Recursive tree processes and the mean-field limit of stochastic flows

Jan M. Swart (Czech Academy of Sciences)

joint with Tibor Mach (Prague) A. Sturm (Göttingen) Kohútka, February 7, 2019

Mean-field equations

Basic ingredients

- (i) Polish space S local state space.
- (ii) $(\Omega, \mathcal{B}, \mathbf{r})$ Polish space with Borel σ -field and finite measure: source of external randomness.
- (iii) $\kappa: \Omega \to \mathbb{N}$ measurable function.
- (iv) For each $\omega \in \Omega$, a measurable function $\gamma[\omega]: S^{\kappa(\omega)} \to S$.

Def $\mathcal{P}(S) :=$ the space of probability measures on S.

Def $T : \mathcal{P}(S) \to \mathcal{P}(S)$ by

$$T(\mu) := \text{ the law of } \gamma[\omega](X_1, \dots, X_{\kappa(\omega)}),$$

where ω is an Ω -valued random variable with law $|\mathbf{r}|^{-1}\mathbf{r}$ and $(X_i)_{i\geq 1}$ are i.i.d. with law μ . We are interested in *mean-field* equations of the form

$$\frac{\partial}{\partial t}\mu_t = |\mathbf{r}|\{\mathbf{T}(\mu_t) - \mu_t\} \qquad (t \ge 0). \tag{1}$$

Define a cooperative branching map and death map by:

$${
m cob}: S^3 o S \quad {
m with} \quad {
m cob}(x_1,x_2,x_3) := x_1 ee (x_2 \wedge x_3),$$
 ${
m dth}: S^0 o S \quad {
m with} \quad {
m dth}(\varnothing) := 0,$ and ${
m set} \ S = \{0,1\}, \ \Omega = \{1,2\},$ $\gamma[1] = {
m cob}: S^3 o S, \qquad \kappa(1) = 3, \qquad {
m r}(\{1\}) = \alpha,$ $\gamma[2] = {
m dth}: S^0 o S, \qquad \kappa(2) = 0, \qquad {
m r}(\{2\}) = 1.$

We can rewrite the mean-field equation as

$$\frac{\partial}{\partial t}\mu_t = \alpha \left\{ \mathbf{T}_{cob}(\mu_t) - \mu_t \right\} + \left\{ \mathbf{T}_{dth}(\mu_t) - \mu_t \right\}, \tag{2}$$

with

$$T_g(\mu) := \text{ the law of } g(X_1, \dots, X_{\kappa(\omega)}),$$

where $(X_i)_{i\geq 1}$ are i.i.d. with law μ .

Define a (nonlinear) semigroup $(T_t)_{t\geq 0}$ of operators acting on probability measures by

$$\mathsf{T}_t(\mu) := \mu_t$$
 where $(\mu_t)_{t \geq 0}$ solves (2) with $\mu_0 = \mu$.

Claim $(T_t)_{t\geq 0}$ is similar to the semigroup of a Markov chain, except that *time has a tree-like structure*.

Fix d such that $\kappa(\omega) \leq d$ for all $\omega \in \Omega$. Let \mathbb{T}^d denote the space of all words $\mathbf{i} = i_1 \cdots i_n$ made from the alphabet $\{1, \ldots, d\}$ (if $d < \infty$) resp. \mathbb{N}_+ (if $d = \infty$).

We attach i.i.d. $(\omega_i)_{i\in\mathbb{T}}$ with law $|\mathbf{r}|^{-1}\mathbf{r}$ to each node, which translate into maps $(\gamma[\omega_i])_{i\in\mathbb{T}}$.

Let $\mathbb S$ be the random subtree of $\mathbb T$ defined as

$$\mathbb{S} := \{i_1 \cdots i_n \in \mathbb{T} : i_m \le \kappa(\omega_{i_1 \cdots i_{m-1}}) \ \forall 1 \le m \le n\}.$$

For any rooted subtree $\mathbb{U} \subset \mathbb{S}$, let

$$\nabla \mathbb{U} := \left\{ i_1 \cdots i_n \in \mathbb{S} : i_1 \cdots i_{n-1} \in \mathbb{U}, \ i_1 \cdots i_n \notin \mathbb{U} \right\}$$

denote the boundary of \mathbb{U} relative to \mathbb{S} .

Given $(X_i)_{i \in \nabla U}$, we inductively define $(X_i)_{i \in U}$ by

$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)})$$
 $(\mathbf{i} \in \mathbb{U}).$

Given $(X_i)_{i \in \nabla U}$, we inductively define $(X_i)_{i \in U}$ by

$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)})$$
 $(\mathbf{i} \in \mathbb{U}).$

Given $(X_i)_{i \in \nabla \mathbb{U}}$, we inductively define $(X_i)_{i \in \mathbb{U}}$ by

$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)})$$
 $(\mathbf{i} \in \mathbb{U}).$

Given $(X_i)_{i \in \nabla U}$, we inductively define $(X_i)_{i \in U}$ by

$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}](X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)})$$
 $(\mathbf{i} \in \mathbb{U}).$

Setting

$$G_{\mathbb{U}}((X_{\mathbf{i}})_{\mathbf{i}\in\nabla\mathbb{U}}):=X_{\varnothing}$$

defines a random map

$$G_{\mathbb{U}}: \mathbb{S}^{\nabla \mathbb{U}} \to \mathbb{S}$$

that is the concatenation of the maps $(\gamma[\omega_i])_{i\in\mathbb{U}}$ according to the tree structure of \mathbb{U} .

Let $|i_1 \cdots i_n| := n$ denote the length of a word **i** and set

$$\mathbb{S}_{(n)} := \{ \mathbf{i} \in \mathbb{S} : |\mathbf{i}| < n \} \quad \text{and} \quad \nabla \mathbb{S}_{(n)} = \{ \mathbf{i} \in \mathbb{S} : |\mathbf{i}| = n \}.$$

Aldous and Bandyopadyay (2005) observed that

$$\mathsf{T}^n(\mu) := \text{ the law of } \mathsf{G}_{\mathbb{S}_{(n)}}((\mathsf{X}_{\mathbf{i}})_{\mathbf{i} \in \nabla \mathbb{S}_{(n)}}),$$

where $(X_i)_{i \in \nabla S_{(n)}}$ are i.i.d. with law μ and independent of $(\omega_i)_{i \in S_{(n)}}$.

Let $(\sigma_i)_{i\in\mathbb{T}}$ be i.i.d. exponentially distributed with mean $|\mathbf{r}|^{-1}$, independent of $(\omega_i)_{i\in\mathbb{T}}$, and set

$$\begin{split} \tau_{\mathbf{i}}^* &:= \sum_{m=1}^{n-1} \sigma_{i_1 \cdots i_m} \quad \text{and} \quad \tau_{\mathbf{i}}^\dagger := \tau_{\mathbf{i}}^* + \sigma_{\mathbf{i}} \qquad (\mathbf{i} = i_1 \cdots i_n), \\ \mathbb{S}_t &:= \left\{ \mathbf{i} \in \mathbb{S} : \tau_{\mathbf{i}}^\dagger \leq t \right\} \quad \text{and} \quad \nabla \mathbb{S}_t = \left\{ \mathbf{i} \in \mathbb{S} : \tau_{\mathbf{i}}^* \leq t < \tau_{\mathbf{i}}^\dagger \right\}. \end{split}$$

Let \mathcal{F}_t be the filtration

$$\mathcal{F}_t := \sigma(\nabla S_t, (\boldsymbol{\omega_i}, \sigma_i)_{i \in S_t}) \qquad (t \ge 0).$$

Theorem [Mach, Sturm, S. '18]

$$\mathbf{T}_t(\mu) := \text{ the law of } G_{\mathbb{S}_t}((X_i)_{i \in \nabla \mathbb{S}_t}),$$

where $(X_i)_{i \in \nabla S_t}$ are i.i.d. with law μ and independent of \mathcal{F}_t .

The mean-field equation

Theorem [Mach, Sturm, S. '18] Assume that

$$\int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \, \kappa(\omega) < \infty \tag{3}$$

Then for each initial state, the mean-field equation (1) has a unique solution.

In our example, the mean-field equation is

$$\frac{\partial}{\partial t}\mu_t = \alpha \left\{ \mathsf{T}_{\mathsf{cob}}(\mu_t) - \mu_t \right\} + \left\{ \mathsf{T}_{\mathsf{dth}}(\mu_t) - \mu_t \right\}.$$

Rewriting this in terms of $p_t := \mu_t(\{1\})$ yields

$$\frac{\partial}{\partial t} p_t = \alpha p_t^2 (1 - p_t) - p_t =: F_\alpha(p_t) \qquad (t \ge 0).$$

For $\alpha < 4$, the equation $\frac{\partial}{\partial t} p_t = F_{\alpha}(p_t)$ has a single, stable fixed point p = 0.

For $\alpha = 4$, a second fixed point appears at p = 0.5.

For $\alpha >$ 4, there are two stable fixed points and one unstable fixed point, which separates the domains of attraction of the other two.

Fixed points of $\frac{\partial}{\partial t} p_t = F_{\alpha}(p_t)$ for different values of α .

Recursive Tree Processes

A Recursive Distributional Equation is an equation of the form

$$X \stackrel{\mathrm{d}}{=} \gamma[\omega](X_1, \dots, X_{\kappa(\omega)})$$
 (RDE),

where X_1, X_2, \ldots are i.i.d. copies of X, independent of ω .

A law ν solves (RDE) iff

(i)
$$T_t(\nu) = \nu$$
 $(t \ge 0)$ or (ii) $T(\nu) = \nu$.

We can view ν as the "invariant law" of a "Markov chain" where time has a tree-like structure.

In our example, solutions to the RDE are the Bernoulli distributions ν_{low} , ν_{mid} , ν_{upp} with density z_{low} , z_{mid} , z_{upp} .

Recursive Tree Processes

For each solution ν of (RDE), there exists a *Recursive Tree Process* (RTP) $(\omega_i, X_i)_{i \in \mathbb{T}}$, unique in law, such that:

- (i) $(\omega_i)_{i\in\mathbb{T}}$ are i.i.d. with law $|\mathbf{r}|^{-1}\mathbf{r}$.
- (ii) For finite $\mathbb{U} \subset \mathbb{T}$, the r.v.'s $(\mathbf{X_i})_{\mathbf{i} \in \partial \mathbb{U}}$ are i.i.d. with ν and independent of $(\omega_{\mathbf{i}})_{\mathbf{i} \in \mathbb{U}}$.
- (iii) $X_i = \gamma[\omega_i](X_{i1}, \dots, X_{i\kappa(\omega_i)})$ $(i \in \mathbb{T}).$

If we add independent exponentially distributed lifetimes, then:

▶ Conditional on \mathcal{F}_t , the r.v.'s $(\mathbf{X_i})_{\mathbf{i} \in \nabla S_t}$ are i.i.d. with law ν .

Aldous and Bandyopadyay (RDE) say that an RTP is endogenous if

 \mathbf{X}_{\varnothing} is measurable w.r.t. the σ -field generated by $(\omega_{\mathbf{i}})_{\mathbf{i} \in \mathbb{T}}$.

They showed that endogeny is equivalent to bivariate uniqueness.

For each $n \ge 1$, a measurable map $g: S^k \to S$ gives rise to n-variate map $g^{(n)}: (S^n)^k \to S^n$ defined as

$$g^{(n)}(x_1,\ldots,x_k) = g^{(n)}(x^1,\ldots,x^n) := (g(x^1),\ldots,g(x^n)),$$

with
$$x = (x_i^m)_{i=1,\dots,k}^{m=1,\dots,n}$$
, $x_i = (x_i^1,\dots,x_i^n)$, $x^m = (x_1^m,\dots,x_k^m)$.

We define an *n-variate map*

$$\mathsf{T}^{(n)}(\mu^{(n)}) := \text{ the law of } \gamma^{(n)}[\omega](X_1,\ldots,X_{\kappa(\omega)}),$$

which acts on probability measures $\mu^{(n)}$ on S^n . The *n*-variate mean-field equation

$$\frac{\partial}{\partial t}\mu_t^{(n)} = |\mathbf{r}| \left\{ \mathbf{T}^{(n)}(\mu_t^{(n)}) - \mu_t^{(n)} \right\} \qquad (t \ge 0).$$

describes the mean-field limit of n coupled processes that are constructed using the same random maps.

- $\mathcal{P}(S)$ space of probability measures on S.
- $\mathcal{P}_{\mathrm{sym}}(S^n)$ space of probability measures on S^n that are symmetric under a permutation of the coordinates.

$$S_{\mathrm{diag}}^n \quad \{x \in S^n : x_1 = \dots = x_n\}$$

- $\mathcal{P}(S^n)_{\mu}$ space of probability measures on S^n whose one-dimensional marginals are all equal to μ .
- If $(\mu_t^{(n)})_{t\geq 0}$ solves the *n*-variate equation, then its *m*-dimensional marginals solve the *m*-variate equation.
- $\mu_0^{(n)} \in \mathcal{P}_{\mathrm{sym}}(S^n)$ implies $\mu_t^{(n)} \in \mathcal{P}_{\mathrm{sym}}(S^n)$ $(t \ge 0)$.
- $\mu_0^{(n)} \in \mathcal{P}(S_{\mathrm{diag}}^n) \text{ implies } \mu_t^{(n)} \in \mathcal{P}(S_{\mathrm{diag}}^n) \ (t \geq 0).$
- ▶ If $T(\nu) = \nu$, then $\mu_0^{(n)} \in \mathcal{P}(S^n)_{\nu}$ implies $\mu_t^{(n)} \in \mathcal{P}(S^n)_{\nu}$.

If $\nu = \mathbb{P}[X \in \cdot]$ solves the RDE $\mathsf{T}(\nu) = \nu$, then

$$\overline{\nu}^{(n)} := \mathbb{P}\big[\underbrace{(X, \dots, X)}_{n \text{ times}} \in \cdot \big]$$

solves the *n*-variate RDE $T^{(n)}(\nu^{(n)}) = \nu^{(n)}$.

Questions:

- ▶ Is $\overline{\nu}^{(n)}$ a stable fixed point of the *n*-variate equation?
- ▶ Is $\overline{\nu}^{(n)}$ the only solution in $\mathcal{P}_{\mathrm{sym}}(S^n)_{\nu}$ of the *n*-variate RDE?

Let $(\omega_i, X_i)_{i \in \mathbb{T}}$ be the RTP corresponding to a solution ν of the RDE. Recall that the RTP is *endogenous* if

 \mathbf{X}_{\varnothing} is measurable w.r.t. the σ -field generated by $(\omega_{\mathbf{i}})_{\mathbf{i}\in\mathbb{T}}.$

Theorem [AB '05 & MSS '18] The following statements are equivalent:

- (i) The RTP corresponding to ν is endogenous.
- (ii) $\mathbf{T}_t^{(n)}(\mu) \Longrightarrow_{t \to \infty} \overline{\nu}^{(n)}$ for all $\mu \in \mathcal{P}(S^n)_{\nu}$ and $n \ge 1$.
- (iii) $\overline{\nu}^{(2)}$ is the only solution in $\mathcal{P}_{\mathrm{sym}}(S^2)_{\nu}$ of the bivariate RDE.

Fixed points of $\frac{\partial}{\partial t} p_t = F_{\alpha}(p_t)$ for different values of α .

The RDE $\mathbf{T}(\nu)=\nu$ has three solutions $\nu_{\mathrm{low}}, \nu_{\mathrm{mid}}$, and ν_{upp} , where ν_{\ldots} is the probability measure on $\{0,1\}$ with mean $\nu_{\ldots}(\{1\})=z_{\ldots}$ (... = low, mid, upp), which

give rise to solutions $\overline{\nu}_{\rm low}^{(2)}, \overline{\nu}_{\rm mid}^{(2)}$, and $\overline{\nu}_{\rm upp}^{(2)}$ of the *bivariate RDE*.

Proposition [Mach, Sturm, S. '18] Apart from $\overline{\nu}_{\rm low}^{(2)}, \overline{\nu}_{\rm mid}^{(2)}, \overline{\nu}_{\rm upp}^{(2)},$ the *bivariate RDE* has one more solution $\underline{\nu}_{\rm mid}^{(2)}$ in $\mathcal{P}_{\rm sym}(S^2)$. The domains of attraction are:

$$\begin{array}{ll} \overline{\nu}_{\mathrm{low}}^{(2)}: & \left\{\mu_{0}^{(2)}:\mu_{0}^{(1)}(\{1\}) < z_{\mathrm{mid}}\right\}, \\ \underline{\nu}_{\mathrm{mid}}^{(2)}: & \left\{\mu_{0}^{(2)}:\mu_{0}^{(1)}(\{1\}) = z_{\mathrm{mid}}, \ \mu_{0}^{(2)} \neq \overline{\nu}_{\mathrm{mid}}^{(2)}\right\}, \\ \overline{\nu}_{\mathrm{mid}}^{(2)}: & \left\{\overline{\nu}_{\mathrm{mid}}^{(2)}\right\}, \\ \overline{\nu}_{\mathrm{upp}}^{(2)}: & \left\{\mu_{0}^{(2)}:\mu_{0}^{(1)}(\{1\}) > z_{\mathrm{mid}}\right\}. \end{array}$$

The RTPs for ν_{low}, ν_{upp} are endogenous, but the RTP corresponding to ν_{mid} is not.

The *n*-variate map $\mathbf{T}^{(n)}$ is defined even for $n=\infty$, and $\mathbf{T}^{(\infty)}$ maps $\mathcal{P}_{\mathrm{sym}}(S^{\mathbb{N}_+})$ into itself.

By De Finetti's theorem, $(X_i)_{i\in\mathbb{N}_+}$ have a law in $\mathcal{P}_{\mathrm{sym}}(S^{\mathbb{N}_+})$ if and only if there exists a random probability measure ξ on S such that conditional on ξ , the $(X_i)_{i\in\mathbb{N}_+}$ are i.i.d. with law ξ .

Let $\rho := \mathbb{P}[\xi \in \cdot]$ the law of ξ . Then $\rho \in \mathcal{P}(\mathcal{P}(S))$. In view of this, $\mathcal{P}_{\mathrm{sym}}(S^{\mathbb{N}_+}) \cong \mathcal{P}(\mathcal{P}(S))$.

The map $\mathbf{T}^{(\infty)}: \mathcal{P}_{\mathrm{sym}}(S^{\mathbb{N}_+}) \to \mathcal{P}_{\mathrm{sym}}(S^{\mathbb{N}_+})$ corresponds to a higher-level map $\check{\mathbf{T}}: \mathcal{P}(\mathcal{P}(S)) \to \mathcal{P}(\mathcal{P}(S))$.

For any measurable map $g:S^k o S$, define $\check{g}:\mathcal{P}(S)^k o\mathcal{P}(S)$ by

$$\check{g} := \text{ the law of } g(X_1, \dots, X_k),$$
 where (X_1, \dots, X_k) are independent with laws μ_1, \dots, μ_k .

Then

$$\check{\mathsf{T}}(\rho) := \text{ the law of } \check{\gamma}[\boldsymbol{\omega}](\xi_1,\ldots,\xi_{\kappa(\boldsymbol{\omega})}),$$

with ω as before and ξ_1, ξ_2, \ldots i.i.d. with law ρ .

Define *n-th moment measures*

$$ho^{(n)} := \mathbb{E} \big[\underbrace{\xi \otimes \cdots \otimes \xi}_{n \text{ times}} \big]$$
 where ξ has law ρ .

Proposition [MSS '18] If $(\rho_t)_{t\geq 0}$ solves the *higher-level* mean-field equation, then its *n*-th moment measures $(\rho_t^{(n)})_{t\geq 0}$ solve the *n*-variate equation.

Equip $\mathcal{P}(\mathcal{P}(S))_{\nu} = \{\rho : \rho^{(1)} = \nu\}$ with the *convex order*

$$\rho_1 \leq_{\mathrm{cv}} \rho_2 \quad \text{iff} \quad \int \phi \, \mathrm{d} \rho_1 \leq \int \phi \, \mathrm{d} \rho_2 \quad \forall \text{ convex } \phi.$$

[Strassen '65] $\rho_1 \leq_{\mathrm{cv}} \rho_2$ iff there exist a r.v. X and σ -fields $\mathcal{H}_1 \subset \mathcal{H}_2$ s.t. $\rho_i = \mathbb{P}\big[\mathbb{P}[X \in \cdot | \mathcal{H}_i] \in \cdot\big]$ (i = 1, 2).

Define $\overline{\nu}:=\mathbb{P}[\delta_X\in\cdot\,]$ with $\mathbb{P}[X\in\cdot\,]=\nu.$ Maximal and minimal elements:

$$\delta_{\nu} \leq_{\mathrm{cv}} \rho \leq_{\mathrm{cv}} \overline{\nu} \qquad \forall \rho \in \mathcal{P}(\mathcal{P}(S))_{\nu}.$$

Proposition [MSS '18] $\check{\mathbf{T}}$ is monotone w.r.t. the convex order. There exists a solution $\underline{\nu}$ to the higher-level RDE s.t.

$$\check{\mathbf{T}}^n(\delta_{\nu}) \underset{n \to \infty}{\Longrightarrow} \underline{\nu} \quad \text{and} \quad \check{\mathbf{T}}_t(\delta_{\nu}) \underset{t \to \infty}{\Longrightarrow} \underline{\nu}$$

and any solution $\rho \in \mathcal{P}(\mathcal{P}(S))_{\nu}$ to the higher-level RDE satisfies

$$\underline{\nu} \leq_{\mathrm{cv}} \rho \leq_{\mathrm{cv}} \overline{\nu} \qquad \forall \rho \in \mathcal{P}(\mathcal{P}(S))_{\nu}.$$

Proposition [MSS '18]

Let $(\omega_i, X_i)_{i \in \mathbb{T}}$ be the RTP corresponding to γ and ν . Set

$$\xi_{\mathbf{i}} := \mathbb{P}[X_{\mathbf{i}} \in \cdot | (\boldsymbol{\omega}_{\mathbf{i}\mathbf{j}})_{\mathbf{j} \in \mathbb{T}}].$$

Then $(\omega_i, \xi_i)_{i \in \mathbb{T}}$ is an RTP corresponding to $\check{\gamma}$ and $\underline{\nu}$. Also, $(\omega_i, \delta_{X_i})_{i \in \mathbb{T}}$ is an RTP corresponding to $\check{\gamma}$ and $\overline{\nu}$.

Corollary The RTP is endogenous iff $\underline{\nu} = \overline{\nu}$.

Theorem [Mach, Sturm, S. '18] One has

$$\underline{\nu}_{low} = \overline{\nu}_{low}, \quad \underline{\nu}_{upp} = \overline{\nu}_{upp}, \quad \text{but} \quad \underline{\nu}_{mid} \neq \overline{\nu}_{mid}.$$

These are all solutions to the higher-level RDE.

Any solution $(\rho_t)_{t\geq 0}$ to the higher-level mean-field equation converges to one of these fixed points.

The domains of attraction are:

$$\overline{\nu}_{\text{low}}: \qquad \left\{ \rho_{0} : \rho_{0}^{(1)}(\{1\}) < z_{\text{mid}} \right\}, \\
\underline{\nu}_{\text{mid}}: \qquad \left\{ \rho_{0} : \rho_{0}^{(1)}(\{1\}) = z_{\text{mid}}, \ \rho_{0} \neq \overline{\nu}_{\text{mid}} \right\}, \\
\overline{\nu}_{\text{mid}}: \qquad \left\{ \overline{\nu}_{\text{mid}} \right\}, \\
\overline{\nu}_{\text{upp}}: \qquad \left\{ \rho_{0} : \rho_{0}^{(1)}(\{1\}) > z_{\text{mid}} \right\}.$$

The map $\mu \mapsto \mu(\{1\})$ defines a bijection $\mathcal{P}(\{0,1\}) \cong [0,1]$, and hence $\mathcal{P}(\mathcal{P}(\{0,1\})) \cong \mathcal{P}[0,1]$.

Then the higher-level RDE takes the form

$$\eta \stackrel{\mathrm{d}}{=} \chi \cdot (\eta_1 + (1 - \eta_1)\eta_2\eta_3),$$

where η takes values in [0,1], η_1, η_2, η_3 are independent copies of η and χ is an independent Bernoulli r.v. with $\mathbb{P}[\chi = 1] = \alpha/(\alpha + 1)$.

This RDE has three "trivial" solutions

$$\overline{\nu}_{...} = (1-z_{...})\delta_0 + z_{...}\delta_1 \qquad \big(\ldots = \mathrm{low}, \mathrm{mid}, \mathrm{upp}\big),$$

and a nontrivial solution

$$\underline{\nu}_{\mathrm{mid}} = \lim_{n \to \infty} \check{\mathsf{T}}^n(\delta_{z_{\mathrm{mid}}}).$$

Numerical results

