotation
over 180◦.

Fix a deterministic finite set of starting points and condition on the
forward open paths starting at these points.
Then open paths of the dual web are Brownian motions with
immediate reflection off the fixed forward open paths.
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Dual Brownian web

Forward and dual open paths started from fixed times.
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Special points revisited

Structure of dual open paths at special points.
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Left- and right-most open paths

Consider an arrow configuration with
branching probability pb > 0 but killing probability pk = 0.
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Left- and right-most open paths

Artist’s impression of the Brownian net.
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Left- and right-most open paths

Left- and right-most open paths interact with a form of sticky
interaction.

Jan M. Swart The Brownian net



Left- and right-most open paths

In the limit, left- and right-most open paths are
Brownian motions with drift β− < β+.
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Left- and right-most open paths

The interaction between left-most and right-most open paths is
described by the stochastic differential equation (SDE):

dLt = 1{Lt 6=Rt}dB l
t + 1{Lt=Rt}dBs

t + β−dt,

dRt = 1{Lt 6=Rt}dBr
t + 1{Lt=Rt}dBs

t + β+dt,

where B l
t ,B

r
t ,B

s
t are independent Brownian motions,

and Lt and Rt are subject to the constraint that
Lt ≤ Rt for all t ≥ τ := inf{u ≥ 0 : Lu = Ru}.

The set {t : Lt = Ru} is nowhere dense and has positive Lebesgue
measure whenever it is nonempty.
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The left Brownian web

The left-most open paths converge to a left Brownian web. . .
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The right Brownian web

. . . and the right-most open paths to a right Brownian web.
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Hopping construction of the Brownian net

By definition, an intersection time of two paths π1, π2 is a time
t > σπ1 ∨ σπ2 such that π1(t) = π2(t).
We may concatenate two paths at an intersection time by putting

π(s) :=

{
π1(s)

(
s ∈ [σπ1 , t]

)
,

π2(s)
(
s ∈ [t,∞]

)
.

Let (W l,Wr), be a left-right Brownian web.
Let D ⊂ R2 be deterministic, countable, and dense and let W l(D)
and Wr(D) denote the left- and right-most open paths started
from D.

Let Hop
(
W l(D) ∪Wr(D)

)
denote the smallest set containing

W l(D) ∪Wr(D) that is closed under concatenation of open paths
at intersection times.

Hopping construction N 0
β−,β+

= Hop
(
W l(D) ∪Wr(D)

)
.

Jan M. Swart The Brownian net



Marking constructions

Recall that points of the Brownian web are classified according to
the number of incoming and outgoing open paths (min,mout).
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Modifying a Brownian web

(1, 2) z
switchz

z

(1, 2) z
hopz

z

(1, 1) z
cutz

z

We can modify a Brownian web by changing the structure at some
(finitely many) special points.
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Marking constructions

With respect to Lebesgue measure, a.e. point is of type (0, 1).
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Marking constructions

With respect to the length measure µlength
of the forward web, a.e. point is of type (1, 1).
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Marking constructions

With respect to the intersection local measure µint of the
forward and dual webs, a.e. point is of type (1, 2).
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Marking constructions

The length measure µlength is a measure on R2 that is
concentrated on points of type (1, 1) such that for every path
π ∈ W and σπ ≤ s ≤ u <∞,

µlength({(π(t), t) : t ∈ [s, u]}) = u − s.

The intersection local measure µint is a measure on R2 that is
concentrated on points of type (1, 2) such that for every two paths
π ∈ W and π̂ ∈ Ŵ,

µint
({

(x , t) ∈ R2 : σπ < t < σ̂π̂, π(t) = x = π̂(t)
})

= lim
ε↓0

ε−1
∣∣{t ∈ R : σπ < t < σ̂π̂, |π(t)− π̂(t)| ≤ ε

}∣∣.
These measures are σ-finite, but not locally finite; they give infinite
measure to any nonempty open subset of R2.
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Marking constructions

Let µlint and µrint be the restrictions of µint to the set of points of
type (1, 2)l and (1, 2)r, respectively.

Modified web Let W be a Brownian web with drift β and let S be
a Poisson set with intensity clµ

l
int + crµ

r
int. Then, for any finite

∆n ↑ S , the limit

W ′ := lim
∆n↑S

switch∆n(W)

exists and is a Brownian web with drift β′ = β + cl − cr.

In particular, if cr = 0, then (W,W ′) is a left-right Brownian web.
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Marking constructions

Let W be a “reference” Brownian web with drift β.
Let S12 be a Poisson set with intensity clµ

l
int + crµ

r
int.

Let S11 be a Poisson set with intensity δµlength.

Marking construction For any finite ∆n ↑ S12, the limit

N := lim
∆n↑S12

hop∆n
(W)

exists and is a Brownian net (without killing) with left and right
drifts

β− = β − cr and β+ = β + cl.

Moreover, cutS11(N ) is a Brownian net with left and right drifts
β−, β+ and killing rate δ.
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Historical notes

I R. Arratia (’79,’81), motivated by scaling limits of the 1D
voter model, studies coalescing Brownian motions started
from each point in space and time.

I B. Tóth and W. Werner (’98) arrive at the same object by
studying the true self-repellent motion. They classify special
points and use right-continuity to choose a unique open path
at points of multiplicity.

I F. Soucaliuc, B. Tóth, and W. Werner (’00) prove that open
paths in the dual web are reflected off forward open paths.

I L. Fontes, M. Isopi, C. Newman, and K. Ravishankar (’04)
invent the name “Brownian web”, viewed this as a compact
set of paths, and prove weak convergence w.r.t. to the
Hausdorff topology.

I C. Newman, K. Ravishankar, and R. Sun (’05) prove
convergence of coalescing non-nearest neighbor random walks
to the Brownian web.

Jan M. Swart The Brownian net



Historical notes

I R. Sun and J.S. (’08) invent the name Brownian net and the
hopping, wedge, and mesh constructions, which are all based
on the left-right SDE.

I E. Schertzer, R. Sun and J.S. (’09) classify special points of
the Brownian net.

I C. Howitt and J. Warren (’09) construct sticky pairs of
Brownian webs by means of a martingale problem.

I C. Newman, K. Ravishankar, and E. Schertzer (’10) publish
the marking construction of the Brownian net, conceived
around ’05.

I C. Newman, K. Ravishankar, and E. Schertzer (’13) construct
the Brownian net with killing.

I E. Schertzer, R. Sun and J.S. (’14) study stochastic flows
using marked webs.

I R. Sun, J. Yu and J.S. (’17?) study convergence of non-
nearest neighbor arrow configurations to the Brownian net.
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Arrow configurations revisited

Consider the lattice Z2.
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Arrow configurations revisited

p100

Draw an arrow to the left with probability p100. . .
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Arrow configurations revisited

p010

. . . draw an arrow straight up with probability p010. . .
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Arrow configurations revisited

p001

. . . and draw an arrow to the right with probability p001.
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Arrow configurations revisited

p111

Also draw 3, 2, or zero arrows with certain probabilities.
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Arrow configurations revisited

p110

Also draw 3, 2, or zero arrows with certain probabilities.

Jan M. Swart The Brownian net



Arrow configurations revisited

p101

Also draw 3, 2, or zero arrows with certain probabilities.
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Arrow configurations revisited

p011

Also draw 3, 2, or zero arrows with certain probabilities.
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Arrow configurations revisited

p000

Also draw 3, 2, or zero arrows with certain probabilities.
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Arrow configurations revisited

Do this independently for each point.
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A conjecture

Rescale diffusively with ε and assume that

p001 − p100 = O(ε),

p111, p110, p101, p011 = O(ε),

p000 = O(ε2).

Conjecture This should converge to a Brownian net.

So far, only an incomplete proof for a special class of distributions
p000, . . . , p111.

Difficulty: Arrows can cross. No dual arrow configuration.
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Branching-coalescing point set

For any closed subset A ⊂ R,

ξt :=
{
π(t) : ∃π ∈ N δ

β−,β+
s.t. σπ = 0, π(0) ∈ A

}
defines a Feller process taking values in the closed subsets of R.
For δ = 0 (no killing):

(i) Reversible invariant law: the law of a Poisson point set with
intensity β+ − β−.

(ii) For deterministic t > 0, a.s. ξt is a locally finite subset of R.

(iii) There exists a dense set of random times τ > 0 such that ξτ
has no isolated points.

Open problem: generator characterization!

Thm Phase transition between survival and extinction at some δc.
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The branching-coalescing point set

The branching-coalescing point set with
β− = −1, β+ = 1, δ = 0 started in ξ0 = R.
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Howitt-Warren flows

A one-sided erosion flow.
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A one-dimensional Potts model

space

time
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A low-temperature one-dimensional Potts model.
[C. Newman, K. Ravishankar, and E. Schertzer (’16)]
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